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Spatiotemporal heterogeneity of glioblastoma is dictated by 2 

microenvironmental interference 3 
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Abstract 45 

Glioblastomas are highly malignant tumors of the central nervous system. Evidence suggests that these 46 

tumors display large intra- and inter-patient heterogeneity hallmarked by subclonal diversity and 47 

dynamic adaptation amid developmental hierarchies1–3. However, the source for dynamic reorganization 48 

of cellular states within their spatial context remains elusive. Here, we in-depth characterized 49 

glioblastomas by spatially resolved transcriptomics, metabolomics and proteomics. By deciphering 50 

exclusive and shared transcriptional programs across patients, we inferred that glioblastomas develop 51 

along defined neural lineages and adapt to inflammatory or metabolic stimuli reminiscent of reactive 52 

transformation in mature astrocytes. Metabolic profiling and imaging mass cytometry supported the 53 

assumption that tumor heterogeneity is dictated by microenvironmental alterations. Analysis of copy 54 

number variation (CNV) revealed a spatially cohesive organization of subclones associated with reactive 55 

transcriptional programs, confirming that environmental stress gives rise to selection pressure. 56 

Deconvolution of age-dependent transcriptional programs in malignant and non-malignant specimens 57 

identified the aging environment as the major driver of inflammatory transformation in GBM, suggesting 58 

that tumor cells adopt transcriptional programs similar to inflammatory transformation in astrocytes. 59 

Glioblastoma stem cells implanted into human neocortical slices of varying age levels, independently 60 

confirmed that the ageing environment dynamically shapes the intratumoral heterogeneity towards 61 

reactive transcriptional programs. Our findings provide insights into the spatial architecture of 62 

glioblastoma, suggesting that both locally inherent tumor as well as global alterations of the tumor 63 

microenvironment shape its transcriptional heterogeneity. Global age-related inflammation in the human 64 

brain is driving distinct transcriptional transformation in glioblastomas, which requires an adjustment of 65 

the currently prevailing glioma models.   66 
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Article 67 

In recent years, novel technologies for single-cell analysis have provided insights into transcriptional 68 

regulation and the dynamic evolution of single cells within brain tumors as well as healthy human 69 

brain1,4–9. Large single-cell RNA sequencing (scRNA-seq) studies of high- and lower-grade glioma have 70 

elegantly demonstrated that intratumoral heterogeneity and dynamic plasticity across cellular states are 71 

hallmarks of malignant brain tumors1,7,9. It was assumed that this dynamic adaptation falls within four 72 

different states, namely the mesenchymal-like (MES-like), neural progenitor cell-like (NPC-like), 73 

astrocyte-like (AC-like) and the oligodendrocytic precursor cell-like (OPC-like) state, mirroring 74 

developmental stages of the human brain1,3. Within this complex network of glioma, it was shown that 75 

neighboring cells such as neurons, glial- and immune cells contribute to the intricate and dynamically 76 

heterogeneous system1,7,10–13. However, a major drawback of single cell analysis is the lack of 77 

information regarding their spatial arrangement, which allows only indirect predictions of cellular and 78 

microenvironmental interactions. The spatial organization of tissue is of high importance in a number of 79 

organs, and the brain above all, is particularly dependent on the spatial organization of cortical layers. 80 

Thus, it is likely that spatial organization patterns are also imitated by CNS-derived malignancies. Spatial 81 

transcriptomics, a novel technology is able to provide transcriptomics data at nearly single-cell 82 

resolution, while preserving the spatial architecture14–16.  83 

 84 

Deciphering spatially resolved transcriptional heterogeneity and lineages  85 

To characterize the spatial architecture of glioblastoma, we created an atlas of spatially resolved 86 

transcriptomics (stRNA-seq) of twenty-four specimens resulting in 94.482 transcriptomes across 87 

different age-groups, anatomic regions and pathologies, Figure 1a and Extended Data Figure 1-3, 88 

Patient information in Supplementary Table 1. Transcriptomes from non-malignant samples 89 

demonstrated similarities across patients whereas malignant transcriptomes were marked by individual 90 

gene expression patterns, Figure 1b. To evaluate whether malignant transcriptomes resulted from 91 

somatic alterations, we estimated copy number variations (CNVs) from the average expression of genes 92 

in large chromosomal regions within each spot, which confirmed the typical gain in chromosome 7 and/or 93 

loss in chromosome 10 in the majority of malignant spots, Figure 1c-d and Extended Data Figure 1-94 

3. The high number of individual copy-number alterations and mutational profiles are assumed to drive 95 
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patient-specific transcriptional regulation1 resulting in individual clusters of transcriptomes, similar to 96 

results seen in other studies1,2.  97 

 98 

Figure 1: a) Illustration of the workflow and the cohort of spatial datasets (right) and an overview of analytic approaches (right). b) 99 

