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Abstract 20 

Multimodal data is rapidly growing in many fields of science and engineering, including single-cell 21 

biology. We introduce MultiMAP, an approach for dimensionality reduction and integration of 22 

multiple datasets. MultiMAP recovers a single manifold on which all of the data resides and then 23 

projects the data into a single low-dimensional space so as to preserve the structure of the 24 

manifold. It is based on a framework of Riemannian geometry and algebraic topology, and 25 

generalizes the popular UMAP algorithm
1
 to the multimodal setting. MultiMAP can be used for 26 

visualization of multimodal data, and as an integration approach that enables joint analyses. 27 

MultiMAP has several advantages over existing integration strategies for single-cell data, 28 

including that MultiMAP can integrate any number of datasets, leverages features that are not 29 

present in all datasets (i.e. datasets can be of different dimensionalities), is not restricted to a 30 

linear mapping, can control the influence of each dataset on the embedding, and is extremely 31 

scalable to large datasets. We apply MultiMAP to the integration of a variety of single-cell 32 

transcriptomics, chromatin accessibility, methylation, and spatial data, and show that it 33 

outperforms current approaches in preservation of high-dimensional structure, alignment of 34 

datasets, visual separation of clusters, transfer learning, and runtime. On a newly generated 35 

single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) and 36 

single-cell RNA-seq (scRNA-seq) dataset of the human thymus, we use MultiMAP to integrate 37 

cells along a temporal trajectory. This enables the quantitative comparison of transcription factor 38 

expression and binding site accessibility over the course of T cell differentiation, revealing 39 

patterns of transcription factor kinetics. 40 

 41 
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Introduction 42 

 43 

Multimodal data is rapidly growing in many fields of science and engineering, including single-cell 44 

biology. Emerging single-cell technologies are providing high-resolution measurements of 45 

different features of cellular identity, including single-cell assays for gene expression, protein 46 

abundance
2,3

, chromatin accessibility
4
, DNA methylation

5
, and spatial resolution

6
. Large scale 47 

collaborations including the Human Cell Atlas international consortium
7,8

 are generating an 48 

exponentially increasing amount of data of many biological tissues, using a myriad of 49 

technologies. Each technology provides a unique view of cellular biology and has different 50 

strengths and weaknesses. Integrating these measurements in the study of a single biological 51 

system will open avenues for more comprehensive study of cellular identity, cell-cell interactions, 52 

developmental dynamics, and tissue structure
9
.  53 

 54 

The integration of multi-omic data poses several challenges
10

. Different omics technologies 55 

measure distinct unmatched features with different underlying distributions and properties and 56 

hence produce data of different dimensionality. This makes it difficult to place data from different 57 

omics in the same feature space. Additionally, omics technologies can also have different noise 58 

and batch characteristics which are challenging to identify and correct. Further, as multi-omic data 59 

grows along two axes, the number of cells per omic and the number of omics per study, integration 60 

strategies need to be extremely scalable. 61 

 62 

Most data integration methods project multiple measurements of information into a common low-63 

dimensional representation to assemble multiple modalities into an integrated embedding space. 64 

Recently published methods employ different algorithms to project multiple datasets into an 65 

embedding space, including canonical correlation analysis (CCA)
11

, nonnegative matrix 66 

factorization (NMF)
12

 or variational autoencoders
13

. In the field of genomics, single-cell 67 

transcriptomics, as a well-established method, often serves as a common reference, facilitating 68 

the transfer of cell type annotation and data across multiple technologies and modalities. While 69 

these methods can be tremendously powerful, they require correspondence between the features 70 

profiled across omics technologies. Another limitation of many existing methods is they are 71 

challenged by scaling to large datasets.  72 

 73 

Here we introduce a method that overcomes all these limitations: MultiMAP, an approach for the 74 

dimensionality reduction and integration of multiple datasets. MultiMAP integrates data by 75 

constructing a non-linear manifold on which diverse high-dimensional data reside and then 76 

projecting the manifold and data into a shared low-dimensional space. In contrast to other 77 

integration strategies for single-cell data, MultiMAP can integrate any number of datasets,  is not 78 

restricted to a linear mapping, leverages features that are not present in all datasets (i.e. datasets 79 

can be of different dimensionalities), can control the influence of each dataset on the embedding, 80 

and is effortlessly scalable to large datasets. The ability of MultiMAP to integrate datasets of 81 

different dimensionalities allows the strategy to leverage information that is not considered by 82 

methods that operate in a shared feature space. (e.g. MultiMAP can integrate the 20,000-feature 83 

gene space of scRNAseq data together with a 100,000-feature peak space of scATACseq data).  84 
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 85 

We apply MultiMAP to challenging synthetic multimodal data, and demonstrate its ability to 86 

integrate a wide range of single-cell omics datasets. Finally, we apply the approach to the study 87 

of T cell development with new scATACseq data from fetal thymi. We show that MultiMAP can 88 

co-embed datasets across different technologies and modalities, while at the same time 89 

preserving the structure of the data, even with extensive biological and technical differences. The 90 

resulting embedding and shared neighborhood graph (MultiGraph) can be used for simultaneous 91 

visualisation and integrative analysis of multiple datasets. With respect to single cell genomics 92 

data, this allows for standard analysis on the integrated data, such as cluster label transfer, joint 93 

clustering, and trajectory analysis. 94 

 95 

Results 96 

 97 

The MultiMAP Framework 98 

 99 

We introduce MultiMAP, an approach for integration and dimensionality reduction of multimodal 100 

data based on a framework of Riemannian geometry and algebraic topology. MultiMAP takes as 101 

input any number of datasets of potentially differing dimensions. MultiMAP recovers geodesic 102 

distances on a single latent manifold on which all of the data is uniformly distributed. The distances 103 

are calculated between data points of the same dataset by normalizing distances with respect to 104 

a neighborhood distance specific to the dataset, and between data points of different datasets by 105 

normalizing distances between the data in a shared feature space with respect to a neighborhood 106 

parameter specific to the shared feature space. These distances are then used to construct a 107 

neighborhood graph (MultiGraph) on the manifold. Finally, the data and manifold space are 108 

projected into a low-dimensional embedding space by minimizing the cross entropy of the graph 109 

in the embedding space with respect to the graph in the manifold space. MultiMAP allows the 110 

user to modify the weight of each dataset in the cross entropy loss, allowing the user to modulate 111 

the contribution of each dataset to the layout. Integrated analysis can be performed on the 112 

embedding or the graph, and the embedding also provides an integrated visualization. The 113 

mathematical formulation of MultiMAP is elaborated in Supplementary Methods. 114 

 115 

In order to study MultiMAP in a controlled setting, we first applied it to two synthetic examples of 116 

multimodal data (Methods). The first synthetic data consists of points sampled randomly from the 117 

canonical 3D “Swiss Roll” surface and the 2D rectangle (Figure 2a). The dataset is considered 118 

multimodal data, because samples are drawn from different feature spaces but describe the same 119 

rectangular manifold. In addition, we are given the position along the manifold of 1% of the data. 120 

This synthetic setting illustrates that MultiMAP can integrate data in a nonlinear fashion and 121 

operate on datasets of different dimensionality, because data points along a similar position on 122 

the manifold are near each other in the embedding (Figure 2b). The MultiMAP embedding 123 
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properly unrolls the Swiss Roll dataset, indicating that the projection is nonlinear. The embedding 124 

also appears to preserve aspects of both datasets; the data is curved and at the same time 125 

unrolled. 126 

 127 

To determine if MultiMAP can effectively leverage features unique to certain datasets, we used 128 

the MNIST database
14

, where handwritten images were split horizontally with thin overlap (Figure 129 

2c; see Methods for details). The two datasets can be considered multimodal because they have 130 

different feature spaces but describe the same set of digit images. The thin overlapping region of 131 

the two halves is not enough information to create a good embedding of the data (Figure 2c). 132 

Many distinct digits are similar in this thin central sliver, and hence they cluster together in the 133 

feature space of this sliver. Indeed, in a UMAP projection of the data in the shared feature space 134 

of this overlap, the clusters of different digits are not as well separated as in the UMAP projections 135 

of each half (Figure 2c).  136 

 137 

A multimodal integration strategy that effectively leverages all features would use the features 138 

unique to each half to separate different digits, and the shared space to bring the same digits from 139 

each dataset close together (Figure 2d). We show that with MultiMAP the different modalities are 140 

well mixed in the embedding space and the digits cluster separately, despite mostly different 141 

feature spaces and noise being added to only the second dataset. This indicates that MultiMAP 142 

is leveraging the features unique to each dataset and is also robust to datasets with different 143 

noise.  144 

 145 

Moreover, MultiMAP has weight parameters ω
v
 which control the contribution of each dataset Xv

 146 

to the final embedding, allowing the user to modulate which dataset has a greater influence on 147 

the MultiMAP embedding. When a dataset’s weight is larger, its structure has a larger contribution 148 

to the MultiMAP embedding. Our results show that when integrating the MNIST data, for different 149 

choices of ω
v
, the datasets remain well integrated in the embedding space (Extended Data Figure 150 

