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Abstract

Background:

Semantic similarity between concepts in knowledge graphs is essential for several bioinformatics applications,

including the prediction of protein-protein interactions and the discovery of associations between diseases and

genes. Although knowledge graphs describe entities in terms of several perspectives (or semantic aspects),

state-of-the-art semantic similarity measures are general-purpose. This can represent a challenge since different

use cases for the application of semantic similarity may need different similarity perspectives and ultimately

depend on expert knowledge for manual fine-tuning.

Results:

We present a new approach that uses supervised machine learning to tailor aspect-oriented semantic

similarity measures to fit a particular view on biological similarity or relatedness. We implement and evaluate it

using different combinations of representative semantic similarity measures and machine learning methods with

four biological similarity views: protein-protein interaction, protein function similarity, protein sequence

similarity and phenotype-based gene similarity.

Conclusions:

The results demonstrate that our approach outperforms non-supervised methods, producing semantic

similarity models that fit different biological perspectives significantly better than the commonly used manual

combinations of semantic aspects.
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Background

The life sciences field has increasingly taken advantage

of ontologies to tackle the challenges of managing and

analyzing the growing volumes of biomedical data.

Ontologies, in the computer science context, are ar-

tifacts that express knowledge about a domain in

a shareable and computationally accessible form [1].
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They are an explicit specification of a conceptualiza-

tion in which each element is precisely defined, and

the relationships between elements are parameterized

or constrained [2]. To enable such a description, on-

tologies consist of classes and semantic links between

the classes as well as restrictions, rules, and axioms.

Ontologies often structure their classes, and the re-

lationships between them as a directed acyclic graph,

where the classes are nodes and relationships are edges.
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Since ontologies are abstractions over reality, they

only contain true facts for all entities of a particu-

lar type. For that reason, they do not contain entities

but instead represent classes only. A semantic annota-

tion is about assigning real-world entities to ontology

classes describing them [3]. The ontology data model

can be applied to a set of individual entities to cre-

ate a knowledge graph (KG), where the nodes repre-

sent ontology classes and real-world entities, and edges

are employed in representing ontology classes’ relations

and semantic annotations [4].

In the life sciences, we have witnessed in the last

decade not only an increase in the number and size

of available ontologies, but also of their relevance in

biomedical research [5]. Biomedical ontologies are used

for data annotation and management in areas ranging

from gene function [6], to biomolecules [7] or pheno-

types [8, 9]. There are currently over 800 biomedical

ontologies in BioPortal [10].

However, ontologies are also increasingly used to

support data analysis and mining[5]. One of the fun-

damental tasks in this area is measuring the simi-

larity between entities described in an ontology, i.e.,

semantic similarity[11]. Ontologies allow the descrip-

tion of complex biological phenomena, that are not

easily captured in mathematical form. As such, they

provide the scaffolding for comparing biological en-

tities at a higher level of complexity by comparing

the ontology classes with which they are annotated.

There are a wide variety of bioinformatics applica-

tions that benefit from using semantic similarity over

biomedical ontologies, namely protein-protein interac-

tion (PPI) prediction [12, 13], disease-associated genes

identification [14, 15], and drug-drug interaction pre-

diction [16, 17].

The specificity of these data mining tasks is in con-

trast with the broad domains covered by many biomed-

ical ontologies. Large and successful biomedical ontolo-

gies often afford multiple perspectives (or semantic as-

pects) over the entities it describes. For instance, the

Gene Ontology (GO) [6] describes protein function ac-

cording to three semantic aspects: the molecular func-

tions they perform, the biological processes they inter-

vene in and the cellular components where they are ac-

tive. In the same way, ChEBI [7] provides information

about small chemical entities (e.g., atoms, molecules,

ion pairs, radicals, radical ions, complexes, conform-

ers) from three perspectives: the molecular structure,

the role within a biological context or based on the

intended use by humans, and the subatomic particle.

Moreover, it can also be the case that multiple ontolo-

gies describe the same real-world entities, each cover-

ing a different semantic aspect.

Depending on our viewpoint of the domain or the

analytical task for which we want to use semantic sim-

ilarity, some semantic aspects may be irrelevant for

a specific definition of similarity. Consider the follow-

ing example on comparing proteins according to their

function. From a biochemist point of view, two pro-

teins playing the same molecular functions are very

similar. However, these proteins can be very differ-

ent from a physiological perspective if they participate

in different biological processes at the whole-organism

level. Therefore, depending on our goal, different se-

mantic aspects should be taken into consideration in

similarity computation. Selecting which semantic as-

pects to use and how they should be taken into account

usually falls to the domain expert, rendering semantic

similarity applications dependent on fine-tuning. This

brings us to the challenge of tailoring semantic sim-

ilarity measures (SSMs) to fit a specific application

and biological perspective on similarity. In this work,

we present a novel approach that integrates semantic

similarity and supervised learning methods to learn

semantic similarity models tailored to better capture

particular biological similarity views in effect produc-
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ing a supervised similarity. The proposed approach

was implemented using different SSMs coupled with

machine learning (ML) methods to elucidate which

SSMs are more suitable for different combinations of

supervised learning approaches. Since there is no gold

standard for the similarity between complex biomedi-

cal entities, we take advantage of similarity proxies to

train the models and evaluate them. These proxies of

similarity rely on objective representations of entities

(e.g., gene sequence, domains) and calculate similar-

ity using mathematical expressions or other algorithms

(e.g., BLAST-based similarity for sequences).

We evaluate the proposed approach in a set of 21

benchmark datasets [18] that have varying sizes with

different semantic annotation characteristics and in-

clude data from two biomedical ontologies, GO and

Human Phenotype Ontology (HP). These datasets

contain four proxies for biomedical entity similarity

calculated based on protein sequence similarity, pro-

tein function family similarity, protein-protein interac-

tions, and phenotype-based gene similarity. Although

these proxy similarities do not provide the broad spec-

trum comparison that semantic similarity supports,

they are known to relate to relevant characteristics

of the underlying entities. Our approach is compared

with combinations of semantic aspects that emulate

expert choices to understand how well the approach

captures entity similarity. The results achieved on the

benchmark datasets demonstrate the ability of our ap-

proach to significantly improve the estimation of sim-

ilarity between biomedical entities.

