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Abstract

There has been a spate of interest in association networks in biological and medical
research, for example, genetic interaction networks. In this paper, we propose a novel
method, the extended joint hub graphical lasso (EDOHA), to estimate multiple related
interaction networks for high dimensional omics data across multiple distinct classes. To
be specific, we construct a convex penalized log likelihood optimization problem and
solve it with an alternating direction method of multipliers (ADMM) algorithm. The
proposed method can also be adapted to estimate interaction networks for high
dimensional compositional data such as microbial interaction networks. The
performance of the proposed method in the simulated studies shows that EDOHA has
remarkable advantages in recognizing class-specific hubs than the existing comparable
methods. We also present three applications of real datasets. Biological interpretations
of our results confirm those of previous studies and offer a more comprehensive
understanding of the underlying mechanism in disease.

Author summary

Reconstruction of multiple association networks from high dimensional omics data is an 1

important topic, especially in biology. Previous studies focused on estimating different 2

networks and detecting common hubs among all classes. Integration of information over 3

different classes of data while allowing difference in the hub nodes is also biologically 4

plausible. Therefore, we propose a method, EDOHA, to jointly construct multiple 5

interaction networks with capacity in finding different hub networks for each class of 6

data. Simulation studies show the better performance over conventional methods. The 7

method has been demonstrated in three real world data. 8

Introduction 9

With advances in high-throughput sequencing and omics technologies, biological 10

information is being collected at an amazing rate, which stimulates researchers to 11

discover modular structure, relationships and regularities in complex data. Interactions 12

between various biological nodes (e.g. genes, proteins, metabolites) on different levels 13

(e.g. gene regulation, cell signalling) can be represented as graphs and, thus, analysis of 14

such networks might shed new light on the function of biological systems. Hubs, the 15
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highly connected nodes at the tail of the power law degree distribution, are known to 16

play a crucial role in biological networks. Some studies have shown that scale-free 17

topology exists in many different organizational levels, such as metabolic networks [1] 18

and cellular networks [2]. Hub nodes may be the most essential elements for community 19

stability and play an important role in the infection and pathogenesis of the virus. 20

The objective of our research is to estimate multiple interaction networks for high 21

dimensional omics data (e.g. genomics, metagenomics, proteomics and metabolomics) 22

across multiple classes. A common characteristic of the omics data is the deficiency of 23

independent samples (n) in comparison with the abundance of features (p), that is to 24

say, p� n. There have been a number of studies proposed to construct interaction 25

networks in the high dimensional setting. Meinshausen and Buhlmann [3] present 26

neighborhood selection to discover network structures. Friedman et al. [4] propose the 27

graphical lasso algorithm to estimate networks using the LASSO penalty. Fan et al. [5] 28

introduce nonconcave penalties and the adaptive LASSO penalty to explore networks. 29

Nevertheless, aforementioned methods are used to depict the relationship networks 30

between features for one class only. When there are multiple classes, such as healthy 31

and diseased conditions, a straightforward method is to construct the network for each 32

class separately and then compare their differences. However, these procedures may 33

sacrifice the similarity shared between multiple classes, which may be critically 34

important to find out the principal elements related to the disease. One would expect 35

these networks to be similar to each other, since they are from the same type of entities. 36

The joint graphical lasso (JGL) [6] is proposed to estimate multiple models 37

simultaneously, which ignores the scale-free network and is unable to detect hubs 38

explicitly. In the model of JRmGRN [7], it identifies common hub elements across 39

multiple classes by jointly using distinct datasets. In many situations, hub nodes that 40

are specific to an individual network also exist. For example, in the tissue-specific 41

networks associated with SARS-CoV-2, both common and class-specific key hubs are 42

revealed in diverse tissues [8]. Common hub features are essential to all class and 43

class-specific hubs could convey particular biology information. This inspires us to 44

explore a new model to incorporate both common and class-specific hub nodes when 45

jointly constructing interaction networks. 46

The proposed method can be applied to any omics data which follow multivariate 47

normal distribution. It can also be easily adapted to study multiple interaction 48

networks for high dimensional compositional data such as microbial networks by 49

employing some suitable transformation. The performance of the proposed method and 50

comparison with other methods will be evaluated by simulation studies for 51

compositional data and real data analysis. 52

Materials and methods 53

Gaussian graphical models (GGMs) are now frequently used to describe biological 54

feature association networks and to detect conditionally dependent features. Correlation 55

networks could be expressed as an undirected, weighted graph G = (V,E) where the 56

vertex set V = {v1, v2, . . . , vp} represents the p feature nodes (e.g., genes, microbes or 57

proteins) and the edge set E contains the possible associations among nodes. Suppose 58

the observations (suitably transformed if necessary) (r1, . . . , rp) are drawn from a 59

multivariate normal distribution with covariance Σ, the non-zero elements of the 60

off-diagonal entries of the inverse covariance matrix Θ = Σ−1 define the adjacency 61

matrix of the graph G and thus describe the factorization of the normal distribution 62

into conditionally dependent components [9]. Because the number of samples n is 63

smaller than the number of features p and Θ is expected to be sparse, penalized 64

maximum likelihood approaches are proposed to estimate the precision matrix Σ−1, 65
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which yields a sparse estimation of precision matrix Θ̂. 66

The general formulation for EDOHA 67

We present the extended joint hub graphical lasso (EDOHA) algorithm for constructing 68

multiple interaction networks from multiple classes. Suppose that there are K classes of 69

data sets, corresponding to K different levels of a phenotype variable or K different 70

conditions, such as control group, carrier group and disease group. Let R(k) ∈ Rnk∗p be 71

a matrix representing the data of p features and nk samples for kth class. Assume that 72

the observations (suitably transformed if necessary) are independent, identically 73

distributed: r
(k)
1 , . . . , r

(k)
nk ∼ N(µ(k),Σ(k)), where r(k) represents biological data from 74

the kth class. The log likelihood for the data takes the form 75

l({Θ}) =
1

2

K∑
k=1

nk
(
log(detΘ(k))− tr(S(k)Θ(k))

)
. (1)

where S(k) is the empirical covariance estimation of r(k). The non-zero element θ
(k)
ij in 76

Θ(k) = Σ(k)−1
indicates node i and j for the kth class are conditionally dependent. 77

Most elements in Θ(k) are expected to be zero. JRmGRN [7] has decomposed the 78

precision matrix Θ(k) into two parts: the elementary symmetric network for the kth 79

class Z(k), mainly containing the non-hub node correlation information, and the network 80

for hub nodes V, where V is a matrix with entirely zero or almost completely nonzero 81

columns, so that a few hub nodes are expected to have a large number of interactions 82

with many other nodes. Considering that some of the hub codes are common among all 83

classes and others are specific to different classes, we replace the same network V with 84

V(k) for the kth class, including common and class-specific hub correlation information. 85