1a,b). 151 

 152 

Finally, to illustrate that our assumption of a shared manifold is robust to variable levels of overlap 153 

across datasets, we used MultiMAP to integrate datasets with varying numbers of shared clusters 154 

in the MNIST data (Extended Data Figure 2). Our results show that MultiMAP is able to effectively 155 

integrate datasets that have only 1 out of 10 clusters shared between them. The transfer accuracy, 156 

silhouette score, and structure score of the MultiMAP integration remained largely constant as 157 

the number of overlapping clusters is varied, demonstrating that MultiMAP is highly robust to 158 

differences in populations between datasets. 159 

 160 

 161 
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 162 

MultiMAP integration of single-cell transcriptomics and chromatin 163 

accessibility 164 

 165 

Having shown that MultiMAP succeeds in integrating synthetic data, we apply the technique to 166 

real biological data. Epigenomic regulation underlies gene expression and cellular identity. Hence, 167 

integration of single-cell transcriptomics and epigenomics data provides an opportunity to 168 

investigate how epigenomic alterations regulate gene expression to determine and maintain cell 169 

identity. In addition, effective integration with transcriptomics data can improve the sensitivity and 170 

interpretability of the sparse scATAC-seq data. 171 

 172 

To assess MultiMAP’s ability to integrate transcriptomic and epigenomic data, we applied the 173 

approach to integrate our previously generated high-coverage scATAC-seq data of mouse 174 

splenocytes
15

 and generated corresponding single-cell transcriptomic profiles of the same tissue. 175 

The high coverage of the plate-based scATAC-seq data as well as the published cluster 176 

annotations of the subpopulations served as a good ground truth example to validate our method. 177 

The analysis of the transcriptomics data revealed similar subpopulations to the published 178 

scATAC-seq dataset, in addition to two RNA-specific clusters: a subpopulation of B cells with 179 

higher expression of Interferon-Induced (Ifit) genes and a subpopulation of proliferating cells 180 

(Extended Data Figure 3a,b).  181 

 182 

MultiMAP effectively integrated the two datasets, using both gene activity scores and the cell type-183 

specific epigenetic information outside of gene bodies. The different modalities are well mixed in 184 

the embedding space and cells annotated as the same type are close together, regardless of the 185 

modality for different choices of ω
v 

(Figure 3a, Extended Data Figure 1c,d). Next, we jointly 186 

clustered cells from both datasets using the MultiGraph. This produced clusters with markers 187 

corresponding to known cell types
15

 (Extended Data Figure 3c). The annotations produced by this 188 

joint clustering were generally consistent with independent annotations of each dataset (Figure 189 

3c). Two of the clusters determined to be proliferating cells and B cells with upregulated Ifit genes 190 

were found only in the scRNA-seq data, as expected  (Figure 3a, Extended Data Figure 3b). In 191 

addition, the integration produced by MultiMAP is robust to different choices of the weight 192 

parameters (Extended Data Figure 1c).  193 

 194 

Further, we used the MultiGraph to directly predict the cell types of the scATAC-seq given the cell 195 

types of the scRNA-seq. Figure 3d shows the confusion matrix of the predictions, illustrating that 196 

cells were generally annotated correctly. This illustrates the ability of MultiMAP to leverage 197 

annotation efforts of one omic technology to inform those of another. Interestingly, a small subset 198 

of cells from scRNA-seq previously annotated as T cells is now clearly separated on the MultiMAP 199 

plot, and clusters close to the B cells (Figure 3a, Extended Data Figure 3). Doublet detection 200 

confirmed that this cluster is composed of doublet T/B cells. These doublets are spread 201 

throughout the UMAP plot of the scRNA-seq data, but are clearly distinct on the MultiMAP plot 202 
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(Extended Data Figure 3). This illustrates the power of MultiMAP both as a visualization tool, and 203 

to reveal new populations of cells. 204 

 205 

Next, we applied MultiMAP to integration of multiple batches from each data modality, to assess 206 

the ability to account for batch effects. For this purpose, we used recently published scRNA-seq 207 

and scATAC-seq data of human bone marrow and peripheral blood mononuclear cells
16

. This 208 

dataset consists of 16 experimental samples, representing different experimental batches. 209 

Another challenge is that cells are not in discrete clusters but rather on a continuum. MultiMAP is 210 

able to simultaneously correct batch effects and modality differences, integrating all 16 datasets 211 

into a consistent embedding (Figure 3e). The different modalities are well mixed in the embedding 212 

and cells of the same type are close together, regardless of modality or batch. The cell type 213 

annotations of all of the data were taken from the original publication
16

, so they provide a good 214 

ground truth and independent validation of MultiMAP. Additionally, MultiMAP is able to correct 215 

batch effects present in different omics technologies. Applying MultiMAP to just the scRNA-seq 216 

data produces embedding that properly integrates cells of the same type regardless of batch, and 217 

the same is true when MultiMAP is applied to only the scATAC-seq data (Figure 3f). It is also 218 

evident in this figure that clusters with cell types unique to a batch remain unmixed in the 219 

embedding. This indicates that MultiMAP is not forcing incompatible data to integrate and 220 

demonstrates that MultiMAP can integrate datasets even if they have extensive technical 221 

differences. 222 

MultiMAP integration of multiple modalities of mouse brain cells 223 

 224 

Recent advances in spatial sequencing technology enable the simultaneous measurement of 225 

gene expression and spatial locations of single-cells, facilitating the study of tissue structure
6
. 226 

While these technologies provide spatial information, they often measure only a small fraction of 227 

the genes measured by scRNA-seq. Integration of spatial measurements and scRNA-seq has the 228 

potential to provide spatial context to scRNA-seq data as well as to reveal finer grained biological 229 

differences in the spatial data by leveraging the greater number of cells and genes present in 230 

scRNA-seq data. 231 

 232 

We applied MultiMAP to the integration of a Drop-seq scRNA-seq data of the mouse frontal 233 

cortex
17

 and STARmap in situ gene expression dataset
18

. Despite the differences between the 234 

two dataset in the number of measured genes (only 1020 in STARmap) and the number of cells 235 

(71640 in Drop-seq versus 2137 in STARmap), our integrated analysis shows that MultiMAP 236 

successfully integrates the datasets. Clustering the integrated data using the MultiGraph 237 

produced clusters with markers corresponding to known cell types (Figure 4a,b). One of the 238 

clusters, the claustrum, was found only in the scRNA-seq data, as expected. Integration with 239 

MultiMAP also resulted in improved cluster annotation for both datasets. The excitatory L4 240 

neurons were previously only present in the STARMap data, as the motor cortex and prefrontal 241 

cortex that are part of the frontal cortex are considered to lack a layer 4 in mice
19

. However, after 242 

the integration we also identified L4 cells in the scRNA-seq data previously annotated as L5 243 

neurons (Figure 4a,c, Extended Data Figure 4). A similar population of pyramidal cells located 244 
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between layers 3 and 5 were recently identified both with anatomical and single-cell studies 
20,21

. 245 

This was confirmed by expression of marker genes associated with L4, including Cux2 and Rorb 246 

(Extended Data Figure 4). This illustrates the power of MultiMAP to reveal new cell types.  247 

 248 

MultiMAP also improves visualization of the STARmap data. Before integration with MultiMAP, 249 

many of the cell types of the spatial data did not cluster separately and were visually hard to 250 

distinguish. In comparison, the MultiMAP embedding of the STARmap data exhibits tighter cell 251 

type clusters and increased separation between cell types (Figure 4e). This improvement was 252 

measured by the average Silhouette score in the embedding space, which is significantly larger 253 

for MultiMAP (Figure 4e). 254 

 255 

Integration with MultiMAP also enabled us to spatially locate all the joint cell types in the 256 

STARmap data, allowing study of the spatial structure of the tissue (Figure 4d). The pyramidal 257 

neurons localize to layers 2-6 and oligodendrocytes localize to the layer below the cortex, 258 

whereas the interneurons do not appear to exhibit spatial organization. These observations are 259 

all consistent with the known spatial architecture of the mouse visual cortex
18

. 260 

 261 

To investigate the performance of MultiMAP on the integration of more than two modalities, we 262 

applied the approach to integrate recently published multi-omics datasets of the mouse primary 263 

motor cortex
20

 consisting of 9 separate datasets, including 7 single-cell or single-nucleus 264 

transcriptomics datasets, one single-nucleus chromatin accessibility, and one single-nucleus 265 