A scatterplot of the tSNE representation with distinct areas of malignant and non-malignant samples. Color reflects individual 100 

specimens and patients. c) Illustration of an example of patient #UKF243, a tumor sample which also contained non-malignant 101 

areas (marked in yellow) as indicated by the CNV heatmap at the right side. d) Dotplot of the percentage of malignant spots within 102 

the stRNA-seq data set based on CNV estimation.  103 

 104 

In order to address the intra-tumor heterogeneity with respect to their spatial architecture, we estimated 105 

shared signatures across patients which reflect common states and lineages within glioblastoma (GBM), 106 

using a combination of two mutually reinforcing approaches. First, we mapped distinct transcriptional 107 

programs of individual tumors and then sought for shared programs across all patients. Next, we 108 

determined the spatial expression patterns through a generalized linear spatial model and identified 109 

recurring patterns across all patients. Through integration of both approaches, we were able to map 110 

common transcriptional programs within the spatial context of glioblastoma. After eliminating small and 111 

partially overlapping clusters within each patient, we identified a total of 139 patient-specific clusters, 112 

Extended Data Figure 4a. To identify shared expression modules, we excluded cell cycle-associated 113 

clusters and identified 6 distinct modules that were consistently expressed across all patients, Figure 114 

2a, Supplementary Table 2 and Extended Data Figure 4a-c. Of note, this approach allowed us to 115 

understand the biological significance of transcriptional programs among patient-specific clusters that 116 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431475


 5 

occur repetitively and were robustly expressed. Our identified modules encompass two major groups 117 

involving developmental and inflammatory/hypoxia-associated transcriptional programs, later referred 118 

to as “reactive states”. In contrast to the recent described injury response signature2 of glioblastoma, 119 

our data indicate that two distinct subtypes of reactive states coexist and emerge spatially segregated 120 

from each other, Extended Data Figure 5a-b. The first module revealed a strong enrichment in 121 

glycolysis-related pathways and those involved in the response to reduced oxygen-levels (false 122 

discovery rate [FDR] < 0.01, hypergeometric test), therefore named as “Reactive Hypoxia” Extended 123 

Data Figure 5a. The second module was marked by an enrichment in INF-gamma signaling (false 124 

discovery rate [FDR] < 0.01, hypergeometric test), the expression of numerous immune-related genes 125 

(e.g. HLA-DRA, HLA-A, HLA-B) and the signature genes of inflammatory (also referred to as A1-state17) 126 

reactive astrocytes (e.g. GFAP, VIM, CD44), and is henceforth named as “Reactive Immune”, Extended 127 

Data Figure 5b. Spatially resolved projection of both signatures revealed a partial overlap, explained 128 

by a subset of genes which were upregulated in response to both reactive signatures such as CCL2, 129 

CHI3L1 and complement factors, Extended Data Figure 5c-d. The remaining modules (3-6) were 130 

referred to as “lineage states”, containing genes which were associated with developmental stages, 131 

Figure 2a-b. To align our modules along known development hierarchies, we estimated the similarity 132 

to gene signatures of developmental cell types18, Extended Data Figure 5e, and therefore named the 133 

modules as “OPC-like”, “Radial-Glia-like”, “NPC-like-Early Development” and “NPC-like-Late 134 

Development”, Figure 2b, Extended Data Figure 5f-k.  135 

Next, we focused on repeating spatial patterns, where we identified a total number of 81 genes, shared 136 

across all patients, Extended Figure 4e-j, Supplementary Table 3. We clustered these genes 137 

according to their spatially resolved projections using a Bayesian spatial-correlation approach, resulting 138 

in 3 different patterns. These spatial patterns were found to be highly overlapping with our prior 139 

clustering, suggesting that cells of the hypoxia-reactive states were spatially congruent to pattern 1, and 140 

the immune-reactive states were represented in pattern 2, Extended Figure 4e. The lineage states, 141 

predominantly NPC-like and OPC-like, were present in pattern 3, while the radial glia overlapped with 142 

reactive and lineage patterns Extended Data Figure 5 i-k. Our findings suggest that the observed intra-143 

tumor heterogeneity involves individual lineages mirroring brain development, which is consistent with 144 

the findings of others3,19. However, we also observed reactive states in response to various pathological 145 

conditions reminiscent of transcriptional signatures reported for reactive astrocytes20–25.  146 
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 147 

Figure 2: a-b) Correlation heatmap of meta-modules of 6 shared signatures across all tumor spots. Signature genes are listed on 148 

the right. The two major subgroups, lineage and reactive states and associated subgroups are illustrated for the #UKF275_T 149 

sample (b). c) Dimensional reduction scatter plot (UMAP) and velocity streams called from scVelo are illustrated. Colors indicate 150 

the determined cluster (SNN). d) Dimensional reduction scatter plot (UMAP) indicates the enrichment (z-scored) of established 151 

signatures (a). e) Scatterplot with the first two eigenvectors on the x-axis and the third eigenvector on the y-axis. Arrows indicate 152 

the RNA-velocity streams. f) Estimation of initial and terminal states using CellRank, in a representation similar to (e). g) CellRank 153 

based estimation of lineage driver genes are illustrated in a heatmap. h) RNA-velocity streams are presented in space, CNV 154 

estimation confirmed the chromosomal alteration of all spots. i) Illustration of the two estimated initial states (CellRank) are 155 

demonstrated in the upper panel. RNA-velocity fate mapping determined four terminal states which are presented at the bottom 156 

plot. Color density indicates the prediction values for each terminal state. j) Aggregation of individual fate maps into a cluster-level 157 

fate map, using partition-based graph abstraction (PAGA) with directed edges, indicates the direction of differentiation at spatial 158 

resolution (right panel). Spatial surface plot for the gene set enrichment of NPC-like and reactive hypoxia states (right panel). 159 

