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Abstract 

 

Sequence Read Archive submissions to the National Center for Biotechnology 

Information often lack useful metadata, which limits the utility of these 

submissions. We describe a scalable k-mer based tool for fast assessment of 

taxonomic diversity intrinsic to submissions, independent of metadata. We show 

that our MinHash-based k-mer tool is accurate and scalable, offering reliable 

criteria for efficient selection of data for further analysis by the scientific 

community, at once validating submissions while also augmenting sample 

metadata with reliable, searchable, taxonomic terms.  

 

 

Keywords: metagenomics, MinHash  

 

Background 

 

Established in 2007, the National Center for Biotechnology Information (NCBI)  

Sequence Read Archive (SRA) accepts raw sequencing data directly from high-

throughput sequencing platforms (1). Next generation sequencing (NGS) sets are 
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inherently large, and improved technologies are exquisitely sensitive to 

contamination. Submissions must be processed, before either interpretation or 

quality assessment is possible, to provide submitter feedback and submission 

verification.  The growth of data submission is exponential (doubling 

approximately every 12 months (2)), rendering use of computationally expensive 

methods, such as de novo assembly followed by alignment, impractical due to 

costs and limits of scale, particularly given the time constraint of submission 

processing. 

 

We considered that questions about the quality of a given NGS run could 

reasonably be inferred from the taxonomic distribution of reads within that set, 

whether based on a single organism or of metagenomic design. This is often 

enough information to answer basic experimental or clinical questions, as well as 

inform decisions about the merit of subsequent resource-intensive assessment 

methods.  Read sets with organismal tags can be used to select data for further 

analysis. Moreover, binning reads into taxonomic buckets can identify 

contaminating reads and reads outside of the stated experimental scope. Such 

identified reads can be filtered from a sample before downstream processing. This 

proposed taxonomic analysis is independent of metadata and intrinsic to the run, 

capable of both validating submissions and augmenting sample metadata with 

reliable, searchable, taxonomic terms.  
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Following these principles, we developed a k-mer-based Sequence Taxonomic 

Analysis Tool (STAT). Based on MinHash (3), and inspired by Mash (4), STAT 

employs a reference k-mer database built from available sequenced organisms to 

allow mapping of query reads to the NCBI taxonomic hierarchy (5). We use the 

MinHash principle to compress the representative taxonomic sequences by orders 

of magnitude into a k-mer database, followed by a process that yields a set of 

diagnostic k-mer hashes for each organism.  This allows for significant coverage 

of taxa with a minimal set of diagnostic k-mers. Our results show STAT is a 

reliable method for examining submitted NGS data in a timely, and scalable, 

manner.  

 

Results  

 

STAT was developed for quality assessment of SRA submissions to be shared 

with the submitter, requiring that analyses ideally take no more time than that of 

existing submission processing, while minimizing resource usage. Our design 

starts from the MinHash principle that a random selection of the lowest valued 

constituent blocks in a pool after hashing represents a signature of the parent 

object.  In building k-mer databases from the set of sequences assigned a specific 

NCBI taxonomy id (TaxId), we read the 32 base pair (bp) k-mers as 64-bit hashes, 

selecting the minimum value representative for a window, then iteratively merging 

k-mers from taxonomic leaves to roots (see Methods, Figures 1, 2). 
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Initial analysis using only densely populated k-mer databases performed well.  

However, despite being on average over an order of magnitude smaller than the 

input sequence database size (see below), we determined that loading the entire 

densely merged “tree_filter.dbs” into memory for analysis unnecessarily incurred 

long I/O read time and large memory costs since most runs required only a 

fraction of the complete database. Moreover, STAT jobs, like many computational 

pipelines, are submitted to either a local computer farm cluster scheduler (“grid 

engine”), or by dispatching cloud-based virtual machines.  In both cases job 

scheduling typically requires explicit needed resource declarations such as CPU 

and memory. An initial screen capable of evaluating diversity of the sample and 

necessary resource requirements for detailed analysis minimizes cost and 

maximizes computational efficiency. For these reasons we pursued a selective 

two-step analysis, using a sparse filtering database in the first step to identify the 

presence of any (a) eukaryote if there are more than 100 biological reads of a 

species, (b) bacteria, or archaea with more than 10 biological reads, and (c) virus if 

there are 1-2 biological reads.  This first pass is neither qualitative, nor exhaustive, 

but allows us to quickly identify taxa for focus in the second pass (Figure 3).   