Related Work

A SSM can be defined as a function that estimates

the closeness in meaning between two entities. Several

SSMs have been proposed with most measures falling

in the category of taxonomic semantic similarity (also

referred to as ontology-based semantic similarity, or

only semantic similarity) [19]. However, graph embed-

dings, a more recent research direction, can also be

used to compute semantic similarity [20, 21, 22].

Taxonomic Semantic Similarity

Taxonomic semantic similarity compares entities based

on the taxonomic relations within the ontology graph [11].

Taxonomic SSMs are generally designed by an expert

based on assumptions about how an ontology is used

and what should constitute a similarity. They make

extensive use of the taxonomical aspect of an ontol-

ogy, comparing classes based on subclass/superclass

relations.

SSMs can be distinguished based on the entities they

intend to compare since we can measure the similarity

between either ontology classes or real-world entities

(annotated with a set of classes). In the case of GO,

semantic similarity can be calculated for two ontology

classes, for instance, calculating the similarity between

two GO classes (e.g., the GO term protein metabolic

process and the GO term protein stabilization); or be-

tween two entities each annotated with a set of classes,

for instance calculating the similarity between two pro-

teins. Each protein can be annotated with several GO

classes so, to assess the similarity between proteins,

it is necessary to compare sets of classes rather than

single classes.

For class-based semantic similarity, edge-based mea-

sures rely on algorithms designed for graph analy-

sis [23, 24]. However, the majority of methods explore

the properties of each class involved, typically relying

on the information content (IC) of a class, a measure of

how informative (or in other words, specific) a class is,

and then using it to measure the shared meaning be-

tween two classes. IC can be calculated using external

data, for instance the frequency of annotations of en-

tities in a corpus [25], or based on intrinsic properties,

such as the ontology’s structure [26].

In entity-based semantic similarity, each instance is

described with a set of classes which are then processed
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using one of two approaches: pairwise or groupwise.

In pairwise approaches, the semantic similarity is cal-

culated between classes in one set and classes in the

other (using class-based measures). In groupwise ap-

proaches, the measures can directly compare the sets

of classes according to information defined in the on-

tology, circumventing the need for pairwise compar-

isons [27, 28]. Purely set-based and vector-based ap-

proaches are not common. In vector-based approaches,

the sets are compared through their vector represen-

tations, with each term corresponding to a dimension,

using vector similarity measures.

Embedding Semantic Similarity

An embedding is a vector representation that maps

each node to a lower-dimensional space. The structure

of its local graph neighborhood and its graph position

are preserved as much as possible. Several methods for

building graph embeddings have been proposed [29].

While some focus on exploring the graph facts solely

(like translational distance models [30, 31] or seman-

tic matching [32, 33]), others also include additional

information, such as entity types, relation paths, ax-

ioms and rules, or textual information. More recently,

path-based approaches, such as RDF2Vec [34] and

Onto2Vec [20], have been proposed by transforming

the ontology graph into node sequences. OPA2Vec [21]

extends Onto2Vec to, unlike taxonomic SSMs, combine

both the formal content of ontologies and the lexical

properties of the ontologies. A graph is represented as

a set of random walk paths sampled from it, and then

natural language methods are applied to the sampled

paths for graph embedding.

After employing graph embedding methods, each en-

tity is represented by a vector. It is then possible to

compute the graph embedding similarity between two

entities by computing the distance of their correspond-

ing vectors in the Euclidean space. If vi and vj denote

the vector representations of nodes ni and nj , respec-

tively, the graph embedding similarity sim(ni, nj) be-

tween nodes ni and nj is given by the distance between

their vectors vi and vj in the Euclidean space. The dis-

tance can be computed by the cosine distance:

sim(ni, nj) = cos(vi, vj) ==
vi.vj
‖vi‖ ‖vj‖

, (1)

where vi.vj is the dot product of vi and vj .

In the GO case, the embedding methods assign

to proteins or GO classes a set of points in a low-

dimensional space such that similar nodes in the on-

tology graph correspond to points that are close in the

low-dimensional space.

Machine Learning and Semantic Similarity

More recently, approaches that combine taxonomic se-

mantic similarity with machine learning have been pro-

posed. GARUM [35] is based on a supervised regres-

sion algorithm that receives several similarity measures

of hierarchy, neighborhood, shared information, and

attributes and then predicts a final similarity score.

In evoKGsim [36], we have used genetic programming

over aspect-oriented semantic similarities to predict

protein-protein interactions.

However, the majority of the work that combines

ontologies and ML is focused on embeddings. [37] pro-

vide an overview of methods that incorporate SSMs

and ontology embeddings into ML methods.

Methods

We have developed a novel approach[1] to learn the

similarity between entities represented in KGs (Defi-

nition 1) optimized towards a specific similarity proxy.

This tailoring is achieved by considering the similar-

ities for different semantic aspects (Definition 2), as

opposed to the static SSMs (Definition 3).

[1]https://github.com/liseda-lab/Supervised-SS
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Definition 1 A KG is created to describe real-world

entities using links to ontology classes, represented in a

graph. The nodes of the KGs represent ontology classes

and entities, and edges are employed in representing

ontology classes’ relations and semantic annotations

for entities.

Definition 2 A semantic aspect represents a per-

spective of the representation of KG entities. It can

correspond to portions of the graph (e.g., describing a

protein only through the biological process subgraph of

the GO) or a given set of property types (e.g., describ-

ing a person only through properties having geograph-

ical locations as a range).

Definition 3 A static SSM calculates values of

similarity by processing the KG without additional ex-

ternal input or tailoring to a specific similarity proxy.