Our method aims to investigate these class-specific hub nodes explicitly. To estimate 86

{Θ} = (Θ(1),Θ(2), . . . ,Θ(K)) when p > nk, we take a penalized log likelihood approach 87

min
{Θ}
−

K∑
k=1

nk(log(detΘ(k))− tr(S(k)Θ(k))) + P ({Θ}). (2)

The penalty function P ({Θ}) has the following form,

P ({Θ}) = λ1

K∑
k=1

‖Z(k) − diag(Z(k))‖1

+ λ2

∑
k<k′

‖Z(k) − Z(k′) − diag(Z(k) − Z(k′))‖1

+ λ3

∑
k

‖V(k) − diag(V(k))‖1 + λ4

∑
k

‖V(k) − diag(V(k))‖1,2

+ λ5

∑
k<k′

‖V(k) −V(k′) − diag(V(k) −V(k′))‖1

where Z(k) + V(k) + (V(k))T = Θ(k), and ‖V(k)‖1,2 =
∑p
j=1 ‖V

(k)
j ‖2, V

(k)
j is the jth 88

column of matrix V(k). Here λ1, λ2, λ3, λ4, λ5 are five nonnegative tuning parameters. 89

λ1 and λ3 control the sparsity of elementary network Z(k) and hub network V(k)
90

respectively. λ4 allows V(k) to have zero columns and dense non-zero columns, where 91

the non-zero columns represent the respective hub nodes in kth class. And λ2, λ5 92

encourage the elementary networks and hub networks to have the similarity. When 93

λ1, λ2, λ3, λ4 and λ5 are fixed, the expression of (2) is a convex optimization problem, 94
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which can be solved by efficient algorithms. The convexity of (2) is based on the 95

following facts: both negative log determinant and norm functions are convex functions, 96

so is the nonnegative combination of convex functions. 97

Remark 1. JRmGRN has four parameters, which accommodate connectivity levels
among non-hubs in each class, similarity between non-hubs networks, different numbers
of hubs and sparsity levels of hubs. It decomposes the precision matrix into elementary
network unique to each class and common hub network, which is equipped with the
ability to identify common hubs. Its penalty function is

P ({Θ}) = λ1

∑
k

‖Z(k) − diag(Z(k))‖1 + λ2

∑
k<k′

‖Z(k) − Z(k′)‖1 + λ3‖V‖1 + λ4‖V‖1,2.

Compared with the JRmGRN model, EDOHA replaces the common hub network with 98

respective hub network for each class and thus we are able to find out the common and 99

class-specific hub nodes simultaneously. It is easy to find that JRmGRN is a sub-case of 100

EDOHA when λ5 is large enough. Common hub features across multiple classes could be 101

crucial to regulate biological interaction, while class-specific hubs may mediate specific 102

phenotype. Our proposed method may help to explain which features play a significant 103

part in different phenotypic traits or in different conditions. 104

An ADMM algorithm for EDOHA 105

We solve the problem using an alternating directions method of multipliers 106

algorithm [10], which allows us to decouple some of the terms that are difficult to 107

optimize jointly. We assume that Θ(k) is positive definite for k = 1, . . . ,K. We note 108

that the problem can be reformulated as a consensus problem [11]: 109

min Φ(X) + h1( ˜̃V) + Ψ(X̃) s.t. X = X̃ V = ˜̃V, (3)

where X =
(
Θ(1),Z(1),V(1), . . . ,Θ(K),Z(K),V(K)

)
,

X̃ =
(
Θ̃(1), Z̃(1), Ṽ(1), . . . , Θ̃(K), Z̃(K), Ṽ(K)

)
, and

Φ(X) = f(Θ) + g(Z) + h(V), (4)

Ψ(X̃) =

K∑
k=1

I(Θ̃(k) = Z̃(k) + Ṽ(k) + (Ṽ(k))T ), (5)

where 110

f(Θ) = −
K∑
k=1

nk(log(detΘ(k))− tr(S(k)Θ(k))), (6)

111

g(Z) = λ1

K∑
k=1

‖Z(k) − diag(Z(k))‖1

+ λ2

∑
k<k′

‖Z(k) − Z(k′) − diag(Z(k) − Z(k′))‖1,
(7)

112

h(V) = λ3

∑
k

‖V(k) − diag(V(k))‖1

+ λ4

∑
k

‖V(k) − diag(V(k))‖1,2,
(8)

113

h1( ˜̃V) = λ5

∑
k<k′

‖ ˜̃V
(k)

− ˜̃V
(k′)

− diag( ˜̃V
(k)

− ˜̃V
(k′)

)‖1. (9)
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And 114

I(Θ̃(k) = Z̃(k) + Ṽ(k) + (Ṽ(k))T ) =

{
0 if Θ̃(k) = Z̃(k) + Ṽ(k) + (Ṽ(k))T

∞ otherwise

The scaled augmented Lagrangian is given by 115

L(X, X̃, ˜̃V,W,W̃) = Φ(X) + h1( ˜̃V) + Ψ(X̃) +
ρ

2
‖X− X̃ + W‖2F −

ρ

2
‖W‖2F

+
ρ

2
‖ ˜̃V −V + W̃V ‖2F −

ρ

2
‖W̃V ‖2F ,

(10)

where X, X̃, ˜̃V are the primal variables, W = ({W(k)
Θ }, {W

(k)
Z }, {W

(k)
V }), W̃V are the 116

dual variables. ‖A‖2F denotes the Frobenius norm of A. Here ρ is a positive parameter 117

for the scaled Lagrangian form. We set ρ = 2.5 as is used in Deng et al. [7]. 118

The iteration of ADMM can be described as follows: 119

Xt+1 = argminX

{
Φ(X) + ρ

2‖X− X̃t + Wt‖2F
+ρ

2‖
˜̃Vt −V + W̃Vt‖2F

}
˜̃Vt+1 = argmin ˜̃V

{
h1( ˜̃V) + ρ

2‖
˜̃V −Vt+1 + W̃Vt

‖2F
}

X̃t+1 = argminX̃

{
Ψ(X̃) + ρ

2‖Xt+1 − X̃ + Wt‖2F
}

Wt+1 = Wt + Xt+1 − X̃t+1

W̃Vt+1
= W̃Vt

+ ˜̃Vt+1 −Vt+1

(11)

Theorem 1. There exists a solution (X∗, X̃∗, ˜̃V∗) to the EDOHA optimization problem 120

(3), and the ADMM iterations via (11) approach the optimal value, i.e. pt → p∗, where 121

pt = Φ(Xt) + h1( ˜̃Vt) + Ψ(X̃t) and p∗ = Φ(X∗) + h1( ˜̃V
∗
) + Ψ(X̃∗). 122

The theorem establishes the convergence of the ADMM algorithm to achieve the 123

optimal solution for EDOHA. It also automatically establishes algorithmic convergence 124

for any optimization problem that can be regarded as a sub-case of EDOHA, for 125

example, JRmGRN, which was not established before. A general algorithm for solving 126

the optimization problem is shown in S1 Text. And the proof of Theorem 1 is shown in 127