 

To facilitate this two-step process, and further minimize resource requirements, we 

decreased k-mer database size by 33% by storing only the 8-byte k-mers in a 

database file, separately storing pairs of TaxId, total TaxId k-mer count for each 
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TaxId respectively in an auxiliary “annotation” file. The k-mer database / k-mer 

count annotation file pair is designated “dbss”, the database sorted by TaxId, with 

each TaxId set sorted by k-mer. TaxIds identified in the first step against the 

sparse k-mer database are used in the second step to load into memory only those 

TaxId k-mer hashes using the counts provided by the annotation file as offsets. 

MinHash sampling combined with dynamic loading of only necessary dense TaxId 

database k-mer hashes yields significant benefits for cpu and memory 

requirements.  Further, the selection of TaxIds to load may be augmented by 

heuristics, such as purposely withholding TaxIds from contamination detected in 

the prior filtering step. 

 

STAT reports the distribution of biological reads mapping to specific taxonomic 

nodes as a percentage of total biological reads mapped within the analyzed run.  

Since results are proportional to the size of sequenced genomes, a mixed sample 

containing several organisms at equal copy number is expected to find more reads 

originating from the larger genomes. This means that percentages reported likely 

reflect sample genome size(s), and must be considered by the user against the 

genomic complexity of the sequenced sample. 

 

Like all sequence-based classification schemes, STAT reflects and depends upon 

accurately encapsulating evolutionary paths. The significant achievements of 

adapting both the NCBI RefSeq data model (6), and internationally accepted  
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taxonomy to incorporate metagenomic viral sequence  (7,8)  fundamentally benefit 

STAT and other similar classification  tools. 

 

An important consequence of merging in k-mer database construction is to avert 

complications caused by biological complexities.  For example, most k-mers 

derived from endogenous retroviruses found in the human input reference genome 

will likely merge to the root as those k-mers would also be found in the Viruses 

Super Kingdom. 

 

Further, when analyzing results each level – read, run – requires integration of less 

than ideal signals. It is common to find multiple TaxIds identified in a single 

biological read, ideally coherent for a given lineage.  Were those Mus musculus, 

Murinae, and Mammal, there is confidence in declaring the read Mus musculus. 

Should a read map to multiple, related taxonomic nodes, it is reported as 

originating from the most proximal shared taxonomic node. For example, a read 

with hits to sibling species may be reported as their common genus, conservatively 

locating the most proximal common node before ambiguity (Figure 4 ). Likewise, 

such conservative heuristics are required when integrating the signals from all 

biological reads to report the run.  If the run subject is a single organism, it is 

expected that STAT would identify taxonomic nodes across the lineage, and that 

the number of reads mapping to higher level nodes will be more than those 

mapping to terminal nodes.  
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STAT was designed as a tool for assessing the quality of any SRA submission and 

has matured into a tool that also significantly enhances user comprehension. Many 

k-mer tools were created for the purpose of metagenomic taxonomic assignment 

(9) during STAT development. Taxonomic classifiers balance speed, accuracy, 

and memory requirements.  While STAT was neither primarily developed for 

metagenomic analyses, nor as a tool for distribution, the same concerns apply. 

Using MinHash to sample and save at most 1 out of every 64 k-mers generated 

from input sequences yields k-mer databases 1-2 orders of magnitude smaller than 

the parental reference nucleotide database from which they were derived. For 

example, currently the BLAST
® refseq_genomes database used is 1.4 terabytes (tb) 

whereas the representative sparse and dense STAT k-mer databases are 

approximately 1.5 gigabytes (gb), and 75 gb, respectively. 