An overview of the approach is shown in Fig 1. The

first step consists of identifying the semantic aspects

that describe the KG entities. Our approach takes as

pre-defined semantic aspects the subgraphs when the

KGs have multiple roots (such as GO) or the sub-

graphs rooted in the classes at a distance of one from

the KG root class. As an alternative, semantic aspects

can be manually defined. The next step is representing

each instance (i.e., a pair of KG entities) according to

static KG-based similarities computed for each seman-

tic aspect. The third step in our approach is to select

the similarity proxy for which we want to tailor the

similarity. The last step is to employ a ML method

to learn a supervised semantic similarity. The ML al-

gorithms are used for regression where the expected

outputs are the proxy similarity values.

This approach is independent of the semantic as-

pects, the specific implementation of KG-based sim-

ilarity and the ML algorithm employed in regression.

The following sections present the specific details of

the implementation that currently supports five differ-

ent SSMs (three based on embedding similarity and

two based on taxonomic similarity) and eight tar-

geted supervised learning approaches (classical ML ap-

proaches and a neural network-based approach).

The approach is evaluated in protein and gene bench-

mark datasets. For the protein datasets, we consider

the GO aspects as semantic aspects. After semantic

similarity computations, each instance of the dataset,

that represents a protein pair, is characterized by three

values corresponding to the semantic similarity be-

tween them for the three GO aspects, and a proxy

similarity value. The models returned in the second

step are then the combinations of the similarity scores

of the three GO aspects. For the gene dataset, in addi-

tion to the three GO aspects, the similarity is also cal-

culated for the HP phenotypic abnormality subgraph.

Therefore, instead of three semantic aspects, we con-

sider four semantic aspects.

Data

Our approach takes as input an ontology file, an in-

stance annotation file and a list of instance pairs with

proxy similarity values. We evaluate our approach us-

ing benchmark datasets and two different KGs.

Benchmark datasets

The 21 benchmark datasets are presented in [18]

and are available online[2] (dated June 2020). These

datasets explore four proxy similarities based on pro-

tein and gene properties. This resulted in one gene

dataset and 16 protein datasets, divided by species,

level of annotation completion and similarity proxy,

and four additional datasets, combining all species’

protein pairs in the same proxy group. Datasets range

in size from 264 individual proteins and 428 pairs to

27 thousand proteins and 158 thousand pairs.

[2]https://github.com/liseda-lab/kgsim-benchmark
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Figure 1 Overview of the proposed approach.

The protein datasets, described in Table 1, are con-

stituted by proteins. Each protein is identified by its

UniProt Accession Numbers and annotated with GO

classes. Regarding the gene dataset, it has 2026 dis-

tinct human genes identified by their Entrez Gene

Code and 12000 gene pairs. Each gene is annotated

with GO classes and HP classes.

Table 1 Number of proteins and pairs for all protein

datasets.

PFAM datasets PPI datasets

Prots Pairs Prots Pairs

DM1 7494 53797 481 397

DM3 5810 52460 335 270

EC1 1250 4623 371 738

EC3 748 1813 264 428

SC1 4783 42192 3874 34772

SC3 3660 30747 2959 21577

HS1 13604 60176 7644 44677

HS3 12487 60163 7149 42204

ALL1 27131 158512 12370 80584

ALL3 22705 142736 10707 64479

Table 2 shows the similarity approaches employed.

In the PFAM datasets, two proxies of protein simi-

larity based on their biological properties were em-

ployed: sequence similarity and PFAM similarity. In

PPI protein datasets, two similarity proxies were also

employed: sequence similarity and protein-protein in-

teractions. Concerning the gene benchmark dataset,

the proxy similarity is based on phenotypic series.

• Sequence similarity (Simseq) measures the re-

lationship between two sequences and it estab-

lishes the likelihood for sequence homology. We

infer homology (i.e., common evolutionary ances-

try) when two sequences share more similarity

than would be expected by chance. A sequence

similarity value is aimed to approximate the evo-

lutionary distance between proteins.

• PFAM similarity (SimPFAM) is computed by

comparing the functional regions (commonly

termed domains) that exist in each protein se-

quence. Protein functional domains were ex-

tracted from the PFAM [38]. Since protein do-

mains typically correspond to functional sites of a

protein, determining similarity between domains

can help to define protein function.

• Protein-protein interaction (PPI) has a bi-

nary representation: 1 if the proteins interact, 0

otherwise. Two proteins are considered to be sim-

ilar if they interact. PPIs are responsible for many

critical functions in biology and are highly rele-

vant to disease states.
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• Phenotypic series similarity (SimPS) is based

on OMIM’s Phenotypic Series [39], which are

groups of identical or similar phenotypes and their

associated genes. Phenotypic similarity reflects

the similarity between genes and can help to find

biological modules of functionally related genes.

Table 2 Available similarity proxies for each dataset type.

Dataset Type Similarity Proxies

PFAM Simseq and SimPFAM

PPI Simseq and PPI

Gene SimPS

Gene ontology knowledge graph

GO [6] is the most widely used biological ontology. It

defines the universe of classes, also called “GO terms”,

associated with gene product (proteins or RNA) func-

tions and how these functions are related with each

other with respect to these three aspects: (i) molec-

ular function (MF), the activities that occur at the

molecular level performed by the gene product; (ii) bi-

ological process (BP), the larger process in which the

gene product is active;; (iii) cellular component (CC),

the cellular compartments in which the gene product

performs a function. Fig 2 shows a small fraction of

the GO and annotated proteins.

Figure 2 Graph representation of part of GO and GO

Annotations.

We built the GO KG with GO, proteins as instances,

and GO annotations. Therefore, the nodes of the GO

KG represent proteins or GO classes. The KG edges

represent relationships between the GO classes or links

between proteins annotated with GO classes. The most

commonly used relationships between GO classes are

isa; partof ; haspart; regulates; negativelyregulates

and positivelyregulates. In this work, the GO KG,

with its three semantic aspects (BP, CC and MF), is

used to compute the similarity between two proteins

for the protein datasets and between two genes for the

gene dataset.

