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	Abstract	

In	a	single	day	we	transition	from	vigilant	wakefulness	to	unconscious	sleep	and	dreaming,	

undergoing	diverse	behavioural,	physiological	and	neural	changes.	While	during	the	awake	

state,	 exogenous	 stimuli	 and	 endogenous	 changes	 lead	 to	 sensory	 reorganisation,	 this	

remapping	 has	 not	 been	 charted	 throughout	 the	 sleep-wake	 cycle.	 We	 recorded	 neural	

activity	 in	 response	to	a	 range	of	 tones	using	electroencephalography	during	a	 full	night’s	

sleep,	and	examined	whether	auditory	responses	become	more	similar,	dissimilar	or	remain	

unchanged	between	wakefulness,	non-rapid	(NREM)	and	rapid	eye	movement	(REM)	sleep.	

We	 found	 that	neural	 similarities	between	pairs	of	auditory	evoked	potentials	differed	by	

conscious	state	 in	both	early	and	 late	auditory	processing	stages.	Furthermore,	 tone-pairs	

neural	similarities	were	modulated	by	conscious	state	as	a	function	of	tone	frequency,	where	

some	tone-pairs	changed	similarity	between	states	and	others	continued	unaffected.	These	

findings	 demonstrate	 a	 state-,	 stimulus-	 and	 time-dependent	 functional	 reorganization	 of	

auditory	processing	across	the	sleep-wake	cycle.	
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Introduction	

From	the	first	day	of	life	(Fifer	et	al.,	2010)	and	throughout	adulthood	(Clancy	et	al.,	2019;	

Danielson	 et	 al.,	 2016;	 Fritz	 et	 al.,	 2003;	 Heed	 et	 al.,	 2015)	 the	 neural	 basis	 of	 sensory	

processing	 is	 dynamically	 shaped	 by	 the	 interaction	 between	 our	 internal	 state	 and	 the	

environment.	 Reorganization	 of	 sensory,	 motor	 and	 cognitive	 functions,	 also	 termed	

remapping	(Ramachandran	et	al.,	1992),	is	expressed	in	the	nervous	system	in	different	forms	

and	 time	scales.	 Somatosensory	 remapping,	 in	which	 the	cortical	 area	corresponding	 to	a	

specific	body	part	becomes	responsive	to	stimuli	applied	to	different	body	areas,	is	evident	

following	permanent	neural	damage	such	as	amputation.	(Buonomano	and	Merzenich,	1998;	

Merzenich	et	al.,	1984;	Pons	et	al.,	1991;	Ramachandran	et	al.,	1992).	In	addition,	recovery	

from	stroke	 induces	remapping	of	 language	functions	between	hemispheres	and	of	motor	

functions	beyond	motor	areas	(Carmichael,	2003),	retinal	lesions	promote	remapping	of	the	

retinotopic	organization	of	the	neuronal	receptive	fields	in	the	visual	cortex	(Dumoulin	and	

Knapen,	 2018),	 and	 partial	 deafness	 results	 in	 cortical	 reorganisation	 of	 frequency	

representations	(King	and	Moore,	1991).	Remapping	also	take	place	in	healthy	animals	and	

humans,	when	applying	prismatic	spectacles	temporarily	shifting	the	visual	map	(Bultitude	et	

al.,	 2013;	 Linkenhoker	 and	 Knudsen,	 2002),	 by	 artificially	 adjoining	 fingers	 leading	 to	

reorganisation	in	the	somatosensory	cortex	(Buonomano	and	Merzenich,	1998;	Kolasinski	et	

al.,	 2016),	 or	 following	 repetitive	 transcranial	magnetic	 stimulation	 to	 the	 primary	motor	

cortex	 inducing	 widespread	 changes	 in	 the	 motor	 system	 (Lee	 et	 al.,	 2003).	 Moreover,	

remapping	 naturally	 occurs	 without	 such	 manipulations.	 For	 example,	 place	 cells	 in	 the	

hippocampus	that	preferentially	fire	to	distinct	regions	of	a	spatial	environment	remap	their	

spatial	 preference	 in	 response	 to	 changes	 in	 shape,	 light,	 colour	 and	 familiarity	 of	 the	

environment	(Alexander	et	al.,	2016;	Fyhn	et	al.,	2007;	Geva-Sagiv	et	al.,	2016;	Hayman	et	al.,	

2003;	 Jeffery,	 2011;	 Leutgeb	 et	 al.,	 2005;	Moser	 et	 al.,	 2014),	 and	 grid	 cells’	maps	 in	 the	

entorhinal	cortex	are	dynamically	restructured	by	cognitive	factors	or	running	speed	(Boccara	

et	 al.,	 2019;	 Butler	 et	 al.,	 2019;	 Low	et	 al.,	 2020;	Quiroga,	 2019)	 .	 Furthermore,	 not	 only	

changes		in	the	environment	but	also	endogenous	signals	such	as	vestibular	cues,	motivation,	

oxytocin	 or	 norepinephrine	 levels	 elicit	 functional	 reorganization,	 leading	 to	 differential	

neural	responses	to	identical	sensory	stimuli	(Doboli	et	al.,	2003;	Grella	et	al.,	2019;	Knierim	

et	 al.,	 1998;	 Marlin	 et	 al.,	 2015).	 The	 fact	 that	 transitioning	 between	 wakefulness	 and	

different	sleep	stages	involves	substantial	external	and	internal	changes	(Fuller	et	al.,	2006;	
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Jones,	 2005)	 suggests	 that	 sleep	may	 lead	 to	 sensory	 remapping,	 however,	 it	 is	 unknown	

whether	sensory	maps	remain	stable	across	the	sleep-wake	cycle	or	whether	sleep	causes	

functional	sensory	reorganisation.		

	

There	 is	 a	 wide	 consensus	 that	 some	 degree	 of	 sensory	 processing	 persists	 during	 sleep	

(Andrillon	and	Kouider,	2020;	Arzi	et	al.,	2012,	2014;	Atienza	et	al.,	2001;	Canales-Johnson	et	

al.,	2020;	Chennu	and	Bekinschtein,	2012;	Hennevin	et	al.,	2007;	Velluti,	1997).	Neuroimaging	

and	 electrophysiology	 studies	 in	 humans	 (Atienza	 et	 al.,	 2001;	 Bastuji	 and	 García-Larrea,	

1999;	Colrain	and	Campbell,	2007;	Czisch	et	al.,	2002,	2009;	Portas	et	al.,	2000;	Schabus	et	

al.,	2012;	Wilf	et	al.,	2016)	and	animals	(Edeline	et	al.,	2001;	Issa	and	Wang,	2008;	Nir	et	al.,	

2015;	Sela	et	al.,	2020)	demonstrate	clear	brain	activity	in	response	to	sensory	stimuli	in	sleep.	

However,	 it	 remains	 unclear	 precisely	 how	 sensory-related	 neural	 activity	 changes	 during	

sleep.	 Diverse	 results	 are	 reported	 for	 the	 degree	 of	 modulation	 of	 sensory	 responses	

between	wakefulness	and	sleep,	with	findings	of	enhanced	(Colrain	and	Campbell,	2007;	Hall	

and	 Borbely,	 1970;	 Nicholas	 et	 al.,	 2006;	 Yang	 and	 Wu,	 2007),	 reduced	 (Brugge	 and	

Merzenich,	1973;	Czisch	et	al.,	2002,	2004;	Edeline	et	al.,	2001;	Murata	and	Kameda,	1963)	

or	preserved	responses	during	sleep	 (Edeline	et	al.,	2001;	 Issa	and	Wang,	2008;	Nir	et	al.,	

2015;	 Peña	et	 al.,	 1999).	 Furthermore,	 several	 studies	 suggest	 that	 even	within	 the	 same	

experiment,	the	degree	of	response	modulation	between	conscious	states	is	not	consistent	

across	stimuli	and	may	depend	on	stimulus	intensity	or	type	(Castro-alamancos,	2004;	Issa	

and	Wang,	2011;	Lustenberger	et	al.,	2018;	Portas	et	al.,	2000;	Sharon	and	Nir,	2018;	Tlumak	

et	al.,	2012).	This	suggests	that	the	magnitude	and	direction	of	changes	in	sensory	responses	

may	vary	depending	not	only	on	the	sleep	state,	but	also	on	the	properties	of	the	stimuli.	Yet,	

the	investigation	of	sensory	processing	during	sleep	has	focused	on	the	modulation	of	neural	

responses	to	either	a	specific	stimulus	or	a	set	of	stimuli,	while	neglecting	the	investigation	of	

the	modulation	 of	 the	 neural	 similarity	 between	 responses	 to	 different	 stimuli.	 	 In	 other	

words,	 how	 the	 degree	 of	 similarity	 between	 sensory	 responses	 is	 altered	 between	

wakefulness	 and	 sleep	 and	 between	 sleep	 stages:	 do	 brain	 responses	 to	 sensory	 stimuli	

become	more	 similar	 to	 one	 another,	more	 different	 from	each	 other	 or	 do	 they	 remain	

unchanged	across	the	sleep-wake	cycle?	
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To	address	this	question,	we	employ	the	auditory	frequency	axis	as	the	preferred	mode	of	

input	 for	 unconscious	 states	 (Chennu	 and	 Bekinschtein,	 2012).	 Audition	 is	 particularly	

attractive	to	study	sensory	reorganisation	during	sleep	for	several	reasons:		first,		tones	can	

be	easily	presented	during	sleep	without	waking	the	participant;	second,	tones	presentation	

can	be	done	with	high	 temporal	precision	and	 short	 inter-stimulus	 intervals,	 enabling	 the	

collection	of	thousands	of	tone	repetitions	per	participant;	third,	the	auditory	frequency	axis	

offers	a	clear	measure	of	distance	between	the	physical	properties	of	pure	tones;	fourth	and	

last,	 the	 neural	 representations	 of	 pure	 tones	 during	 the	 awake	 state	 are	well-described	

(Saenz	and	Langers,	2014;	Schnupp	et	al.,	2011;	Su	et	al.,	2014).	Thus,	the	auditory	frequency	

axis	is	an	ideal	experimental	model	system	to	study	functional	sensory	reorganisation	across	

the	sleep-wake	cycle.	Here,	we	recorded	brain	activity	in	response	to	a	series	of	pure	tones	

in	 the	middle	part	of	 the	human	audible	 frequency	range	 (Fig.	1),	during	wakefulness	and	

throughout	a	full	night’s	sleep	using	high-density	electroencephalography	(EEG).	Given	the	

vast	internal	changes	between	wakefulness	and	different	sleep	stages,	we	hypothesised	that	

the	organisation	of	the	auditory	frequency	map	is	modulated	by	conscious	state	in	a	sleep-

stage	 dependent	 manner.	 Furthermore,	 we	 also	 hypothesised	 that	 the	 shape	 of	 the	

reorganisation	 depends	 on	 tone	 frequency.	 To	 test	 these	 hypotheses,	 we	 assessed	 how	

similarities	 between	 neural	 responses	 to	 tone-pairs	 change	 across	 the	 sleep-wake	 cycle.	

Specifically,	we	measured	neural	similarities	between	tone-pairs	 in	wakefulness,	 light	 (N2)	

and	deep	(N3)	non-rapid	eye	movement	(NREM)	sleep,	and	rapid	eye	movement	(REM)	sleep,	

and	found	that	they	dynamically	change	in	time	between	and	also	within	conscious	states.	

Moreover,	 tone-pairs	 neural	 similarities	 were	 modulated	 in	 an	 uneven	 manner	 across	

conscious	 states	 as	 a	 function	 of	 tone	 frequency.	 These	 findings	 are	 consistent	 with	 our	

hypothesis	of	sleep-induced	remapping,	indicating	that	the	functional	sensory	organisation	is	

state-,	stimulus-	and	time-dependent.		 	
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Results		

Auditory	evoked	responses	are	state-,	time-	and	stimulus-dependent	

To	test	the	hypothesis	that	transitions	between	wakefulness	and	different	sleep	stages	(N2,	

N3	and	REM	sleep)	induce	functional	sensory	reorganisation,	we	recorded	brain	activity	using	

high-density	EEG	during	wakefulness	and	full-night	sleep	in	response	to	nine	pure	tones	(650,	

845,	1098,	1428,	1856,	2413,	3137,	4079	and	5302	Hz;	Fig.	1),	acquiring	thousands	of	trials	

per	conscious	state	(Table	2).		

	

	
	
Fig.	1:	Experimental	design.		
A	diagram	of	the	auditory	experimental	paradigm	based	on	tone-pairs.	a)	In	each	tone-pair,	
the	first	tone	was	an	‘Adaptor’	tone	(500	Hz,	grey)	which	was	presented	to	create	a	common	
context	for	all	tones,	and	was	followed	by	one	of	nine	pure	tones	or	by	the	adaptor	b)	The	
tones	presented	were	spaced	by	30%	from	one	another:	500	(adaptor	tone),	650,	845,	1098,	
1428,	1856,	2413,	3137,	4079	and	5302	Hz.	c)	In	a	mini-block,	each	tone-pair	was	repeated	
for	10	times	and	10	mini-blocks	presented	in	a	random	order	created	a	block.		A	wakefulness	
session	was	composed	of	24	blocks	and	lasted	approximately	an	hour.	In	a	sleep	session,	the	
number	of	blocks	depended	on	sleep	duration	(Tables	1	and	2).	
	