 

The STAT k-mer databases contain 248,426 TaxIds before merging.  Our 

complete merged 75 gb dense database (“tree_filter.dbss”) represents 130,817 

TaxIds after merging (all data reflect the 20200518 build).  Compare the Kraken 

default  70 gb database that only includes “RefSeq complete genomes, of which 

there are 2,256, while Kraken-GB contains 8,517 genomes” (10). Despite our 

sparse index database (“tree_index.dbs”) size of 1.5 gb, it nonetheless contains k-

mers from 119,982 TaxIds.  
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We compare STAT accuracy to Kraken 2 using the strain exclusion test as 

described by Wood et al. (11). STAT shows the identical accuracy of Kraken 2 for 

both bacteria and virus (see Figure 5). As expected, STAT sensitivity is notably 

dampened as we chose to sample the widest taxonomic breadth. Our desire for 

conservative taxonomic assertions is further reflected by STAT never yielding a 

false positive in accuracy test results (data not shown).  

  

 

We found it unnecessary to apply the same selection of  k-mer hash minimums 

from query sequences to compose a similarity index (3,4), instead of exact k-mer 

(hash) matching.  We show that accuracy is robust, while still reflecting our 

conservative bias in taxonomic assignment. Though similar in performance to 

Kraken 1 input speed (21.6 million reads/minute), and runtime (132.5 seconds) 

characteristics, STAT (maximum resident set size 830304 kilobytes) required only 

8% and 1% of the memory needed by Kraken 1 and Kraken 2, respectively (11).  

Unsurprisingly, the accuracy test (see Methods) required additional time for 

extracting the requested TaxId k-mers on demand. Maximum resident set size 

during the accuracy test was approximately an order of magnitude greater than 

Kraken 2 (11, data not shown), despite loading a k-mer database 20 times the 

“strain_excluded” FASTA file size (3.9 gb) and over 100 times 

“strain_excluded.dbs” size (545 megabytes (mb)).  
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We provide two symmetrical examples of expected and unexpected contamination 

that illustrate STAT effectiveness. 

 

Contamination during a pandemic 

Like many public health institutions worldwide Public Health England (PHE) 

programmatically surveils infectious pathogens using NGS, and submits targeted 

reference genomic analyses to SRA.  The SARS-CoV-2 pandemic emerged in 

December 2019, and many countries outside China identified their first cases in 

early 2020 (12). The United Kingdom’s first cases were identified January 30, 

2020 (13). Routine STAT analysis of submissions during early 2020 identified 

over 2,000 PHE surveillance bacterial NGS submissions likely contaminated with 

SARS-CoV-2 sequences. The earliest of these was dated February 11, 2020, less 

than two weeks from the first recognized U.K. cases. PHE was alerted to the likely 

carryover contamination, acting quickly to limit further events. Subsequent 

investigation confirmed SARS-CoV-2 contamination, ranging from a minimum of 

1 positive spot1 containing 1 positive hit, reaching to 4,233 positive spots 

containing 18,270 hits (see Methods, and Additional file 1). This example 

underscores STAT utility in monitoring submissions for possible contamination, 

allowing curators to contact submitters to alert, and correct, the source of 

contamination. 

                                                       
1

 We use the word “spot” to reference either the un-split paired biological read, or the single unpaired 
biological read. 
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Identifying and removing potential personally identifying information 

As lower cost significantly expanded human genome sequencing, awareness rose 

of potential personally identifying information residing in public repositories (14). 

Large efforts employing NGS to diagnose and monitor human health, or detect 

pathogenic outbreaks such as SARS-CoV-2, caused clinical sample submitters to 

worry about the inclusion of human sequence. As a counterpart to the previously 

discussed contamination example, we sought a STAT-based tool to find and 

remove unavoidable human sequence reads in clinical pathogen samples.  

 

We began by building a k-mer database using human reference sequences 

withholding the iterative merging previously described. The majority 

(approximately 80%, see Methods) of k-mers derived represent conserved 

ancestral sequences, but our goal here is to aggressively identify human 

sequences.  We then subtracted any k-mer also found in the merged kingdom 

databases Viruses, and Bacteria to protect against spurious false positive hits 

targeting clinical pathogens.  After testing several window sizes, we found optimal 

performance using a segment of 32 bp (twice as dense as our standard taxonomy 

database). 
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Because unintended contamination is never uniform, we chose different ends of 

the expected spectrum of human content for testing (see Table 1). Two RNA_Seq 

runs were derived from bronchoalveolar lavage fluid taken from suspected SARS-

CoV-2 patients. The wash of the lower respiratory tract from a patient suffering an 

active infection is expected to contain patient immune cells, sloughed patient 

epithelial cells, lung microbiota, and suspect clinical pathogens. Each run contains 

over five million spots, and though starting with approximately 85% Eukaryotic 

content, less than 10% of the spots remain after scrubbing for human sequence. 