DNA methylation (snmC-seq). MultiMAP successfully co-embedded more than 600,000 single-266 

cell or -nucleus samples assayed by six molecular modalities and identified the previously 267 

published cell subpopulations. The MultiMAP embedding displays good mixing of clusters from 268 

different modalities when the clusters correspond to the same cell type. Cell type annotations 269 

were taken from the original publication of the data, so they provide a good ground truth and an 270 

independent validation of MultiMAP. We further see that cell types that exist in one modality, but 271 

not in the others, are not falsely aligned in the embedding space. This indicates that MultiMAP is 272 

not forcing incompatible data to integrate. 273 

 274 

Finally, using the integration of scRNA-seq with the STARmap data, as well as the integration of 275 

the multi-omics spleen data, we assessed the impact of using only shared vs. all features. We 276 

find that using all features greatly improves the integration and results in embeddings that are 277 

visually and quantitatively superior, according to four performance metrics (Extended Data Figure 278 

5). This illustrates that non-shared features can be extremely helpful, and demonstrates an 279 

advantage of MultiMAP over other methods which do not consider non-shared features. 280 

 281 

Benchmarking 282 

 283 

We assessed and benchmarked the performance of MultiMAP against several popular 284 

approaches for integrating single-cell multi-omics, including Seurat 3
11

, LIGER
12

, Conos
22

 and 285 

GLUER
23

.  286 
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 287 

These integration approaches differ in key regards, summarized in Figure 5d. We used a diversity 288 

of performance metrics to comprehensively compare MultiMAP with other approaches, including 289 

transfer accuracy, silhouette score, alignment, preservation of the structure, and runtime. With 290 

these metrics, we quantified the separation of the joint clusters, how well mixed the datasets were 291 

after integration and how well they preserved the structure in the original datasets to investigate 292 

whether the methods integrate populations across datasets without blending distinct populations 293 

together.  294 

 295 

To this end, we generated single-nucleus data from human Peripheral Blood Mononuclear Cells 296 

(PBMCs) using the Multiome ATAC + RNA kit. We obtained a PBMC atlas of 6,344 nuclei of high-297 

quality ATAC + RNA profiles. We analysed and annotated the RNA and ATAC data separately, 298 

revealing all the known major PBMC types: CD14 and CD16 monocytes, cDCs and pDCs, naive 299 

and effector CD4 and CD8 T cells, Tregs, MAIT and gamma-delta T cells, NK and ILCs, naive 300 

and memory B cells and plasmablasts (Extended Data Figure 6a). Most cell types were well 301 

separated in both modalities with the exception of the NK and ILC clusters and the gamma-delta 302 

and the CD8 effector T cells that blended together in the ATAC data.  303 

 304 

We used the PBMCs as a gold standard dataset to benchmark MultiMAP against the four other 305 

methods. As shown in the co-embedding and the metrics, MultiMAP successfully integrated the 306 

cell types across modalities and outperformed other methods (Extended Data Figure 6b,c). The 307 

label transfer accuracy was particularly striking, with MultiMAP achieving a much higher score 308 

compared to other methods.  309 

 310 

Furthermore, we also benchmarked MultiMAP using a variety of multi-omic data with published 311 

cell type annotations, including the transcriptomics and chromatin accessibility spleen data, 312 

scRNA-seq and STARmap of the visual cortex, and the multi-omics data of the primary cortex. 313 

For all datasets, MultiMAP achieves top or near top performance on all metrics (Figure 5a,b). The 314 

embeddings produced by MultiMAP prove superior for transferring cell type annotations between 315 

datasets, separating clusters of different cell populations, integrating datasets in a well-mixed 316 

manner, and capturing the high-dimensional structure of each dataset. Critically, MultiMAP is 317 

faster than all other benchmarked methods, and significantly faster than LIGER and Seurat 3 318 

(Figure 5c). Seurat 3 and LIGER were not able to scale to the primary cortex data of 600k, 319 

producing out-of-memory errors despite access to 218 GB of RAM. 320 

 321 

Finally, to assess the batch correction performance of MultiMAP, we also applied it on three 322 

scRNA-seq studies of the human pancreas
24–26

 that were recently used for comparison of eight 323 

batch correction methods
27

. Even though the main purpose of MultiMAP is the integration of 324 

several different omic technologies, MultiMAP outperformed all other well established batch 325 

correction methods in the field, demonstrating that MultiMAP can correct batches and integrate 326 

multiple omics data simultaneously (Extended Data Figure 7).  327 
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MultiMAP reveals patterns of T cell maturation along a multi-omic 328 

trajectory 329 

 330 

Single-cell transcriptomics has enabled reconstruction of developmental trajectories and the 331 

study of dynamic processes such as differentiation and reprogramming. Bulk RNA-seq and 332 

ATAC-seq data has further revealed regulatory events driving these processes
28

. However, joint 333 

analysis of single-cell expression and chromatin accessibility profiles along a time course 334 

trajectory would allow the study of dynamic chromatin regulation alongside gene expression and 335 

elucidate epigenomic drivers of transcriptional change
29,30

.  336 

 337 

In order to investigate the potential of integrating multi-omic data along a common differentiation 338 

trajectory, we focused on T cell development in the thymus. The thymus is an organ essential for 339 

the maturation and selection of T cells. Precursor cells migrate from the fetal liver and bone 340 

marrow to the thymus where they develop into different types of mature T cells
31

. We recently 341 

provided a comprehensive single-cell transcriptomics atlas of the human thymus during 342 

development, childhood, and adult life, and computationally predicted the trajectory of T cell 343 

development from early progenitors to mature T cells
31

. To expand on this and further investigate 344 

the gene regulatory mechanisms driving T cell development, we generated single-cell 345 

transcriptomics and chromatin accessibility data from a human fetal thymus sample at 10 weeks 346 

of gestation.  347 

 348 

Clustering of the scRNA-seq data revealed cell types identified in our recently published 349 

transcriptomic cell atlas of the thymus
31

, including several clusters of T cells across different 350 

stages of development, fibroblasts, endothelial cells, erythrocytes, thymic epithelial cells (TECs), 351 

NK and ILC3 cells, and macrophages and dendritic cells (Extended Data Figure 8). The sparse 352 

scATAC-seq and the continuous nature of cell types along the maturation trajectory made it 353 

difficult to cluster the ATAC cells into different T cell types (Extended Data Figure 8). However, 354 

the integration with MultiMAP and the joint clusters obtained using the MultiGraph corresponded 355 

to the published thymus cell types
31

 (Figure 6 a,b), allowing us to correctly annotate the cell types 356 

of the scATAC-seq data. 357 

 358 

We then selected the T cell populations identified from the joint clustering and performed diffusion 359 

map pseudotime analysis using the alignment MultiMAP graph. The reconstructed development 360 

trajectory showed a continuous differentiation with the same trend as the published study, starting 361 

from early double negative (DN) CD4-CD8-, gradually progressing to double positive (DP) 362 

CD4+CD8+ T cells, and then differentiating into single positive (SP) mature CD8+ or CD4+ T 363 

cells. Hallmark genes of T cell differentiation varied along the inferred pseudotime in a manner 364 

consistent with
31

 (Figure 6d), serving as validation of the trajectory inference and the integration 365 

produced by MultiMAP. 366 

 367 

To identify transcription factors (TFs) that potentially regulate T cell development, we studied 368 

changes in TF expression and TF binding site accessibility along the differentiation trajectory. The 369 

top variable TFs/TF binding sites along the trajectory included many TFs that have been 370 
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previously shown to be involved in T cell differentiation, including GATA3, SPI1, MEF2C, ERG, 371 

TCF3, TCF4, TFAP4, MYBL2, STAT1, NR4A2 and others
28,31,32

 (Figure 6e, Extended Data Figure 372 

9). The TFs that most varied along the trajectory were found to show changes in motif accessibility 373 

at the transition between the late DN and early DP stage of differentiation as shown before
32

. 374 

 375 

Moreover, our integrated trajectory allowed us to identify TFs where changes in motif accessibility 376 

and expression of the TF itself were closely coordinated, for example ZEB1, IRF1, REL, FOS and 377 

others, suggesting that these TFs actively regulate their target genes immediately and directly 378 

(Figure 6e). In contrast, for TFs such as ETS1, JUN etc., gene expression of the TF significantly 379 

precedes the accessibility of the corresponding TF binding sites, suggesting that additional 380 

regulatory mechanisms are potentially required for opening of the TF motifs. 381 

 382 

Discussion 383 

 384 

Here we present a novel approach for dimensionality reduction and integration of multimodal data 385 

which takes into account the full data sets, even when they have different feature spaces. 386 

MultiMAP embeds all datasets into a shared space to preserve both the manifold structure of 387 

each dataset independently, as well as in shared feature spaces. This enables both visualization 388 

and streamlined downstream analyses. Crucially, our method can incorporate different types of 389 

features, such as gene expression and open chromatin peaks or intergenic methylation, and thus 390 

takes advantage of the full power of multi-omics data. Ignoring the features unique to one dataset 391 