First,	we	examined	 the	auditory	evoked	 related	 responses	 (ERP)	dynamics.	ERPs	averaged	

across	tones	were	compared	between	wakefulness	(W),	N2,	N3	and	REM	sleep	using	cluster	

permutation	 analysis.	 ERPs	 waveform	 showed	 greater	 voltage	 negativity	 (N100)	 in	

wakefulness	 and	 greater	 voltage	 positivity	 (P200)	 during	 sleep	 (Fig.	 2),	 with	 differences	

observed	in	three	main	time	windows	(W-N2:	20-108	ms,	p	=	0.0013,	effect	size	Wr	=	0.	859;	

124-316	ms,	p	=	0.0001,	effect	size	Wr	=	0.819;	348-448	ms,	p	=	0.152,	effect	size	Wr	=	0.395;	
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Horizontal	blue-yellow	line;	W-REM:	16-96	ms,	p	=	0.0003,	effect	size	Wr	=	0.872;	136-344	

ms,	p	 =	0.0001,	 effect	 size	Wr	=	0.820;	Horizontal	 blue-green	 line;	W-N3:	 28-100	ms,	p	 =	

0.0039,	effect	size	Wr	=	0.848;	128-316	ms,	p	=	0.0002,	effect	size	Wr	=	0.807;	364-448	ms,	p	

=	0.0157,	effect	size	Wr	=	0.456;	Horizontal	blue-red	 line;	Fig.	2	and	Table	1).	Smaller	and	

delayed	ERPs	differences	were	detected	between	sleep	stages,	specifically	between	NREM	

and	REM	sleep	(N2-REM:	68-132	ms,	p	=	0.043,	effect	size	Wr	=	0.547;	316-448,	p	=	0.0012,	

effect	size	Wr	=	0.393;	Horizontal	yellow-red	line;	N3-REM:	348-448	ms,	p	=	0.009,	effect	size	

Wr	=	0.427;	Horizontal	 green-red	 line;	 Fig.	 2).	No	detectable	 changes	 in	ERPs	were	 found	

between	NREM	sleep	stages	(N2-N3:	all	p’s	>	0.13;	Fig.	2).	To	examine	whether	the	observed	

differences	between	conscious	states	were	influenced	by	tone	frequency,	we	applied	a	linear	

mixed-effects	modelling	analysis	including	all	tones	and	pairs	of	conscious	states	in	each	one	

of	 the	 11	 identified	 clusters.	 Interactions	 between	 conscious	 state	 and	 tone	 were	 found	

between	wakefulness	and	NREM	sleep,	in	both	N2	sleep	(W-N2:	20-108	ms,	p	=	0.02,	Fig.	2f;	

364-448	ms,	p	=	0.024,	Fig.	2i)	and	N3	sleep	(W-N3:	28-100	ms,	p	=	0.01,	Fig.	2g;	128-319	ms	

p	=	0.036;	Fig.	2h).	These	interactions	reflect	smaller	ERP	differences	between	wakefulness	

and	NREM	sleep	stages	in	low	and	high	tone	frequencies	and	larger	ones	in	mid-frequencies.	

These	findings	indicate	an	uneven	reshaping	of	the	auditory	response	by	conscious	state	and	

support	the	hypothesis	of	stimulus-dependent	modulation	of	auditory	processing	across	the	

sleep-wake	cycle.		
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Fig.	2:	Auditory	evoked	responses	are	state	and	stimulus	dependent.		
a)	 Auditory	 evoked	 potentials	 averaged	 across	 participants	 and	 tones	 during	wakefulness	
(blue),	 N2	 sleep	 (yellow),	 N3	 sleep	 (green)	 and	 REM	 sleep	 (red).	 The	 dashed	 vertical	 line	
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denotes	tone	onset	(duration	100	ms,	black	horizontal	line).	The	horizontal	color	lines	denote	
significant	differences	between	pairs	of	states	showing	greater	voltage	negativity	(N100)	in	
wakefulness	and	greater	voltage	positivity	(P200)	during	sleep	(Bottom	lines:	Awake	vs.	N2,	
blue-yellow	line;	Awake	vs.	N3,	blue-yellow	line;	Awake	vs.	REM,	blue-green	line)	as	well	as	
differences	between	NREM	and	REM	sleep	(Top	lines:	N2	vs.	REM,	yellow-red	line;	N3	vs	REM,	
green-red	 line;)	 b-e)	 	 Auditory	 evoked	 potentials	 for	 each	 tone	 frequency	 during	 b)	
wakefulness	c)	N2	sleep	d)	N3	sleep	e)	REM	sleep	f-i)	Interactions	between	conscious	states	
and	tone	frequency	were	found	between	f)	wakefulness	and	N2	at	20-108ms	(p	=	0.02,	left)	
and	at	28-100ms	(p	=	0.024,	right)	and	between	g)	wakefulness	and	N3	at	28-100ms	(p	=	0.01,	
left)	and	at	128-316ms	(p	=	0.036,	right).	Bars	denotes	the	mean	and	error	bars	the	S.E.M	of	
12ms	at	the	centre	of	each	cluster.	Each	cluster	time	and	duration	is	indicated	by	a	shaded	
area	 on	 the	 ERP	 plot	 below	 the	 relevant	 bar	 plot.	 *	 denote	 a	 significant	 difference	 in	
amplitude	 between	 pairs	 of	 states	 per	 tone,	 FDR-corrected	 for	multiple	 comparisons.	 T1	
=650Hz,	 T2	 =845Hz,	 T3	 =1098Hz,	 T4	 =1428Hz,	 T5	 =1856Hz,	 T6	 =2413Hz,	 T7	 =3137Hz,	 T8	
=4079Hz	and	T9	=5302Hz.		
	
The	magnitude	of	the	auditory	neural	similarities	are	state-,	time-	and	stimulus-dependent	

To	 further	 the	 understanding	 how	 conscious	 state	 modulates	 auditory	 processing,	 we	

examined	the	relationship	between	neural	responses	to	pairs	of	pure	tones	in	wakefulness,	

NREM	 and	 REM	 sleep.	 We	 quantified	 the	 neural	 similarity	 between	 ERP-pairs	 using	

Spearman’s	 correlation,	 and	 termed	 this	 distance	 measure	 Tone	 Similarity	 Index	 (see	

methods).	Measuring	 the	Tone	Similarity	 Index	along	 the	auditory	processing	 time	course	

(i.e.,	the	450ms	following	stimulus	presentation)	averaged	across	all	tone-pairs	combinations,	

we	discovered	that	it	is	dynamically	changing	over	time	(Fig.	3a).	Using	cluster	permutation	

analysis,	we	identified	two	main	time	windows	in	which	the	Tone	Similarity	Index	exhibits	a	

distinctive	pattern:	 	An	early	(tw1	=	12-236	ms),	and	a	 late	(tw2	=	256-448	ms)	processing	

time	windows,	likely	representing	different	auditory	processing	stages.	Next,	to	characterise	

how	the	neural	similarity	between	tone-pairs	is	changing	in	time	between	conscious	states,	

we	applied	 linear	mixed-effects	modelling.	Specifically,	 linear	mixed-effects	modelling	was	

used	 to	understand	how	 the	Tones	 Similarity	 Index	 in	 each	participant	was	 influenced	by	

conscious	 state	 (‘Wakefulness’,	 ‘N2’,	 ‘N3’,	 and	 ‘REM’),	 auditory	 processing	 time	 window	

(‘Early’	 and	 ‘Late’),	 and	 tone-pair	 (36	 pairwise	 combinations,	 created	 from	 nine	 tone	

frequencies).	The	model	that	best	fitted	the	data	was	one	with	participants	as	random	effect,	

and	conscious	state,	time	window	and	tone-pair	as	fixed	effects	(Table	3).	Results	showed	a	

main	 effect	 of	 state	 (F(3,10150)	 =	 53.26,	 p	 <	 0.0001,	 h2	 =	 0.02;	 Fig.	 3a),	 indicating	 that	

conscious	state	has	an	effect	on	auditory	processing,	a	main	effect	of	tone-pair	(F(35,	10150)	

=	42.35,	p	<	0.0001,	h2	=	0.13),	reflecting	tone-pair	specific	similarity	magnitudes	(Fig.	2b-e,	
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Fig	3b-c),	and	a	main	effect	of	time	window	(F(1,	10150)	=	1186.03,	p	<	0.0001,	h2	=	0.10;	Fig.	

3	a-c),	 in	 line	with	 the	observed	dynamic	 changes	 in	 time	of	 the	Tone	Similarity	 Index.	 In	

addition,	interactions	between	state	and	time	window	(F(3,	10150)	=	810.1,	p	<	0.0001,	h2	=	

0.19),	state	and	tone-pair	(F(105,	10150)	=	2.79,	p	<	0.0001,	h2	=	0.03),	and	time	window	and	

tone-pair	(F(35,	10150)	=	2.31,	p	<	0.0001,	h2	=	0.008)	were	observed.	The	reliable	interactions	

indicate	that	 the	relationship	between	neural	 responses	to	pure	tones	changes	differently	

between	conscious	state	depending	on	 the	 time	window	and	 tones	 frequency,	with	some	

tone-pairs	showing	a	significant	change	in	similarity	between	states	while	others	remaining	

unchanged	(Fig.	4).	

	

To	disentangle	 and	 characterize	possible	differences	 in	 auditory	processing	between	 time	

windows,	further	analyses	were	conducted	for	early	and	late	time	windows,	separately.	In	the	

early	time	window,	linear	mixed-effects	modelling	analysis	(Table	4)	revealed	a	main	effect	of	

state	(F(3,5005)	=	76.58,	p	<	0.0001,	h2	=	0.04	;	Fig.	3b),	a	main	effect	of	tone-pair	(F(35,	5005)	

=	42.35,	p	<	0.0001,	h2	=	0.23;	Fig.	3)	and	an	interaction	between	state	and	tone-pair	(F(105,	

5005)	=	2.58,	p	<	0.0001,	h2	=	0.05).	Planned	comparisons	uncovered	that	the	Tone	Similarity	

Index	was	greater	in	wakefulness	(r	=	0.57	±	0.17)	in	comparison	to	all	sleep	stages	(N2:	r	=	

0.47	±	0.24,	F(1,2485)	=	5.78,	p	=	0.016,	h2	=	0.002;	N3:	r	=	0.22	±	0.25,	F(1,2485)	=	119.2,	p	<	

0.0001,	h2	=		0.05;	REM:	r	=	0.41	±	0.26,	F(1,2485)	=	21.1,	p	<	0.0001,	h2	=		0.008;	Fig.	3b	and	

4a-c),	indicating	greater	similarities	between	neural	responses	to	tone-pairs	in	wakefulness	

versus	sleep.	In	addition,	during	sleep,	Tone	Similarity	Index	was	greater	in	N2	in	comparison	

to	N3	(F(1,2485)	=	1253.9,	p	<	0.0001,	h2	=	0.34;	Fig.	3b	and	4)	and	REM	(F(1,2502)	=	36.3,	p	

<	0.0001,	h2	=	0.19;	Fig.	3b	and	4f),	and	greater	in	REM	in	comparison	to	N3	(F(1,2441)	=	64.9,	

p	<	0.0001,	h2	=		0.03;	Fig.	3b	and	4e),	indicating	that	neural	similarities	between	tone-pairs	

depended	 on	 sleep	 stage.	 To	 further	 examine	 how	 tone	 frequency	 interacts	 with	 the	

conscious	state	we	conducted	planned	comparisons	between	pairs	of	states	and	tone-pairs.	

We	found	state	and	tone-pair	 interactions,	between	wakefulness	and	all	sleep	stages	 (N2:	

F(35,	2485)	=	2.16,	p	<	0.0001,	h2	=	0.03;	N3	F(35,	2485)	=	2.03,	p	=	0.0003,	h2	=	0.03;	REM:	

F(35,	2485)	=	1.92,	p	=	0.001,	h2	=	0.03;	Fig.3b	and	4a-c),	reflecting	significant	differences	in	

tone-pairs	similarities	between	states	in	low	frequencies	and	no	change	in	high	frequencies	

(Fig.	4a-c).	In	addition,	within	sleep	there	were	interactions	between	N3	and	N2	(F(35,	2485)	
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=	1.67,	p	=	0.008,	h2	=	0.03)	and	between	N3	and	REM	(F(35,	2441)	=	2.53,	p	<	0.0001,	h2	=	

0.03),	reflecting	greater	differences	 in	tone-pairs	similarities	between	states	 in	high	versus	

low	frequencies		(Fig.	4d-f).	These	interactions	suggest	a	stimulus-dependent	modulation	of	

neural	similarities	between	wakefulness	and	sleep	as	well	as	between	sleep	stages	for	the	

early	time	window.	

	

In	the	late	time	window,	a	different	pattern	emerged.	Linear	mixed-effects	modelling	analysis	

(Table	5)	revealed	a	main	effect	of	state	(F(3,5005)	=	30.91,	p	<	0.0001,	h2	=	0.02;	Fig.	3c),	a	

main	effect	of	tone-pair	(F(35,	5005)	=	15.72,	p	<	0.0001,	h2	=	0.10;	Fig.	3c),	and	an	interaction	

between	state	and	tone-pair	(F(105,	5005)	=	2.25,	p	<	0.0001,	h2	=	0.05;	Fig.	3c	and	4),	similar	

to	 the	early	 time	window.	However,	 in	contrast	 to	 the	early	 time	window,	Tone	Similarity	

Index	was	greater	in	N2	(r	=	0.50	±	0.26)	than	in	wakefulness	(r	=	0.25	±	0.21,	F(1,2455)	=	46.6,	

p	<	0.0001,	h2	=	0.02;	Fig.	3c),	N3	(r	=	0.30	±	0.29,	F(1,2451)	=	175.8,	p	<	0.0001,	h2	=	0.07),	

and	REM	sleep	(r	=	0.28	±	0.27,	F(1,2462)	=	66.5,	p	<	0.0001,	h2	=	0.03;	Fig.	3c	and	4),	while	no	

other	differences	were	evident	between	wakefulness	and	sleep	nor	between	sleep	stages	(all	

F’s	<	5.25,	p	>	0.05	;	Fig.	3c	and	4).		Moreover,	an	interaction	between	states	and	tone-pair	

was	observed	between	N2	and	wakefulness	(F(35,	2455)	=	4.48,	p	<	0.0001,	h2	=	0.02;	Fig.	3c	

and	4a),	and	N2	and	N3	(F(35,	2451)	=	3.67,	p	<	0.0001,	h2	=	0.05;	Fig.	3c	and	4d),	reflecting	

greater	differences	in	tone-pairs	similarities	between	states	in	high	versus	low	frequencies		

(Fig.	4a,d).	In	addition,	state	and	tone-pair	interactions	between	REM	and	wakefulness	(F(35,	

2439)	=	2.94,	p	<	0.0001,	h2	=	0.04;	Fig.	3c	and	4c),	and	REM	and	N3	(F(35,	2435)	=	2.76,	p	<	

0.0001,	h2	=	0.04;	Fig.	3c	and	4f)	were	also	found,	indicating	that	even	when	the	mean	Tone	

Similarity	Index	is	largely	the	same	between	states	(i.e.,	no	main	effects	of	state	were	found	

between	wakefulness,	REM	and	N3),	the	relation	between	neural	responses	to	tones	is	state-

dependent.	 These	 findings	 demonstrate	 a	 	 differential	 modulation	 of	 tone-pairs	 neural	

similarities	 by	 conscious	 state	 and	 further	 support	 the	 hypothesis	 of	 stimulus-dependent	

auditory	processing	across	the	sleep-wake	cycle.	