Human phenotype knowledge graph

The HP [8] contains about terms describing pheno-

typic abnormalities found in human hereditary dis-

eases. The HP is organized as independent subontolo-

gies that cover different categories: “Phenotypic ab-

normality”, “Mode of inheritance”, “Clinical course”,

“Clinical modifier” and “Frequency”. Since the sub-

ontology “Phenotypic Abnormality” is the ontology

branch that describes the phenotypes the gene is asso-

ciated with, the HP KG is composed by this subontol-

ogy and HP annotations. An HP annotation associates

a specific gene with a specific HP class. Fig 3 shows

the HP and HP annotations.

We consider the HP, genes and associated HP an-

notations to compose the HP KG. The nodes of HP

KG are HP classes or genes. The edges represent on-

tology relations or links between genes and HP classes

via their annotations. In this work, the HP KG is used

to compute the semantic similarity between two genes

based on the phenotypes that describe them.

Static similarity computation

The following subsections present the specific details

of the five different KG-based SSMs: two based on tax-

onomic similarity and three based on embeddings.
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Figure 3 Graph representation of part of HP and HP Annotations.

Taxonomic semantic similarity

The taxonomic semantic similarity is calculated using

two state-of-the-art measures, derived by combining

one IC approach (ICSeco) with one of two set simi-

larity measures (ResnikBMA, SimGIC). These were

selected by their high performance in the biomedical

domain [40].

ICSeco is a structure-based approach proposed by [26]

based on the number of direct and indirect descendants

and given by

ICSeco(t) = 1−
log
[
Ndescendants(t) + 1

]
log
[
Nnodes

] (2)

where Ndescendants(t) is the number of indirect and

direct descendants from term t (including term t) and

Nnodes is the total number of concepts in the ontology.

ResnikBMA is based on the class-based measure

proposed by Resnik [25] in which the similarity be-

tween two classes corresponds to the IC of their most

informative common ancestor and given by:

ResnikBMA(e1, e2) =

∑
t1∈S(e1)

sim(t1, t2)

2|S(e1)|
+∑

t2∈S(e2)
sim(t1, t2)

2|S(e2)|

(3)

where S(ei) is the set of annotations for entity ei and

sim(t1, t2) is the semantic similarity between class t1

and class t2 and is defined as:

sim(c1, c2) = max {IC(c) : c ∈ {A(c1) ∩A(c2)}} (4)

where A(ci) is the set of ancestors of ci.

SimGIC is a groupwise approach proposed by [27],

based on a Jaccard index in which each term is

weighted by its IC and given by

SimGIC(e1, e2) =

∑
t∈{S(e1)∩S(e2)} IC(t)∑
t∈{S(e1)∪S(e2)} IC(t)

(5)

where S(ei) is the set of annotations (direct and inher-

ited) for entity ei.

The Semantic Measures Library 0.9.1 [41] was used

to compute the taxonomic semantic similarity.

Graph embedding similarity

We employ three graph embedding approaches, namely

RDF2Vec, TransE, and distMult, using an RDF2Vec

python implementation[3] and the OpenKE library[4].

[3]https://github.com/IBCNServices/pyRDF2Vec
[4]https://github.com/thunlp/OpenKE/tree/OpenKE-

Tensorflow1.0
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These approaches were selected because they are rep-

resentative of the main types of graph embedding tech-

niques.

• RDF2Vec [34] is a path-based approach adapted

to RDF graphs. In RDF2Vec, edge direction is

taken into account, enriching the semantics of

the learning approach, and neural language mod-

els are employed over random walks on the RDF

graph to produce the embeddings.

• TransE [30] is the most representative transla-

tional distance embedding approach that exploits

distance-based scoring functions. In translational

distance models, each fact represents the distance

between the two entities, usually after a transla-

tion carried out by the relations.

• distMult [32] is a semantic matching approach

that exploits similarity-based scoring functions by

matching latent semantics of entities and relations

embodied in their vector space representations.

DistMult takes the inherent structure of relations

into account by employing the tensor factoriza-

tion.

We generate protein or gene graph embeddings for

each semantic aspect using these approaches[5] and

then, to compute the graph embeddings similarities,

we employ cosine similarity between the vectors rep-

resenting each entity in the pair.

Supervised similarity computation

Our approach combines the semantic similarities com-

puted for each semantic aspect and returns a super-

vised similarity. The aggregation function is computed

by a supervised regression algorithm. Therefore, each

regressor receives the similarity values for each seman-

tic aspect as input features (independent variables)

and a similarity proxy value as the expected output

(dependent variable), and returns an aggregated simi-

[5]parameters for each embedding method are supplied

in Supplementary File

larity score as the predicted output. We employ eight

well-known classes of ML models to train regressors us-

ing scikit-learn 21.3 [42] library: linear regression (LR),

bayesian ridge (BR), K-nearest neighbor (KNN), ge-

netic programming (GP), decision tree (DT), random

forest (RF), XGBoost (XGB), and multi-layer percep-

tion (MLP).

These algorithms are selected as representative of

different types of ML methods. LR [43] assumes there

is a linear relationship between the independent and

dependent variables. BR [44] is also a linear model but

uses the Bayes theorem to find the posterior distribu-

tion over all parameters. KNN [45] explores the feature

space and reaches a prediction for each sample based

on the expected outputs of its neighbors. In DT [46],

trees are constructed by beginning with the root node

that contains the whole learning sample and then split-

ting a node into two child nodes repeatedly. The basic

idea of tree growth is to choose, among all the possible

splits at each node, a split whose resulting child nodes

are the “purest”. GP [47] is an evolutionary computa-

tion technique inspired by Darwinian natural selection

and Mendelian genetics. GP tries to optimize a combi-

nation of variable and operators/functions. MLP [48]

is a class of feedforward artificial neural networks that

learn non-linear functions for regression through back-

propagation of errors. At last, RF [49] and XGB [50]

are ensemble methods. The goal of ensemble methods

is to combine the decisions from multiple models to im-

prove the overall performance. RF builds several esti-

mators independently and then combines their predic-

tions through a voting scheme, while XGB builds base

estimators sequentially and tries to reduce the bias of

the combined estimator through gradient boosting.