(as in most existing methods), may omit important information, for instance distinguishing features 392 

of certain subpopulations of cells and yield an integrated embedding that does not distinctly 393 

cluster all subpopulations.  394 

 395 

An additional advantage of MultiMAP is that the influence of each dataset on the shared 396 

embedding can be modulated. This is useful when integrating datasets of different qualities, or 397 

when aligning a query dataset to a reference dataset. Comparison with existing methods for 398 

integration shows that MultiMAP outperforms or has close to best performance in every aspect 399 

investigated. MultiMAP is a robust and effective method for dimensionality reduction and 400 

integration of multimodal data, and is extremely fast and scalable to massive datasets. 401 

 402 

Using synthetic examples to illustrate the power of the method, we show that MultiMAP leverages 403 

the features unique to each dataset to effectively integrate and reduce the dimensionality of the 404 

data, and is also robust to data with noise. Throughout our applications of MultiMAP to diverse 405 

single-cell multi-omic data, we demonstrate that our method can facilitate integration across 406 

transcriptomic, epigenomic, and spatially resolved datasets, and derive biological insights jointly 407 

from multi-omic single-cell data. In addition, our method can align datasets across different 408 

technologies and modalities even with extensive biological and technical differences. Crucially, 409 

we show that MultiMAP is flexible enough to integrate datasets with different clusters and cell 410 

populations, illustrating that MultiMAP is applicable even when its central hypothesis is not strictly 411 
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reflected by the data. The multimodal integration of three or more omics technologies opens many 412 

opportunities for the comprehensive study of tissues.  413 

 414 

We note that our method is based on the hypothesis that multi-omics data are uniformly distributed 415 

on a latent manifold. A hypothesis of this sort, about the distribution of data in a latent space, is a 416 

central feature of many existing integration strategies. For example, CCA-based strategies 417 

(including Seurat and Conos) assume that the data reside in a maximally-correlated manner in a 418 

latent space which is a linear projection of the original data. MultiMAP, in contrast, does not make 419 

as strong an assumption because we do not restrict the latent manifold to a linear projection of 420 

the data.  While this kind of hypothesis is often realistic for data generated from the same tissue, 421 

there may be cases where this is not strictly the case. In practice, we find that MultiMAP can 422 

successfully accommodate datasets that depart from this central hypothesis, i.e when clusters 423 

and cell populations are not shared across all datasets that are being integrated. 424 

 425 

Perhaps the greatest potential lies in applying MultiMAP to datasets beyond those considered 426 

here. Integrative analysis with MultiMAP can be used to compare healthy and diseased states, 427 

and identify pathologic features, or to uncover cell-type specific responses to perturbations. Other 428 

examples include the integration of data across species to enable studying the evolution of cell 429 

states and identifying conserved cell types and regulatory programs. Along similar lines, the 430 

integration of in vivo with in vitro models such as organoids will reveal the quality or faithfulness 431 

of cells in a dish relative to their native counterparts. Finally, given the rapid development of joint 432 

multimodal single cell genomics methods (e.g. CITEseq for protein and RNA, joint snRNA- and 433 

ATACseq), it is relevant to point out that MultiMAP can be applied to multi-omic data acquired 434 

both from different cells as well as from the same cells.  435 

 436 

In summary, given the broad appeal of dimensionality reduction methods (e.g. PCA, tSNE, 437 

UMAP), and the growth of multimodal data in many areas of science and engineering, we 438 

anticipate that MultiMAP will find wide and diverse use. 439 

 440 
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Figures  498 

 499 

 500 

 501 

 502 

Figure 1. Schematic of MultiMAP. a. MultiMAP takes any number of datasets, including those 503 

of differing dimensions, recovers geodesic distances on a single latent manifold on which all 504 

data lie, constructs a neighborhood graph (MultiGraph) on the manifold, and then projects the 505 

data into a single low-dimensional embedding. Integrated analysis and visualisation can be 506 

performed on the embedding or graph. Variables are discussed in Methods. Xi 
is dataset i, xj

i
 is 507 

a point in Xi
, M is the shared manifold, B(xi

2
) is a ball on M centered at xi

2
, X

ij
 is the ambient 508 

space of M in the coordinate space with data containing points from datasets i and j, gij
 is the 509 

metric of M in the space X
ij
, μ is the membership function of the fuzzy simplicial set on the 510 

manifold, ν is the membership function of the fuzzy simplicial set in the low-dimensional space.
 

511 

b. In the field of cell atlas technologies, encompassing single cell genomics and spatial 512 

technologies, MultiMAP can be applied to integrate across different omics modalities, species, 513 

individuals, batches, and normal/perturbed states. 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 
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 523 

  524 

Figure 2. MultiMAP applied to synthetic data. a. Data sampled from the 3D Swiss Roll (X1
) 525 

and a 2D rectangle (X2
). b. Shared embedding of both datasets produced by MultiMAP. Color 526 

indicates position along the manifold (a,b). c. Left (X1
) and right (X2

) halves of MNIST 527 

handwritten digit images with a 2 pixel wide shared region. Gaussian noise is added to the left 528 

half. UMAP projections of each half and the shared region. d. Shared embedding of both MNIST 529 

halves (including Gaussian noise introduced for the left half) produced by MultiMAP. Each color 530 

is a different handwritten digit (0-9 as shown in the key). This illustrates that MultiMAP leverages 531 

both shared and unshared features to integrate multimodal datasets. 532 
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Figure 3. MultiMAP integration of single-cell transcriptomics and chromatin accessibility. 534 

a. MultiMAP visualization of the integration of published scATAC-seq
15

 and newly generated 535 

scRNA-seq data of the mouse spleen (n=1), colored by omic technology (left hand panel) and 536 

independent cell type annotations of each omic technology (right hand panel). b. Dot plot 537 

showing the z-score of the mean log-normalised gene expression and gene activity scores of 538 

known markers of each identified joint cluster. The top dot of each row shows the cells from the 539 

scRNA-seq data, and the bottom dot represents the cells from the scATAC-seq data. c. 540 

Riverplot showing correspondence between the joint clusters and the independent annotations 541 

of the scATACseq and scRNAseq data. d. Confusion matrix of label transfer from the 542 

scRNAseq to the scATACseq. e. MultiMAP visualization of the integration of single-cell 543 

transcriptomics and chromatin accessibility of human bone marrow and peripheral blood 544 

mononuclear cells
16

 colored by omic technology (left hand panel) and by the published cell type 545 

annotation (right hand panel). f. UMAP (panels in top row) and MultiMAP (panels in bottom row) 546 

visualization of the scRNA-seq and scATAC-seq data colored by cluster annotation and batch, 547 

showing the effective batch correction of both modalities using MultiMAP. 548 

 549 
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 550 

Figure 4. MultiMAP integration of multiple modalities of mouse brain cell data. 551 
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a. MultiMAP visualization of scRNA-seq
17

 (n=2) and spatial STARmap
18

 (n=2) data of the 552 

mouse brain, colored by omic technology and joint clusters identified with the MultiGraph. b. Dot 553 

plot showing mean log-normalised gene expression of known markers of each identified joint 554 

cluster. The top dot in each row represents cells from the scRNA-seq data, and the bottom dot 555 

represents cells from the scATAC-seq data. c. Riverplot showing correspondence between the 556 

joint clusters, and the independent annotations of the scATACseq and scRNAseq data. d. 557 

Spatial locations of the STARmap cell, colored by the joint clusters. e. UMAP and MultiMAP 558 

visualizations of the STARmap dataset. The silhouette score as employed here quantifies the 559 

separation of clusters, and the higher value for MultiMAP shows the better cluster separation as 560 

compared to UMAP. f. MultiMAP visualization of the integration of single-cell transcriptomics, 561 

chromatin accessibility, and DNA methylation of the mouse primary cortex, colored by omic 562 

technology and the published cell type annotation
20

. 563 

   564 

 565 
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 566 

Figure 5. Benchmarking MultiMAP against existing approaches. a. Embeddings returned by 567 

multi-omic integration methods on different datasets. “X” indicates that the method terminated 568 

due to an out-of-memory error (218 GB RAM). b. Comparison of each method in terms of 569 

transfer learning accuracy (“Transfer”), separation of cell type clusters as quantified by 570 

Silhouette coefficient (“Silhouette”), mixing of different datasets as measured by fraction of 571 

nearest neighbours that belong to a different dataset (“Alignment”), preservation of high-572 

dimensional structure as measured by the Pearson correlation between distances in the high- 573 

and low-dimensional spaces  (“Structure”), and runtime. c. Wall-clock time of multi-omic 574 

integration methods on different sized datasets. Seurat 3 and LIGER produced out-of-memory 575 

errors when run on 500,000 data points (218 GB RAM). To produce these datasets we 576 

subsampled the mouse primary cortex scRNA-seq and scATAC-seq data
20

 using geometric 577 

sketching
33

. The datasets were subsampled so that there are equal number of cells in the 578 
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scRNA-seq and scATAC-seq data until 100,000 cells. Since the scATAC-seq data had 81,196 579 

cells in total, for the 500,000 cells comparison, we used an scRNA-seq of 418,804 cells. d. 580 