	

To	 further	 understand	how	auditory	 processing	 changes	 between	 the	 early	 and	 late	 time	

windows,	we	compared	the	Tone	Similarity	Index	between	the	two	windows	separately	for	

each	conscious	state.	This	analysis	revealed	opposite	trajectories	between	wakefulness	and	
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NREM	sleep.	During	wakefulness	Tone	Similarity	Index	was	greater	in	the	early	compared	with	

the	late	time	window	(F(1,2485)	=	130.38,	p	<	0.0001,	h2	=	0.05;	Fig.	3),	while	in	NREM	sleep	

Tone	Similarity	Index	was	greater	in	the	late	compared	with	the	early	time	window,	for	both	

N2	(F(1,2485)	=	21.23,	p	<	0.0001,	h2	=	0.008;	Fig.	3)	and	N3	sleep	(F(1,2485)	=	60.67,	p	<	

0.0001,	h2	=	0.02;	Fig.	3).	No	difference	was	found	in	REM	sleep	between	early	and	late	time	

windows	 (F(1,2485)	 =	 1.59,	 p	 =	 0.21,	 h2	 <0.001;	 Fig.	 3),	 although	 Fig.	 3a	 shows	 some	

fluctuations	 of	 similarity	magnitude	 during	 REM	 sleep	 as	well.	 In	 addition,	 an	 interaction	

between	time	window	and	tone-pairs	was	observed	in	wakefulness	(F(35,	2485)	=	3.37,	p	<	

0.0001,	h2	=	0.05)	and	REM	sleep	(F(35,	2485)	=	1.96,	p	=	0.0007,	h2	=	0.03),	but	not	in	NREM	

sleep,	 suggesting	 within	 state	 stimuli-dependent	 modulation	 of	 neural	 similarities	 across	

time.	Overall,	these	findings	provide	additional	evidence	for	uneven	reshaping	of	tone-pairs	

neural	 similarities	between	wakefulness	and	 sleep,	 as	well	 as	between	 sleep	 stages	along	

processing	time.		
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Fig.	 3:	 Similarity	 magnitude	 between	 auditory	 responses	 is	 state-,	 time-	 and	 stimulus-
dependent.		
a)	 Auditory	 evoked	 responses	 similarity	 along	 the	 auditory	 processing	 time	 during	
wakefulness	(blue),	N2	sleep	(orange),	N3	sleep	(green)	and	REM	sleep	(red)	demonstrating	a	
dynamic	 change	 in	 tone-pairs	 similarities	 across	 auditory	 processing	 time.	b-c)	 Tone-pairs	
similarity	 in	 the	 b)	 early	 and	 c)	 late	 time	 windows	 showing	 reorganisation	 of	 tone-pairs	
similarities	 between	 states.	 Each	 dot	 represents	 a	 tone-pair;	 flat	 violin	 plots	 show	 the	
distribution;	 boxplot	 mid-line	 denotes	 the	 median;	 and	 the	 rectangle	 denotes	 the	
interquartile	range	(25th	to	the	75th	percentiles).	Horizontal	black	lines	denote	a	main	effect	
of	conscious	state;	grey	lines	denote	an	interaction	between	conscious	state	and	tone-pair	
(with	no	main	effect	of	conscious	state);	black-grey	lines	denote	a	main	effect	of	state	and	an	
interaction	between	conscious	state	and	tone-pair.	
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Fig.	4:	Auditory	similarity	magnitude	differences	between	conscious	states	
a-c)	 Differences	 in	 Representational	 Similarity	Matrices	 (RSMs)	 between	wakefulness	 and	
different	sleep	stages.	Each	matrix	corresponds	to	the	subtraction	between	pairs	of	similarity	
matrices	(Fig.	5).		a)	RSMs	difference	between	wakefulness	and	N2	sleep	in	the	early	(left)	and	
late	(right)	time	window.	b)	RSMs	difference	between	wakefulness	and	N3	sleep	in	the	early	
(left)	and	late	(right)	time	window.	c)	RSMs	difference	between	wakefulness	and	REM	sleep	
in	the	early	(left)	and	late	(right)	time	window.	d-f)	Differences	in	Representational	Similarity	
Matrices	 (RSMs)	 between	 wakefulness	 and	 different	 sleep	 stages.	 d)	 RSMs	 difference	
between	N2	and	N3	sleep	in	the	early	(left)	and	late	(right)	time	window.	e)	RSMs	difference	
between	N2	and	REM	sleep	in	the	early	(left)	and	late	(right)	time	window.	f)	RSMs	difference	
between	 REM	 and	 N3	 sleep	 in	 the	 early	 (left)	 and	 late	 (right)	 time	 window.	 Small	 black	
rectangle	within	each	cell	represent	significant	difference	between	states	for	a	specific	tone-
pair,	as	obtained	from	planned	comparisons	following	the	computation	of	the	linear	mixed-
effect	models	of	tables	4	and	5	(see	Methods).	
	

The	patterns	of	auditory	neural	similarities	are	state-,	time-	and	stimulus-dependent	

Next,	 we	 investigated	 how	 the	 patterns	 of	 neural	 similarities	 between	 tone-pairs	 are	

modulated	 across	 the	 sleep-wake	 cycle	 using	 Representational	 Similarity	 Analysis	 (RSA)	

(Kriegeskorte	et	al.,	2008).	Tone	Similarity	Index	values	for	all	pairwise	combinations	of	the	

nine	 tone	 frequencies	were	 reorganised	 into	Representational	 Similarity	matrices	 (RSMs),	

generated	by	arranging	the	tone	frequencies	along	the	rows	and	columns	of	the	RSM.	We	
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obtained	 9	 by	 9	matrices,	 in	which	 each	 cell	 of	 the	matrix	 indicates	 the	 neural	 similarity	

between	tone-pairs	as	measured	by	the	Tone	Similarity	Index	(Fig.	5	a-d).	Using	RSA,	the	RSMs	

were	 compared	 between	 conscious	 states	 in	 each	 time	 window	 separately.	 First,	 we	

examined	the	group-averaged	RSMs	(see	methods).	 In	the	early	time	window,	the	RSM	of	

each	state	was	correlated	with	the	RSM	of	all	other	conscious	states	(W-N2	r	=	0.90,	W-N3	r	

=	0.80,	W-REM	r	=	0.86,	N2-N3	r	=	0.72,	N2-REM	r	=	0.96,	N3-REM	r	=	0.65,	all	p’s	<	0.05	FDR	

corrected	 for	 multiple	 comparisons;	 Fig.	 5a-d).	 Notably,	 the	 RSM	 of	 N3	 had	 the	 lowest	

correlation	values	with	 the	RSMs	of	 the	other	conscious	states.	 In	 the	 late	 time	windows,	

similarly	to	the	early	time	window,	RSMs	were	correlated	to	each	other	between	all	pairs	of	

conscious	states	(W-N2	r	=	0.63,	W-N3	r	=	0.66,	W-REM	r	=	0.57,	N2-N3	r	=	0.78,	N2-REM	r	=	

0.93,	N3-REM	r	=	0.74,	all	p’s	<	0.05	FDR	corrected	for	multiple	comparisons;	Fig.	5a-d).	Yet,	

unlike	in	the	early	time	window,	here	wakefulness	RSM	showed	lower	correlation	values	with	

all	sleep	stages.	These	findings	imply	a	relatively	preserved	neural	similarity	patterns	between	

tone-pairs	across	the	sleep	wake-cycle.	

	

To	further	investigate	the	contribution	of	each	participant	to	the	observed	group	similarity	

patterns	 and	 to	 be	 able	 to	 generalize	 such	 results	 to	 other	 samples	 of	 participants,	 we	

conducted	 an	 RSA	 by	 computing	 separate	 RSMs	 for	 each	 participant	 at	 each	 state	 (see	

methods).	 In	 the	 early	 time	 window,	 all	 conscious	 states	 showed	 some	 degree	 of	 RSMs	

similarity	to	each	other,	as	 in	the	group-averaged	RSMs	(W-N2:	r	=	0.35	±	0.24,	CI	=	[0.24,		

0.47];	W-N3:	r	=	0.13	±	0.19,	CI	=	[0.041,	0.22];	W-REM:	r	=	0.33	±	0.26,	CI	=	[0.20,	0.45];	N2-

N3:	r	=	0.14	±	0.22,	CI	=	[0.44,	0. 253];	N2-REM:	r	=	0.34	±	0.26,	CI	=	[0.22,	0.46];	N3-REM:	r	=	

0.15	±	0.19,	CI	=	[0.06,	0.24];	Fig.	5e).	However,	in	the	late	time	window,	only	the	RSM	of	N2	

correlated	with	all	other	states	(W-N2:	r	=	0.08	±	0.15,	CI	=	[0.03,	0.144],	N2-N3:	r	=	0.19	±	

0.24,	 CI	 =	 [0.08,	 0.30],	 N2-REM:	 r	 =	 0.24	 ±	 0.26,	 CI	 =	 [0.11,	 0.36]),	 while	 the	 RSMs	 of	

wakefulness,	 N3	 and	 REM	 sleep	 exibited	 non-reliable	 correlations	 implying	 a	 different	

organisation.	(W-REM:	r	=	0.01	±	0.19,	CI	=	[-0.07,	0.11];	W-N3:	r	=	0.08	±	0.18,	CI	=	[-0.003,	

0.17];	N3-REM:	r	=	0.12	±	0.27,	CI	=	[-0.005,	0.25];	Fig.	5f).	These	findings	show	that	although	

wakefulness,	N3	and	REM	sleep	do	not	differ	in	Tone	Similarity	Index	values	(Fig.	3c),	they	

present	different	similarity	pattern	(Fig.	5),	as	alluded	by	the	state-tone	interactions	between	

these	states	 in	the	similarity	magnitude	analysis	(Fig.	3c).	 In	addition,	comparison	of	RSMs	

between	early	and	late	time	windows	in	each	state	revealed	highest	correlations	in	N2	(r	=	
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0.40	±	0.25,	CI	=	[0.29,	0.50]),	then	in	REM	(r	=	0.26	±	0.25,	CI	=	[0.16,	0.36]),	wakefulness	(r	=	

0.19	±	0.22	CI	=	[0.10,	0.28]),	and	lastly	during	N3	sleep	(r	=	0.13	±	0.19,	CI	=	[0.05,	0.21]),	

highlighting	 greater	 differences	 in	 similarity	 pattern	 across	 time	 for	 N3	 sleep	 and	 more	

preserved	 pattern	 in	 N2	 sleep.	 To	 further	 illustrate	 the	 relationships	 between	 conscious	

states,	 time	 windows,	 and	 tone-pairs	 we	 applied	 hierarchical	 clustering	 analysis.	

Dendrograms	 from	 this	 analysis	 provide	 an	 intuitive	 representation	of	 the	 Tone	 Similarity	

Index	magnitude	 (Fig.	6a-b)	and	patterns	 (Fig.	6c-l).	For	example,	 the	dendrograms	clearly	

demonstrate	that	N3	sleep	in	early	time	window	is	the	most	dissimilar	from	the	other	states	

in	terms	of	neural	similarity	magnitude	(Fig.	6a)	and	pattern	(Fig.	6c),	suggesting	that	slow	

wave	sleep	is	characterised	by	a	markedly	different	sensory	organisation	from	all	other	states.	