 160 

Immune or metabolic environment drives spatially exclusive cell fates 161 

To comprehensively interrogate dynamic adaptations, we annotated the RNA-velocity of all tumor cells 162 

(InferCNV-analysis: gain Chr7 and loss Chr 10), Figure 2c-d, and realigned all cells according to their 163 

lineage origin, presented by the first 3 principal components, Figure 2e. Macro states including initial 164 

and terminal states were estimated by Markov chains based on annotated RNA velocity and 165 

transcriptomic similarity (CellRank26). Our data indicated that reactive states likely arose from former 166 

phylogenetic lineage-differentiated origins, Figure 2f. The identified transcriptional programs that drive 167 
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the reactive transformation were closely related to signature genes of known states of reactive 168 

astrocytes21 (CHI3L1, C1S), Figure 2g. We observed that initial and terminal states undergo dynamic 169 

shifts, and the direction of cellular differentiation was not unambiguously determined, reflecting the 170 

enormous plasticity of glioblastomas, Figure 2h-j, Extend Data Figure 6. To evaluate the impact of 171 

metabolic alterations in the observed reactive patterns, we performed Matrix-assisted Laser 172 

Desorption/Ionization Fourier Transform Ion Cyclotron Resonance imaging mass spectrometry (MALDI-173 

FTICR-MSI) of consecutive slices in six patients (spatial transcriptomic blocks) and traced back 174 

metabolic alterations in the regions of unique transcriptional states, Figure 3a, Supplementary Table 175 

1. Spatial metabolomic profiling revealed less intra-patient variability compared to the transcriptional 176 

data, suggesting that metabolic heterogeneity based on regional imbalances indeed exists across all 177 

patients, Figure 3b. We observed regional alterations of fatty acid metabolism and glycolysis 178 

overlapping with signature expression of the hypoxic reactive state, Figure 3c-e. Regions with increased 179 

glycolysis also showed additional gains on chromosome 7 and a strong enrichment of genes associated 180 

with glycolysis, confirming the consistency of our data. 181 

To understand and validate our findings at single-cell resolution, we performed imaging mass cytometry 182 

of consecutive sections (6 patients, 14 different 1000µm regions of interest, ROI) resulting in a 183 

comprehensive proteomic map of 82.179 cells after segmentation, Figure 3f, Supplementary Table 1. 184 

Based on state specific markers, we confirmed the distribution of GBM cells within ROIs of lineage, 185 

reactive immune or hypoxia differentiation, Figure 3g. In particular, we found that T cells CD3(+) were 186 

preferentially localized in regions of tumor cells with a reactive differentiation without significant 187 

differences between hypoxic and immune reactive regions. CD68(+) myeloid cells were similarly 188 

distributed across all reactive- and lineage-state-ROIs, however, CD163(+) myeloid cells were 189 

significantly enriched in immune reactive ROIs (ANOVA, p=0.001), Figure 3h. By mapping the different 190 

spatial levels of tumor infiltration, we found that activated myeloid cells marked by CD163, SPP1 and 191 

HLA-DR were enriched in regions of reactive inflammation GBM state, Figure 3i. Additionally, we 192 

showed that GBM cells and GBM-associated reactive astrocytes VIM(+)/C3(+) form a scar-like formation 193 

at the tumor border.  194 
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 195 

Figure 3: a) Illustration of the workflow. b) Dimensional reduction scatter plot (tSNE) of all batch-corrected specimens (indicated 196 

by colors). c) Hematoxylin and eosin stain (H&E) of the spatial transcriptomic sample (upper panel) and the sample for MALDI-197 

FTICR-MSI (bottom panel). Arrows indicate the bottom left side of the sample. d) Spatial overlap of both techniques was performed 198 

by manual segmentation (illustrated in the left panel). In the right panel, surface plots of gene set variation analysis or metabolic 199 

intensities (z-score enrichment of metabolic pathways) are illustrated. e) Spatial and metabolic intensities are demonstrated along 200 

a spatial trajectory (d, upper plot). f) Illustration of the IMC workflow and segmentation pipeline. g) Scatterplot of state-specific 201 

markers to determine regional distribution of cell states. Colors indicate the ROIs. h) Bar plots of cell counts in different ROIs. 202 

Error bars illustrate the standard error and significance levels were determined by ANOVA. i) Sample with tumor and infiltration 203 

areas (#UKF_269). CNV surface plots indicate the chromosomal alterations at spatial resolution (left) indication low tumor 204 

penetrance in the upper regions. IMC ROIs are marked in the H&E staining. IMC images (right) from all regions illustrate the 205 

different distribution of tumor cells (EGFR), neurons (NeuN) and myeloid cells (CD68 and CD163). Right upper panel, reactive 206 

astrocytes (VIM/C3) and GBM cells (EGFR) are presented at the tumor boarder. The enrichment of the alternative-A2- 207 

transcriptional signature is illustrated at the right side. Right-bottom, immunostaining (IMC) of SPP1, HLA-DR and CD163 illustrate 208 

the typical tumor-associated activated myeloid cells. j) Hierarchical clustering of the estimated CNV alterations is presented (at 209 

spatial resolution, right panel) or in a CNV heatmap. At the bottom, CNV surface plots indicate the chromosomal alterations at 210 

spatial resolution (left) and the corresponding spatial and metabolic intensities (enrichment). k) RNA-velocity stream at spatial 211 

resolution, colors indicate the SNN clusters. Arrows mark spatial trajectories along the velocity streams. l) Line plots of both 212 

trajectories demonstrate the gene set enrichment of subtypes and chromosomal alterations along the velocity streams. m) Gene 213 

set enrichment analysis of the 25% most altered genes (estimated CNV score) on chromosome 7 and 17.  214 