S2 Text. 128

Faster computations for EDOHA 129

We now present a theorem that leads to substantial computational improvements to the 130

EDOHA. Using the theorem, one can inspect the empirical covariance matrices 131

S(1), . . . ,S(K) in order to determine whether the solution to the EDOHA optimization 132

problem is block diagonal after some permutation of the features. Previous studies [6, 7] 133

use uniform thresholding to decompose the precision matrices of different classes in 134

exactly the same way. Non-uniform thresholding generates a non-uniform feasible 135

partition by thresholding the K empirical covariance matrices separately. In a 136

non-uniform partition, two variables of the same group in one class may belong to 137

different groups in another class [12]. Here we recommend a novel non-uniform 138

thresholding approach that can split precision matrices into smaller submatrices without 139

ignoring the different sparsity patterns from different matrices. Now we provide the key 140

result. The following theorem states the sufficient conditions for the presence of 141

non-uniform block diagonal structure. 142
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Theorem 2. A sufficient condition for the solution to (2) to be block diagonal with
blocks given by Ck1 , C

k
2 , . . . , C

k
Tk

is that

min

{
λ1 − (K − 1)λ2

n1
, . . . ,

λ1 − (K − 1)λ2

nK
,
λ3 − (K − 1)λ5

2n1
, . . . ,

λ3 − (K − 1)λ5

2n1

}
≥ |S(k)

ij |

for ∀k, i ∈ Ck
t , j ∈ Ck

t′ , t 6= t′. 143

Proof of Theorem 2 is given in S3 Text. Similar to Theorem 1 in [7], we decompose 144

the reconstruction of a big network into the reconstruction of two or more small 145

networks separately. JRmGRN has a sufficient condition for the presence of block 146

diagonal structure. We now allow to split the precision matrices into class-specific block 147

diagonal structures. It supplies us with a criterion if, given a partition of features 148

Ck1 , C
k
2 , . . . , C

k
Tk

,
∑
t C

k
t = p, the solution of the optimization problem is block diagonal 149

with each block corresponding to features in Ckt . In practice, for any given 150

(λ1, λ2, λ3, λ4, λ5), we can quickly perform the following two-step procedure to identify 151

any block structure in each class in the solution. 152

• Create B(k), a p ∗ p matrix with B
(k)
ii = 1 for i = 1, . . . , p. For i 6= j, let B

(k)
ij = 0 153

if the conditions specified in Theorem 2 are met for that pair of variables. 154

Otherwise, set B
(k)
ij = 1. 155

• Identify the connected components of the undirected graph whose adjacency 156

matrix is given by B(k). 157

Theorem 2 guarantees that the connected components identified correspond to 158

distinct blocks in kth class. Therefore, one can quickly obtain these solutions based on a 159

non-uniform feasible partition. The block diagonal condition leads to massive 160

computational speed-ups. Instead of computing the eigen decomposition of K p ∗ p 161

matrices, we compute the eigen decomposition of
∑
k Tk matrices of dimensions 162

pCk
1
∗ pCk

1
, ..., pCk

Tk

∗ pCk
Tk

. The computational complexity per-iteration is reduced from 163

O(p3) to
∑
k

Tk∑
t=1

O(p3
Ck

t
). 164

Tuning parameter selection 165

In this paper, we use Bayesian information criterion(BIC)-type quantity to select tuning 166

parameters. We choose (λ1, λ2, λ3, λ4, λ5) to minimize the following function which 167

balances the model likelihood and model complexity. 168

BIC(Θ̂, Ẑ, V̂) =

K∑
k=1

[
nk
(
− log(detΘ̂(k)) + tr(S(k)Θ̂(k))

)]

+
K∑
k=1

log(nk)|Ẑ(k)| − log(n)|
⋂

Ẑ(k)|

+
K∑
k=1

log(nk)
(
v̂(k) + c(|V̂(k)| − v̂(k))

)
− log(n)

(
v̂ + c(|

⋂
V̂(k) − v̂|)

)
,

(12)

where {Θ̂(k), Ẑ(k), V̂(k)} is the estimated parameters with a fixed set of tuning 169

parameters (λ1, λ2, λ3, λ4, λ5), | ∗ | is the cardinality, v̂(k) is the number of estimated 170

hubs for kth class and v̂ is the number of estimated common hubs, and c is a constant 171

between zero and one. We select the set of tuning parameters (λ1, λ2, λ3, λ4, λ5) which 172
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minimizes the quality BIC(Θ̂(k), Ẑ(k), V̂(k)). Note that BIC will favor more hub nodes 173

in V̂(k) when constant c is small. In this paper, we take c = 0.3. 174

We use the grid search to find the tuning parameters. However, computing BIC over 175

a range of values for five tuning parameters (λ1, λ2, λ3, λ4, λ5) may be computationally 176

intensive. In this case, we suggest a dense search over (λ1, λ3, λ4) while holding (λ2, λ5) 177

at fixed low values, followed by a quick search over (λ2, λ5), holding (λ1, λ3, λ4) at the 178

selected values. With the number of features involved in the analysis dramatically 179

increasing, tuning parameter selection becomes very complicated. In this situation, we 180

need to explore some theoretical properties of the problem that can be used to provide 181

guidance on our search of tuning parameters. This approach follows Deng et al. [7] and 182

we provide the following theorems that extend their theoretical results to our present 183

case with class-specific hubs. 184

Theorem 3. Let

(
Θ∗(k),Z∗(k),V∗(k)

)
be a solution to (2), a sufficient condition for 185

Z∗(k) to be a diagonal matrix is that λ3 + λ4 < 2λ1 and λ5 < 2λ2. 186

Proof of Theorem 3 is given in S4 Text. 187

Theorem 4. Let

(
Θ∗(k),Z∗(k),V∗(k)

)
be a solution to (2), a sufficient condition for 188

V∗(k) to be a diagonal matrix is that 2λ1 < λ3 + λ4√
p and 2λ2 < λ5. 189

Proof of Theorem 4 is given in S5 Text. 190

Corollary 1. Let

(
Θ∗(k),Z∗(k),V∗(k)

)
be a solution to (2), a necessary condition for 191

both Z∗(k) and V∗(k) to be non-diagonal matrices is that tuning parameters satisfy any 192

one of the following conditions: 193

a) λ3 + λ4√
p < 2λ1 < λ3 + λ4 194

b) 2λ2 < λ5, λ3 + λ4√
p < 2λ1 195

c) λ5 < 2λ2, 2λ1 < λ3 + λ4. 196

Specifically, we require that both Z(k) and V(k) are non-diagonal to produce 197

non-trivial edges and hubs. With Corollary 1, we could reduce the search space of 198

parameters λ1, λ2, λ3, λ4 and λ5 as these five tuning parameters are related. If λ1 and 199