Except for GP, XGB and RF, the parameters are

used with the default scikit-learn values. For running

GP, we use gplearn 3.0[6], a freely available package

[6]https://gplearn.readthedocs.io/en/stable/
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that runs with the scikit-learn library with the param-

eters proposed in [36]. For XGB, we use the XGBoost

1.1.1 package[7], with the values of some parameters

altered to maximize the performance of the model,

through grid search. For RF, using scikit-learn, we also

optimize some parameters[8].

Supervised similarity evaluation

The focus of our evaluation approach is to assess the

ability of our approach to improve semantic similarity

computations, avoiding the need for expert knowledge.

For each combination of an SSM with an ML algo-

rithm, we compute the Pearson’s correlation coefficient

between the obtained supervised similarity (predicted

values) and the respective similarity proxies (expected

values).

For cross-validation, each dataset is split into ten

folds. The same ten folds are used throughout all the

experiments. For each fold, we take that fold as the test

set and the remaining nine folds as the training set.

Each ML algorithm learns on the training set and out-

puts its predictions for the test set, where the Pearson

correlation coefficient is calculated. The results we re-

port are the median and the interquartile range (IQR)

of the ten Pearson correlation coefficients calculated

on the ten folds.

We compute the static similarity for each semantic

aspect and use, as baselines, the single aspect simi-

larities and two well-known strategies for combining

the single aspect scores, the average and maximum.

By comparing these baselines to the supervised ap-

proaches, we aim at investigating the ability of ML

methods to learn combinations of semantic aspects

that improve the calculation of similarity.

[7]https://xgboost.readthedocs.io
[8]optimized parameters are supplied in Supplementary

File

Results and Discussion

Static similarity

Before performing the comparative evaluation, we in-

vestigate the behavior of the five similarity-based se-

mantic measures employed. Tables 3 and 4 show the

Pearson correlation coefficient between the static sim-

ilarity and the proxy similarity using different SSMs

for the gene and protein datasets, respectively. For

the sake of simplicity, Table 3 presents only the cor-

relation for the protein datasets combining all species’

protein pairs in the same group proxy, including pro-

teins with at least one annotation in each GO aspect

(ALL1). Supplementary File provides the results for

the remaining protein datasets.

For most datasets, the behavior of each SSM is

consistent. Comparing the two taxonomic seman-

tic similarity approaches, we verify that, in most

cases, the maximum correlation is achieved when the

ResnikBMA approach is used. Regarding the graph

embedding approaches, TransE has performed worse

than the other embedding methods. These differences

are not unexpected, since the methods that put more

emphasis on local neighborhoods, such as translational

distance approaches, are less suitable since they fail

to capture longer-distance relations. This is relevant

when most of the information to be processed is repre-

sented in the ontology portion of the KG, where taxo-

nomic relations play an essential role. For that reason,

in the following sections, the results obtained with

TransE were excluded. distMult, a semantic matching

method, is the second-best class of embeddings. Fi-

nally, RDF2Vec, a path-based approach, can capture

taxonomic (longer-distance) relations which translates

into a broader representation of the entities, achieving

better results than the other embedding methods in

most experiments.

When comparing the two types of semantic similar-

ity, taxonomic similarity performs well across many
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Table 3 Pearson correlation coefficient between static semantic similarity and similarity proxies for the protein datasets with one level of

annotation.

Proxy Dataset SSM
Static Similarity

BP CC MF AVG MAX

Simseq

PFAM

ResnikBMA 0.528 0.373 0.291 0.481 0.399

SimGIC 0.552 0.406 0.415 0.547 0.406

RDF2Vec 0.540 0.437 0.419 0.544 0.457

TransE -0.020 -0.017 -0.001 -0.021 -0.011

distMult 0.398 0.236 0.322 0.467 0.429

PPI

ResnikBMA 0.258 0.222 0.326 0.323 0.250

SimGIC 0.317 0.257 0.370 0.380 0.280

RDF2Vec 0.274 0.237 0.297 0.316 0.268

TransE 0.355 0.352 0.364 0.498 0.401

distMult 0.277 0.239 0.202 0.369 0.310

SimPFAM PFAM

ResnikBMA 0.448 0.370 0.456 0.525 0.500

SimGIC 0.494 0.451 0.591 0.621 0.604

RDF2Vec 0.524 0.466 0.619 0.627 0.623

TransE -0.032 -0.031 -0.011 -0.039 -0.027

distMult 0.414 0.254 0.388 0.516 0.457

PPI PPI

ResnikBMA 0.545 0.486 0.353 0.569 0.545

SimGIC 0.486 0.428 0.318 0.496 0.458

RDF2Vec 0.457 0.404 0.353 0.477 0.440

TransE 0.031 0.087 0.035 0.071 0.076

distMult 0.452 0.244 0.015 0.388 0.396

Table 4 Pearson correlation coefficient between static semantic similarity and similarity proxies for the human gene dataset.

Proxy SSM
Static Similarity

HP BP CC MF AVG MAX

SimPS

ResnikBMA 0.601 0.210 0.142 0.055 0.413 0.552

SimGIC 0.489 0.205 0.158 0.095 0.399 0.429

RDF2Vec 0.526 0.230 0.182 0.123 0.396 0.351

TransE 0.042 -0.019 -0.012 -0.019 -0.004 0.016

distMult 0.015 0.184 0.105 0.041 0.179 0.182

evaluations and, in the majority of the datasets, has

better performance than embedding similarity. The

initial assumption was that embedding similarity could

potentially outperform taxonomic similarity since se-

mantic similarity is limited to the taxonomic relations

within the ontology. In contrast, embeddings take into

account all types of relations and, therefore, the em-

bedding representations could, in principle, be more

informative. However, the ability of taxonomic simi-

larity to take into account class specificity may give

it the advantage over embedding similarity to esti-

mate similarity more accurately. Besides, taxonomic
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similarity measures are usually hand-crafted, provid-

ing human interpretable results for further analysis.

On the contrary, embeddings methods describe an en-

tity as a numerical vector and, most of the times, are

not interpretable since it is not possible to obtain an

explanation for the results.