 215 

 216 
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Spatiotemporal lineages and transcriptional plasticity in glioblastoma 217 

Based on the assumption that environmental conditions shape transcriptomic states, we aimed to 218 

explore to what extent these conditions cause selective pressure, leading to more resistant tumor 219 

subclones. Using a hidden Markov model, we predicted the spatially resolved subclonal architecture, 220 

Figure 3j. We found that only a subset of patients revealed subclones as defined by different CNVs in 221 

our examined regions. These patients showed a non/small overlap between individual subclones, 222 

leading to the assumption that the subclonal architecture was not randomly distributed, Figure 3k. We 223 

estimated the pseudotemporal hierarchy using RNA velocity, which demonstrated a large variance of 224 

bidirectional subtype shifts across subclonal regions, and highlights the transcriptional plasticity of 225 

GBM’s, Extended Data Figure 7. A less common alteration of chromosome 17 was correlated with the 226 

enrichment scores of the reactive immune subclass, Figure 3j-k and Extended Data Figure 7. The 227 

upper 0.25 quantile of altered genes on chromosome 17 showed a pathway enrichment in Wnt/β-catenin 228 

(Wnt), which is known to subvert cancer immunosurveillance27, and in ErbB protein family signaling, 229 

Figure 3m. A spatial overlap of gains in chromosome 7 and hypoxic-related signature enrichment was 230 

observed, which followed the same pattern along the RNA-velocity stream (Trajectory 2), Figure 3k-m. 231 

Enrichment analysis of the most altered genes on chromosome 7 revealed dysregulation of focal 232 

adhesion and of the actin cytoskeleton, suggesting increased migratory capacity which may be required 233 

for escape from metabolic imbalance, Figure 3m.  234 

 235 

Patient-specific spatially resolved gene expression is driven by age  236 

Our analysis revealed that environmental factors shape distinct transcriptional programs, which partially 237 

explained the high inter-patient variance. Global changes of the neural environment which arise during 238 

aging remain less explored but are of high importance. Several neurological diseases such as 239 

Alzheimer's disease (AD) or Multiple Sclerosis (MS) cause a general inflammatory environment and 240 

drive the inflammatory transformation of glia cells17,28,29. An increase of inflammatory transformation was 241 

also reported for the aging brain, which could be caused by damage to the blood-brain-barrier30. We 242 

hypothesized that age-related alterations in the neural environment may also support glioblastoma 243 

transcriptional plasticity and differentiation. Indeed, we observed an unbalanced age distribution within 244 

our identified transcriptional subclasses which revealed a shift towards increased reactive adaptation 245 

within elderly patients, Figure 4a. In order to elucidate the biological significance of aging in GBM and 246 

in the human brain, we acquired spatial transcriptomic datasets (n=6) from non-malignant specimens 247 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431475


 10 

across different age groups, ranging from 19 to 81 years. We confirmed the absence of malignant cells 248 

by inferring somatic alterations, Extended Data Figure 8a-b. Common markers of reactive astrocytes 249 

(GFAP, CHI3L1 and C1R) were up-regulated in elderly cortical specimens, Figure 4c, leading to the 250 

assumption that the aging environment may also contribute to the reactive transformation seen in GBM. 251 

To underpin our hypothesis, we estimated common age-related gene expression meta-modules and 252 

identified genes which were associated with neural differentiation and plasticity (ENC1, SNAP25 253 

VSNL1), all of which were significantly downregulated in elderly patients Figure 4d and Extended Data 254 

Figure 8c-f. Common markers of reactive astrocytes such as GFAP, CHI3L1 and oligodendrocytes 255 

(MBP, PLP1) were upregulated, Figure 4e and Extended Data Figure 8h. Through integration of age-256 

related co-expression modules from cortex and tumor samples, we identified a shared inflammatory 257 

activation along the estimated temporal trajectory, Figure 4f. This corroborated our assumption that the 258 

age-related alterations of the neural environment shapes heterogeneity and cellular differentiation in 259 

GBM which was further confirmed by weighted correlation network analysis using bulk RNA-seq 260 

analysis, Extended Figure 9.  261 

 262 

Age influences GBM growth and heterogeneity 263 

Of note, in addition to the investigated tumor- and age-related signaling alterations, GBM commonly 264 

occurs between the 6th and 8th decade of life, implying that the ageing environment contributes to 265 

malignant transformation. To experimentally validate this hypothesis, we used an advancement of our 266 

most recently described novel human neocortical slice model because age-related impacts are difficult 267 

to investigate in murine models. We injected a patient-derived, Zs-green tagged GBM cell line (38y) into 268 

cortical slices from a young (15y, n=6) and an elderly donor (63y, n=7) Figure 4g. After 7 days of culture, 269 

we FACS sorted tumor cells and performed scRNA-seq. A total of 5672 cells were obtained, from which 270 

4772 were identified as tumor cells based on their CNV alterations, Figure 4i, Extended Data Figure 271 