λ2 are large, and λ3, λ4 and λ5 are too small, then the elementary network Z(k) may be 200

very sparse and the number of hubs becomes huge. On the contrary, if λ1 and λ2 are 201

quite small, and λ3, λ4 and λ5 are rather large, then we can get dense Z(k) and few 202

hubs. EDOHA’s conditions on tuning parameter selection are more complicated, since it 203

involves λ5 which is not present for JRmGRN. In this paper, we use a uniformed grid of 204

log space from 0.001 to 5 (size=20) for parameter λ1, λ2, λ3, λ4 and λ5 satisfying the 205

conditions in Corollary 1. 206

EDOHA for compositional data 207

Numerous studies have shown strong evidence that microbial compositions are closely 208

related with various diseases such as diabetes [13], inflammatory bowel disease [14] and 209

obesity [15]. Microbial count data are usually generated by sequencing variable regions 210

of bacterial 16S rRNA gene. They are not directly comparable across samples and are 211

usually transformed to relative abundance or proportion by dividing the total counts in 212

the sample. A wide range of methods have been proposed to construct biological 213
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correlation networks for composition data, such as SPIEC-EASI [16], SparCC [17], 214

Reboot [18], REBACCA [19], CCLasso [20] and COAT [21] for microbial interaction 215

networks. However, these methods are for one class only. 216

To apply EDOHA to compositional data, we first perform data transformation. Here
we briefly discuss compositional data for one class using microbiome data as an example.
The absolute abundances or counts of p microbes, y = [y1, y2, . . . , yp], living in an
environment such as human gut are usually not directly observable. However, the
relative abundances x = [y1m ,

y2
m , . . . ,

yp
m ] where m =

∑p
i=1 yi, can be measured using 16S

rRNA sequencing technologies. Here we apply the centered log-ratio transform [22] to
remove the unit-sum constraint of compositional data. For a compositional variable
x = (x1, . . . , xp), we have

r = clr(x) = [log(
x1

g(x)
), . . . , log(

xp
g(x)

)] = [log(
y1

g(y)
), . . . , log(

yp
g(y)

)],

where g(x) = [
∏p
i=1 xi]

1
p is the geometric mean of the composition vector. It is easy to 217

show that there is a relationship between the covariance matrix Σ of r and the 218

population covariance of the log-transformed absolute abundances Σ̃ = Cov[log Y] : 219

Σ = GΣ̃G [16, 22], where G = Ip − 1
pJ, Ip is the p-dimensional identity matrix, and J 220

is p ∗ p matrix with each of the entries equals 1. Kurtz et al. [16] mention that the 221

matrix G is close to the identity matrix for high-dimensional data, and thus a finite 222

sample estimator S of Σ may be as a good approximation of the empirical covariance of 223

log Y. Actually, Cao et al. [21] have shown that Σ could be a proxy for Σ̃ as long as Σ̃ 224

belongs to a class of large sparse covariance matrices. Therefore the interaction 225

networks for high dimensional compositional data can be estimated based on the 226

centered log-ratio transformed data. 227

Results 228

Simulation studies 229

To examine the efficiency of the proposed method for the better identification of 230

common and class-specific hub nodes, we simulate Erdös-Rényi (ER)-based network [23] 231

and then generate corresponding compositional data to assess and validate the method. 232

We compare the performance of EDOHA with the existing methods, such as the 233

graphical lasso (JGL) and JRmGRN. Results show that EDOHA is more efficient than 234

other methods when analyzing compositional data correlation networks which have both 235

common and class-specific hub nodes. 236

Simulation strategy 237

To simulate a biological compositional data set such as microbiome count data, we 238

consider the data are drawn with two steps. We first generate the basis abundance and 239

proportion for each feature and then generate count data given a sequencing size (i.e. 240

library size). The data structure characteristics are reflected in the basis covariance, 241

which will be introduced in details later. Here we assume that basis proportions vary 242

from sample to sample and are generated from one of three different distributions, 243

namely, log ratio normal (LRN), Poisson log normal (LNP) and Dirichlet log normal 244

(LND) distributions [19]. These three methods are presented in S6 Text. Then we 245

extract count data from a multinomial distribution using the proportions, which reflects 246

a random process that all sequences are equally likely to be selected in a biological 247

sample. 248
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To evaluate EDOHA comprehensively, we consider that the features are associated 249

with ER-based network, in which each pair of nodes is selected with equal probability 250

and connected with a predefined probability. The scale-free ER-based networks are 251

generated by modifying the procedure used in Deng et al. [7]. Specifically, for a given 252

number of classes (K), nodes (p), samples (nk), we use the following procedures to 253

simulate ER-based network and corresponding compositional data. 254

Step 1 We generate the base sparse matrix A in which Aij is set as a random number 255

in [−0.75,−0.25]
⋃

[0.25, 0.75] with probability α (elementary network sparsity 256

1-α) and zero otherwise. 257

Step 2 Given the number of hubs m, we randomly choose m nodes and for each 258

element that represents the correlation between ith hub node and other node j, 259

h̃ij , we set it to be a random number in [−0.75,−0.25]
⋃

[0.25, 0.75] with 260

probability β (hub sparsity 1-β) and zero otherwise. 261

Step 3 To construct the hub matrix H(k), we randomly choose a fraction δ (network 262

difference) of the hub nodes and reset them to be random numbers from 263

1, 2, . . . , p. The modified hub nodes are denoted by h(k). As for nonzero elements 264

in H(k), we first set h
(k)
ij = h̃ij and then randomly adjust a fraction of δ of these 265

nonzero elements and reset their values to be random numbers in 266

[−0.75,−0.25]
⋃

[0.25, 0.75] with probability β. 267

Step 4 To construct the elementary network, Z(k), we first set it equal to A, and then 268

randomly choose a fraction of δ of elements and reset their values to be random 269

numbers in [−0.75,−0.25]
⋃

[0.25, 0.75] with probability α and zero otherwise. We 270

set Z(k) = Z(k) + t(Z(k)) so that Z(k) is symmetric. 271

Step 5 We define the precision matrix Θ(k) as Z(k) + H(k) + (H(k))T . If Θ(k) is not 272

positive definite, we add the diagonal element of Θ(k) by 0.1− λmin(Θ(k)), where 273

λmin(Θ(k)) is the minimum eigenvalue of Θ(k). 274

Step 6 We generate the compositional data of nk samples for the kth class from a 275

multinomial distribution using the proportion obtained from LRN with basis 276

covariance (Θ(k))−1. 277

Here the simulation studies are conducted for three classes with 40 or 80 samples for 278

each class. The elementary network sparsity, the hub sparsity and the network 279

difference are set as 0.98, 0.7, 0.2, respectively. We simulate three networks with 80, 280