The observation that a 3% selection of all possible human-derived 32 bp k-mers 

identifies over 92% of a random selection of likely human spots validates using 

MinHash and underscores its efficiency.  These examples present a difficult test, 

and we identify 5-6% of the remaining spots as human.  

 

Unlike the previous examples, amplicon-directed sequencing of pathogens is 

expected to contain less unintended human content, as can be seen in Table 1. In 

both cases, 0.1% or less spots were removed, while among those remaining, 

0.01% or fewer spots were identified as human.  In no case was there any 

deleterious loss of the intended target signal (see Additional file 2, S5 Taxonomic 

Summary). 

 

It is estimated that as little as 30-80 statistically independent Single Nucleotide 

Polymorphisms (SNP)  can uniquely identify an individual human (15).  The 
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average sequence error rate (16) is greater than estimated human (intra-species) 

variation (17). Considering the poor coverage of unintended human content in the 

samples, even in the extreme lavage fluid examples, the total length of spot  

alignments identified as human are extremely unlikely to reveal validated, 

statistically independent SNPs capable of individual identification. The great 

majority of spots characterized by a human best hit though not the exclusive 

organism of the top five (“Conserved lineage spots” in Table 1) are highly 

significant alignments to related primates with approximately 20% sharing the 

same low eValue for all members (see Additional file 2, S1-S4). These likely 

represent conserved regions unfavored for SNP location (18).  

 

 

Summary of STAT Human Sequence Removal Tool 

 Human RNA_Seq: 

bronchoalveolar lavage fluid 

SARS-CoV-2 Amplicon 

Accession SRR11092056 SRR11092057 SRR13402847 SRR13444106 

Total Spots 5239723 5184909 

 

216859 471848 

 

Total Spots 

Remaining 

438796 501436 216720 

 

470934 
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Total Spots 

Removed 

4800927 4683473 

 

139 

 

914 

 

Human Spots 

Remaining 

26265 25384 

 

20 

 

2 

 

Conserved 

Lineage Spots 

27217 29507 70 13 

Total Length 

(kbp) of 

Human Spot 

Alignments 

3684 3508 < 3 < 1 

Table 1 Summary of results including those found in Additional file 2 (S1-S4). 

We define “Human Spots” as those where all hits (up to top five) are identified as 

human with eValue  < 1e -10.  “Conserved Lineage Spots” are those containing a 

human top hit (lowest eValue) though not the exclusive organism of hits with 

eValue  <  1e -10,  and where all spot hits have either identical eValue or the 

greatest has eValue < 1e -14. “Total Length of Human Spot Alignments” is the 

sum of all the top alignments for all human spots maining. 

 

 

Conclusions 
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STAT has provided a successful framework for our SRA NGS submission 

pipeline. Sometimes actual sample content may be unknown, and submitted 

metadata are often incomplete and of poor quality (19, 20).  Contamination, as 

highlighted above, may complicate or confuse further analysis.  Recognizing these 

limitations stimulated our foremost goal to derive signals able to validate and 

accurately describe submitted data for the benefit of our users. Reflecting the 

National Institutes of Health (NIH) Science and Technology Research 

Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) 

Initiative (21), and ensuring that NIH-funded research data is findable, accessible, 

interoperable, and reusable (FAIR) (22), results from STAT are available through 

Amazon Web Services’ Athena and Google Cloud Platform’s BigQuery query 

services. Both can be searched to identify runs containing specific organismal 

content (23),  allowing efficient selection of data for further analysis by the 

scientific community.  Over approximately five years, we have processed more 

than 27.9 Peta base pairs from runs averaging 1.1 Giga base pairs in size with 

average total processing throughput of 3 minutes per run. While roughly 20% of 

runs analyzed to date are withheld by submitter request until ready for publication, 

nearly 10.8 million are publicly-queryable records, now richly annotated by STAT 

analysis.   