10a-e. Tumor cells injected into the elderly cortical slices revealed lower heterogeneity and a strong 272 

enrichment of reactive markers, Figure 4i. Using pseudo-temporal reconstruction of RNA-velocity and 273 

cell fate determination (CellRank), we found that terminal states predominantly contained reactively 274 

transformed cells Figure 4h. Additionally, tumor cells obtained from aged cortex slices were more 275 

abundant in the terminal-reactive population, Figure 4h. Next we performed differential gene expression 276 

analysis to decipher the impact of an aged-environment on tumor cells which revealed an up-regulation 277 

of genes associated with INF gamma response (IFIT3, IFI6 and IFIT1), Extended Data Figure 10f, and 278 
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a loss of known markers of development programs (H2AFZ also referred to as H2AZ1)2. Diffusion map 279 

re-embedding of the scRNA-seq data indicated a major branching for developmental and reactive 280 

programs. Along a trajectory ranging from development to reactive cell fates, we observed an increasing 281 

accumulation of tumor cells from aged cortex slices, Figure 4j.  282 

 283 

 284 

Figure 4: a) Dimensional reduction (see Fig.2 for detailed explanation) of the first three eigenvectors, colors indicate the age of 285 

patients. Predominantly, highly dynamic branches (right panel) mostly occupied by elderly patients. b) Dimensional reduction with 286 

gene expression of inflammatory/reactive astrocyte genes. c) Surface plots of non-neoplastic cortex sample of a young (upper 287 

row) and an elderly patient (lower row). d) GBM and non-neoplastic samples are used to estimate age-related gene expression 288 

modules. e) Scatter plot of pseudotemporal depended gene expression, colors indicate patient age. f) Heatmap of gene 289 

expression along the estimated pseudotemporal axis. g) Illustration of the neocortical slice model. h) Dimensional reduction 290 

(UMAP) of scRNA-seq. UMAPs indicate different sample source (left bottom), RNA-velocity (middle panel) and enrichment of 291 

reactive/lineage marker expression (right plots). The estimated initial and terminal states are illustrated on the right. i) Volcano 292 

plot of differential gene expression of tumor cells injected into young- or elderly brain slices. j) Diffusion plots (dimensional 293 

reduction, with RNA-velocity) indicate the difference of reactive and lineage differentiation along the major axis. Heatmaps of the 294 

lineage to reactive trajectory are illustrated. On the bottom of the heatmap, a barplot indicates the sample source. A lineplot at the 295 

top of the heatmap illustrates the gene set enrichment analysis of the reactive immune and NPC-like cell states. k) 296 
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Immunostainings of an elderly tumor which was injected into young (left), middle-aged(middle) and age-matched (right) cortical 297 

slices. Immunostainings of GFAP and IBA1 indicate (bottom plots) the increased number of reactive glia during aging. 298 

 299 

To further validate the impact of age-related microenvironmental alterations on growth behavior of 300 

GBM’s, we injected GBM cells derived from both elderly and young patients into cortical slices from a 301 

variety of age groups including infantile, middle aged and elderly donors, resulting in significantly 302 

reduced growth rate compared to the younger cell line, Figure 4k and Extended Data Figure 10g. 303 

Optimal tumor growth was obtained in age-matched slices, Extended Data Figure 10g. Here, we 304 

present a novel approach to illuminate the increased incidence and poorer prognosis of glioblastoma in 305 

the elderly. These insights also affect the further design of tumor models, as so far little attention has 306 

been paid to age-related effects. 307 

 308 

Conclusion 309 

Our investigation uncovered novel insights into the bi- and unidirectional interactions between 310 

microenvironment and transcriptional heterogeneity across time and space in glioblastoma. The in-311 

depth, spatially resolved characterization of glioblastoma at various molecular levels facilitates the 312 

discovery of the dynamic adaptation of cellular states and spatial relationships within the tumor 313 

microenvironment. In close proximity to developmental trajectories of the brain or adaptive 314 

transformation in various CNS diseases, we uncovered dynamic differentiation of GBM cells along 315 

lineage developmental states and reactive transformations. Deciphering the pathogenesis of each state 316 

demonstrated a close link between metabolic alterations and inflammatory responses as drivers of 317 

reactive adaptation in GBM cells. We demonstrated that age-induced inflammatory processes are the 318 

major cause of transcriptional shift towards reactive states in elderly GBM patients. Using our human 319 

neocortical GBM model across different age groups, we confirmed that glioblastoma heterogeneity and 320 

plasticity is age-related. This suggests that artificial age differences in tumors models lead to spurious 321 

experimental results regarding tumor growth and transcriptional plasticity. Our results suggest that 322 

glioblastoma adapts to the aging brain, necessitating tailored therapeutic approaches and underpinning 323 

the importance of a personalized approach in neuro-oncology. 324 

  325 
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Methods: 326 

Ethical Approval 327 

The local ethics committee of the University of Freiburg approved the data evaluation, imaging 328 

procedures and experimental design (protocol 100020/09 and 472/15_160880). The methods were 329 

carried out in accordance with the approved guidelines, with written informed consent obtained from all 330 

subjects. The studies were approved by an institutional review board. Further information and requests 331 

for resources, raw data and reagents should be directed and will be fulfilled by the Contact: D. H. 332 