It is also important to point out the differences be-

tween semantic aspects. These differences depend on

the similarity proxy we are considering. For the se-

quence proxy, the differences between semantic as-

pects are not relevant, and there is no semantic aspect

clearly superior to others. Previous works [51] already

suggested the absence of a strong correlation between

sequence and semantic similarities since there is a large

number of proteins with low sequence similarity and

high semantic similarity. Concerning the PPI proxy,

proteins that interact in a cell are expected to par-

ticipate in similar cellular locations and processes. As

expected, the results indicate that using only the se-

mantic similarity for MF provides worse results com-

pared to the other single aspects. In opposition, for

the PFAM proxy, we verify that the MF is a relevant

semantic aspect. The more functional (or PFAM) do-

mains two proteins share, the more likely it will be

to share molecular functions since these domains are

usually responsible by assigning functions to proteins.

For the gene dataset, the HP semantic aspect achieves

better results compared to the GO semantic aspects.

These results were also expected since the more phe-

notypic series two genes are associated with, the more

likely it is that they share HP classes. Regarding static

combination approaches, in most cases, they achieve

better results than the single aspects, with the aver-

age combination outperforming the maximum.

Supervised similarity

The similarity proxies reflecting different biological

features allow us to use ML algorithms to learn a su-

pervised similarity towards a viewpoint of the domain.

We employ eight representative ML methods, includ-

ing classical, ensemble and neural network based meth-

ods: linear regression (LR), bayesian ridge (BR), K-

nearest neighbor (KNN), genetic programming (GP),

decision tree (DT), random forest (RF), XGBoost

(XGB), and multi-layer perception (MLP).

Figs 4 to 8 contain the heat maps depicting the me-

dian Pearson correlation coefficient between the simi-

larity proxies and supervised similarity obtained with

different ML methods and SSMs for each similarity

proxy. In some cases, the results obtained with GP

are not shown because the GP model only contains

constants and, therefore, the Pearson correlation coef-

ficient is undefined (division by zero). To better com-

pare the eight ML algorithms, we also generated radar

charts (Figs 9 to 13) showing the median Pearson cor-

relation coefficient between supervised similarity and

each similarity proxy. Radar charts reveal which ML

algorithms combined with different SSMs are scoring

high or low within a dataset. In each radar plot, the

ML algorithms are represented by different colors[9],

and the SSMs are represented on different axes.

The performance of regression models obtained by

DT is globally lower compared to the other ML al-

gorithms. DT is one of the most commonly used ap-

proaches for supervised learning. However, since it is

based on recursive binary splitting, DT may not be

suitable for the current regression problem of finding

the best combination of semantic aspects. LR and BR

also show lower correlations in many cases. The Pear-

son correlation coefficients obtained by LR and BR are

identical in most of the datasets. LR and BR assume

a linear relationship between the independent and de-

pendent variables, which is not valid for many cases.

This characteristic may explain why these ML meth-

[9]In most of the radar charts, the red line representing

LR is not visible due to the overlapping of the BR pink

line.
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Figure 4 Heat map representing the median Pearson’s correlation coefficient using sequence proxy for each PFAM dataset.

ods were not capable of learning suitable combinations

of semantic aspects.

The very tight lines in the radar plots show that

KNN, GP, and MLP achieve comparable results. En-

semble methods, like XGB and RF, achieve higher re-

sults in most experiments. These results are expected

since the ensemble methods combine the decisions

from multiple models to improve the overall perfor-

mance, and these methods have been successfully ap-

plied to different domains [52].

Comparing the SSMs, the results seem to indi-

cate that taxonomic semantic similarity is a more

suitable similarity-based semantic representation for

learning. Although the static similarity results have al-

ready demonstrated that taxonomic semantic similar-

ity achieves higher correlations than graph embedding

similarity, these differences are more evident when we

apply ML methods.

A close investigation of the full results presented

in Supplementary File also reveals interesting results

regarding the significance tests. Statistically signifi-

cant differences are determined using pairwise non-

parametric Kruskal-Wallis tests at p < 0.01. Although

MLP seems to achieve lower correlation values, there

are no significant differences between XGB, RF or

MLP and the best ML algorithm in most cases (which

is either XGB or RF). Significant differences are more

common between SSMs.

In order to assess whether a particular combination

of an ML method and a specific SSM increases perfor-
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Figure 5 Heat map representing the median Pearson’s correlation coefficient using sequence proxy for PPI datasets.

mance, for each proxy similarity we ranked the possi-

ble combinations of SSMs with ML algorithms within

each dataset. Then, we calculated the average ranking

of each SSM-ML combination. Table 5 shows the best

combination for each proxy similarity, and they are al-

ways composed by a taxonomic SSM and an ensemble

method.

Table 5 Best SSM-ML combination for each proxy similarity.

Proxy SSM ML Algorithm

Simseq ResnikBMA RF

SimPFAM SimGIC RF

PPI ResnikBMA XGB

SimPS ResnikBMA XGB

Choosing the right SSM and the right ML method

for a particular application can be very hard. Several

investigations have been handled to assess the perfor-

mance of different SSMs, and different performances

have been reported in different contexts [53]. Likewise,

ML algorithms behave differently depending on many

factors, from the type of problem at hand to the size

of the data (No Free Lunch theorem [54]). Therefore,

it is not straightforward to identify the best combi-

nation of SSM with ML algorithm that will work for

all datasets and use cases. Nevertheless, the results in

Table 5 seem to indicate that combining a taxonomic

SSM with an ensemble method is a safe choice.
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Figure 6 Heat map representing the median Pearson’s correlation coefficient using using PFAM proxy for PFAM datasets.

Supervised similarity interpretability

Although static SSMs, such as taxonomic SSMs, are

hand-crafted and interpretable, supervised learning

can lead to a loss of this valuable characteristic. There-

fore, it is interesting to compare ML algorithms not

only in terms of performance but also in terms of inter-

pretability. The models obtained by KNN, BR, MLP

and ensemble methods are more challenging to inter-

pret, although some methods for explaining black-box

models have been proposed [55]. In opposition, the LR

models predict the target as a weighted sum of the

feature inputs. These linear equations have an easy

to understand interpretation. Table 6 shows, for each

similarity proxy, a LR model obtained in one of the

folds.