In	addition,	it	is	also	evident	that	N2	and	REM	sleep	maintain	a	high	resemblance	in	similarity	

patterns	 in	 in	 both	 time	 windows	 (Fig.	 6c-d),	 despite	 their	 dissimilarity	 in	 magnitude,	

particularly	for	the	late	time	window	(Fig.	6b).	
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Fig.	5:	Similarity	pattern	between	auditory	responses	is	state-,	time-	and	stimulus-
dependent	
Representational	 Similarity	 Matrices	 (RSM)	 averaged	 across	 participants	 during	 a)	
wakefulness	(blue	outline),	b)	N2	sleep	(yellow	outline),	c)	N3	sleep	(green	outline)	and	d)	
REM	sleep	(red	outline),	averaged	across	the	early	time	window	(left),	and	late	time	window	
(right).	 E-f)	 Individual	 RSMs	 correlations	 between	 conscious	 states	 in	 the	 e)	 early	 time	
window,	where	some	degree	of	similarity	was	found	between	all	conscious	states,	and	f)	late	
time	window,	where	some	degree	of	similarities	was	found	only	between	N2	and	the	other	
conscious	states.	Each	dot	represents	a	participant;	flat	violin	plots	show	the	distribution;	the	
boxplot	mid-line	denotes	the	median;	the	rectangle	denotes	the	interquartile	range	(25th	to	
the	75th	percentiles).	*	denotes	a	reliable	difference	from	zero.	
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Fig.	 6:	 Hierarchical	 clustering	 analysis	 for	 Similarity	 magnitude	 and	 pattern	 reveals	
reshaping	of	the	auditory	map	
	a-d)	 Hierarchical	 clustering	 analysis	 between	 conscious	 states	 in	 the	 early	 (left)	 and	 late	
(right)	time	windows.	a-b)	similarity	magnitude	across	tone	and	c-d)	similarity	pattern	across	
tones.	e-f)	Hierarchical	clustering	analysis	for	similarity	pattern	between	tones	in	wakefulness	
(blue	palette),	g-h)	N2	sleep	(yellow	palette),	i-j)	N3	sleep	(green	palette)	and	k-l)	REM	sleep	
(red	palette).	T1	=650Hz,	T2	=845Hz,	T3	=1098Hz,	T4	=1428Hz,	T5	=1856Hz,	T6	=2413Hz,	T7	
=3137Hz,	T8	=4079Hz	and	T9	=5302Hz.	
	 	

Probing	the	neural	auditory	similarities	to	auditory	physical,	physiological	and	perceptual	

models.		

Last,	we	tested	how	well	the	neural	similarity	patterns	in	wakefulness,	NREM	and	REM	sleep	

could	be	explained	by	competing	conceptual	models	of	physical,	physiological	and	perceptual	

auditory	organizations.		The	first	model	is	the	Frequency	Difference	Model,	which	is	based	on	

the	physical	distance	in	Hertz	between	tone	frequencies.	In	this	model,	the	relations	between	

tone-pairs	were	 calculated	by	 subtracting	 the	 lower	 tone	 frequency	 from	 the	higher	 tone	

frequency	(Fig.	7a).	The	second	model	is	the	Greenwood	Model,	which	was	developed	based	

on	studies	mathematically	defining	the	links	between	the	anatomic	location	of	the	inner	ear	

hair	cells	in	the	cochlea	and	the	tone	frequencies	at	which	they	are	stimulated	(Greenwood,	

1990).	Here,	 the	 relations	between	 tone-pairs	was	 calculated	by	applying	 the	Greenwood	

function,	which	estimates	the	distance	in	millimetres	along	the	basilar	membrane	between	

locations	that	are	maximally	excited	by	each	frequency	(Fig.	7b,	See	methods),	representing	

“physiological	distances”.	The	Third	model	 is	the	Mel	Model,	obtained	from	the	Mel	scale,	

which		indicates	how	pitch	perception	evolves	as	a	function	of	sound	frequencies	in	a	non-

linear	manner	(Micheyl	et	al.,	2012;	Moore,	2003;	Stevens	et	al.,	1937).	 	 In	the	perceptual	

model,	 the	 relations	 between	 tone-pairs	 were	 calculated	 by	 dividing	 the	 Mel	 value	

corresponding	to	the	higher	tone	frequency	by	Mel	value	corresponding	to	the	lower	tone	

frequency	(Fig.	7c,	See	methods).	For	each	of	the	three	model,	the	tone-pairs	relations	were	

arranged	into	9	by	9	matrices	as	the	RSMs	discussed	in	the	previous	section.	To	evaluate	each	

model’s	capacity	to	predict	the	observed	neural	relation	between	tone-pairs,	we	transformed	

the	RSMs	into	Representational	Dissimilarity	matrices	(RDMs	=	1-	RSMs)	and	estimated,	for	

each	participant	in	each	conscious	state	and	time	window,	the	correlation	between	the	RDMs	

and	the	model	matrices.	 	We	then	fitted	the	correlation	values	with	a	 linear	mixed-effects	

model,	 where	model	 (‘Difference’,	 ’Greenwood’,	 ‘Mel’),	 state	 (‘Wakefulness’,	 ‘N2’,	 ‘N3’,	
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‘REM’)	and	time	window	(‘Early’,	‘Late’)	appeared	as	fixed	effects	(Table	6).	We	found	a	main	

effect	of	model	(F(2,811)	=	14.7,	p	<	0.0001,	h2	=	0.03),	a	main	effect	of	state	(F(3,811)	=	5.44,	

p	=	0.003,	h2	=	0.02)	and	a	main	effect	of	time	window	(F(1,811)	=	49.84,	p	<	0.0001,	h2	=	0.06),	

the	latter	reflecting	higher	model	fits	for	the	early	time	window	(Fig.	7).	 In	addition,	there	

were	interactions	between	model	and	state	(F(6,811)	=	5.53,	p	<	0.0001,	h2	=	0.04),	model	and	

time	window	(F(2,811)	=	7.76,	p	=	0.0005,	h2	=	0.02)	and	state	and	time	window	(F(3,811)	=	

47.03,	p	<	0.0001,	h2	=	0.15).		

	

Planned	comparisons	revealed	that	in	the	early	time	window	across	all	states	the	Mel	model	

had	a	higher	predictive	value	than	the	Greenwood	(t(811)	=	4.37,	p	<	0.0001.	Cohen’s	d	=	

0.19;	Fig.	7)	and	Difference	(t(811)	=	6.52,	p	<	0.0001.	Cohen’s	d	=	0.39;	Fig.	7e-g)	models,	and	

that	the	Greenwood	model	had	a	higher	predictive	value	than	the	Difference	model	(t(811)	=	

5.28,	p	<	0.0001.	Cohen’s	d	=	0.20;	Fig.	7e-g).	In	the	late	time	window,	the	Mel	model	had	a	

higher	predictive	value	than	the	Difference	model	(t(811)	=	3.07,	p	=	0.006.	Cohen’s	d	=	0.185;	

Fig.	 7h-j)	 but	 no	 reliable	 difference	was	 found	 between	 the	Mel	 and	Greenwood	models	

(t(811)	 =	 2.32,	 p	 =	 0.054.	 Cohen’s	 d	 =	 0.10;	 Fig.	 7h-j),	 nor	 between	 the	 Difference	 and	

Greenwood	models	 (t(811)	 =	 2.20,	 p	 =	 0.072,	 Cohen’s	 d	 =	 0.08;	 Fig.	 7h-j).	 These	 findings	

suggest	 that	 not	 only	 in	 wakefulness	 but	 also	 during	 sleep,	 tone-pairs	 neural	 similarities	

organisation	is	better	explained	by	the	perceived	similarities	between	tone	frequencies	than	

by	the	tones	difference	in	Hz	or	by	the	ear	anatomo-physiological	organization.		

	

Nonetheless,	 these	 results	 do	 not	 imply	 that	 the	 Models	 fit	 the	 auditory	 neural	

representations	to	the	same	extent	in	all	states.	Indeed,	in	the	early	time	window	the	three	

models	had	lower	predictive	value	for	N3	in	comparison	to	all	other	states	(all	t’s	>	3.55,	all	

p’s	 <	 0.0023),	 in	 line	 with	 the	 similarity	 magnitude	 (Fig.	 3)	 and	 pattern	 (Fig.	 5)	 results,	

signalling	distinctive	neural	auditory	frequency	organisation	in	N3.	Furthermore,	in	the	late	

time	window,	the	Mel	model	had	a	higher	predictive	value	for	N2	in	comparison	to	all	other	

states	(all	t’s	>	2.67,	all	p	<	0.039,	Cohen’s	d	>	0.25),	and	the	Greenwood	model	had	a	higher	

predictive	value	for	N2	in	comparison	to	wakefulness	(t(811)	=	3.87,	p	=	0.007,	Cohen’s	d	=	

0.33)	and	N3	(t(811)	=	3.68,	p	=	0.001,	Cohen’s	d	=	0.26),	but	not	in	relation	to	REM	sleep	

(t(811)	=	2.47,	p	=	0.065,	Cohen’s	d	=	0.21).	No	reliable	differences	were	found	between	states	
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for	the	Difference	model	in	the	late	time	window.	Altogether,	these	findings	indicate	that	the	

general	rules	based	on	perceptual	similarities	governing	the	structure	of	the	tone-pairs	neural	

similarity	organisation	during	wakefulness,	are	also	applicable	to	sleep,	yet	 in	a	conscious-

state	sleep	stage-dependent	manner.		
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Fig.	 7:	 Probing	 the	 auditory	 neural	 similarities	 to	 auditory	perceptual,	 physiological	 and	

physical	models.		

a)	The	Frequency	Difference	Model	reflecting	the	physical	distance	in	Hz	between	stimuli.	The	
value	 in	each	cell	was	calculated	by	subtracting	the	 lower	tone	frequency	from	the	higher	
tone	frequency.	b)	The	Greenwood	Model,	linking	the	anatomic	location	of	the	inner	ear	hair	
cells	 to	 the	 tone	 frequencies	 at	 which	 they	 are	 stimulated.	 The	 value	 in	 each	 cell	 was	
calculated	 by	 means	 of	 the	 Greenwood	 function	 and	 corresponds	 to	 the	 distance	 in	
millimetres	along	the	basilar	membrane	between	locations	maximally	excited	by	each	tone	
frequency.	c)	The	Mel	Model,	which	is	based	on	the	Mel	Scale	relates	the	perceived	similarity	
in	pitch	to	frequency	similarity	while	accounting	for	the	nonlinearity	of	humans’	perceptual	
discrimination	ability.		Values	in	each	cell	were	calculated	by	dividing	the	higher	Mel	value	by	
the	 lower	Mel	value	obtained	for	each	tone-pair.	Spearman’s	correlations	between	neural	
similarity	patterns	 (representation	dissimilarity	matrices,	RDM)	and	auditory	models	 show	
that	the	Mel	model	has	higher	predictive	value	in	all	conscious	states,	except	for	N3	sleep,	in	
both	e-g)	the	early	time	window	and	h-j)	the	late	time	window.	
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Discussion		

In	this	study,	we	sought	to	examine	how	conscious	states	shape	neural	sensory	mapping	of	

the	auditory	system	in	humans.	We	systematically	examined	brain	activity	in	response	to	a	

range	of	pure	tones	during	wakefulness,	NREM	and	REM	sleep	and	revealed	that	the	tone-

pairs	neural	similarities	are	dynamically	changing	in	a	state-,	time-	and	stimulus-dependent	

manner.	Specifically,	the	neural	similarity	between	pure	tones	differed	between	wakefulness	

and	sleep,	as	well	as	between	sleep	stages	in	both	early	and	late	auditory	processing	windows,	

revealing	different	hierarchical	relationships	between	states	across	time.	Furthermore,	tone-

pairs	neural	similarities	were	modulated	by	conscious	state	as	a	function	of	tone	frequency,	

with	 some	 tones-pairs	 showing	a	change	 in	 similarity	between	states	while	others	 remain	

unchanged.	 In	 accordance	 with	 our	 hypothesis,	 these	 findings	 demonstrate	 convergent	

evidence	of	functional	auditory	reorganisation	across	the	sleep-wake	cycle.	

	

Over	the	last	century,	the	anatomical	and	functional	organization	of	sensory	systems	have	

been	vastly	studied	in	awake	and	sedated	animal	models	(Hudspeth	and	Logothetis,	2000;	

Kaas,	2008).	For	many	years,	 it	has	been	assumed	 that	 the	sensory	maps	 in	 the	brain	are	

resistant	to	changes	in	conscious	states,	at	least	at	the	level	of	primary	sensory	cortices.	This	

assumption	 turned	 out	 to	 be	 inaccurate	 (Reimann	 and	 Niendorf,	 2020),	 and	 raised	 the	

question	 of	 the	 stability	 and	 flexibility	 of	 sensory	 maps	 between	 different	 states	 of	

consciousness.	In	this	study,	we	investigated	how	the	functional	organisation	of	the	auditory	

frequency	map	is	shaped	across	the	sleep-wake	cycle	and	revealed	that	it	is	highly	sensitive	

to	changes	in	conscious	state.	These	findings	are	in	line	with	a	series	of	studies	clearly	showing	

that	 sensory	maps	are	 flexible	and	dynamic	 in	wakefulness.	 Sensory	 remapping	can	occur	

following	changes	in	context	(Hayman	et	al.,	2003),	attention	(Berman	and	Colby,	2009;	Burr	

and	Morrone,	2011;	Fritz	et	al.,	2003;	Rolfs	and	Szinte,	2016),	or	 learning	(Banerjee	et	al.,	

2020;	Bostock	et	al.,	1991;	Leutgeb	et	al.,	2005),	and	it	can	be	expressed	in	different	forms,	

such	as	global,	partial	or	conditional	remapping	(Fyhn	et	al.,	2007;	Jeffery,	2011;	Rennó-Costa	

et	al.,	2010),	in	a	range	of	modalities	(Geva-Sagiv	et	al.,	2016;	Heed	et	al.,	2015;	Lee	et	al.,	

2003;	Rolfs	and	Szinte,	2016).	 In	 the	auditory	modality,	 there	are	numerous	examples	 for	

dynamic	adjustments	of	neural	responses	to	changes	in	context,	in	wakefulness	(Blake	and	

Merzenich,	 2002;	 Fritz	 et	 al.,	 2003;	 Garrido	 et	 al.,	 2013;	 Regev	 et	 al.,	 2020),	 and	 under	

anaesthesia	 (Gourévitch	et	 al.,	 2009).	 In	 addition,	 	 there	 is	 evidence	 for	 reorganisation	of	
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tonotopic	 maps	 	 following	 learning	 (Gonzalez-Lima	 and	 Agudo,	 1990;	 Scheich,	 1991),	

attention	to	a	specific	tone	(Dick	et	al.,	2017),	or	auditory	deprivation	and	rehabilitation	(Thai-

Van	et	al.,	2010).		