Heiland, dieter.henrik.heiland@uniklinik-freiburg.de. A complete table of all materials used is given in 333 

the supplementary information. 334 

 335 

Spatial Transcriptomics: 336 

The spatial transcriptomics experiments were performed using the 10X Visium Spatial Gene Expression 337 

kit (https://www.10xgenomics.com/spatial-gene-expression). All the instructions for Tissue Optimization 338 

and Library preparation were followed according to manufacturer’s protocol. Here, we briefly describe 339 

the methods followed using the library preparation protocol. 340 

 341 

Tissue collection and RNA quality control: 342 

Fresh tissue collected immediately post resection was quickly embedded in Tissue-343 

Tek® O.C.T.™ Compound (Sakura, 4583) and snap frozen in isopentane pre-chilled in liquid nitrogen. 344 

Embedded tissue was stored at -80°C until further processing. A total of 10 sections (10µm each) per 345 

sample were lysed using TriZOl (Invitrogen, 15596026) and used to determine RNA integrity. Total RNA 346 

was extracted using PicoPure RNA Isolation Kit (Thermo Fisher, KIT0204) according to the 347 

manufacturer’s protocol. RIN values were determined using a Fragment Analyzer 5200 (RNA kit, 348 

Agilent, DNF-471) according to the manufacturer’s protocol. It is recommended to only use samples 349 

with an RNA integrity value >7.  350 

 351 

Spatial Gene Expression Protocol 352 

10 µm thick sections were mounted onto spatially barcoded glass slides with poly-T reverse transcription 353 

primers, with one section per array. Slides were fixed in 100% methanol and H&E staining was 354 

performed. Brightfield imaging was done at 10x magnification with a Zeiss Axio Imager 2 Microscope, 355 

and post-processing was performed using ImageJ software. Following imaging, permeabilization took 356 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431475


 14 

place for a pre-determined time to release and capture mRNA from the tissue onto primers on the slide. 357 

Template switch oligos were introduced in order to generate a second strand in a reverse transcription 358 

reaction and produced second strand was cleaved off by denaturation. Next, generated cDNA was 359 

amplified and fragments in the size of interest were selected using SPRIselect reagent (Beckman 360 

Coulter, B23318). Quality check was performed using a Fragment Analyzer (HS NGS Fragment kit, 361 

Agilent, DNF-474). Further, fragmentation and double-sided size selection using SPRIselect reagent 362 

was carried out in order to optimize cDNA fragments for Illumina NextSeq Sequencing System. Unique 363 

indexes as well as P5 and P7 Illumina primers were added to the libraries. The average length of the 364 

final libraries was quantified using a Fragment Analyzer (HS NGS Fragment kit, Agilent, DNF-474) and 365 

the concentration of libraries was determined using a Qubit 1X dsDNA HS kit (Thermo Fisher, Q33231). 366 

Final libraries were diluted to 4nM, pooled and denatured before sequencing on the Illumina NextSeq 367 

550 platform using paired-end sequencing. We used 28 cycles for read 1, 10 cycles per index and 120 368 

cycles for read 2 on a NextSeq 500/550 High Output Kit v2.5 (Illumina, 20024907). 369 

 370 

Data Import and preprocessing, filtering and normalization 371 

Data were analyzed and quality controlled by the cell ranger pipeline provided by 10X. For further 372 

analysis we developed a framework for spatial data analysis. The cell ranger output can be imported 373 

into SPATA by either a direct import function (SPATA:: initiateSpataObject_10X) or manually imported 374 

using count matrix and barcode-coordinate matrix as well the H&E staining. The routine import applies 375 

following steps via the Seuratv4.0 package: To normalize gene expression, values of each spot were 376 

divided by the estimated total number of transcripts and multiplied by 10,000, followed by natural-log 377 

transformation. As described for scRNA sequencing, we removed batch effects and scaled data by a 378 

regression model including sample batch and percentage of ribosomal and mitochondrial gene 379 

expression.  380 

 381 

Dimensional reduction 382 

We used the 2000 most variable expressed genes and decomposed eigenvalue frequencies of the first 383 

30 principal components. We used either the PCA analysis implemented in Seuratv4.031 or a 384 

generalized principal component analysis (GLM-PCA) for non-normal distributions32 due to the fact that 385 

our UMI counts follow multinomial sampling with no zero inflation. The obtained components were used 386 
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for shared nearest neighbor-Louvain (SNN-Louvain) clustering followed by nonlinear dimensional 387 

reduction using the UMAP or tSNE algorithm. We estimated diffusion maps by the destiny package33 .  388 

 389 

Clustering and benchmarking 390 

For all cluster approaches of spatial transcriptomics and single-cell RNA-seq we used the non-trivial 391 

estimated eigenvectors. An euclidean distance matrix was computed to identify pairs of cells with shared 392 

neighbors similar to the SNN-Cliq approach34. Cluster integrity was estimated by the highest modularity 393 

of each cluster from a graph, based on random connections between nodes35. Additionally, we 394 

benchmarked our results by hierarchical clustering, k-Means and Partitioning Around Medoids in which 395 

the optimal k was estimated by gap-statistics. Classical cluster comparison was not performed on the 396 

full dataset due to memory constrains. Cluster with less than 100 spots or less than 20 significantly 397 

differently expressed genes were excluded or defined as outliers. Estimation of the cluster marker genes 398 

was performed by the SPATA implementation of a Wilcoxon sum-rank test.  399 

 400 

Identification of shared transcriptional programs and gene expression modules across patients 401 