The solutions obtained by DT and GP are also, in

principle, interpretable. However, in both cases, trees

may grow to be very complex while learning compli-

cated datasets, which can raise some difficulty in inter-

preting the solutions. Fig 14 shows, for each similarity

proxy, a GP model obtained in one of the folds. To al-

low a better understanding, these models were simpli-

fied to remove redundant and inviable code. Although

the frequency in which a given variable appears in a

GP model does not necessarily measure its importance

for the predictions, the GP model analysis can indicate

which semantic aspects are most relevant for each sim-

ilarity proxy. The obtained DT models are very large

with multiple levels deep, which decreases their inter-

pretability and visualization and are thus not shown.
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Figure 7 Heat map representing the median Pearson’s correlation coefficient using using PPI proxy for each PPI dataset.

Figure 8 Heat map representing the median Pearson’s correlation coefficient using using phenotype series proxy for gene dataset.

Table 6 Linear Regression models.

Proxy Model

Simseq 0.1450 SSBP + 0.0693 SSCC + 0.0916 SSMF − 0.0058

SimPFAM 0.1943 SSBP + 0.1861 SSCC + 0.4344 SSMF + 0.1211

PPI 0.6001 SSBP + 0.6864 SSCC + 0.0132 SSMF + 0.1701

SimPS 0.8406 SSHP + 0.2063 SSBP + 0.1282 SSCC + 0.0004 SSMF + 0.2261

It is important to note that, although interpretable

models achieve lower performance values than black-

box models in most cases, as shown above, the super-
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Figure 9 Radar charts using sequence proxy for PFAM datasets.

vised similarity obtained using LR and GP is still able

to improve over the baselines.

Static versus supervised similarity

Tables 7 to 10 compare the results obtained using

static similarity and supervised similarity for sequence,

PFAM, PPI and phenotypic series proxies, respec-

tively. The static similarity was obtained using tax-
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Figure 10 Radar charts using sequence proxy for PPI datasets.

onomic SSMs (SimGIC or ResnikBMA), and then the

Pearson correlation coefficient was computed for each

proxy. Regarding supervised similarity, the median

and IQR of Pearson correlation values were calculated

for the proposed approach using a taxonomic SSM

(SimGIC or ResnikBMA) with an ensemble method

(XGB or RF) for each proxy, the combinations previ-

ously shown to produce the best results.

These results show that whatever the ensemble

method and taxonomic SSM, supervised similarity al-
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Figure 11 Radar charts using PFAM proxy for PFAM datasets.

ways achieves higher values of correlation than static

similarity. Improvements over the single aspect sim-

ilarities are consistent for all datasets and also clear

when considering the combination baselines. However,

there are some differences between the similarity prox-

ies. For sequence proxy, it is known that the relation-

ship between sequence similarity and semantic simi-

larity is non-linear [56], so improvements over the best

static similarity are very pronounced (up to 58% for

PPI ALL1). Regarding PFAM proxy, supervised simi-
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Figure 12 Radar charts using PPI proxy for PPI datasets.

larity outperforms both single aspects and static com-

binations (average and maximum), although the im-

provements are more relevant for single aspects. Con-

cerning PPI proxy, improvements over the single as-

pect baselines are, as expected, more pronounced for

the MF baseline (between 44 and 47%). In the gene

dataset, the differences between static and supervised

similarity are much more accentuated for the GO sin-

gle aspects.
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Figure 13 Radar charts using phenotype series proxy for gene dataset.

Figure 14 Parse trees representing GP models are shown for: (a) SimPFAM; (b) PPI; (c) SimPS.

Table 7 Pearson correlation coefficient between Simseq and ResnikBMA or SimGIC for the baselines and the median and IQR of Pearson

correlation coefficient between Simseq and supervised similarity obtained using XGB or RF. In bold, the best result for each dataset-SSM.

Dataset SSM

Static Supervised

BP CC MF AVG MAX XGB RF

Median IQR Median IQR

PFAM

ALL1
ResnikBMA 0.528 0.373 0.291 0.481 0.399 0.803 0.013 0.746 0.015

SimGIC 0.552 0.406 0.415 0.547 0.406 0.640 0.033 0.589 0.004

ALL3
ResnikBMA 0.466 0.334 0.325 0.445 0.349 0.810 0.012 0.626 0.009

SimGIC 0.544 0.374 0.451 0.539 0.411 0.658 0.037 0.580 0.009

PPI

ALL1
ResnikBMA 0.258 0.222 0.326 0.323 0.250 0.774 0.024 0.770 0.028

SimGIC 0.317 0.257 0.370 0.380 0.280 0.580 0.030 0.542 0.029

ALL3
ResnikBMA 0.293 0.260 0.370 0.376 0.289 0.798 0.044 0.795 0.039

SimGIC 0.371 0.295 0.411 0.439 0.316 0.739 0.031 0.740 0.025

For the sake of brevity, Tables 7, 8, and 9 only

show the results for the protein datasets combining

all species’ protein pairs in the same group proxy.
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Table 8 Pearson correlation coefficient between SimPFAM and ResnikBMA or SimGIC for the baselines and the median and IQR of

Pearson correlation coefficient between SimPFAM and supervised similarity obtained using XGB or RF. In bold, the best result for each

dataset-SSM.

Dataset SSM

Static Supervised

BP CC MF AVG MAX XGB RF

Median IQR Median IQR

PFAM

ALL1
ResnikBMA 0.448 0.370 0.456 0.525 0.500 0.669 0.008 0.638 0.005

SimGIC 0.494 0.451 0.591 0.621 0.604 0.680 0.015 0.691 0.003

ALL3
ResnikBMA 0.431 0.387 0.463 0.514 0.480 0.674 0.015 0.651 0.005

SimGIC 0.506 0.498 0.608 0.644 0.622 0.692 0.009 0.706 0.005

Table 9 Pearson correlation coefficient between PPI and ResnikBMA or SimGIC for the baselines and the median and IQR of Pearson

correlation coefficient between PPI and supervised similarity obtained using XGB or RF. In bold, the best result for each dataset-SSM.