Comparison of capabilities and properties of each method. “Mapping” refers to the nature of the 581 

mapping employed by the method; “Max no. datasets” refers to the upper limit in terms of 582 

numbers of datasets accepted by the method; “Scalable to large data” refers to allowing a total 583 

of over 500,000 cells; “Data-set specific features” is whether the integration method allows 584 

information that is not shared across datasets; and “Dataset influence on integration” is whether 585 

the user can modulate the weighting of a given dataset relative to the others during the 586 

integration. 587 

 588 
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 602 

 603 

Figure 6. Integration of scRNAseq and scATACseq data of human fetal thymus reveals 604 

transcriptional regulatory principles of T cell development  605 

a. MultiMAP visualization of scRNA-seq and scATAC-seq datasets of the human fetal thymus 606 

(n=1), colored by modality and joint clusters identified using the MultiGraph. b. Heatmap of gene 607 

expression and gene activity scores of key markers of the joint clusters identified using the 608 

MultiGraph. c. Inferred pseudotime using the MultiGraph recovers the T cell differentiation 609 

trajectory. Color indicates pseudotime from red (early, beginning) to blue (late, end). d. 610 

Heatmap of the gene expression and gene activity scores over pseudotime of genes known to 611 

be involved in T cell development. e. Smoothed heatmaps of the z-score of the gene expression 612 

and motif accessibility of the most variable transcription factors over pseudotime. The motif 613 

accessibilities of TFs that varied most in time show changes in accessibility at the transition 614 

between the late DN and early DP stage of differentiation. This includes TFs such as GATA3, 615 

ZEB1 for which the chromatin at the binding sites closes at that transition, and TFs for which the 616 

chromatin at the binding sites opens, such as E2F4, ETS1 and others. 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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 640 
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 644 

Supplementary Figures 645 

 646 

 647 

 648 

Extended Data Figure 1. MultiMAP's weight parameter. a. UMAP projections of the two halves 649 

of the MNIST handwritten digit images. b. MultiMAP embeddings as the weight parameters are 650 

varied. Each color is a different handwritten digit (0-9). When ω1
 is larger than ω2

, the 651 

embedding more closely resembles the projection of only X1
; when ω2

 is larger than ω1
, the 652 

embedding more closely resembles the projection of only X2
. For different choices of ωv

, the 653 

datasets are well integrated in the embedding space. c. MultiMAP integration with varied weight 654 

parameters of published scATAC-seq
15

 and newly generated scRNA-seq data of the mouse 655 

spleen (n=1). d. Comparison of the MultiMAP integration of the spleen data as the weight 656 

parameter is varied -- in terms of transfer learning accuracy (“Transfer”), separation of cell type 657 

clusters as quantified by Silhouette coefficient (“Silhouette”), and preservation of high-658 
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dimensional structure as measured by the Pearson correlation between distances in the high- 659 

and low-dimensional spaces  (“Structure”) 660 

  661 

 662 

 663 

 664 

Extended Data Figure 2. MultiMAP integration with non-shared clusters. a. MultiMAP 665 

integration of the left and right halves of MNIST handwritten digit images with a 2 pixel wide shared 666 

region. Gaussian noise is added to the left half. MultiMAP integration is performed with a varying 667 

number of digit clusters removed from the right dataset, so that the integration ranges from one 668 

shared cluster (10%) to all clusters shared (100%). b. Comparison of the MultiMAP integration of 669 

the modified MNIST dataset as the percent of clusters shared is varied -- in terms of transfer 670 

learning accuracy (“Transfer”), separation of cell type clusters as quantified by Silhouette 671 

coefficient (“Silhouette”), and preservation of high-dimensional structure as measured by the 672 

Pearson correlation between distances in the high- and low-dimensional spaces  (“Structure”). 673 
 674 
 675 
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 676 

Extended Data Figure 3. Mouse spleen scRNA-seq and scATAC-seq data. a. UMAP 677 

visualization of the mouse spleen scRNA-seq data (n=1) colored by the identified cell types. b. 678 

UMAP visualisation of expression levels of Ifit family genes associated with interferon response, 679 

upregulated in one specific B cell subpopulation, and the proliferation marker Mki67. c. 680 

MultiMAP visualization of the integrated scRNA-seq and scATAC-seq mouse spleen data (n=1) 681 

colored by the jointly identified clusters. d, e. UMAP (d) and MultiMAP (e) visualizations of the 682 

mouse spleen data showing cells identified as doublets (labelled “True”) using an independent 683 

pipeline (Scrublet). The MultiMAP visualisation leads to these artifactual data points being 684 

clustered in one group, highlighting the power of this method to visualise and separate data. 685 

 686 

 687 
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 688 

 689 
Extended Data Figure 4. Marker genes of the L4 cluster identified in the scRNA-seq and 690 

STARmap integration. MultiMAP visualisation of log-transformed gene expression of markers 691 

associated with L4 neurons. The MultiMAP integration identified L4 cells in the scRNA-seq data 692 

previously annotated as L5 neurons. 693 
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 706 

Extended Data Figure 5. MultiMAP integration with all features vs. only shared features  in 707 

the spleen scRNA-seq + scATACseq, and visual cortex STARmap + scRNAseq datasets. 708 

a. MultiMAP embeddings using all genes present in each dataset (intended use of MultiMAP). b. 709 

MultiMAP embeddings using only genes shared by all datasets in each integration. c. Comparison 710 

of the MultiMAP integration with all features vs. only shared features -- in terms of transfer learning 711 

accuracy (“Transfer”), separation of cell type clusters as quantified by Silhouette coefficient 712 

(“Silhouette”), mixing of different datasets as measured by fraction of nearest neighbours that 713 

belong to a different dataset (“Alignment”), and preservation of high-dimensional structure as 714 

measured by the Pearson correlation between distances in the high- and low-dimensional spaces  715 

(“Structure”). 716 

 717 

 718 

 719 

 720 
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 721 

 722 

Extended Data Figure 6. Benchmarking MultiMAP using paired PBMCs. a. MultiMAP 723 

visualization of the Multiome RNA+ATAC PBMCs, colored by independently annotated cell type. 724 

b. Embeddings produced by alternative integration strategies, colored by omic technology. c. 725 

Comparison of each method in terms of transfer learning accuracy (“Transfer”), separation of cell 726 

type clusters as quantified by Silhouette coefficient (“Silhouette”), mixing of different datasets as 727 

measured by fraction of nearest neighbours that belong to a different dataset (“Alignment”), 728 

preservation of high-dimensional structure as measured by the Pearson correlation between 729 

distances in the high- and low-dimensional spaces  (“Structure”), and runtime. 730 

 731 
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 741 

Extended Data Figure 7. Benchmarking MultiMAP against batch correction methods. a. 742 

Embeddings returned by MultiMAP and batch correction methods on three scRNA-seq 743 

pancreas datasets. b. Comparison of separation of cell type clusters as quantified by Silhouette 744 

coefficient (“Silhouette”), mixing of different datasets as measured by fraction of nearest 745 

neighbours that belong to a different dataset (“Alignment”), preservation of high-dimensional 746 

structure as measured by the Pearson correlation between distances in the high- and low-747 

dimensional spaces  (“Structure”), and runtime. 748 

 749 

 750 
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 753 

 754 
 755 

 756 

Extended Data Figure 8. Fetal thymus scRNA-seq and scATAC-seq data. a. UMAP 757 

visualisation of the fetal thymus scRNA-seq data (n=1) colored by identified cell types shows the 758 

same cell types as previously published
31

. b. UMAP visualisation of the fetal thymus scATAC-759 

seq data (n=1) colored by the identified cell types. c. Dot plot showing the z-score of the mean 760 

log-transformed expression level of marker genes. d. Dot plot showing the z-score of the mean 761 

log-transformed gene activity scores of marker genes, showing not very clear separation of T 762 

cells clusters in the scATAC-seq data. e. UMAP visualisation of log-transformed gene activity 763 

scores of markers for specific T cell subpopulations, showing that the scATAC-seq dataset does 764 

not separate well the T cell clusters. 765 

 766 

 767 

 768 
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 770 

 771 

Extended Data Figure 9. Chromatin accessibility of transcription factor binding sites. 772 

Smoothed heatmaps of the z-score of motif accessibility of the top 100 most variable transcription 773 

factor binding sites over pseudotime. The TF binding sites that varied most in time show changes 774 

in accessibility at the transition between the late DN and early DP stage of differentiation. 775 

 776 
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Methods 777 

 778 

MultiMAP 779 

 780 

MultiMAP (Figure 1) is a new approach for the integration and dimensionality reduction of 781 

multimodal data based on a framework of Riemannian geometry and algebraic topology. 782 

MultiMAP takes as input any number of datasets of potentially differing dimensions. The datasets 783 

take the form Xi, i =1,2,..., with xj
i ∈ RDi

 being the j’th point in dataset Xi
. MultiMAP recovers 784 

geodesic distances on a single latent manifold M on which all of the data is uniformly distributed. 785 