 

Building a STAT database is flexible; it can be tailored to specific needs. For 

example, we are currently testing a STAT k-mer database designed to identify 
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Antimicrobial Resistance (AMR) in NGS. The AMR_CDS FASTA file containing 

sequences curated by the NCBI Pathogen group (24) is used as input to generate 

32 bp k-mers with a window size = 1; that is, the complete non-redundant k-mer 

set.  For the purpose of removing human reads from clinical pathogen screening 

samples, we presented a tool combining STAT aligns_to with a human-specific 

database. As part of recent NIH-wide efforts to combat SARS-CoV-2, we released 

a detection tool containing aligns_to and a Virus “dbs” that allows users to map k-

mers found in NGS data to taxa included under Coronaviridae (25).  Our choice to 

maximize taxonomic coverage while minimizing k-mer count has proved a 

reasonable and effective balance. Employing the principle of MinHash in design, 

we contribute a framework others may find useful, and offer the collection of tools 

to use freely. 

 

The success we and others have experienced is consistent with the notion of a 

random model of k-mer occurrence (26).  Yet, as keenly shown by Breitwieser et 

al. (27) unique k-mer hits are the most informative. Through serendipity while 

preparing this manuscript, our colleague John Spouge enlightened us with his 

method of a non-parametric statistical approach to assess an NGS run using unique 

hits for confident measurement of taxonomic assignments2.  We are just beginning 

                                                       
2 John Spouge, Statistical Computational Biology Group, National Library of Medicine, National Institutes 
of Health, Personal communication. 
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to explore this implementation in STAT, and look forward to reporting results in 

the future. 

 

Methods 

 

General Design:   

STAT refers to a collection of tools for building k-mer databases, querying those 

databases, and reporting results of our SRA submission pipeline using the former. 

Details described below are based on our standard pipeline settings.   

 

k-mer Size:  

STAT uses 32 bp k-mers (i.e., k=32) for database generation, and as the unit for 

comparison. The majority of unaligned SRA data are reads between 60 and 150 bp 

in length, with mean error rate of 0.18% (16):  such reads can be expected to yield 

many correct 32 bp k-mers for reliable identification.  While reducing from 32 bp 

k-mers to 16 bp k-mers decreases the size of resulting databases, there is 

significant loss of specificity (10 ^9) per k-mer. By comparison, using 64 bp k-

mers are extraordinarily more selective, but database size becomes impractical. 

Finally, with each base encoded in 2 bits, 32 bp k-mers fit fully, and compactly in 

a 64-bit integer.   

 

k-mer Databases: 
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Two primary types of k-mer databases are constructed (as described below): a 

dense database that selects one k-mer per 64 bp segment ( “tree_filter”), of input 

sequence,  while a sparse database (“tree_index”) selects one k-mer per 64 bp 

(Virus), 8000 bp (Eukaryota), and 2000 bp (Bacteria, and Archaea) segment 

respectfully, noting that segment size is roughly proportional to genome size.  

 

k-mer Generation:  

k-mers are selected using an iterative approach derived from MinHash (3) . To 

compose STAT databases, for every fixed length segment (“window”) of 

incoming nucleotide sequence, a list of overlapping k-mers (effectively segment 

length plus right k-1 bp “wings”) is generated from both strands. The 32 bp k-mers 

are encoded using 2 bits per base into 64 bits (8 bytes), then a minimum k-mer 

representing this segment is selected based on the 64-bit encoded k-mer value read 

as 64-bit integer, effectively a 64-bit hash ( see Figure 1) . 

 

Taxonomic k-mer Database generation: 

Construction of k-mer databases is guided by the NCBI Taxonomy Database (5), 

specifically the four root Super Kingdoms:  Archaea (722 species, 1330 total 

nodes), Bacteria (20,259 species, 29,835 total nodes), Eukaryota (455,421 species, 

638,336 total nodes), and Viruses (4656 species, 7,583 total nodes) [current as of 

manuscript date (28)]. 
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From each (Super Kingdom) root, lineage paths traverse nodes where terminal 

nodes are those containing only child leaves. Input sequences (see below) have an 

assigned NCBI Taxonomy Id (TaxId), and represent leaves on these trees.  These 

lineage relationships are represented in a two-column file referred to as “parents”, 

wherein each node TaxId (first column) reports its parent node TaxId (second 

column). 