First, we performed cluster analysis (SNN, as described above) of malignant spots from each tumor 402 

separately. Selection of meaningful clusters was performed as described above and benchmarked by 403 

various cluster approaches. For each individual cluster, we estimated the number of significantly 404 

expressed genes by the following criteria: Genes with 2.5-fold increase of the average log fold-change 405 

and corresponding p values below 0.05 (False-Discovery Rate of a Wilcoxon Rank Sum test). In order 406 

to ensure non overlapping individual clusters, we merged clusters with a Jaccard index above 70%. 407 

Genes of each clusters were used as cluster signatures for further processing. In the next step, we 408 

estimated the cluster similarity using Jaccard indices and discarded clusters with a lower index than 0.2. 409 

Next, we extracted genes with were represented in more than 70% of all clusters to identify common 410 

expressed signature genes. Using hierarchical clustering of the signature genes by average linkage, we 411 

identified six modules containing 309 genes. We performed benchmarking of our clustering by k-Means 412 

and Partitioning Around Medoids in which the optimal k was estimated by gap-statistics. 413 

 414 

Pattern recognition and clustering 415 

First, we sought for spatially exclusive expressed genes also referred to as spatial expression (SE) using 416 

a generalized linear spatial model implemented in the SPARK algorithm36. Through this approach we 417 
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analyzed each tumor separately and selected all significant SE genes (threshold p corrected by 418 

Benjamini–Hochberg p<0.001). For further spatial pattern analysis, we selected genes which were 419 

present in at least 75% of all tumors. To unravel the spatial arrangement and detect co-localized 420 

patterns, we estimated spatial co-localization by a Bayesian spatial correlation model of all recurrent SE 421 

genes. This resulted in a correlation matrix which was hierarchically clustered and revealed 5 distinct 422 

patterns. We further summarized these patterns into three major modules based on our findings from 423 

our first approach. The two reactive patterns (hypoxia and immune-related genes) showed distinct from 424 

each other while developmental subcluster (OPC and NPC) revealed a stringer overlap.  425 

 426 

Pathway analysis of gene sets 427 

We performed pathway analysis by three different methods all implemented into our SPATA toolbox. As 428 

presented in our figured we used gene set variation analysis (GSVA) or z-scored enrichment of gene 429 

sets. The analysis was performed through the GSVA package37. For GO-term enrichment we used the 430 

DOSE package and cluster profiler38.  431 

 432 

Comparison of cortex and tumor samples 433 

First, we merged all cortex samples (n=5) with a total number of 17.275 transcriptomes. For batch effect 434 

removal, we read the data into a monocle339 object and aligned samples by matching mutual nearest 435 

neighbors (monocle3::align_cds)40. Next, we performed pseudotime analysis by setting the root into 436 

spots from a 19-years old cortex sample. The estimated mean pseudotime per sample and real age 437 

showed a significant correlation (R2=0.56 p<0.031). To detect genes which are differentially expressed 438 

along our estimated age-trajectory, we performed Moran’s I statistics, a measure of multi-directional and 439 

multi-dimensional spatial autocorrelation41. We merged genes into modules which were co-expressed 440 

across all spots using the monocle3:: find_gene_modules() function. Next, we performed similar steps 441 

using tumor samples (with altered CNVs) and compared modules by similarity using the Jaccard-index. 442 

We identified a shared module which was highly enriched in elderly patients containing immune related 443 

gene expression.  444 

 445 

Weighted correlation analysis of the TCGA database 446 

In order to confirm the increase of inflammatory genes in elderly patients we performed a weighted 447 

correlation network analysis (WGCNA) with age as a co-variable42. The TCGA gene expression dataset 448 
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(RNA-seq Bulk GBM) was downloaded from the GlioVis database43. In a first step, we estimated the 449 

soft-thresholding power (sft) which was required to reach scale-free topology by iterating over p= 1,…, 450 

10. Using an unsigned network architecture, we reached scale-free topology at a sft of 5. We performed 451 

block wise WGCNA using a Pearson-correlation measurement and a deep split of 2. Next, we merged 452 

modules with highly correlating eigengenes (WGCNA:: mergeCloseModules) and estimated the 453 

eigengene-based connectivity (kME). We correlated the age of patients and the identified kME which 454 

revealed a significant correlation to the kMEmagenta. Next, we characterized the significant correlation 455 

modues by GO-term enrichment analysis and confirmed the inflammatory activation in elderly patients.  456 

 457 

RNA velocity estimation 458 

We used the CellRanger BAM file to separate expression matrices of spliced and unspliced reads 459 

through the ready-to-use pipeline from the velocyto package44. The resulting .loom file was read into the 460 

scVelo Seurat wrapper (https://github.com/satijalab/seurat-wrappers). We merged the Seurat objects 461 

and performed batch effect removal as explained above. After data integration, Seurat objects with 462 

exonic and intronic gene-level UMI counts were converted into h5ad format 463 

(https://github.com/mojaveazure/seurat-disk). We read-in the h5ad files to an AnnData object. Next we 464 

performed normalization and selected the 2,000 most variable expressed genes by the scVelo package 465 