160, 300 nodes, respectively. As we have mentioned, we use the BIC and the grid search 281

to find the appropriate tuning parameters and model. 282

Simulation results 283

We consider simulated network described in the previous section with 80, 160, 300 nodes 284

and estimate corresponding system with sample size n=40, n=80, respectively. The 285

effects of EDOHA penalties vary with the sample size. To better present the simulation 286

study results, we multiply the tuning parameters (λ1, λ2, λ3, λ4, λ5) by the sample size 287

before performing the EDOHA. 288

We compare the performance of EDOHA and JRmGRN of identifying non-zero
edges and class-specific edges. The results are computed averaging over 100 simulated
data sets. We say that an edge (i, j) in the kth network is detected if the estimated

association Θ̂
(k)
ij 6= 0 and we say that the edge is correctly detected if Θ

(k)
ij 6= 0. The
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number of differential edges, which differ between classes, is defined as follows [6]:∑
k<k′

∑
i<j

I
(

Θ
(k)
ij 6= Θ

(k′)
ij

)
.

We record the sensitivity and specificity associated with detecting non-zero edges and 289

detecting differential edges. The sensitivity is the proportion of the non-zero or 290

differential edges that are correctly detected and the specificity represents the 291

proportion of the zero or non-differential edges that are correctly detected. Hence the 292

sensitivity and specificity of edge detection (ED) and differential edge detection (DED) 293

are computed as 294

• ED Sensitivity=

K∑
k=1

∑
i<j

I
(

Θ̂
(k)
ij 6=0 and Θ

(k)
ij 6=0

)
K∑

k=1

∑
i<j

I
(

Θ
(k)
ij 6=0

) 295

• ED Specificity=

K∑
k=1

∑
i<j

I
(

Θ̂
(k)
ij =0 and Θ

(k)
ij =0

)
K∑

k=1

∑
i<j

I
(

Θ
(k)
ij =0

) 296

• DED Sensitivity=

∑
k<k′

∑
i<j

I
(

Θ̂
(k)
ij 6=Θ̂

(k′)
ij and Θ

(k)
ij 6=Θ

(k′)
ij

)
∑

k<k′

∑
i<j

I
(

Θ
(k)
ij 6=Θ

(k′)
ij

) 297

• DED Specificity=

∑
k<k′

∑
i<j

I
(

Θ̂
(k)
ij =Θ̂

(k′)
ij and Θ

(k)
ij =Θ

(k′)
ij

)
∑

k<k′

∑
i<j

I
(

Θ
(k)
ij =Θ

(k′)
ij

) 298

As shown in Table 1, if only the number of non-zero edges is considered, there is little 299

difference between EDOHA and JRmGRN in terms of the total number of detected 300

pairwise node-node associations. However, the sensitivity of detecting differential edges 301

using EDOHA has more than doubled in all cases compared with JRmGRN. This is 302

mainly because EDOHA is equipped with better ability to identify the class-specific 303

edges.

Table 1. Means (Standard deviations) over 100 replicates using EDOHA and JRmGRN are shown for sensitivity and
specificity of edge detection (ED) and differential edge detection (DED)

n=40 n=80

ED ED DED DED ED ED DED DED

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

EDOHA 0.614(0.089) 0.925(0.054) 0.396(0.098) 0.959(0.049) 0.597(0.110) 0.960(0.024) 0.416(0.104) 0.968(0.019)

p=80 JRmGRN 0.535(0.055) 0.914(0.039) 0.138(0.112) 0.986(0.011) 0.542(0.132) 0.928(0.058) 0.161(0.095) 0.989(0.004)

EDOHA 0.352(0.055) 0.974(0.011) 0.288(0.059) 0.977(0.005) 0.430(0.063) 0.977(0.010) 0.329(0.058) 0.979(0.006)

p=160 JRmGRN 0.355(0.039) 0.955(0.012) 0.077(0.043) 0.992(0.004) 0.417(0.053) 0.989(0.003) 0.114(0.068) 0.987(0.002)

EDOHA 0.347(0.032) 0.971(0.007) 0.217(0.081) 0.974(0.016) 0.288(0.036) 0.990(0.005) 0.293(0.050) 0.978(0.011)

p=300 JRmGRN 0.297(0.052) 0.939(0.025) 0.068(0.067) 0.988(0.018) 0.253(0.028) 0.991(0.003) 0.110(0.037) 0.991(0.002)

304

We then show that EDOHA has substantial improvements over several other 305

methods. Since the hub nodes cannot be found out by JGL explictly, the precision 306

recall curve is constructed based on the differential non-zero edges in the network, 307

which is compared with the results from aforementioned methods intuitively. We 308

simulate the networks with varying sparsity and similarity in two conditions and 309
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estimate corresponding networks with 160 nodes. The sample size is 80. To compare the 310

results from different methods, we simulate each situation 100 times. As can be seen in 311

Fig 1, the precision of EDOHA stays high through a larger range of recall, whereas for 312

the other methods it quickly drops to the level of random guessing. This agrees with 313

our expectation since EDOHA distinguishes the differences among elementary networks 314

and hub networks respectively, which fits the data in the model better.
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(c) E sparsity:0.8,H sparsity:0.6,Difference=0.2

Fig 1. The Precision-Recall curve of EDOHA, JRmGRN and JGL for differential edge detection under different networks
settings. ‘E sparsity’ is the sparsity of elementary network; ‘H sparsity’ is the sparsity of Hub network, the last parameter
shown in title is the difference of two elementary networks.

315

Hubs are explicitly modeled by EDOHA and JRmGRN. We simulate the networks 316

with both common and class-specific hubs and compare the results with JRmGRN. To 317

better present the performance of identifying class-specific hubs, we also compare the 318

hub detection capability with HGL [24], which only handle data from a single class. 319

When applying HGL, networks are fitted for each class separately. The entire procedure 320

is repeated 50 times. Comprehensive evaluation of EDOHA on identifying the common 321

and class-specific hubs are presented in Table 2. The true positive rate (TPR), false 322

positive rate (FPR) and Precision for common (C) hubs and class-specific (S) hubs are 323

defined as 324

• TPR-C = #{identified true common hubs}
#{common hubs} 325

• FPR-C = #{identified false common hubs}
p−#{common hubs} 326

• TPR-S = #{identified true class-specific hubs}
#{class-specific hubs} 327

• FPR-S = #{identified false class-specific hubs}
p−#{class-specific hubs} 328

• Precision-C = #{identified true common hubs}
#{identified common hubs} 329

• Precision-S = #{identified true class-specific hubs}
#{identified class-specific hubs} 330