Dataset SSM

Static Supervised

BP CC MF AVG MAX XGB RF

Median IQR Median IQR

PPI

ALL1
ResnikBMA 0.545 0.486 0.353 0.569 0.545 0.634 0.015 0.634 0.015

SimGIC 0.486 0.428 0.318 0.496 0.458 0.584 0.008 0.585 0.007

ALL3
ResnikBMA 0.523 0.446 0.330 0.545 0.507 0.607 0.017 0.607 0.015

SimGIC 0.457 0.390 0.290 0.462 0.416 0.548 0.011 0.541 0.013

Table 10 Pearson correlation coefficient between SimPS and ResnikBMA or SimGIC for the baselines and the median and IQR of

Pearson correlation coefficient between SimPS and supervised similarity obtained using XGB or RF. In bold, the best result for each

dataset-SSM.

SSM

Static Supervised

HP BP CC MF AVG MAX XGB RF

Median IQR Median IQR

ResnikBMA 0.601 0.210 0.142 0.055 0.413 0.552 0.648 0.022 0.648 0.023

SimGIC 0.489 0.205 0.158 0.095 0.399 0.429 0.630 0.011 0.629 0.013

However, Tables S4, S5 and S6 of Supplementary File

provide the results for the remaining protein datasets

and shows that supervised similarity, obtained with

an ensemble method coupled with a taxonomic SSM,

achieves better results than static similarity. Further-

more, we verify that, also for embedding similarity, our

approach can learn a combination of semantic aspects

that outperforms the best static similarity.

Finally, the comparison of results using protein

datasets with different levels of annotation comple-

tion can be interesting. It is known that the biological

entities should be well characterized in the context

of the ontology to have enough information to com-
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pute semantic similarity between them. We have used

benchmark datasets with two levels of annotation com-

pletion: the datasets ending in “1” include proteins

with leaf-class annotations in, at least, one aspect; the

datasets ending in “3” include proteins with at least

one leaf-class annotation in each aspect. Analyzing our

results, we conclude that in the PFAM datasets, lower

correlations were generally found for the incomplete

annotation datasets, but the opposite happens in the

PPI datasets. These results are in agreement with con-

clusions in [57].

Conclusion

Measuring the similarity between two gene products is

a fundamental aspect of today’s biomedical informat-

ics research. Biomedical ontologies and KGs provide

meaningful context to data and support the compari-

son of biomedical entities through semantic similarity.

Many KGs afford different perspectives over the data,

however, existing SSMs are general-purpose and typi-

cally depend on expert knowledge to select and com-

bine the relevant KG semantic aspects for each use

case. Tailoring semantic similarity to a viewpoint of

the domain or a particular use case in an automated

fashion had not yet been tackled.

We have developed an approach that considers the

different KG semantic aspects used to describe enti-

ties and relies on ML to learn a supervised semantic

similarity. Currently, our approach includes five KG-

based similarity measures based on embeddings or tax-

onomic semantic similarity, and eight ML methods.

A comparative evaluation of the five SSMs combined

with the eight ML algorithms was conducted using 21

benchmark datasets divided by species, level of anno-

tation completion, KGs describing them, and similar-

ity proxies employed in them. The similarity proxies

rely on biological similarity measures and features -

protein-protein interaction, protein function similar-

ity, protein sequence similarity and phenotype-based

gene similarity - and were used to train and test the

supervised models. This evaluation elucidated which

combinations of SSMs with ML algorithms are more

suitable for each biological similarity.

The results showed that our approach is able to

learn a supervised semantic similarity that outper-

forms static semantic similarity both using KG embed-

dings and standard taxonomic SSMs, obtaining more

accurate similarity values. We specifically highlight the

ability of the proposed approach to find better seman-

tic aspect combination functions than static combina-

tions emulating expert knowledge.

Our approach is independent of the SSM and the

chosen ML method. Until now, we have used SSMs

that take into consideration semantic and structural

information. Recently, embedding methods, such as

OPA2Vec [21], that also consider lexical informa-

tion can be implemented and incorporated into our

methodology. However, our goal is to select appropri-

ate semantic aspect combinations to compute similar-

ity, meaning that it is likely our approach not benefit

so much from OPA2Vec.

Since interpretability has become a significant con-

cern in ML, this issue should also be addressed in the

future. Although we have employed interpretable ML

algorithms, black-box models usually produced predic-

tions with higher accuracy in our experiments, high-

lighting the need to explore the trade-off between per-

formance and interpretability.

Although in this work we applied supervised ML al-

gorithms to tailor semantic similarity to different sim-

ilarity proxies, the proposed approach is versatile and

can also be applied to tailor semantic similarity to a

specific learning task. Consequently, there are multi-

ple real-world tasks, where KG-based similarity is a

suitable instance representation, that can benefit from

this work. In future work, the impact of supervised

similarity in tasks such as predicting protein-protein
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interactions, drug-target interactions or gene-disease

associations should be evaluated.
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28. Traverso, I., Vidal, M.-E., Kämpgen, B., Sure-Vetter, Y.: GADES: A

graph-based semantic similarity measure. In: Proceedings of the 12th

International Conference on Semantic Systems. SEMANTiCS 2016,

pp. 101–104. Association for Computing Machinery, New York, NY,

USA (2016). doi:10.1145/2993318.2993343

29. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph

embedding: Problems, techniques, and applications. IEEE Transactions

on Knowledge and Data Engineering 30(9), 1616–1637 (2018).

doi:10.1109/TKDE.2018.2807452

30. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.:

Translating embeddings for modeling multi-relational data. In:

Proceedings of the 26th International Conference on Neural

Information Processing Systems - Volume 2. NIPS’13, pp. 2787–2795.

Curran Associates Inc., Red Hook, NY, USA (2013)

31. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding

by translating on hyperplanes. In: Proceedings of the 28th AAAI

Conference on Artificial Intelligence, vol. 28, pp. 1112–1119. AAAI
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