	

Here,	we	contribute	to	these	findings	by	uncovering	commonalities	and	differences	in	neural	

auditory	frequency	organisation	between	wakefulness	and	different	sleep	stages.	First,	the	

neural	auditory	frequency	map	assessed	by	means	of	neural	similarities	between	tone-pairs	

changed	 along	 auditory	 processing	 time	 and	 between	 conscious	 states.	 Specifically,	 Tone	

Similarity	Index	(see	methods),	decreased	in	wakefulness,	increased	during	NREM	sleep	and	

remained	on	average	unchanged	during	REM	sleep	across	 the	processing	time.	Moreover,	

within	each	processing	 time	window,	a	different	 set	of	hierarchical	 relationships	emerged	

between	states.	During	the	early	processing	window,	Tone	Similarity	Index	magnitude	was	

higher	in	wakefulness	in	comparison	to	all	sleep	stages,	and	within	sleep,	it	was	highest	in	N2,	

then	in	REM	and	lastly	N3	sleep.	This	hierarchy	was	altered	in	the	late	processing	window,	

where	Tone	Similarity	Index	magnitude	in	N2	was	higher	than	in	all	other	states,	and	did	not	

differ	between	wakefulness,	N3	and	REM	sleep.	Together,	these	findings	reveal	a	dynamic	

reorganisation	of	 the	 auditory	neural	 frequency	map	across	 the	 sleep-wake	 cycle	 (Fig.	 3).	

Second,	the	neural	auditory	frequency	map	structure	as	assessed	by	means	of	RSA,	showed	

some	 degree	 of	 pattern	 preservation	 across	 all	 states,	 together	 with	 clear	 differences	

between	 them.	 Specifically,	 interactions	 between	 tones-pairs	 and	 states	 were	 observed	

between	all	states,	with	the	exception	of	N2	and	REM.	Indeed,	in	both	time	windows,	N2	and	

REM	sleep	presented	a	relatively	preserved	auditory	frequency	map	organisation,	despite	the	

observed	changes	in	the	mean	Tone	Similarity	Index	magnitude	between	the	two	states.	In	

other	words,	tone-pairs	that	are	relatively	similar	in	N2	are	also	relatively	similar	in	REM	sleep	

and	 vice	 versa,	 irrespective	 of	 Tone	 Similarity	 Index	 magnitudes.	 The	 opposite	 pattern	 -	

reorganisation	 of	 map	 assembly	 while	 maintaining	 magnitudes	 -	 was	 evident	 between	

wakefulness,	N3	and	REM	sleep	 in	the	 late	processing	window.	Collectively,	these	findings	

uncover	different	forms	of	reorganisation	across	the	sleep-wake	cycle,	including	modulation	

of	Tone	Similarity	Index	magnitudes	without	a	change	in	pattern	and	a	modulation	of	Tone	

Similarity	Index	pattern	without	a	change	in	magnitudes.		
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The	 observed	 functional	 reorganisation	 across	 the	 sleep-wake	 cycle	 dovetails	 nicely	 with	

several	 studies	 showing	 that	 the	 degree	 of	 brain	 modulation	 in	 sleep	 is	 sensitive	 to	 the	

properties	of	the	stimulus	(Castro-alamancos,	2004;	Issa	and	Wang,	2011;	Lustenberger	et	al.,	

2018;	Portas	et	al.,	2000;	Sharon	and	Nir,	2018;	Tlumak	et	al.,	2012).	For	example,	stimulus	

presentation	rate	has	a	bidirectional	effect	on	steady-state	evoked	responses,	where	 low-

frequency	 stimulation	 elicits	 stronger	 responses	 during	 sleep,	 while	 high-frequency	

stimulation	 elicits	 stronger	 activation	 during	 wakefulness	 (Castro-alamancos,	 2004;	

Lustenberger	et	al.,	2018;	Sharon	and	Nir,	2018;	Tlumak	et	al.,	2012).	In	addition,	stimulus	

intensity	could	impact	neural	activity	in	an	unequal	manner,	such	that	firing	rate	to	quiet	but	

not	loud	sounds	is	reduced	during	sleep	(Issa	and	Wang,	2011),	and	the	change	in	amplitude	

of	 steady	 state	evoked	potentials	with	 increased	 tone	 intensity	 is	 smaller	 in	 sleep	 than	 in	

wakefulness	(Lindens	et	al.,	1985).	Also,	stimulus	types	are	weighted	differently	by	conscious	

states,	with	sleep	showing	selective	enhancement	of	BOLD	responses	over	wakefulness	for	

one’s	 own	 name	 in	 comparison	 to	 beeps	 (Portas	 et	 al.,	 2000),	 and	 divergent	 oscillatory	

responses	 for	 familiar	 versus	 unfamiliar	 stimuli	 in	wakefulness	 and	 different	 sleep	 stages	

(Blume	et	al.,	2017,	2018).	In	addition,	at	the	behavioural	level,	increased	arousal	probability	

from	sleep	was	found	for	one’s	own	infant	cry	(Formby,	1967),	as	well	as	for	low	(400Hz	and	

520Hz)	versus	high	(3000Hz)	tone	frequency	(Bruck	et	al.,	2009).	These stimulus-dependent	

responses	can	potentially	explain	some	of	the	discrepancies	between	sleep	studies	showing	

enhanced	(Colrain	and	Campbell,	2007;	Hall	and	Borbely,	1970;	Nicholas	et	al.,	2006;	Yang	

and	Wu,	2007),	reduced	(Czisch	et	al.,	2002,	2004;	Murata	and	Kameda,	1963)	or	preserved	

activity	between	sleep	and	wakefulness	(Edeline	et	al.,	2001;	Issa	and	Wang,	2008;	Nir	et	al.,	

2015;	Peña	et	al.,	1999).	Furthermore,	while	responses	across	a	neural	population	may	show	

one	pattern,	a	detailed	investigation	of	single	neurons	has	revealed	heterogenous	responses	

and	different	degrees	of	attenuation	(Edeline	et	al.,	2001;	 Issa	and	Wang,	2008;	Nir	et	al.,	

2015;	Peña	et	al.,	1999;	Sela	et	al.,	2016,	2020).	Specific	properties	at	the	neuronal	level	such	

as	latency,	selectivity	or	receptive	field	size	(Edeline	et	al.,	2001;	Sela	et	al.,	2020)	may	explain	

part	of	the	patterns	that	are	seen	at	the	cortical	level.	The	evidence	gathered	at	the	neuronal,	

population	and	cortical	 levels	call	 for	a	comprehensive	examination	of	a	range	of	stimulus	

properties	 in	order	 to	unveil	 the	 interplay	between	conscious	state	and	sensory	mapping.	

Here,	we	directly	address	this	need	by	systematically	characterizing	neural	dynamics	between	
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a	 range	 of	 tone	 frequencies,	 and	 uncover	 diverse	 stimulus-state	 interactions	 between	

wakefulness	and	sleep	and	between	sleep	stages.		

	

Auditory	 theory	 has	 advanced	 in	 many	 fronts	 using	 physical,	 physiological,	 neural	 and	

psychophysics	evidence	to	build	an	explanatory	corpus	of	how	animals	and	humans	hear	(de	

Boer,	1980,	1984,	1991;	Moore,	2003;	Schnupp	et	al.,	2011;	Wever,	1949).	Among	the	many	

models	 that	can	be	applied	to	characterise	 the	structure	of	 the	neural	auditory	 frequency	

map	in	each	conscious	state	(Meddis	et	al.,	2010),	we	applied	a	set	of	models	based	on	the	

perceptual	 (Micheyl	 et	 al.,	 2012;	 Moore,	 2003;	 Stevens	 et	 al.,	 1937),	 physiological	

(Greenwood,	 1990),	 and	 physical	 relation	 between	 tones	 frequencies.	We	 found	 that	 the	

neural	 auditory	 frequency	map	 structure	was	 better	 described	by	 the	 perceptual	 relation	

between	 tones	 which	 reflect	 pitch	 discriminability	 than	 by	 differences	 between	 tones’	

physical	properties,	not	only	in	wakefulness	but	also	in	N2	and	REM	sleep.	It	is	well	accepted	

that	in	wakefulness	pitch	perception	is	based	more	on	the	neural	representation	of	sound	at	

the	output	of	the	auditory	periphery	than	on	the	physical	properties	of	sound	as	it	enters	the	

ear	(Moore,	2003;	Yost,	2009).	During	sleep,	modulation	of	auditory	responses	is	evident	at	

the	cortical	(Blume	et	al.,	2017,	2018;	Czisch	et	al.,	2002;	Dang-Vu	et	al.,	2010;	Portas	et	al.,	

2000;	Schabus	et	al.,	2012;	Strauss	et	al.,	2015;	Wilf	et	al.,	2016),	and	sub-cortical	levels	of	the	

auditory	pathway	including	the	thalamus	(Edeline	et	al.,	2000;	Hall	and	Borbely,	1970),	the	

inferior	colliculus	(Morales-cobas	et	al.,	1995),	the	lateral	superior	olive	(Pedemonte	et	al.,	

1994),	and	the	cochlea	(Froehlich	et	al.,	1993;	Irvine	and	Webster,	1972;	Velluti	et	al.,	1989).	

Yet,	despite	the	vast	modulation	of	auditory	processing	in	sleep,	we	show	here	that	the	neural	

auditory	frequency	map	preserves	an	organisation	that	follows	perceptual	similarities	during	

both	NREM	and	REM	sleep,	with	 the	exception	of	N3.	These	 findings	 imply	 some	 level	of	

functional	auditory	organisation	stability	between	conscious	states.		

	

In	addition,	the	comparison	to	auditory	models	also	uncovered	the	flexibility	of	the	functional	

auditory	 organisation	 between	 conscious	 states.	 In	 details,	 during	 the	 early	 processing	

window,	all	three	models	inadequately	described	the	auditory	frequency	map	organisation	in	

N3	in	comparison	to	the	other	sleep	stages	and	wakefulness	(Fig.	7d).	These	findings	are	in	

accordance	 with	 our	 results	 from	 the	 similarity	 magnitude	 and	 pattern	 analyses,	 which	

pointed	towards	a	markedly	different	sensory	organization	in	deep	sleep:	N3	displayed	both	
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lower	Tone	Similarity	Index	magnitudes	(Fig.	3	and	6)	and	a	more	dissimilar	pattern	of	Tone	

Similarity	 Index	 in	 comparison	 to	all	other	 states	 (Fig.	5	and	6).	 The	altered	auditory	map	

structure	 presented	 in	 N3	might	 be	 explained	 by	 findings	 from	whole-brain	 fMRI	 studies	

showing	 a	 global	 decrease	 in	 effective	 interactions	 and	 breakdown	 of	 inter-modular	

connectivity	during	deep	sleep	(Horovitz	et	al.,	2009;	Jobst	et	al.,	2017;	Tagliazucchi	et	al.,	

2013;	Tarun	et	al.,	2021).	Furthermore,	the	distinct	auditory	neural	organisation	during	N3,	

may	help	 to	explain	 the	decline	 in	 sensory	and	 cognitive	processes	 that	 is	 typically	 found	

during	deep	sleep	(Andrillon	and	Kouider,	2020;	Andrillon	et	al.,	2016,	2017;	Hennevin	et	al.,	

2007;	Legendre	et	al.,	2019;	Peigneux	et	al.,	2001).	In	the	late	processing	window,	a	different	

pattern	was	observed:	the	auditory	frequency	map	organisation	was	better	explained	by	the	

perceptual	and	physiological	models	 in	N2,	 in	comparison	 to	wakefulness	and	other	 sleep	

stages.	A	possible	interpretation	for	the	increased	predictive	value	as	well	as	for	the	increased	

similarity	 magnitude	 in	 N2	 in	 the	 late	 processing	 window	 might	 be	 related	 to	 delayed	

processing	occurring	during	the	transition	from	wakefulness	to	sleep	(Atienza	et	al.,	2001;	

Bastuji	and	García-Larrea,	1999;	Canales-Johnson	et	al.,	2019;	Hennevin	et	al.,	2007;	Kouider	

et	al.,	2014;	Noreika	et	al.,	2020;	Strauss	and	Dehaene,	2019;	Strauss	et	al.,	2015;	Velluti,	

1997).	However,	it	has	to	be	noted	that	our	results	seem	to	point	towards	a	prolonged	sensory	

processing	 (Fig.	 3)	 in	 addition	 to	 delayed	 one	 in	 N2	 (Fig.	 2),	 and	 in	 order	 to	 disentangle	

between	the	mechanism	of	delayed	and	prolonged	sensory	processing	in	sleep	further	studies	

are	needed.	

	

Although	N2	and	N3	seem	to	be	characterized	by	different	auditory	map	organizations,	we	

did	not	observe	any	differences	in	ERPs	between	the	two	states,	unlike	other	studies	showing	

increased	ERP	amplitude	with	sleep	depth	(Nielsen-Bohlman	et	al.,	1991;	Picton	et	al.,	2003;	

Winter	et	al.,	1995;	Yang	and	Wu,	2007).	This	discrepancy	may	be	driven	by	features	that	are	

specific	 to	 each	 sleep	 stage	 such	 as	 K-complexes	 and	 spindles	 during	N2	 and	 slow	waves	

during	N3	(Iber	et	al.,	2007)	and	by	their	non-uninform	distribution	across	the	cortical	surface	

(Geva-Sagiv	and	Nir,	2019;	Siclari	and	Tononi,	2017).	The	magnitude	of	these	sleep	markers	is	

much	 larger	 than	that	of	 the	ERP’s	and	can	strongly	 influence	brain	 responses	 to	external	

stimuli	(Antony	and	Paller,	2017;	Czisch	et	al.,	2009;	Dang-vu	et	al.,	2011;	Lustenberger	et	al.,	

2018;	Schabus	et	al.,	2012).	Furthermore,	this	influence	could	even	have	a	larger	impact	for	

underpowered	studies.		Here,	stimuli	were	presented	across	a	full-night	of	sleep	accumulating	
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thousands	of	repetitions	per	state	(Table	1).	The	large	number	of	trials	enables	averaging	out	

ongoing	brain	activity	and	minimizing	the	 influence	of	sleep	stage	specific	 features	on	the	

evoked	 responses	 while	 lending	 statistical	 strength	 to	 each	 comparison.	 Thus,	 if	 indeed	

previously	observed	differences	between	N2	and	N3	are	due	to	ongoing	brain	activity,	the	

large	number	of	stimuli	employed	here	might	explain	the	lack	of	differences	in	ERPs	between	

N2	and	N3	sleep	in	this	study.		

