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Abstract:
Summary: The abundance of genomic feature such as gene expression is often estimated from observed total number
of alignment incidences in the targeted genome regions. We introduce a generic data structure and associated file
format for alignment incidence data so that method developers can create novel pipelines comprising models, each
optimal for read alignment, post-alignment QC, and quantification across multiple sequencing modalities.
Availability and Implementation: alntools software is freely available at https://github.com/churchill-lab/alntools
under MIT license.
Contact: kb.choi@jax.org or gary.churchill@jax.org
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Introduction

Short read sequencing technologies and their supporting analysis methods represent a core area

of bioinformatics research. Due to the variety of experimental strategies used and the scale of the

data that can be generated, there is a need for efficient, re-usable data structures that can serve as a

link between software tools that generate sequence alignments and downstream analysis tools. An

ideal data structure should capture the complete and sufficient information in the alignment output

while at the same time eliminating much of the ancillary information. The data structure should

be intuitive, easy to incorporate into new software development, and flexible enough to support the

most widely used sequencing methods as well as anticipating yet to be developed technologies.

Alignment of short sequence reads to a genome or a set of genomic features is a standard

first step in the quantification of sequence data. A variety of alignment strategies are used, from

dynamic programming to k-mer based methods, but in most applications the objective is determine

how many reads were derived from each of a set of genomic features. Quantification of features
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would be trivial if each sequenced read aligned uniquely and unambiguously to a single feature.

However, features can share regions of high similarity. For example, allelic copies of a gene may

differ by only a few single nucleotide polymorphisms (SNPs) or may even be identical. Strategies

for dealing with alignment ambiguity range from discarding multiple aligned reads (multi-reads)

to sophisticated iterative strategies for weighted allocation of read counts1;2;3.

Examples of alignment targets that are composed of discrete genome features include tran-

scripts for aligning RNA-Seq reads, capture regions for whole exome sequencing (WES), digitally

digested restriction fragments for reduced representation bisulfite sequencing (RRBS)4, and peak

regions for chromatin immune precipitation sequencing (Chip-Seq)5 or transposase-accessible

chromatin sequencing (ATAC-Seq)6. The exact location of reads within the feature is often not

important as only the number of reads derived from within the feature is needed for quantification.

In this case, alignment data can be reduced to an incidence profile that indicates which feature(s) a

read aligns to. An incidence profile can be thought of as a binary vector indexed by features with

“one” indicating that a read aligns to the feature. Multi-reads are represented by incidence profiles

with multiple “ones”. Many reads will have matching incidence profiles and it is sufficient to store

only a single profile and the count of the number of reads that share the same profile. The collec-

tion of incidence profiles for a sequenced sample or cell is sufficient for feature quantification and

provides a substantial data reduction.

Humans and most model organisms have diploid genomes. Allele-specific analysis of sequence

data is becoming more common due to longer read platforms and the ability to infer phased gene

sequences7. An allele-specific alignment target will include two (or more) copies of each feature

incorporating their distinct polymorphisms. In applications using multiparent population8, features

may be represented by multiple allelic types. Allele-specific alignment targets can be generated us-
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ing g2gtools (http://churchill-lab.github.io/g2gtools/) from a reference genome sequence and a

variant call format (VCF) file. Interesting applications of allele-specific sequence analysis include

demultiplexing pooled libraries of genetically distinct samples9 and genotyping by RNA-Seq10.

In any application that uses an allele-specific alignment target, there will be a high proportion of

multi-reads with complex incidence profiles.

There are only few data formats in current use for capturing feature-level read counts. One

basic but flexible data format is Loom (http://loompy.org), which can store feature abundance

data together with sample and feature meta-data in a single file. Loom can support allele-specific

abundance data in multiple layered matrices. However, Loom is not designed to encode alignment

incidence profiles. To the best of our knowledge, the only data format that supports alignment in-

cidence profiles is the Barcode-UMI-Set (BUS) file11. The BUS file format supports fast quantifi-

cation and differential analysis in pipelines that utilize kallisto and sleuth software. Moreover,

BUS is specialized for single-cell RNA-Seq data with unique molecular identifier (UMI) barcodes.

A BUS file can be generated using the kallisto pseudo-aligner and has not been adapted for use

with other alignment software. Thus, there is a need for a generic data structure that can support

a wide variety of sequencing technologies and is compatible with standard aligners that output

binary alignment map (BAM) format files.

We have developed a new file format, ALN, for storing alignment incidence data and have

implemented python methods, alntools, that perform useful operations on ALN format files.