 

All sequences (see Database Input Sequences) attached to a particular TaxId are 

input to k-mer database generation using segment (“window”) sizes as described. 

For each input set of sequences assigned a TaxId, the immediate output is a 

dictionary that contains the set of unique 32 bp k-mers derived as described (we 

designate this “db” file extension).  Each dictionary is further transformed into a 

binary file that encodes every 32 bp k-mer as an 8-byte (64-bit) integer using 2 

bits per base, followed by its TaxId represented in a 4-byte (32-bit) integer. Thus 

each k-mer record is stored as one 12-byte pair (k-mer, TaxId) in a database file 

designated with “dbs” file extension, sorted by k-mer for binary search 

optimization. 

 

Next, using the taxonomic node relationships (found in the “parents” file), starting 

from the leaves we recursively merge each binary (“dbs”) file representing a 

unique set of k-mers derived from a single TaxId to sibling(s), then parent nodes.  

Each sibling leaf is merged such that k-mers specific to a leaf remain as diagnostic 
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of that TaxId, while those found in neighboring (sibling species) leaves are moved 

up (“merged”) to the common parent node TaxId (see Figure 2).  This process 

results in a single merged database file (“tree_filter.dbs”) representing all k-mers 

assigned a TaxId. 

 

While it is difficult to generalize, we note that when the process of merging is 

complete, approximately 20% of the Homo sapiens 32 bp k-mers remain as unique 

to human; that is, 80% were not diagnostic for the species, and instead merged up 

the eukaryotic tree. 

 

Database generation can be accomplished using any of the build_index* tools (see 

github), and each takes parameters for window size, and k-mer size.   The process 

of merging is accomplished using merge_db. 

 

Database Input Sequences: 

We use NCBI BLAST
® “refseq_genomes” database (29), supplemented with viral 

sequences extracted from the BLAST® “nt/nr” database as input source for 

taxonomy identification in both sparse (“index”) and dense (“filter”) k-mer 

databases (30).  Viral records are extracted from “nt/nr” by loading only sequences 

assigned a TaxId whose lineage root is the Super Kingdom “Viruses”. 

 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.02.16.431451doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431451


 

Querying the Taxonomic k-mer Database (STAT): 

To query a k-mer database, input SRA accessions, or FASTA sequence is used to 

generate the unique set of query 32 bp k-mers read as 64-bit integer hashes for 

finding identical hashes (and assigned TaxId) from the designated k-mer database 

using the tool aligns_to. Proximal results are counts for each specific taxonomic k-

mer hit (see Results, Figure 3). Passed an SRA accession, STAT built with NCBI 

NGS library support will retrieve query sequences, and aligns_to option -

unaligned_only is available to limit analysis to the unaligned reads found in the 

SRA object. 

 

Database Filtering:  

We determined the need to delete low complexity k-mers composed of >50% 

homo-polymer or dinucleotide repeats (e.g. AAAAAA or ACACACACACA).  

This is accomplished using filter_db. We have also investigated “dusting” input 

sequences (31) and found it complementary to filtering, though it is not used at 

this time in our pipeline. 

 

Performance measurement: 

STAT performance metrics were gathered as described in Wood et al. (see 

“Execution of strain exclusion experiments”, and “Evaluation of accuracy in strain 

exclusion experiments” in Methods, 11). A “dense” k-mer database was created 

using the excluded taxa sequences for input (11).  Briefly, we used Mason 2 (32) 
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to generate 500,000 simulated Illumina 100 bp paired reads for each excluded 

strain TaxId, and collected cpu, and memory using ram-disk storage of the 

simulated reads employing 16 threads (16 Intel® Xeon® 2.8 GHz CPUs 64 GB 

RAM). Accuracy was measured using aligns_to against “tree_filter.dbss” (see 

Results) with a list of all TaxIds excluding the 50 strains tested (130,769 TaxIds 

total). 