Total TPR, FPR and Precision are computed as 331

• TPR =
∑

k #{identified true hubs in kth class}∑
k #{hubs in kth class} 332

• FPR =
∑

k #{identified false hubs in kth class}
Kp−

∑
k #{hubs in kth class} 333

• Precision =
∑

k #{identified true hubs in kth class}∑
k #{identified hubs in kth class} 334
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A simple example computing the TPR, FPR and Precision is described in S7 Text. 335

Since JRmGRN only detects common hubs, there is no corresponding information of 336

class-specific hubs. It can be seen that EDOHA has almost the highest precision and 337

lowest FPR when we count the common hubs and class-specific hubs separately. 338

Although JRmGRN works quite well in identifying common hubs, it tends to incorrectly 339

identify some common hubs. As we mentioned earlier, JRmGRN can be viewed as a 340

subcase of EDOHA, i.e. λ5 =∞, and HGL is like EDOHA with λ2 = 0, λ5 = 0. Hence 341

EDOHA has better performance than JRmGRN and HGL when analyzing correlation 342

networks which have both common and class-specific hub nodes. Additional simulations 343

for only common hubs and only class-specific hubs are shown in S1 Table. From 344

simulation results, EDOHA could detect most common hubs in only common hubs 345

setting and well recognize class-specific hubs in only class-specific hubs setting. We also 346

find that the results of EDOHA and JRmGRN are similar to each other when most of 347

true hubs are common ones but quite different when the true networks have more 348

class-specific hubs. These results suggest the usefulness of EDOHA in identifying true 349

hub nodes in a situation where one does not know if they are class-specific or common.

Table 2. Performances of EDOHA, JRmGRN and HGL for hub detection are compared by True Positive (TP), False
Positive (FP) and Precision. The network difference are set as 0.3. The results are averaged over 50 simulations.

TPR-C FPR-C Precision-C TPR-S FPR-S Precision-S TPR FPR Precision

EDOHA 0.896 0.021 0.886 0.751 0.056 0.728 0.841 0.027 0.824

80 nodes (5 hubs) JRmGRN 0.986 0.046 0.532 NA NA NA 0.810 0.049 0.688

HGL 0.784 0.016 0.781 0.695 0.168 0.407 0.835 0.051 0.619

EDOHA 0.793 0.004 0.837 0.837 0.035 0.776 0.861 0.005 0.897

160 nodes (8 hubs) JRmGRN 0.904 0.029 0.643 NA NA NA 0.727 0.029 0.674

HGL 0.621 0.006 0.738 0.767 0.038 0.566 0.737 0.023 0.663

EDOHA 0.789 0.001 0.879 0.878 0.018 0.756 0.895 0.001 0.863

300 nodes (12 hubs) JRmGRN 0.887 0.032 0.654 NA NA NA 0.705 0.011 0.706

HGL 0.537 0.001 0.819 0.713 0.023 0.553 0.793 0.021 0.589

NA: JRmGRN could not detect class-specific hubs.

350
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Real data analysis 351

We apply the proposed model on three real data sets: one is proteomic data and the 352

other two are microbiome data. Compared with the analysis methods used in the 353

original publications, our model possesses the competence in constructing multiple 354

networks with common and class-specific hubs across multiple classes. We also 355

implement JRmGRN to infer interaction network and detect the hubs across classes. 356

We find that some of hubs recognized by EDOHA, including common and class-specific 357

ones, are identified as common hubs by JRmGRN. From simulation study, EDOHA may 358

be more reliable when the results between them are significantly different. 359

Application to mouse skin microbiome data 360

We apply EDOHA to a mouse skin microbial data set (PRJEB1934) including three 361

groups of individuals: non-immunized (Control), immunized-healthy (Healthy), and 362

immunized-diseased (EBA). Microbial communities are measured utilizing variable 363

regions of bacterial 16S rRNA sequencing data. These regions are amplified, sequenced, 364

and then grouped into common Operational Taxonomic Units (OTUs) according to the 365

similarity and quantified, with OTU counts serving as an intermediary to the 366

underlying microbial populations abundances. The data set contains 131 core OTUs 367

mainly coming from four prime phyla, which are Firmicutes (44 OTUs), Proteobacteria 368

(35 OTUs), Bacteroidetes (26 OTUs), Actinobacteria (17 OTUs). We analyze their 369

abundance data from 261 mouse skin samples. In particular, we wish to reconstruct the 370

pair-wise conditional correlations network and identify the OTUs that are hubs. Such 371

OTUs likely play an important role in the environment. 372

In Fig 2, we plot the networks for the three groups. The hub OTUs are highlighted 373

in orange. Only OTUs from Firmicutes and Actinobacteria are identified as hub OTUs. 374

The three networks share only one common hub while Healthy and EBA groups have 375

another common hub. However, three hub OTUs in the Healthy group do not appear as 376

hubs in the EBA group. Note that two OTU hubs shared by the Healthy and the 377

Control groups are not hubs in the EBA group. Such information may be useful to 378

understand the mechanism of protection from disease, which would not be available 379

without our method of class-specific hub detection. In contrary, JRmGRN identifies 380

eight common hubs, four of which are detected by EDOHA as class-specific hubs, one in 381

EDOHA’s common hub. Only one hub recognized by EDOHA is not included in 382

JRmGRN’s common hub set. 383

In addition to comparing the hub OTUs, we also investigate whether the correlation 384

patterns among the 131 OTUs are different for different groups of disease status. A 385

correlated pair of OTUs is considered consistent between two groups if the correlations 386

in both groups have the same sign. We come to the same conclusion that correlations 387

from the non-immunized individuals are less consistent with other two immunized 388

groups than between the two immunized groups. There are 687 consistent pairs between 389

the two immunized groups, while there are only 639 consistent pairs between the 390

Control and Healthy and 632 between the Control and EBA groups. The results 391

obtained in Ban et al. [19] were 532 consistent pairs between the two immunized groups, 392

the other two were 236 and 212 respectively. Hence the gaps between these groups in 393

our research are much less (See S1 Fig). The reason is mainly that we jointly model 394

multiple networks simultaneously so that the similarity of network could be constructed 395

more accurately by using datasets from multiple classes, which results in more accurate 396

class-specific networks. 397
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(a) Healthy (b) EBA (c) Control

Fig 2. The estimated microbial networks for the groups of non-immunized (Control), immunized-healthy (Healthy) and
immunized-diseased (EBA) individuals. The hub OTUs are highlighted in orange.