The geodesic distances are calculated between data points of the same dataset by normalizing 786 

distances in each dataset’s ambient space X
ii 
with respect to a neighborhood distance specific to 787 

the dataset, and between data points of different datasets by normalizing distances between the 788 

data in a shared ambient space X
ij
 with respect to a neighborhood distance specific to the shared 789 

feature space. When integrating multi-omics data with MultiMAP, the ambient spaces are the PC 790 

components of each dataset’s full feature space and of the shared feature space(s). These 791 

neighborhood distances are the radius of a constant-radius ball B on M. These distances are then 792 

used to construct a neighborhood graph (MultiGraph) on the manifold. Finally the data and 793 

manifold space are projected into a low-dimensional embedding space by minimizing the cross 794 

entropy of the graph in the embedding space with respect to the graph in the manifold space. 795 

Specifically, this optimization minimizes cross entropy of a fuzzy set–representation (ν, {xj
i
}) of 796 

the graph in the embedding space with respect to a fuzzy set–representation (μ, {xj
i
}) of the graph 797 

in the manifold space. MultiMAP allows the user to modify the weight ωi
 of each dataset in the 798 

cross entropy loss, allowing the user to modulate the contribution of each dataset to the layout. 799 

Integrated analysis can be performed on the embedding or the graph, and the embedding also 800 

provides an integrated visualization. An extended description of MultiMAP, including 801 

mathematical background, is in the Supplementary information. 802 

 803 

Synthetic Data 804 

 805 

MultiMAP was applied to two synthetic examples of multimodal data, in order to study the 806 

technique in a controlled setting. 807 

 808 

The first synthetic setting is schematized in Figure 2a. This setting consists of one dataset (X1
) of 809 

10,000 points sampled randomly from the canonical 3D “Swiss roll” surface (generated with 810 

sklearn in Python), and a second dataset (X2
) of 10,000 points sampled randomly from a 2D 811 

rectangle. The two datasets can be considered multimodal data because they have different 812 

feature spaces but describe a similar rectangular manifold. In addition, we are given the position 813 

along the manifold of 1% of the data. Distances between data in the different datasets are 814 

calculated for 1% of the data as the absolute differences between these positions. These 815 

distances are supplied to MultiMAP. The purpose of this setting is to determine if MultiMAP can 816 

integrate data in a nonlinear fashion and operate on datasets of different dimensionality.  817 

 818 
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The second synthetic setting is schematized in Figure 2c. This setting consists of two datasets 819 

based on the MNIST database
34

 which comprises 70,000 28x28 pixel grayscale images of 820 

handwritten digits 0-9. The first dataset (X1
) consists of the 28x15 pixel left half of each of images 821 

flattened into a 420 dimensional vector. The second dataset (X2
) consists of the 28x15 pixel right 822 

half of each of 70,000 digit images, also flattened into a 420 dimensional vector. Added to the first 823 

dataset is Gaussian noise with a mean of zero and a standard deviation equal to the maximum 824 

pixel value. The two halves overlap by a 28x2 pixel region. Distances between data in the different 825 

datasets are calculated in this shared space and supplied to MultiMAP. The two datasets can be 826 

considered multimodal because they have different feature spaces but describe a similar 827 

population of digit images. The purpose of this setting is to determine if MultiMAP can effectively 828 

leverage features unique to certain datasets. The thin overlapping region of the two halves is not 829 

enough information to create a good embedding of the data. Many distinct digits are similar in this 830 

thin central sliver, and hence they should cluster together in the feature space of the two pixel 831 

overlap. Indeed, in a UMAP projection of the data in the shared feature space of this overlap, the 832 

clusters of different digits are not as well separated as in the UMAP projections of each half 833 

(Figure 2c). A multimodal integration strategy that effectively leverages all features would use the 834 

features unique to each half to separate different digits, and the shared space to bring the same 835 

digits from each dataset close together.  836 

 837 

Acquisition and processing of human fetal thymic tissue 838 

 839 

The tissue sample used for this study was obtained with written informed consent from the 840 

participant in accordance with the guidelines in The Declaration of Helsinki 2000. The human fetal 841 

tissue was obtained from the MRC/Wellcome Trust-funded Human Developmental Biology 842 

Resource (HDBR, http://www.hdbr.org) with appropriate maternal written consent and approval 843 

from the Newcastle and North Tyneside NHS Health Authority Joint Ethics Committee 844 

(08/H0906/21+5). HDBR is regulated by the UK Human Tissue Authority (HTA; www.hta.gov.uk) 845 

and operates in accordance with the relevant HTA Codes of Practice. 846 

 847 

The developmental age was estimated from measurements of foot length and heel-to-knee 848 

length, and compared against a standard growth chart
35

. A piece of skin was collected from every 849 

sample for Quantitative Fluorescence-Polymerase Chain Reaction analysis using markers for the 850 

sex chromosomes and the following autosomes: 13, 15, 16, 18, 21, 22. The sample was of normal 851 

karyotype. 852 

 853 

The tissue was processed immediately after isolation using enzymatic digestion. Tissue was 854 

transferred to a sterile 10mm
2
 tissue culture dish and cut into <1mm

3
 segments before being 855 

transferred to a 50mL conical tube. Tissues were digested with 1.6mg/mL collagenase type IV 856 

(Worthington) in RPMI (Sigma-Aldrich) supplemented with 10%(v/v) heat-inactivated fetal bovine 857 

serum (FBS; Gibco), 100U/mL penicillin (Sigma-Aldrich), 0.1mg/mL streptomycin (Sigma-858 

Aldrich), and 2mM L-glutamine (Sigma-Aldrich) for 30 minutes at 37°C with intermittent shaking. 859 

Digested tissue was passed through a 100µm filter, and cells collected by centrifugation (500g for 860 

5 minutes at 4°C). Cells were treated with 1X red blood cells (RBC lysis buffer (eBioscience) for 861 

5 minutes at room temperature and washed once with a flow buffer (PBS containing 5%(v/v) FBS 862 
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and 2mM EDTA) prior to cell counting. For scATAC-seq, cells were taken forward for nuclei 863 

isolation following 10X Genomics guidelines. Briefly, cells were centrifuged (300g for 5 minutes), 864 

added the lysis buffer (Tris-HCl (pH 7.4) 10mM; NaCl 10Mm; MgCl2 3mM; Tween-20 0.1%; NP-865 

40 0.1%; Digitonin 0.01%; BSA 1%) and incubated on ice for 3 minutes (time optimized for 866 

thymus). Following the incubation, cells were washed (Tris-HCl (pH 7.4) 10mM; NaCl 10Mm; 867 

MgCl2 3mM; BSA 1%; Tween-20 0.1%) and centrifuged (300g for 5 minutes) and nuclei were 868 

resuspended in Diluted Nuclei Buffer (10X Genomics). Isolated nuclei were high-quality with well-869 

resolved edges and no evidence of blebbing. The final nuclei concentration was determined prior 870 

to loading using a hemocytometer. 871 

 872 

Single-cell RNA and ATAC sequencing of human thymus 873 

 874 

scRNA-seq targeting 5,000 cells per sample was performed using the Chromium Controller (10x 875 

Genomics). Single-cell cDNA synthesis, amplification, and sequencing libraries were generated 876 

using the Single Cell 5’ Reagent Kit following the manufacturer’s instructions. The libraries from 877 

up to eight loaded channels were multiplexed together and sequenced on an Illumina HiSeq 4000.  878 

 879 

scATAC-seq targeting 5,000 cells was performed using Chromium Single Cell ATAC Library and 880 

Gel Bead kit (10x Genomics). The libraries from up to eight loaded channels were multiplexed 881 

together and sequenced on an Illumina HiSeq 4000. 882 

 883 

Computational processing and analysis of the human fetal thymus single cell genomics 884 

data 885 

 886 

scRNA-seq data were aligned and quantified using the Cell Ranger Single-Cell Software Suite 887 

(version 2.0, 10x Genomics) against the GRCh38 human reference genome provided by Cell 888 

Ranger. The scRNA-seq data was preprocessed using Seurat 3. Cells with fewer than 500 889 

detected genes and more than 10% mitochondrial gene expression content were removed. 890 

Ribosomal genes, cell cycle genes
31

 and genes associated with dissociation-induced effects
36

 891 

were removed. Clusters were identified using a community identification algorithm as 892 

implemented in the Seurat ‘FindClusters’ function, using 30 principal components (PCs) and 893 

annotated using canonical cell-type markers from
31

.  894 

 895 

The scATAC-seq data was aligned and preprocessed using CellRanger (10x Genomics). 896 