	

How	 sleep	 stages	 differ	 between	 them	 and	 from	 the	 wake	 state	 has	 been	 addressed	 in	

spontaneous	brain	activity	(Brodbeck	et	al.,	2012;	Iber	et	al.,	2007;	Jagannathan	et	al.,	2018;	

Jobst	et	al.,	2017;	Nir	et	al.,	2015;	Tagliazucchi	et	al.,	2013),	sensory	processing	(Andrillon	and	

Kouider,	2020;	Hennevin	et	al.,	2007;	Velluti,	1997),	and	cognitive	dynamics	(Andrillon	et	al.,	

2016,	2017,	Arzi	et	al.,	2012,	2014;	Koroma	et	al.,	2020;	Strauss	et	al.,	2015).	The	relationship	

between	 the	degree	of	processing	 in	different	 conscious	 states	and	 the	extent	of	 sensory	

remapping	 require	 further	 investigation	 under	 the	 umbrella	 of	 cognitive	 neuroscience	 of	

unconsciousness	 (Chennu	 and	 Bekinschtein,	 2012)	 and	 a	 solid	 theoretically	 and	

methodologically	neuroscience	framework	(Frégnac	and	Bathellier,	2015;	Guest	and	Martin,	

2020;	Kriegeskorte	and	Douglas,	2018;	Lopes	da	Silva,	2013;	Schreiner	and	Winer,	2007).	The	

development	 of	 maps	 in	 neuroscience	 enhances	 the	 understanding	 of	 normal	 neural	

organization,	 its	 modification	 by	 pathology,	 and	modulations	 by	 experience	 and	 context.	

These	maps,	like	those	charted	here,	serve	the	computational	principles	that	govern	sensory	

processing	and	the	generation	of	perception	(Schreiner	and	Winer,	2007)	even	in	unconscious	

states	(Goupil	and	Bekinschtein,	2012).	Sleep	plays,	as	a	theoretical	tool	and	experimental	

model,	 a	 key	 role	 in	 further	 the	 understanding	 of	 the	 neural	 systems	 and	 the	 neural	

representation	of	stimuli	in	perception	and	cognition	(Andrillon	and	Kouider,	2020;	Hennevin	

et	al.,	2007;	Peigneux	et	al.,	2001;	Velluti,	1997).		
	

Finally,	we	acknowledge	several	limitations	of	the	study.	Some	of	the	findings	could	describe	

general	aspects	of	auditory	processing	in	different	states	of	consciousness,	but	it	would	be	

naïve	 to	 take	 the	 results	prima	 facie	 as	 generalizable.	 First,	 the	modulation	 of	 tone-pairs	

neural	 similarities	 between	 conscious	 states	were	 observed	 in	 the	 specific	 context	 of	 the	

experimental	 design	 used	 here.	 The	 auditory	 modality	 exhibits	 remarkable	 context-

dependencies	such	as	behavioural	settings,	attentional	 level	and	task-specific	 information,	
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which	can	greatly	modulate	neural	activity	in	response	to	sounds	(Bekinschtein	et	al.,	2009;	

Kuchibhotla	and	Bathellier,	2018;	Nelken,	2020).		Furthermore,	context-dependent	auditory	

processing	is	observed	even	in	responses	to	changes	in	the	range	of	pure	tones	(Garrido	et	

al.,	2013;	Regev	et	al.,	2020;	Stilp	and	Assgari,	2019).	Therefore,	 it	 is	 likely	that	the	results	

reported	here	were	shaped	by	parameters	such	as	the	range	of	tone	frequencies,	the	adaptor	

tone	 frequency,	 and	 possibly	 by	 different	 adaptation	 dynamics	 in	wakefulness	 and	 sleep.	

Thus,	the	observed	auditory	neural	similarity	modulations	should	not	be	taken	as	absolute	

values	but	as	influenced	by	the	specifics	of	the	experimental	design.	Second,	to	maximize	the	

number	 of	 trials,	 stimuli	 were	 presented	 at	 a	 rate	 of	 ~2Hz,	 which	 overlapped	with	 sleep	

specific	features.	Slow	waves	which	are	in	the	range	of	0.5-4Hz,	and	K-complexes	which	lasts	

0.5-2	seconds,	fall	in	the	same	frequency	range	as	stimuli	presentation	rate.	Therefore,	even	

if	advantageous	for	trials	number,	this	high	presentation	rate	prevents	a	clear	separation	of	

the	contribution	of	specific	features	of	each	sleep	stage	to	the	auditory	responses,	and	makes	

it	difficult	to	separate	the	influence	of	slow	waves,	spindles	and	K-complexes	on	the	neural	

similarity	between	tones.	Third,	the	EEG	resolution	provided	the	required	temporal	sensitivity	

to	capture	the	dynamical	changes	along	processing	time	but	limited	the	ability	to	infer	which	

brain	areas	are	involved	in	this	functional	reorganization.	The	precise	auditory	pathway	and	

the	underlying	mechanism	of	sensory	remapping	across	the	sleep-wake	remain	to	be	revealed	

by	future	studies.	

	

To	conclude,	sleep	takes	centre	stage	as	a	model	to	understand	the	mechanisms	of	neural	

representations	of	perception	and	functional	reorganization	of	the	brain	between	conscious	

states	(Andrillon	and	Kouider,	2020;	Mensen	et	al.,	2019).	Here,	by	recordings	whole-brain	

neural	activity	using	high-density	EEG	during	a	full	night’s	sleep,	we	capture	different	aspects	

of	sensory	processing	across	the	sleep-wake	cycle,	and	provide	converging	evidence	for	state-

dependent	 functional	 reorganization.	 Precisely	 how	 our	 conscious	 state	 shapes	 auditory	

processing	depends	on	the	relationship	between	the	particular	characteristics	of	the	stimulus	

and	neural	processes.	These	findings	stress	the	importance	of	a	systematic	investigation	of	

different	axes	in	the	sensory	map	as	well	as	a	range	of	contexts	to	uncover	the	rules	by	which	

sleep	reshapes	sensory	processing. 
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Methods	

Full	night	sleep	EEG	experiment	

	

Participants	

Thirty-eight	participants	(20	women;	age	=	25.1	±	4.96	years	mean ± standard	deviation	[SD])	

were	recruited	to	the	study	and	gave	written	informed	consent	to	procedures	approved	by	

the	University	of	Cambridge	Research	Ethics	Committee,	in	accordance	with	the	Declaration	

of	Helsinki.	Participants	received	monetary	compensation	for	taking	part	in	the	experiment.	

Inclusion	criteria	were	normal	hearing,	and	no	history	of	neurological,	psychiatric	or	sleep	

disorder.	Out	of	the	38	participants,	one	participant	was	excluded	due	to	a	technical	problem	

with	earphones	and	another	participant	due	to	insufficient	sleep	time.	Data	from	a	total	of	

36	participants	was	therefore	retained	for	the	analysis.		

	

Stimuli		

Ten	 pure	 tones	 synthesized	 in	Matlab	 (2012b)	were	 presented	 binaurally	 using	 Etymotics	

earphones,	 at	 a	 supra-threshold	 volume	 comfortable	 to	 the	participant.	 Tone	 frequencies	

were	30%	apart	spanning	a	range	from	500Hz	to	5302Hz	(500,	650,	845,	1098,	1428,	1856,	

2413,	3137,	4079	and	5302	Hz).	Two	additional	tone	frequencies	(6893Hz	and	8961Hz)	were	

presented	only	to	the	first	five	participants	and	were	therefore	excluded	from	the	analysis.	

Each	tone	was	played	for	100	ms,	with	a	10	ms	fade-in/fade-out	of	the	sound,	and	Inter-trial	

interval	 (ITI)	 of	 ~500	 ms,	 jittered	 between	 480	 and	 520	 ms,	 and	 against	 a	 pink	 noise	

background	(1/f	noise)	which	is	known	to	improve	sleep	stability	(Zhou	et	al.,	2012).		

	

Auditory	paradigm	

Participants	listened	to	a	pattern	of	auditory	stimuli	including	pairs	of	pure	tones.	The	first	

tone	in	every	pair	was	an	‘Adaptor’	(A)	tone	of	500Hz	and	was	presented	in	order	to	“tune”	

the	brain	to	a	common	baseline	tone,	and	create	a	common	context	for	all	tones	(Sankaran	

et	al.,	2018).	The	second	tone	in	a	pair	(T)	was	one	of	the	10	pure	tones	mentioned	above.	

Each	A-T	pair	was	repeated	for	10	times	and	the	ten	repetitions	created	a	mini-block.	10	mini-

blocks	presented	in	a	random	order	created	a	block	(Fig.	1).		In	each	mini-block	one	tone	in	

the	sequence	was	omitted.	A	wakefulness	session	was	composed	of	24	blocks,	accumulating	

in	2400	“A”	trials	and	216	“T”	trials	for	each	tone	frequency.	During	the	wakefulness	sessions,	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431383doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431383
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

at	the	end	of	every	block	(~2.5	min),	the	experimenter	asked	the	participant	to	verbally	rate	

a	statement	from	the	Amsterdam	Resting-State	Questionnaire	(Diaz	et	al.,	2013).	This	task	

was	designed	to	maximize	the	likelihood	that	participants	would	remain	awake	throughout	

the	session.	During	the	sleep	session,	auditory	stimuli	were	presented	while	participants	had	

no	task	to	perform	and	the	number	of	blocks	and	trials	depended	on	each	individual’s	sleep	

duration	(Table	1	and	2).		

Table	1:	Number	of	trials	averaged	across	participants	

		 T650	 T845	 T1098	 T1428	 T1856	 T2413	 T3137	 T4079	 T5302	 Total	

Awake	
217.69	±	
9.88	

217.56	±	
10.32	

217.39	±	
9.43	

217.89	±	
10.30	

217.64	±	
9.96	

217.58	±	
9.37	

217.44	±	
9.14	

217.36	±	
9.71	

217.72	±	
9.59	

1958.28	±	
86.73	

N2	
sleep	

627.72	±	
200.78	

633.44	±	
200.57	

626.83	±	
201.80	

624.64	±	
195.21	

621.81	±	
194.78	

614.0	±	
198.48	

602.81	±	
191.23	

616.44	±	
203.21	

627.06	±	
206.97	

5594.75	±	
1776.20	

N3	
sleep	

167.31	±	
78.03	

161.94	±	
73.60	

160.64	±	
74.08	

155.03	±	
67.44	

158.25	±	
69.20	

155.75	±	
69.22	

151.03	±	
70.67	

157.5	±	
73.47	

158.72	±	
74.20	

1426.17	±	
638.79	

REM	
sleep	

225.5	±	
115.68	

226.19	±	
113.69	

228.94	±	
116.11	

221.17	±	
106.59	

224.58	±	
110.17	

229.33	±	
119.29	

226.06	±	
113.86	

220.75	±	
112.61	

223.08	±	
112.62	

2025.61	±	
1013.86	

Averaged	±	SD	number	of	trials	across	participants	for	each	tone	in	wakefulness	and	sleep.	

	

Experimental	procedure		

Participants	arrived	at	the	EEG	lab	at	a	pre-selected	time	based	on	their	usual	sleep	schedule	

(~21:00).	After	the	experimental	procedure	was	explained	and	written	informed	consent	was	

obtained,	participants	were	seated	in	a	shielded	chamber	of	the	EEG	room	and	a	128-channel	

EEG	 net	 was	 applied	 on	 their	 head	 (Electrical	 Geodesics	 Inc	 system).	 The	 experimental	

procedure	included	an	auditory	paradigm	presented	during	a	1-hour	pre-sleep	wakefulness	

session,	and	full-night	sleep	session	(Table	2).	During	the	wakefulness	session,	participants	

sat	on	a	chair	in	a	dim	and	soundproof	room,	and	were	instructed	to	keep	their	eyes	closed	

while	 the	 auditory	 stimuli	 were	 presented.	 In	 the	 following	 sleep	 session,	 the	 auditory	

paradigm	was	 initiated	several	minutes	after	the	 lights	were	turned	off,	when	participants	

were	comfortably	lying	in	bed,	and	continued	until	they	woke	up	in	the	morning.		

	

EEG	acquisition	and	pre-processing	

The	EEG	signal	was	recorded	with	a	128-channel	Sensors	using	a	GES	300	Electrical	Geodesic	

amplifier,	 at	 a	 sampling	 rate	 of	 1000	 Hz	 (Electrical	 Geodesics	 Inc	 system/Philip	 Neuro).	

Conductive	gel	was	applied	 to	each	electrode	 to	ensure	 that	 the	 impedance	between	 the	

scalp	 and	 electrodes	 was	 kept	 below	 70	 kΩ.	 Peripheral	 electrodes	 on	 neck,	 cheeks,	 and	
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forehead	were	excluded	 from	the	analysis	due	 to	potential	high	movement-related	noise,	

retaining	92	electrodes	over	the	scalp	surface	(Chennu	et	al.,	2014).	EEG	data	was	band-pass	

filtered	between	0.5	and	40Hz,	segmented	in	epochs	of	550ms	(from	-100ms	pre-stimulus	to	

450ms	post-stimulus),	and	down-sampled	to	250Hz.	Next,	noisy	electrodes	were	removed	if	

the	 average	 signal	was	 above	 or	 below	3.5	 SD.	 Eye	movements	 and	 noise	 artefacts	were	

removed	by	means	 of	 an	 Independent	 Component	Analysis	 (Delorme	 and	Makeig,	 2004).	