The bam2ec method processes BAM files into ALN format. We assume that any post-alignment

quality control (QC) operations such as UMI correction or duplicate removal have been performed

before conversion because the ALN format captures only the alignment incidence profile data

that is needed for feature quantification. The ALN file can be loaded in python as a sparse
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data object and is accessible to many generic python tools. Our goal is to decouple alignment

strategy and post-alignment QC from quantification and downstream analysis to support mod-

ular pipeline development. The alntools software is freely available under MIT licensing at

https://churchill-lab.github.io/alntools/.

Materials and Methods

The ALN format is composed of a header, an alignment incidence matrix (A), and a count matrix

(N). The header captures metadata for samples or single cells (e.g., cell barcodes), as well as feature

sequences and metadata including haplotype labels to support allele-specific applications. The A

matrix represents alignment incidence profiles for all reads across all samples. The A matrix

collapses individual reads into feature equivalence classes — sets of reads that share the same

feature mapping pattern. The patterns are stored as a two-dimensional sparse indicator matrix

with dimensions of
∣∣feature equivalence classes

∣∣ × ∣∣features
∣∣. If allele-specific features are used

as targets, entries of the A matrix are binary numbers of length
∣∣haplotypes

∣∣ in which each bit

represents an alignment incidence on a haplotype (Figure 1a). These binary numbers are converted

to decimals when stored in an ALN file. The N matrix is a two-dimensional (
∣∣feature equivalence

classes
∣∣ × ∣∣samples

∣∣) sparse matrix that represents the number of reads or UMIs associated with

each feature equivalence class in each sample or cell. Both A and N are stored in Compressed

Sparse Column (CSC) format12.

We have implemented python methods that perform useful operations on ALN files. For

example, alntools subcommand ‘bundle’ collapses transcript alignment incidence of RNA-

Seq reads to gene-level incidence; ‘get_unique_reads’ identifies uniquely mapping reads or

equivalence classes; ‘view’ presents how multi-mapping reads are shared among features; or
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‘apply_genotypes’ filters out alignments inconsistent to genotype calls10.

Results

We created a BAM file with single-cell ATAC-Seq data from a sample of three mouse strains —

C57BL/6J, NZO/HlLtJ, and CAST/EiJ — multiplexed for sequencing. We aligned the reads with

segemehl13 to the common candidate peak regions (or peakome) of the three strains by lifting

over the reference peakome previously identified from genome alignment. This allele-specific

alignment strategy is suitable for simultaneous analysis of demultiplexing and quantification. Pro-

cessing the BAM file of 65 GB takes 13 minutes to convert into an ALN format of 452 MB on a

linux system with 2.2 GHz Intel(R) Xeon(R) E5-2698 v4 (40 threads) and 256 GB RAM. We find

that an ALN format file is generally 100-500 times smaller in size than the input BAM file. ALN

format does not encode the alignment position or quality sequences.

The utility of ALN format and alntools, is best demonstrated by their applications. We

implemented an interactive viewer of multi-read sharing among genes (Figure 1b) using alntools.

The application can be used to visualize sequence features that share multi-mapping reads. We

have found this tool to be useful for identifying false positive signals in eQTL analysis that can

occur when multi-mapping read counts are not correctly allocated. We also implemented a new

version of the EMASE algorithm3 in C++ that uses ALN format files (http://churchill-lab.github.

io/emase-zero/). The new EMASE has random access to any chunk of samples in the ALN file

which supports execution across multiple cores in a parallel computing environment.
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ENSMUSG00000107824 Gm6443 6 47977003 1

Sample Filter

Rps2

(b)

Figure 1: (a) ALN format description. The header contains metadata for feature sequences (fi)
or samples (sj). The A matrix describes alignment incidence across features for each read or
equivalence class (rk). This matrix can encode allele-specific alignments. For example, 00, 01,
10, and 11 can specify whether rk aligns to the maternal and/or paternal allele of fi. These binary
numbers are converted to decimal — 0, 1, 2, or 3 — when we save it in an ALN format file.
The N matrix describes read or UMI counts for each rk across samples. BUS and alevin will
be supported in the next version of alntools. (b) Alignment incidence data is useful in quality
checking for the downstream results besides estimating feature abundance. For example, we can
examine whether co-localizing genes for an eQTL is due to sharing multi-mapping reads. We
provide an interactive tool that visualizes how a query gene shares multi-mapping reads with other
genes.
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