Application to IBD microbiome data 398

We preform our proposed method on the inflammatory bowel disease (IBD) multi-omics 399

database from the Integrative Human Microbiome Project (HMP2 metadata) focusing 400

on the functions of microbes in human health and disease. IBD further includes two 401

main subtypes, Crohn’s disease (CD) and ulcerative colitis (UC). Our samples consist of 402

86 CD patients, 46 UC patients and 46 healthy controls with 342 OTUs. As is known, 403

IBD is a chronic and relapsing inflammatory condition of the gastrointestinal (GI) tract 404

and the GI microbiome of healthy humans is dominated by four major bacterial phyla: 405

Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. The data set contains 406

225, 44, 38, 23 OTUs from these four prime phyla respectively. 407

We aim to reconstruct the multiple microbial networks of the human gut that 408

represent the interactions among the OTUs, as well as to identify hub OTUs that tend 409

to have many interactions with other ones. Identifying such regulatory OTUs will lead 410

to a better understanding of the mechanism of IBD, and eventually may lead to new 411

therapeutic treatments. A large-scale cross-measurement type association network for 412

host and microbial molecular interactions has been constructed [25]. Fig 3 displays the 413

microbial interaction networks for the three classes. More hub OTUs are identified in 414

CD than in UC and healthy controls. And almost each hub in UC and healthy groups is 415

covered in the hub sets of CD group. We find that species from Actinobacteria are not 416

detected as hub OTUs in three groups. Several studies [14,26,27] discovered that 417

Faecalibacterium were differentially abundant in IBD and healthy group. 418

Subdoligranulum, Roseburia and Fusobacterium have also been identified as hubs, all of 419

which are associated, metatranscriptionally as well as metagenomically, with taxonomic 420

features. In our study, Rumiococcus gnavus and Roseburia are found in CD and UC 421

groups but not in healthy group, OTUs from Alistiles are only detected as hubs in CD 422

group, which may lead to an entirely new line of medical research into IBD. By 423

comparison, JRmGRN identifies thirteen common hubs, of which six are common ones, 424

and six are shared in two classes, according to EDOHA. The remaining one is not found 425

in EDOHA’s list of any class-specific hubs. 426
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Fig 3. The estimated microbial networks for CD, UC and healthy groups. Four major bacterial phyla are marked by
different colors. The larger nodes represent the hub OTUs.

Application to SARS-CoV-2 infection proteomic data 427

A most recent study have identified 332 high-confidence SARS-CoV-2 protein-human 428

protein interactions that are connected with multiple biological processes [28]. In the 429

332 proteins interacted with SARS-CoV-2, 188 of them may interact with the major 430

virus components. We search for the existence of the 188 proteins in four kinds of 431

tissues: colon, liver, lung and kidney, and apply the proposed method, EDOHA, to 432

construct proteome-wide networks and reveal common key hubs across different types of 433

tissues and tissue-specific hubs. The proteomic data is downloaded from the National 434

Cancer Institute Clinical Proteomic Tumor Analysis Consortium database (CPTAC). 435

As shown in Fig 4, we identify three common hub proteins DDX21, REEP6 and 436

SEPSECS. And we identify MRPS5 as a hub only in colon, which is consistent with 437

previous studies [8]. We also detect many other common hubs, including HMOX1, 438

PRKAR2B and TIMM9, which appear as hubs in two or three organs. Moreover, 439

BCKDK and COMT are involved in hubs only in liver. BWZ2, SLC44A2 and STOM 440
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(a) Colon (b) Liver

(c) Lung (d) Kidney

Fig 4. The estimated interaction networks of proteins affected by SARS-Cov-2 in four tissues. The hub proteins are
highlighted in yellow.

are recognized as hubs merely in lung. And ATP1B1, ATP6AP1, ATP6V1A, CCDC86, 441

ETFA, NUP210, PTGES2 and SCARB1 are screened as hubs only in kidney. All of 442

these hub proteins detected in four tissues and their functions in living organism are 443

shown in S2 Table. Eight hub proteins are recognized by JRmGRN. DDX21 and 444

REEP6 are common hubs detected as common ones by EDOHA, while BZW2 , 445

CCDC86, MRPS5, PRKAR2B and STOM are class-specific hubs in one or two organs. 446

RRP9 is the only one that is not in the list of EDOHA’s hub set. 447

All of these hubs have connectivity at least 4 times larger than that of any non-hubs. 448

Ubiquitous hubs in multiple tissues would be promising drug targets to rescue 449

multi-organ injury and deal with inflammation. Certain tissue-specific hubs might 450

mediate specific dysfunction. Such information is urgently needed for the identification 451

of the therapeutic targets for intervention and vaccine development. 452

Discussion 453

Currently, there has been an increasing interest in the structure of multiple interaction 454

networks. In most cases, people implicitly assume that each node has roughly the same 455

number of interactions within the network when analyzing omics data, and each pair of 456

nodes has equal probability to be an edge and all edges are independent of each other. 457

However, this assumption is not appropriate in some real-world networks. In biological 458

networks, scale-free properties are quite universal, which means the number of edges for 459
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each node follows a power-law distribution and a small proportion of nodes interact 460

with many other ones. Barabasi and Oltvai [29] has found that most networks within 461

the cell approximate a scale-free topology, including the metabolic networks, 462

protein-protein interactions and genetic regulatory networks. The presence of hubs 463

seems to be a general feature of all cellular networks. For example, hub proteins play 464

critical roles in the organization and function of cellular protein interaction networks. It 465

has also been demonstrated that such hub proteins may constitute an important pool of 466

attractive drug targets. One typical aim is to capture more complex interactions and 467

identify class-specific hubs in class-specific networks. Constructing biological association 468

networks based on data sets from the same tissue with different phenotypes or different 469

tissue enables us to screen out the influential features contributing to life health and 470

disease, which provides insights into understanding the essential elements in living 471

organisms and ecosystems. As researches into biological correlation networks continue, 472

it has become important to develop a novel model to jointly estimate the scale-free 473

interactions networks from different classes. 474

In this paper we propose a new statistical procedure to construct class-specific 475

networks and select informative hub features among multiple classes for high 476

dimensional omics data. Hub features, including common and specific ones, are 477

accurately identified by decomposing the precision matrix into two parts. New penalty 478

terms are added to single out class-specific hubs. Moreover, theoretical properties for 479

selecting tuning parameters are investigated to improve computation efficiency. For a 480

fixed set of tuning parameters, using a Mac desktop computer with 2.3 GHz Intel Core 481

i5 processor and 8 GB 2133 MHz LPDDR3 memory, the average running times for 482

estimating the precision matrices are about 2.5 min for 100 nodes, 7 min for 200 nodes, 483

20 min for 300 nodes, respectively. In future, we will explore strategies to speed up the 484

computation, such as the randomized parameter search. The synthetic data are 485

generated with ER-based network to model as closely as possible the situation in 486

experimental biological compositional data. Our simulation studies show that the 487

proposed method achieves higher accuracy in detecting the differential edges from 488

different classes. We show that EDOHA has the potential to recognize the class-specific 489

hub features and gains the larger area under the Precision-Recall curves compared with 490

other methods. We also apply the proposed method on three real omics data sets. One 491

of them is proteomic data from different tissues, and the other two are microbial data 492

from microbial communities with different phenotypes. Across all three data sets, 493