Epochs	containing	voltage	fluctuations	exceeding	±150	μV	in	wakefulness	or	±300	μV	in	sleep	

were	also	excluded.	A	liberal	threshold	was	set	in	sleep	to	avoid	epoch	exclusion	due	to	slow	

waves	and	K-complexes.	Then,	 the	data	was	re-referenced	to	the	common	average	of	 the	

signal	 and	 bad	 electrodes	 were	 interpolated.	 EEGLAB	MATLAB	 toolbox	 (version	 9.2)	 and	

Python	(version	3.6)	were	used	for	data	pre-processing.		

	

Sleep	scoring	

Two	 independent	experienced	 sleep	examiners	blind	 to	 stimuli	onset/offset	 times,	 scored	

offline	30	s-long	windows	of	EEG	data	according	to	established	guidelines	(Iber	et	al.,	2007).	

The	two	scoring	lists	were	subsequently	compared	and	controversial	epochs	were	inspected	

again	 and	 discussed	 until	 an	 agreement	was	 reached.	 EEG	 and	 EOG	 signals	were	 first	 re-

referenced	to	mastoids	and	then	EEG	signals	were	bandpass	filtered	between	0.1	and	45Hz,	

EOG	between	0.2	and	5Hz.	EMG	signals	were	obtained	from	local	derivation	and	were	high-

pass	filtered	above	20	Hz.		

	

Table	2:	Sleep	architecture	

Awake	 N1	sleep	 N2	sleep	 N3	sleep	 REM	sleep	 Total	sleep	time	 Time	in	bed	
137.46	±	
52.49	

26.42	±	
19.41	

161.35	±	
48.76	

56.42	±	
25.36	

51.43	±	
25.26	

295.61	±	
	68.87	

433.07	±	
61.92	

Averaged	±	SD	time	(in	minutes)	spent	in	each	sleep	stage	

	

Analysis	

Auditory	evoked	potentials	analysis	

ERPs	were	computed	as	the	average	across	five	centro-frontal	electrodes	(E6,	E13,	E112	E7,	

E106	in	128-channel	EGI	net)	selected	based	on	(Duncan	et	al.,	2009),	for	each	participant,	

tone	 frequency	 and	 conscious	 state.	 The	 number	 of	 trials	 differ	 between	 sleep	 stages,	 in	
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accordance	with	 each	 participant’s	 individual	 sleep	 architecture	 (Table	 1).	 Thus,	 to	 avoid	

biases	in	the	results,	we	equalized	the	number	of	trials	by	randomly	sampling	for	each	state	

and	tone	as	many	trials	as	 the	ones	present	 in	 the	condition	with	the	smallest	number	of	

trials.	The	procedure	was	repeated	for	each	participant	1000	times,	and	then	the	EEG	signal	

was	averaged	across	the	1000	random	samples.	Differences	in	ERPs	between	conscious	states	

were	 first	 investigated	 by	 means	 of	 a	 cluster	 permutation	 analysis.	 T-tests	 conducted	

between	all	possible	pairs	of	states	(i.e.,	wakefulness-N2,	wakefulness-N3,	wakefulness-REM,	

N2-N3,	 N2-REM,	 N3-REM)	 identified	 11	 significant	 clusters	 (FDR	 corrected	 for	 multiple	

comparisons).	 Then,	 to	 further	 characterise	 the	 relation	 between	 tone	 properties	 and	

conscious	state,	a	linear	mixed-effects	model	analysis	was	applied	to	each	cluster,	where	tone	

frequency	 and	 a	 state	 were	modelled	 as	 fixed	 effects,	 while	 the	 variable	participant	 was	

treated	as	a	random	effect	(i.e.,	random	intercept).	Given	that	the	assumptions	of	normality	

and	homoskedasticity	of	the	residuals	were	violated,	the	variances	were	explicitly	modelled,	

by	mean	of	the	varIndent	function	provided	of	the	nlme	package	in	R.	This	made	residuals	

normal	 (Anderson-Darling’s	 A	 <	 1.04,	 p	 >	 0.05	 Bonferroni	 corrected),	 and	 homoscedastic	

(Levene’s	F	<	1.175,	p	>	0.186)	for	all	models.	Nonparametric	dependent	samples	effect	sizes	

were	calculated	as	Wsr	=	Z/sqrt(n)	(Rosenthal	et	al.,	1994),	where	Z	is	the	Wilcoxon	signed-

rank	statistic	and	n	is	the	sample	size.	

	

Similarity	magnitude	analysis	

To	estimate	the	similarity	between	brain	activity	in	response	to	different	tone	frequencies	in	

each	 of	 the	 conscious	 states,	 we	 calculated	 a	 similarity	 measure	 that	 we	 termed	 ‘Tone	

similarity	Index’.	Specifically,	at	each	state,	for	each	tone	and	each	electrode,	we	computed	

an	ERP	as	the	average	of	all	the	available	trials	weighted	by	their	standard	deviation	(SD).	This	

normalization	was	done	in	order	to	account	for	the	difference	in	number	of	trials	for	different	

tones,	 subjects,	 and	 states.	 The	 neural	 similarity	 between	 each	 of	 the	 36	 tone-pairs	 was	

estimated	 by	 Spearman's	 coefficient	 between	 normalized	 ERPs	 in	 each	 electrode.	 The	

obtained	 correlation	 coefficients	 were	 then	 averaged	 across	 all	 92	 included	 electrodes,	

generating	a	Tone	Similarity	Index	per	tone-pair,	state	and	participant.	To	obtain	normally-

distributed	 data	 and	 control	 for	 multicollinearity,	 Tone	 similarity	 index	 values	 were	

transformed	 by	 means	 of	 a	 Fisher	 z-transformation	 (i.e.,	 an	 inverse	 hyperbolic	 tangent	

function),	and	centred	to	the	grand	mean.	Next,	the	Tone	Similarity	Index	across	all	tone-pairs	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431383doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431383
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 33	

and	participants	was	computed	for	a	rolling	time	window	of	60	ms	(progressively	shifted	of	

one	 time	point	 (=4ms)	at	each	 step),	which	allowed	us	 to	obtained	a	 temporally	dynamic	

representation	 of	 the	 Tone	 Similarity	 Index	 values	 for	 each	 state	 (Fig.	 3a).	 This	 analysis	

showed	that	the	Tone	similarity	index	is	fluctuating	along	the	auditory	processing	time.	Using	

cluster	permutation	analysis	 (p	<	0.01,	 threshold-free	cluster	enhancement),	we	 identified	

two	main	time	windows	characterised	by	differences	in	Tone	Similarity	Index	between	states	

were	observed:	an	early	(12-236	ms)	and	a	late	processing	time	window	(256-448	ms).	Thus,	

to	 avoid	 masking	 of	 one	 processing	 stage	 by	 another,	 all	 the	 subsequent	 analyses	 were	

conducted	for	the	early	and	late	processing	time	windows	separately.		

	

Next,	a	linear	mixed-effects	model	analysis	was	applied	to	evaluate	whether	the	magnitude	

of	Tone	Similarity	Index	in	each	participant	(36)	was	influenced	by	tone-pair	(36),	conscious	

state	 (4),	 and	 time	window	 (2)	 using	 R	 nlme	 package	 (Version	 1.2.5033).	We	 considered	

several	 different	 possible	ways	 of	modelling	 the	 Tone	 Similarity	 Index	 and	 compared	 the	

evaluated	models	by	means	of	a	Likelihood	Ratio	test	(Table	3)	following	a	protocol	outlined	

in	(Zuur	et	al.,	2009).	Model	fits	were	estimated	by	using	the	Restricted	Maximum	Likelihood	

(REML)	method	when	 comparing	models	which	 differed	 in	 their	 random	 effects,	 and	 the	

Maximum	Likelihood	(ML),	when	comparing	models	which	differed	in	their	fixed	effects.	The	

best	 fitting	model	was	 the	one	with	 the	 largest	Log	 likelihood,	and	 it	presented	conscious	

state,	 tone-pairs	 and	 time	 window	 as	 fixed	 effects	 (all	 interactions	 included,	 with	 the	

exception	of	the	triple	one),	and	the	variable	participants	as	random	intercept;	also	a	random	

slope	for	state	was	included	in	the	model	(Table	3).	The	variance	in	the	data	was	opportunely	

modelled	by	means	of	the	varIdent	function	of	the	R	nlme	package.	To	uncover	the	nature	of	

the	observed	interactions,	additional	linear	mixed-effects	model	analyses	were	performed	on	

subsets	of	the	data,	for	each	time	window	(Tables	4	and	5),	each	conscious	state,	and	pairs	of	

state	separately.	A	Tukey’s	correction	was	applied	to	account	for	the	multiple	comparisons	

and	two-tail	tests	were	performed.		

	

Table	3:	Omnibus	linear	mixed-effects	models	

Model 
number Logical steps Parameters of the model Log-

likelihood P-value 

M1 Most complex 
model in terms 

Fixed: State, Tone pair, Time 
window and interactions 

 
-1413.047 
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of fixed effects 
models 

between them, Random 
intercept: participants (method 

REML) 

 

M2 

Most complex 
model with 
extended 

random part  

Fixed: State, Tone pair, Time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for State (method 

REML) 

-169.136 
 

 
M2 vs M1 

<0.001 

At this first stage, the best model to be selected is M2. This will be compared to the next 
models which present a further extension of the random part: 

M3 

Model with 
variance 

structure of 
Tone pair  

Fixed: State, Tone pair, Time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for State, 

variance structure modelled for 
Tone (method REML) 

-145.170 M3 vs M2 
0.071 

M4 

Model with 
variance 

structure of both 
State and Tone 

pair 

Fixed: State, Tone pair, Time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for State, 

variance structure modelled for 
State, Tone, and their 

interaction (method REML) 

45.777 M4 vs M2 
< 0.001 

The model with optimal random part is M4. This will be estimated by means of a ML 
method for the final selection of the opportune fixed part of the model: 

M5 

Model with 
optimal random 

part (M4) 
computed by 
means of the 
ML method 

Fixed: State, Tone pair, Time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for State, 

variance structure modelled for 
State, Tone pair, and their 
interaction (method ML) 

723.893 

 

M6 

Model without 
triple interaction 
between fixed 

effects 

Fixed: State, Tone pair, Time 
window and their interactions, 
except the triple interaction. 

Random intercept: participants 
and random slope for State, 

variance structure modelled for 
State, Tone, and their 

interaction (method ML) 

661.771 M6 vs M5 
< 0.001 

M7 

Model without 
interaction 

between State 
and Time 
window 

Fixed: State, Tone pair, Time 
window and interactions 

between Tone and, and between 
State and Tone. Random 
intercept: participants and 

random slope for State, 

-357.340 M7 vs M6 
<0.001 
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variance structure modelled for 
State, Tone, and their 

interaction (method ML) 

M8 

Model without 
interaction 

between Tone 
and Time 
window  

Fixed: State, Tone pair, Time 
window and interactions 
between State and Time 

window, and between State and 
Tone. Random intercept: 

participants and random slope 
for State, variance structure 

modelled for State, Tone, and 
their interaction (method ML) 

613.285 M8 vs M6 
<0.0001 

M9 

Model without 
interaction 

between State 
and Time 
window 

Fixed: State, Tone pair, Time 
window and interactions 
between Tone and Time 

window, and between State and 
Time window. Random 

intercept: participants and 
random slope for State, 

variance structure modelled for 
State, Tone, and their 

interaction (method ML) 

518.657 M9 vs M6 
<0.0001 

The best model is the one not considering the triple interaction between State, Tone pair, 
and time window. The chosen model is M6, fitted with REML. 

	

Table	4:	Linear	mixed-effects	models	for	the	early	time	window		

Model 
number Logical steps Parameters of the model Log-

likelihood P-value 

M1 

Most complex 
model in terms 
of fixed effects 

models 

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants (method REML) 

 
-240.5463 

 

 

M2 

Most complex 
model with 
extended 

random part  

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 

for State (method REML) 

558.7071 

 
M2 vs M1 

<0.001 

At this first stage, the best model to be selected is M2. This will be compared to the next 
models which present a further extension of the random part: 

M3 

Model with 
variance 

structure of 
Tone pair  

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 
for State, variance structure 
modelled for Tone (method 

REML) 

593.8527 
 

M3 vs M2 
<0.001 

M4 

Model with 
variance 

structure of both 

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 
for State, variance structure 

759.2428 
 

M4 vs M3 
< 0.001 
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State and Tone 
pair 

modelled for State, Tone, and 
their interaction (method 

REML) 
The model with optimal random part is M4. This will be estimated by means of a ML 

method for the final selection of the opportune fixed part of the model: 

M5 

Model with 
optimal random 

part (M4) 
computed by 
means of the 
ML method 

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 
for State, variance structure 

modelled for State, Tone pair, 
and their interaction (method 

ML) 

1119.341 
 

 

M6 Model without 
interaction 

between fixed 
effects 

Fixed: State, Tone pair, 
Random intercept: participants 

and random slope for State, 
variance structure modelled for 

State, Tone, and their 
interaction (method ML) 

989.619 
 

M6 vs M5 
< 0.001 

The best model is the one considering also the interaction between State and Tone pair, 
fitted by means of the REML method. The selected model is therefore M4. 