SnapATAC
37

 was used for quality control, preprocessing, and generating cell-by-bin and log-897 

normalized gene activity matrices. The binarized cell-by-bin matrix was used as input for term 898 

frequency-inverse document frequency (TF-IDF) weighting, using term frequency and smoothed 899 

inverse document frequency as the weighting scheme. Weighted data were reduced to 30 900 

dimensions using singular-value decomposition (SVD). Clustering and UMAP visualization were 901 

performed using Seurat 3. chromVar
38

 was used to discover transcription factor dynamics and 902 

variation in their motif accessibility. 903 

 904 

The 50 dimension reduced scATAC-seq and the 50 dimension reduced scRNA-seq data were 905 

supplied as input to MultiMAP. A shared feature space with both the scATAC-seq and scRNA-906 
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seq was constructed by removing genes from each dataset that were not present in the other, 907 

and then reducing the space to 50 dimensions using PCA. This shared space was supplied as 908 

input to MultiMAP, allowing the calculation of distances between cells from different datasets. The 909 

parameters of MultiMAP were all set to their default values, including the weight parameter for 910 

the scRNA-seq set to 0.8 and for ATAC-seq set to 0.2, on account of the higher-quality scRNA-911 

seq.  912 

 913 

The Leiden algorithm
39

 was applied directly to the MultiGraph to jointly cluster all cells. The 914 

clusters were then annotated using canonical cell-type markers from 
31

. Diffusion pseudotime 915 

(DPT)
40

 was used for trajectory inference. The MultiGraph was supplied as input to the DPT 916 

function in SCANPY
41

. DPT was performed only on cells annotated as T cells. Cells were removed 917 

if they were positioned away from T cell clusters and close to Fibroblasts and Erythrocytes on the 918 

MultiMAP plot, as this likely indicated that they were incorrectly annotated. tradeSeq
42

 was used 919 

to identify genes whose expression changes significantly along the trajectory. 920 

 921 

Acquisition and processing of human PBMCs 922 

  923 

PBMCs from two donors were acquired from a LeukoLab (Clinical division of AllCells). Frozen 924 

PBMC samples were thawed quickly at 37 °C in a water bath. Two pools made for technical 925 

duplicates with ~500,000 cells for each donor per pool (50/50). Nuclei isolation, transposition, 926 

ATAC-seq and Gene Expression (GEX) sequencing libraries construction performed according 927 

to the manufacturer’s Demonstrated protocol (CG000365 Rev A; 10X Genomics) and Next GEM 928 

Single Cell Multiome ATAC and Gene Expression user guide (CG000338 Rev A; 10X Genomics). 929 

One lane per pool with a 3,000 targeted nuclei recovery was loaded on a Chromium Next GEM 930 

Chip J. ATAC-seq and GEX indexed libraries were sequenced on a NovaSeq 6000 SP Flowcell 931 

according to the 10X Genomics recommendations, aiming for a minimum of 50,000 PE reads per 932 

cell for both types (ATAC-Seq and GEX) libraries.  933 

 934 

Computational processing and analysis of the human PBMCs Multiome ATAC+RNA data 935 

 936 

snRNA-seq and snATAC-seq data were aligned and quantified using the Cell Ranger ARC suite 937 

(10x Genomics) against the GRCh38 human reference genome provided by Cell Ranger. The 938 

snRNA-seq data was preprocessed using Seurat 3. Cells with fewer than 500 detected genes 939 

and more than 20% mitochondrial gene expression content were removed. Clusters were 940 

identified using a community identification algorithm as implemented in the Seurat ‘FindClusters’ 941 

function, using 30 principal components (PCs) and annotated using canonical cell-type markers.  942 

 943 

SnapATAC
37

 was used for quality control, preprocessing, and generating cell-by-bin and log-944 

normalized gene activity matrices for the snATAC-seq data. The binarized cell-by-bin matrix was 945 

used as input for term frequency-inverse document frequency (TF-IDF) weighting, using term 946 

frequency and smoothed inverse document frequency as the weighting scheme. Weighted data 947 

were reduced to 30 dimensions using singular-value decomposition (SVD). Clustering and UMAP 948 

visualization were performed using Seurat 3. We used the  949 

 950 
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The 50 dimension reduced snATAC-seq and the 50 dimension reduced snRNA-seq data were 951 

supplied as input to MultiMAP. A shared feature space with both the snATAC-seq and snRNA-952 

seq was constructed by removing genes from each dataset that were not present in the other, 953 

and then reducing the space to 50 dimensions using PCA. This shared space was supplied as 954 

input to MultiMAP, allowing the calculation of distances between cells from different datasets. The 955 

parameters of MultiMAP were all set to their default values, including the weight parameter for 956 

the snRNA-seq set to 0.8 and for snATAC-seq set to 0.2, on account of the higher-quality snRNA-957 

seq.  958 

 959 

 960 

 961 

Single-cell RNA sequencing of mouse spleen and data processing 962 

 963 

The mice were maintained under specific pathogen-free conditions at the Wellcome Trust 964 

Genome Campus Research Support Facility (Cambridge, UK). These animal facilities are 965 

approved by and registered with the UK Home Office. All procedures were in accordance with the 966 

Animals (Scientific Procedures) Act 1986. The protocols were approved by the Animal Welfare 967 

and Ethical Review Body of the Wellcome Trust Genome Campus. 968 

The spleen from a 6-month-old C57BL/6Jax mouse was removed. The splenocytes were isolated 969 

by passing the spleen through a 70 µm cell strainer (Fisher Scientific 10788201) into 30 m ice-970 

cold 1X DPBS (Thermo Fisher 14190169) with 2 mM EDTA and 0.5% (w/v) BSA (Sigma A9418) 971 

using the plunger of a 2-ml syringe. Cells were spun down at 500 g for 7 minutes at 4 degree. 972 

Then the supernatant was removed, and the cell pellet resuspended in 5 ml 1X RBC lysis buffer 973 

(Thermo Fisher 00-4300-54). The cell suspension was vigorously vortexed for 5 seconds and left 974 

on the bench for 5 minutes to lyse the red blood cells. Then 45 ml ice-cold 1X DPBS was added, 975 

and cells were spun down at 500 g for 7 minutes at 4 degrees. The supernatant was removed, 976 

and 30 ml ice-cold 1X DPBS with 0.1% BSA was used to resuspend the cell pellet. The cell 977 

suspension was passed through a Miltenyi 30 μm Pre-Separation Filter (Miltenyi 130-041-407), 978 

and the cell number was determined using the C-chip counting chamber (VWR DHC-N01). The 979 

cells were spun down again, and the cell pellet resuspended in ice-cold 1X DPBS with 0.1% BSA 980 

to reach a concentration of 1,000,000 cells per ml. The splenocytes were then loaded on the 10x 981 

Chromium Controller, aiming to recover ~ 5000 cells (Targeted Cell Recovery 5000 cells). cDNA 982 

and a sequencing library were made according to 10x Single Cell 3’ Reagent Kits v2 manual. The 983 

library was sequenced on an Illumina HiSeq 4000 machine. 984 

The resulting scRNA-seq data were preprocessed using CellRanger (10x Genomics) and 985 

downstream analysis were performed using the Seurat 3 workflow. Cells with fewer than 200 986 

detected genes and more than 10% mitochondrial gene expression content were filtered out. 987 

Downstream analyses such as normalization, clustering and visualization were performed using 988 

Seurat 3. Clusters were identified using the community identification algorithm as implemented in 989 

the Seurat ‘FindClusters’ function, using 20 PCs. Clusters were annotated using canonical cell-990 

type markers from the original study
15

. Scrublet
43

 was used for doublet detection. 991 
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 992 

Acquisition and processing of previously published datasets 993 

 994 

The mouse spleen scATAC-seq data was obtained from ArrayExpress (E-MTAB-6714) and 995 

preprocessed using the code provided by Chen et al. 
15

(https://github.com/dbrg77/plate_scATAC-996 

seq). Briefly, reads from all cells were merged, and open chromatin regions were identified by 997 

peak calling with MACS2 
44

. Latent semantic indexing analysis was used for dimensionality 998 

reduction of the resulting cell-by-bin matrix. The binary cell-by-bin accessibility was used as input 999 

for TF-IDF weighting, using term frequency and smoothed inverse document frequency as the 1000 

weighting scheme. Weighted data were reduced to 50 dimensions using SVD. SnapATAC
37

 was 1001 

used to generate gene activity count matrices, which were then log-normalized. The 50 dimension 1002 

reduced accessibility of the scATAC-seq and the 50 dimension reduced gene expression of the 1003 

scRNA-seq data were supplied as input to MultiMAP. The 50-dimension reduced accessibility of 1004 

the scATAC-seq and the 50-dimension reduced gene expression of the scRNA-seq data were 1005 

supplied as input to MultiMAP. A shared feature space with both the scATAC-seq and scRNA-1006 

seq was constructed by removing genes from each dataset that were not present in the other, 1007 

and then reducing the space to 50 dimensions using PCA. This shared space was supplied as 1008 

input to MultiMAP, allowing the calculation of distances between cells from different datasets. The 1009 

parameters of MultiMAP were all set to their default values, including the weight parameter for 1010 

the scRNA-seq set to 0.8 and for ATAC-seq set to 0.2 due to the higher quality scRNA-seq.  1011 