 

SARS-CoV-2  Contamination Identification and Verification 

Submissions suggesting contamination with SARS-CoV-2 identified through 

normal processing were subject to two further verification methods. All identified 

accessions were rerun using the current SARS-CoV-2 Detection tool (25, 

DockerHub Tag 1.1.2021-01-25, see Additional file 1). Low level contamination 

(1 spot, 1 or 0 resolved hits) observed in 31 records was further examined using 

STAT against a SARS-CoV-2 - specific database (“dbs”) composed of 32-bp 

kmers identified by Wahba et al. (33). Using these 18582 SARS-CoV-2 - specific 

k-mers as queries never found a matching k-mer when run against our full 

tree_filter.dbs (data not shown).   

 

Human Contamination Identification and Removal  

The special-purpose k-mer database uses NCBI BLAST®
 “refseq_genomes” 

limited to Human (TaxId 9606) for input using a “window” segment of 32 bp and 

filtered as described previously. Any k-mers found also in the merged Kingdom 
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databases of Bacteria, and Viruses were removed.  The current database contains  

80,143,408  k-mers and is 612 mb in size. The sra-human-scrubber is intended as 

the last step before submission and takes as input a “fastq file”, and outputs a 

“fastq.clean file” in which all reads identified as potentially of human origin are 

removed (34). 

 

Examples discussed in Results and shown in Table 1 were run against the sra-

human-scrubber docker container ( 34,  DockerHub Tag 1.0.2021-03-11).  For 

each, the resulting “{file}.fastq.clean” was transformed into a fasta file, and then 

subject to NCBI blastn 2.10.0+ using (megablast) parameters [-max_target_seqs 5, 

-evalue 0.00001, -strand plus] against the “refseq_genomes” BLAST®
 database 

(35). The top five hits (by eValue) for each spot containing a human best hit (with 

all hits eValue < 1e -10) can be found in Additional file 2.  
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Figure 1. Finding a minimum representative 32 base pair k-mer.  a From a 

selected 64 base pair segment, the series of 64 possible 32 base-pairs k-mers is 

defined by sequentially shifting the 32-base window by one base.  The first four, 

and last of the possible k-mers is shown schematically. b An example selected k-

mer sequence is shown followed by:  first the two-bit encoding of that same k-mer 

sequence;  finally the 64-bit decimal value of the encoded k-mer.  The lowest 64-

bit decimal value is selected as the representative k-mer for this 64 base segment. 
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Figure 2. K-mer taxonomic merging. See Methods for details. a Before merging 

two sibling species are depicted containing both unique and shared k-mers 

(indicated in bold).. b After merging the two shared k-mers “merge” up to the 

genus level, while those unique to each remain diagnostic for the species. 
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Figure 3. STAT two phase query.  a In the first qualitative phase the input query 

(an SRA accession, or fasta file) is sequentially rendered into 32 bp k-mers, and 

matches to the decimal hash values found in the sparse database identifying taxa 

for deeper analysis. b The TaxIds identified are used to compose the dense 

database using the same query in the second quantitative pass.  
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Figure 4. Resolution of taxonomic assignment. Depicted are three distinct  k-mer 

hits within a single read to multiple branch taxa.  The arrow indicates 

conservatively the most proximal unambiguous common node. 

 

 

 

Figure 5. STAT Accuracy and Sensitivity. Comparison of STAT and Kraken2 

accuracy, sensitivity, and F1 measure using positive predictive value at the genus 

level for a Bacteria. b Virus.  
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● Additional file 1.xlsx, Microsoft Excel: The first sheet (S1) contains results 

from accessions using SARS-CoV-2 detection tool as described in 

Methods; the second sheet (S2) contains those accessions from S1 subject 

to verification using STAT as described in Methods. 

○ S1 SARS-CoV-2 Contamination  

○ S2 SARS-CoV-2 Verification   

● Additional file 2.xlsx. Microsoft Excel: The first four sheets (S1-S4) contain 

the top five NCBI BLAST® hits for each accession spot in which at least 

one of those hits was human. The last sheet contains summary STAT 

taxonomic data for each of the four accessions before and after human 

contamination removal tool treatment as described in Methods. 

○ S1 SRR11092056 BLAST®Results  

○ S2 SRR11092057 BLAST® Results 

○ S3 SRR13402847 BLAST® Results 

○ S4 SRR13444106 BLAST® Results 

○ S5 STAT Taxonomic Slices 
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