	

Table	5:	Linear	mixed-effects	models	for	the	late	time	window		

Model 
number Logical steps Parameters of the model Log-

likelihood P-value 

M1 

Most complex 
model in terms 
of fixed effects 

models 

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants (method REML) 

 
-918.9524 

 

 

M2 

Most complex 
model with 
extended 

random part  

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 

for State (method REML) 

-84.8070 
 

 
M2 vs M1 

<0.001 

At this first stage, the best model to be selected is M2. This will be compared to the next 
models which present a further extension of the random part: 

M3 

Model with 
variance 

structure of 
Tone pair  

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 
for State, variance structure 
modelled for Tone (method 

REML) 

-60.93222 M3 vs M2 
<0.001 

M4 

Model with 
variance 

structure of both 
State and Tone 

pair 

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 
for State, variance structure 

modelled for State, Tone, and 
their interaction (method 

REML) 

85.89841 M4 vs M3 
< 0.001 
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The model with optimal random part is M4. This will be estimated by means of a ML 
method for the final selection of the opportune fixed part of the model: 

M5 

Model with 
optimal random 

part (M4) 
computed by 
means of the 
ML method 

Fixed: State, Tone pair and 
interaction, Random intercept: 
participants and random slope 
for State, variance structure 

modelled for State, Tone pair, 
and their interaction (method 

ML) 

426.7567 
 

 

M6 Model without 
interaction 

between fixed 
effects 

Fixed: State, Tone pair, 
Random intercept: participants 

and random slope for State, 
variance structure modelled for 

State, Tone, and their 
interaction (method ML) 

314.8385 M6 vs M5 
< 0.001 

The best model is the one considering also the interaction between State and Tone pair, 
fitted by means of the REML method. The selected model is therefore M4. 

	

Representational	Similarity	Analyses		

Representational	Similarity	Analysis	(RSA)	(Kriegeskorte	et	al.,	2008),		particularly	suitable	to	

detecting	 second-order	 isomorphisms	 (Shepard	 and	 Chipman,	 1970),	 was	 applied	 to	 test	

whether	 different	 conscious	 states	 presented	 a	 comparable	 pattern	 of	 Tone	 Similarity	

Indexes.	First,	individual	9	by	9	Representational	Similarity	Matrices	(RSMs)	were	generated	

generated,	where	each	column	and	each	row	corresponded	to	one	of	the	presented	tones,	

and	 each	 cell	 of	 the	 matrix	 contained	 the	 measured	 neural	 similarity	 between	 the	 ERPs	

elicited	by	each	pair	of	tones,	i.e.,	the	Tone	Similarity	Index	value.	We	obtained	distinct	RSMs	

for	each	participant,	at	each	conscious	state	and	for	each	temporal	window.	Two	RSA	analyses	

were	conducted.	First,	we	ran	an	item-analysis,	where	we	estimated	the	correlations	between	

RSMs	averaged	across	participants	 (Fig.	5a-d),	and	assessed	their	significance	by	means	of	

Mantel’s	 tests.	 Subsequently,	we	 ran	a	 random-effects	 analysis	 (i.e.,	 group-level	 analysis),	

where	 each	 participants’	 RSMs	were	 correlated	 between	pairs	 of	 states,	within	 the	 same	

temporal	window.	The	hypothesis	that	the	correlations	were	different	from	zero	was	tested	

by	means	of	bootstrapping	(10000	repetitions).	A	Sidak	correction	was	applied	to	account	for	

the	multiple	comparisons.		

	

To	characterise	the	Tone	Similarity	Indexes	structure	in	each	conscious	state,	we	estimated	

how	they	 related	 to	 three	conceptual	models.	The	 first	model	 is	 the	Frequency	Difference	

Model,	which	 is	based	on	the	physical	distance	 in	Hertz	between	tone	frequencies.	 In	this	
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model,	 the	 relations	 between	 tone-pairs	 were	 calculated	 by	 subtracting	 the	 lower	 tone	

frequency	 from	 the	 higher	 tone	 frequency	 (Fig.	 7a).	 The	 second	model	 is	 the	Greenwood	

Model,	which	 is	derived	 from	studies	on	 the	 cochlear	 structure,	 and	 relates	 the	anatomic	

location	 of	 the	 inner	 ear	 hair	 cells	 to	 the	 tone	 frequencies	 at	 which	 they	 are	 stimulated	

(Greenwood,	1990).	Here,	the	relations	between	tone-pairs	were	calculated	by	means	of	the	

Greenwood	function	from	which	we	obtained	the	distance	 in	millimetres	along	the	basilar	

membrane	 between	 locations	 that	 are	 maximally	 excited	 by	 each	 tone	 frequency.	 The	

Greenwood	function	is:		

𝑓 = 165.4(10*.+∗- − 0.88)	

Where	 𝑓	 is	 the	 frequency	 stimulating	 the	 ear,	 and	 x	 is	 the	 proportion	 of	 total	 basilar	

membrane	length.	The	Greenwood	function	was	then	opportunely	inverted	and	rearranged	

so	that	we	could	obtain	the	distance	in	mm	between	the	two	points	on	the	basilar	membrane	

that	were	excited	by	each	pairs	of	tones:	

	

𝑑 = 𝐿
1
2.1 log

𝑓+
165.4 + 0.88 −

1
2.1 log

𝑓*
165.4 + 0.88 		

	

Where	𝐿	is	the	length	of	the	basilar	membrane	(=35mm),	and	𝑓+	and	𝑓*	are	the	frequencies	

of	the	considered	pair	of	tones.		

	

The	 Third	 model	 is	 the	Mel	Mode,	 which	 we	 developed	 based	 on	 the	 Mel	 scale,	 and	

represents	the	non-linear	relationship	between	perceived	pitch	and	tone	frequency	(Micheyl	

et	al.,	2012;	Moore,	2003;	Stevens	et	al.,	1937).	We	computed	the	relations	between	tone-

pairs	 by	 dividing	 the	Mel	 value	 corresponding	 to	 the	 higher	 frequency	 by	 the	Mel	 value	

corresponding	to	the	lower	frequency.	Specifically,	we	converted	each	tone	frequency	(650,	

845,	1098,	1428,	1856,	2413,	3137,	4079,	5302Hz)	into	its	Mel	value	using	the	following	set	

of	formulas:	

	
	

All	 models	 described	 above	 expressed	 the	 relationship	 between	 tone-pairs	 in	 terms	 of	

distance	(dissimilarity),	rather	than	similarity.	Thus,	we	first	converted	participants’	RSMs	into	
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Representational	Dissimilarity	Matrices	 (RDMs)	by	 replacing	each	cell	 value	with	 the	Tone	

Similarity	Index	with	the	term	1-	Tone	Similarity	Index.	Then,	we	estimated	the	Spearman’s	

correlation	between	the	three	model	matrices	and	participants	RDMs,	for	each	state	and	time	

window	separately.	The	significance	of	the	correlations	was	estimated	using	a	bootstrapping	

procedure.	The	significance	a	 level	was	corrected	for	multiple	comparisons,	controlling	for	

the	familywise	error	rate	with	a	Sidák	correction.	

	

Next,	 linear	mixed-effects	model	 analysis	was	 applied	 to	 evaluate	whether	 the	 predictive	

value	of	the	models	for	each	participant	(36)	was	influenced	by	conscious	state	(4),	and	time	

windows	(2)	(Table	6).		

Table	6:	Linear	mixed-effects	models	for	auditory	model	analysis	to	assess	the	predictive	

value	of	the	considered	conceptual	models		

	

Model 
number Logical steps Parameters of the model Log-

likelihood P-value 

M1 

Most complex 
model in terms 
of fixed effects 

models 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants (method 
REML) 

 
-2.749 

 

 

M2 

Extend random 
part of M1to 
include the 

variable state 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for state (method 

REML) 

89.287 
 

 
M2 vs M1 

<0.001 

M3 

Extend random 
part of M1 to 
include the 

variable model 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for model 

(method REML) 

6.166 
 

 
M3 vs M1 

0.0032 

M4 

Extend random 
part of M1 to 
include the 

variable time 
window 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for time window 

(method REML) 

6.678 
 

 
M4 vs M1 

0.0001 

M5 

Extend random 
part of M2 to 

include also the 
variable model  

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 

119.095 
 

 
M5 vs M2 
<0.0001 
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random slope for model and 
state (method REML) 

M6 

Most complex 
model with 
extended 

random part to 
include all 
variables 

Fixed: model, state, Time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for model, state, 

and time window (method 
REML) 

152.112 
 

 
M6 vs M5 
<0.0001 

At this first stage, the best model to be selected is M6. This will be compared to the next 
models which present a further extension of the random part: 

M7 

Model with 
variance 

structure of 
state 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for model, state, 

and time window; variance 
structure modelled for state 

(method REML) 

154.077 M7 vs M6 
0.269 

M8 

Model with 
variance 

structure of both 
model and state 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for model, state, 

and time window; variance 
structure modelled for model 
and state and their interaction 

(method REML) 

166.729 M8 vs M6 
< 0.001 

M9 

Model with 
variance 

structure of 
model 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for model, state, 

and time window; variance 
structure modelled for model 

(method REML) 

166.729 M9 vs M8 
0.484 

The model with optimal random part is M9. This will be estimated by means of a ML 
method for the final selection of the opportune fixed part of the model: 

M10 

Model with 
optimal random 

part (M9) 
computed by 
means of the 
ML method 

Fixed: model, state, time 
window and interactions 
between them, Random 

intercept: participants and 
random slope for model, state, 

and time window; variance 
structure modelled for model 

(method ML) 

227.893 

 

M11 

Model without 
triple interaction 
between fixed 

effects 

Fixed: model, state, time 
window and interactions 

between them except the triple 
interaction, Random intercept: 

224.873 
M11 vs 

M10 
0.419 
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participants and random slope 
for model, state, and time 

window; variance structure 
modelled for model (method 

ML) 

M12 

Model without 
triple interaction 
between fixed 

effects and 
without 

interaction 
between time 
window and 

model 

Fixed: model, state, time 
window and interactions 

between them except the triple 
interaction, and the interaction 

between time window and 
model; Random intercept: 

participants and random slope 
for model, state, and time 

window; variance structure 
modelled for model (method 

ML) 

217.090 
M12 vs 

M11 
0.004 

M13 

Model without 
triple interaction 
between fixed 

effects and 
without 

interaction 
between state 

and model 

Fixed: model, state, time 
window and interactions 

between them except the triple 
interaction, and the interaction 

between state and model; 
Random intercept: participants 
and random slope for model, 

state, and time window; 
variance structure modelled for 

model (method ML) 

208.529 
M13 vs 

M11 
<0.0001 

M14 

Model without 
triple interaction 
between fixed 

effects and 
without 

interaction 
between state 

and time 
window 

Fixed: model, state, time 
window and interactions 

between them except the triple 
interaction, and the interaction 

between state and time window; 
Random intercept: participants 
and random slope for model, 

state, and time window; 
variance structure modelled for 

model (method ML) 

160.908 
M14 vs 

M11 
<0.0001 

The best model is the one not considering the triple interaction between model, state, and 
time window. The chosen model is M11, fitted with REML. 

	

	

Hierarchical	clustering	analysis	(Dendrograms)	

Hierarchical	clustering	analysis	was	used	to	represent	the	difference	in	similarity	magnitude	

(Fig.	6a-b)	and	the	difference	in	similarity	pattern	(Fig.	6c-d)	between	conscious	states	and	

between	 tones	 in	 each	 conscious	 state	 (Fig.	 6e-l).	 	 For	 the	magnitude	 analysis,	 a	 4	 by	 4	

dissimilarity	matrix	was	computed,	where	each	row	and	column	corresponded	to	one	of	the	

four	 conscious	 states,	 and	 each	 cell	 presented	 the	 mean	 effect	 size	 (Cohen’d)	 of	 the	
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differences	 in	 similarity	magnitude	 between	 pairs	 of	 states,	 normalised	 by	 their	 standard	

deviation.	 In	 the	 pattern	 analysis,	 each	 cell	 of	 the	 dissimilarity	 matrix	 presented	 the	

dissimilarity	value	1-Spearman’s	r,	where	the	Spearman’s	r	was	the	Tone	Similarity	Index	as	

computed	 from	 the	 RSA	 item-analysis	 described	 in	 the	 previous	 section.	 Hierarchical	

clustering	consists	of	an	iterative	method.	At	each	iteration,	within	a	dissimilarity	matrix,	it	

identifies	the	two	clusters	(i.e.,	the	two	matrix	cells)	that	are	closest	to	each	other.	Once	the	

closest	clusters	are	found,	they	are	merged	into	a	single	cluster	i	and	the	dissimilarity	matrix	

is	 re-computed,	 replacing	 the	 rows	 and	 columns	 of	 the	 two	 original	 clusters	 with	 one	

representing	 the	 newly	 formed	 cluster.	 The	 distances	 between	 the	 new	 cluster	 i	 and	 the	

remaining	clusters	are	therefore	estimated	and	the	process	is	repeated	until	only	one	cluster	

remains.	We	 initially	considered	each	conscious	state	as	an	 individual	cluster	and,	at	each	

step,	 identified	 the	 closest	 clusters	 by	 means	 of	 a	 Nearest	 Point	 Algorithm.	 A	 similar	

procedure	was	used	to	obtain	the	dendrograms	representing	the	relationship	between	tones	

in	each	conscious	state	(Fig.	6e-l).	This	time,	the	input	dissimilarity	matrices	were	the	average	

RDMs	per	state	obtained	from	the	RSMs	represented	in	Figure	(4a-d)	(with	RDM	=	1-RSM)	

	

MATLAB	open	source	software	FieldTrip	(Oostenveld	et	al.	2011),	and	Python	(version	3.6)	

and	R	(version	1.3.1073)	customized	scripts	were	used	for	ERP	and	similarity	analysis.		
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