EDOHA successfully builds multiple networks and the results are basically consistent 494

with previous reports. Furthermore, EDOHA identifies some hub features, both 495

common and class-specific ones, which provides a deeper understanding of the 496

mechanisms involved. Overall, EDOHA could not only jointly reconstruct multiple 497

networks but also detect class-specific hubs explicitly for omics data with multiple 498

distinct classes. It is promising in generating networks with such data structure. 499

EDOHA is in fact a general method applicable to many types of omics data such as 500

gene expression data, which follow multivariate normal distribution. When EDOHA is 501

applied to compositional data, one only needs to take the centered log-ratio transformed 502

data as input. In fact, many other interaction network methods based on Gaussian 503

graphical models have been proposed to account for compositionality more recently, 504

such as gCoda [30], CD-trace [31], and BC-gLASSO [32]. One of our future work is to 505

decompose the precision matrix in these newer methods as Θ = Z + V + (V )T and use 506

the penalty function P (Θ) in our method to construct multiple interaction networks 507

with common and class-specific hubs. 508
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S1 Text. A detailed ADMM algorithm for EDOHA. 510

S2 Text. The proof of the convergence of the ADMM algorithm for 511

EDOHA. 512

S3 Text. The proof of the sufficient conditions for the non-uniform block 513

diagonal structure. 514

S4 Text. The proof of Theorem 3. 515

S5 Text. The proof of Theorem 4. 516

S6 Text. Methods for generating the basis proportion for each feature. 517

S7 Text. A simple example computation of TPR and FPR based on 518

current method. 519

S1 Table. Additional simulations for situations with only common hubs 520

and with only class-specific hubs. 521

S1 Fig. Venn diagram of consistent correlated OTUs from Control, 522

Healthy and EBA groups. The figure shows the number of possible pairs within the 523

same group and between different groups. It is suggested that the gaps between these 524

groups in our research are much less than Ban et al. [19]. 525

S2 Table. The hub proteins detected in four organs and their functions in 526

living organism. The table lists hub proteins detected as common ones as well as 527

tissue-specific ones, and introduces their functions. 528

Acknowledgements 529

We thank the reviewers for their comments which are very helpful in improving our
paper. We also thank Professor Olga Vitek for sharing her knowledge about the
proteomic data.

References

1. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical
organization of modularity in metabolic networks. science. 2002;
297(5586):1551–1555.

2. Ravasz E. Detecting hierarchical modularity in biological networks.
Computational Systems Biology. 2009; 145–160.

3. Meinshausen N, Bühlmann, P. High-dimensional graphs and variable selection
with the lasso. The annals of statistics. 2006; 34(3):1436–1462.

4. Friedman, Jerome and Hastie, Trevor and Tibshirani, Robert Sparse inverse
covariance estimation with the graphical lasso. Biostatistics. 2008; 9(3):432–441.

5. Fan J, Feng Y, Wu Y. Network exploration via the adaptive LASSO and SCAD
penalties. The annals of applied statistics. 2009; 3(2):521–541.

July 9, 2021 18/20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.02.16.431400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431400
http://creativecommons.org/licenses/by/4.0/


6. Danaher P, Wang P, Witten DM. The joint graphical lasso for inverse covariance
estimation across multiple classes. Journal of the Royal Statistical Society: Series
B (Statistical Methodology). 2014; 76(2):373–397.

7. Deng W, Zhang K, Liu S, Zhao P, Xu S, Wei H. JRmGRN: joint reconstruction
of multiple gene regulatory networks with common hub genes using data from
multiple tissues or conditions. Bioinformatics. 2018; 34(20):3470–3478.

8. Feng L, Yin Y, Liu C, Xu K, Li Q, Wu J, et al. Proteome-wide Data Analysis
Reveals Tissue-specific Network Associated with SARS-CoV-2 Infection. Journal
of Molecular Cell Biology. 2020.

9. Lauritzen SL. Graphical models. Clarendon Press; 1996.

10. Boyd S, Parikh N, Chu E. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends® in
Machine learning. 2011; 3(1):1–122.

11. Ma S, Xue L, Zou H. Alternating direction methods for latent variable Gaussian
graphical model selection. Neural computation. 2013; 25(8):2172–2198.

12. Tang Q, Yang C, Peng J, Xu J. Exact hybrid covariance thresholding for joint
graphical lasso. Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. 2015;593–607.

13. Dunne JL, Triplett EW, Gevers D, Xavier R, Insel R, Danska J, et al. The
intestinal microbiome in type 1 diabetes. Clinical & Experimental Immunology.
2014; 177(1):30–37.

14. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al.
Dysfunction of the intestinal microbiome in inflammatory bowel disease and
treatment. Genome biology. 2012; 13(9):R79.

15. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone, RL, et al. Acetate
mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature.
2016; 534(7606):213–217.

16. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse
and compositionally robust inference of microbial ecological networks. PLoS
computational biology. 2015; 11(5):e1004226.

17. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data.
PLoS computational biology. 2012; 8(9):e1002687.

18. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al.
Microbial co-occurrence relationships in the human microbiome. PLoS
computational biology. 2012; 8(7):e1002606.

19. Ban Y, An L, Jiang H. Investigating microbial co-occurrence patterns based on
metagenomic compositional data. Bioinformatics. 2015; 31(20):3322–3329.

20. Fang H, Huang C, Zhao H, Deng M. CCLasso: correlation inference for
compositional data through Lasso. Bioinformatics. 2015; 31(19):3172–3180.

21. Cao Y, Lin W, Li H. Large covariance estimation for compositional data via
composition-adjusted thresholding. Journal of the American Statistical
Association. 2019; 114(526):759–772.

July 9, 2021 19/20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.02.16.431400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431400
http://creativecommons.org/licenses/by/4.0/


22. Aitchison J. The statistical analysis of compositional data. Journal of the Royal
Statistical Society: Series B (Methodological). 1982; 44(2):139–160.

23. Mendes P, Sha W, Ye K. Artificial gene networks for objective comparison of
analysis algorithms. Bioinformatics. 2003; 19(suppl 2):ii122–ii129.

24. Tan, KM, London P, Mohan K, Lee SI, Fazel M, Witten D. Learning graphical
models with hubs. Journal of Machine Learning Research. 2014; 15:3297–3331.

25. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon
TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel
diseases. Nature. 2019; 569(7758):655–662.

26. Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, et al. Dysbiosis of
fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic
microarray. Inflammatory bowel diseases. 2010; 16(12):2034–2042.

27. Mondot S, Barreau F,Al Nabhani Z, Dussaillant M, Le RK, Doré J, et al. Altered
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