The Leiden algorithm was applied directly to the MultiGraph to jointly cluster all cells. Harmonic 1012 

function-based node classification was performed directly on the MultiGraph to predict cell types 1013 

of the scATAC-seq cells given the cell types of the scRNA-seq cells
45

. 1014 

 1015 

Human hematopoiesis scRNA-seq and scATAC-seq data were downloaded from 1016 

https://github.com/GreenleafLab/MPAL-Single-Cell-2019. The scRNA-seq consists of 6 1017 

experimental batches, and the scATAC-seq consists of 10 experimental batches.  Severe batch 1018 

effects were observed, so this data was considered to consist of 16 separate datasets for the 1019 

integration with MultiMAP. The scRNA-seq data was preprocessed using Seurat 3, and each 1020 

batch was log-normalized and reduced to 50 dimensions with PCA. The cell-by-bin peak 1021 

accessibility was used as provided by the authors. The binary cell-by-bin accessibility was used 1022 

as input for TF-IDF weighting, using term frequency and smoothed inverse document frequency 1023 

as the weighting scheme. Separately for each batch, the weighted data were reduced to 50 1024 

dimensions using SVD. Gene activities of the ATAC data were calculated using Cicero
46

 and log-1025 

normalized. To integrate all of the data at once, all 16 datasets were provided as input to MultiMAP 1026 

in the form of the 50 dimension reduced accessibility data of the scATAC-seq and the 50 1027 

dimension reduced gene expression of the scRNA-seq. Shared feature spaces containing two 1028 

datasets were constructed by removing genes from each of the datasets that were not present in 1029 

the other, and then reducing the space to 50 dimensions using PCA. These shared spaces were 1030 

supplied as input to MultiMAP to calculate distances between cells from different datasets. The 1031 

parameters of MultiMAP were all set to their default values, including the weight parameter for 1032 

the scRNA-seq set to 0.8 and for ATAC-seq set to 0.2 due to the higher-quality scRNA-seq data.  1033 

 1034 
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scRNA-seq data of the mouse frontal cortex acquired with Drop-seq was obtained from 1035 

dropviz.org. STARmap data of the mouse visual cortex was downloaded from 1036 

https://www.starmapresources.com/data/. Each dataset was separately preprocessed with 1037 

Seurat 3
11

, log-normalized, and reduced to 50 dimensions with PCA. Both 50 dimensional 1038 

reduced datasets were supplied as input to MultiMAP. A shared feature space with both the 1039 

STARmap and scRNA-seq data was constructed by removing genes from each dataset that were 1040 

not present in the other, and then reducing the space to 50 dimensions using PCA. This shared 1041 

space was supplied as input to MultiMAP to calculate distances between cells from different 1042 

datasets. The parameters of MultiMAP were all set to their default values, including the weight 1043 

parameter for the scRNA-seq set to 0.8 and for Drop-seq set to 0.2, on account of higher-quality, 1044 

tighter clusters generally observed in the scRNA-seq.  1045 

 1046 

scRNA-seq, scATAC-seq, and snmC-seq data from the mouse primary cortex
20

 was downloaded 1047 

from the Neuroscience Multi-omics Archive (NeMO). The scRNA-seq was preprocessed using 1048 

Seurat 3, log-normalised, and reduced to 50 dimensions with PCA. The binary cell-by-bin 1049 

accessibility and gene activity count matrix of the scATAC-seq were obtained with SnapATAC
37

. 1050 

The gene activity count data was log-normalized. Latent semantic indexing analysis was used for 1051 

dimensionality reduction of the scATAC-seq accessibility. The binary cell-by-bin accessibility was 1052 

used as input for TF-IDF weighting, using term frequency and smoothed inverse document 1053 

frequency as weighting scheme. Weighted data were reduced to 50 dimensions using SVD. The 1054 

DNA methylation data was preprocessed as described in 
47

, using the provided scripts. Briefly, 1055 

after mapping, the methyl-cytosine counts and total cytosine counts were calculated in two sets 1056 

of genome regions for each cell: the non-overlapping 100 kb bins tiling the mm10 genome, which 1057 

was used for dimensionality reduction, and gene body regions ± 2 kb, which is used for the joint 1058 

alignment. Posterior mCH and mCG rates were calculated based on beta-binomial distribution for 1059 

the non-overlapping 100kb bins matrix. The top 3000 highly variable features were taken and the 1060 

data was reduced to 50 dimensions with PCA. Because gene body mCH proportions are 1061 

negatively correlated with gene expression level, the direction of the methylation data was 1062 

reversed by subtracting all values from the maximum methylation value
12

. The 50 dimensional 1063 

reduced scRNA-seq, scATAC-seq, and snmC-seq were supplied as input to MultiMAP. Shared 1064 

feature spaces containing each pair of two datasets and all three datasets together were 1065 

constructed by removing genes from each of the datasets that were not present in the other, and 1066 

then reducing the space to 50 dimensions using PCA. These shared spaces were supplied as 1067 

input to MultiMAP, allowing the calculation of distances between cells from different datasets. The 1068 

parameters of MultiMAP were all set to their default values. The weight parameter for the scRNA-1069 

seq set to 0.8 and for the other omics set to 0.2, on account of the higher-quality scRNA-seq data.  1070 

 1071 

Benchmarking 1072 

 1073 

Benchmarking of MultiMAP, Seurat 3, LIGER, Conos and GLUER was performed using a variety 1074 

of multi-omic data including the scRNA-seq and scATAC-seq data of the spleen, scRNA-seq and 1075 

STARmap of the visual cortex, and the scRNA-seq, scATAC-seq, and snmC-seq of the primary 1076 

cortex. These datasets were chosen because they all have cell type annotations supplied in their 1077 

original publications, which was used to independently validate the integration.  1078 
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 1079 

The scRNA-seq and STARmap data was log-normalised using Seurat 3 and then used as an 1080 

input for all integration methods, except GLUER where the raw data was used as an input and 1081 

preprocessed using the SCANPY workflow. The scATAC-seq data was preprocessed as 1082 

described above and the log-normalised gene activity matrix was used as an input for all 1083 

integration methods. Seurat 3, LIGER, Conos and GLUER were executed as detailed in their 1084 

tutorials, with all parameters set to their default values. Latent Semantic Indexing was used as 1085 

the dimensionality reduction technique for the scATAC-seq data for weighting anchors in Seurat 1086 

3. CCA was used as the dimensionality reduction technique for the scRNA-seq and STARmap 1087 

data for weighting anchors in Seurat 3.  1088 

 1089 

A diversity of performance metrics was used. After integration, label transfer of the cell type 1090 

annotations from the scRNA-seq to each other omic was performed by setting the cell type of a 1091 

query cell to the most frequent type among its 5 nearest labeled neighbors. The balanced 1092 

accuracy of the label transfer (“Transfer”) was calculated using the annotations from the original 1093 

publications as the ground truth. A high accuracy indicates that the same cell types from different 1094 

modalities are near each other in the integrated embedding. After integration, the average 1095 

Silhouette score
48

 (“Silhouette”') across all cells was calculated using the cell type annotations 1096 

from the original publications as the cluster labels. We note that the Silhouette score is not 1097 

affected by the number of clusters as we use the same cell type labels, and hence number of 1098 

clusters, for each integration method. A higher Silhouette score indicates the embedding is better 1099 

separating distinct cell types. The degree of alignment (“Alignment”') of the different datasets in 1100 

the integrated embedding was calculated as the proportion of each cell's 5 nearest neighbors that 1101 

originated in a different dataset, averaged over all cells. This metric was also used in 
12

. A higher 1102 

value of the alignment score indicates that the different datasets are more evenly mixed in the 1103 

integrated embedding. The degree to which the embedding preserves the high-dimensional 1104 

structure (“Structure”) of each dataset was calculated as the Pearson correlation between all 1105 

pairwise distances in the high-dimensional spaces and the corresponding distances in the 1106 

embedding. A higher correlation indicates that the embedding is more faithful to the high-1107 

dimensional structure. All of these performance metrics were also calculated in the shared feature 1108 

space of the datasets to be integrated, to get baseline values of the metrics prior to the application 1109 

of any integration strategy.  1110 

 1111 

The wall-clock runtime of each method on each dataset was recorded. Additionally, to 1112 

characterize the runtimes of the methods on a wide range of dataset sizes, the integration 1113 

methods were run on datasets ranging from 1,000 to 500,000 cells. To produce these datasets 1114 

we subsampled the mouse primary cortex scRNA-seq and scATAC-seq data
20

 using geometric 1115 

sketching
33

. The datasets were subsampled so that there are equal number of cells in the scRNA-1116 

seq and scATAC-seq data until 100,000 cells. Since the scATAC-seq data had 81,196 cells in 1117 

total, for the 500,000 cells comparison, we used an scRNA-seq of 418,804 cells. All methods 1118 

were run with 3.1 GHz Intel i7 cores and 218 GB RAM.  1119 

 1120 

 1121 

 1122 
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