(v0.2.3)45. We excluded all genes with less than 20 assigned reads across the exonic and intronic 466 

components and estimated RNA velocity and latent time using the dynamical model. Data will be 467 

exported as .csv files and implemented into a SPATA object for further visualization. The explained 468 

pipeline is implemented into a SPATA wrapper for scVelo (SPATA::getRNA velocity, in the development 469 

branch).  470 

 471 

Infer lineage differentiation by CellRank  472 

After performing the dynamical model, we estimated macro states which represent initial, terminal states 473 

as well as transient intermediate states using the CellRank package (v1.1.0, https://github.com/-474 

theislab/cellrank)26,45. We constructed a transition matrix using the connectivity kernel which was 475 

analyzed by Generalized Perron Cluster Cluster Analysis (GPCCA)46 after computing a Schur 476 

triangulation. We estimated the probability of all identified macro state (initial and terminal states) in 477 

each spot. The probability vectors are implemented into the fdata slot of the corresponding SPATA 478 

object. Lineage driver genes of each estimated macrostate were identified by the 479 
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compute_lineage_drivers function of CellRank. Additionally, we used the partition-based graph 480 

abstraction (PAGA) to simplify state transition in space. 481 

 482 

Visualization of RNA velocity in spatial transcriptomic datasets 483 

Visualization off all tumor samples was performed by using the first 3 principal components (PC1-3) 484 

which was integrated into the AnnData object in the adata.obsm['X_umap'] slot. The velocity streams 485 

were computed by the pl.velocity_embedding_stream function referring to the “X_umap” slot. In our 486 

spatial transcriptomic data, we aimed to preserve the spatial architecture when adding the velocity 487 

streams. We migrated the spatial coordinates from the SPATA object to the AnnData object into the 488 

adata.obsm['X_umap'] slot which was used for the pl.velocity_embedding_stream function.  489 

 490 

Estimation of transient gene expression programs along RNA velocity streams 491 

In order to estimate transcriptional programs which were dynamically regulated in space (spatial 492 

transcriptomics) and time (RNA velocity estimation) we used the computed velocity streams as spatial 493 

trajectories. Using the SPATA::createTrajectories function, we sought for genes which followed a 494 

predefined dynamic along our spatio-temporal trajectory as recently described47. 495 

 496 

Spatial gene expression 497 

The visualization of spatial gene expression is implemented in the SPATA software SPATA:: 498 

plotSurfaceInteractive. For spatial expression plots, we used either normalized and scaled gene 499 

expression values (to plot single genes) or scores of a set of genes, using the 0.5 quantile of a probability 500 

distribution fitting. The x-axis and y-axis coordinates are given by the input file based on the localization 501 

at the H&E staining. We computed a matrix based on the maximum and minimum extension of the spots 502 

used (32x33) containing the gene expression or computed scores. Spots without tissue covering were 503 

set to zero. Next, we transformed the matrix, using the squared distance between two points divided by 504 

a given threshold, implemented in the fields package (R-software) and adapted the input values by 505 

increasing the contrast between uncovered spots. The data are illustrated as surface plots (plotly 506 

package R-software) or as images (graphics package R-software). 507 

 508 

Spatial correlation analysis 509 
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In order to map spatial correlated gene expression or gene set enrichments we used z-scored ranked 510 

normalized expression values. One gene expression vector or enrichment vector of a gene set is used 511 

to order the spots along a spatial trajectory. We construct the trajectory of spots from lowest ranked to 512 

highest ranked spot (based on z-scored input vectors). The genes of interest (which were correlated 513 

with the spatial trajectory) are fitted by loess-fit from the stats-package (R-software) and aligned to the 514 

ranked spots and scaled. Correlation analysis was performed by Pearson's product moment correlation 515 

coefficient. For heatmap illustration the gene order was computed by ordering the maximal peak of the 516 

loess fitted expression along the predefined spatial trajectory.  517 

 518 

Identification of cycling cells  519 

We used the set of genes published by Neftel and colleagues1 to calculate proliferation scores based 520 

on the GSVA package implemented in R-software. The analysis based on a non-parametric 521 

unsupervised approach, which transformed a classic gene matrix (gene-by-sample) into a gene set by 522 

sample matrix resulted in an enrichment score for each sample and pathway. From the output 523 

enrichment scores we set a threshold based on distribution fitting to define cycling cells.  524 

 525 

CNV estimation 526 

For CNV analysis we implemented a CNV pipeline into our SPATA R tool available in the development 527 

branch, https://github.com/theMILOlab/SPATA. Copy number Variations (CNVs) were estimated by 528 

aligning genes to their chromosomal location and applying a moving average to the relative expression 529 

values, with a sliding window of 100 genes within each chromosome, as described recently8. First, we 530 

arranged genes in accordance to their respective genomic localization using the InferCNV package (R-531 

software)8. As a reference set of non-malignant cells, we used a spatial transcriptomic dataset from a 532 

non-malignant cortex sample. To increase speed and computational power, a down-sampling is optional 533 

possible. To avoid the considerable impact of any particular gene on the moving average we limited the 534 

relative expression values [-2.6,2.6] by replacing all values above/below exp(i)=|2.6|, by using the 535 

infercnv package (R-software).	This was performed only in the context of CNV estimation as previous 536 

reported48. The exported .RDS files were reimported and grouped by chromosomal averages of 537 

estimated CNV alterations and aligned to their spatial position using the fdata slot of the SPATA object. 538 

Using the SPATA::joinWithFeatures() function extraction of cluster-wise comparison are performed. 539 

Additionally, we implemented the option to select the most altered genes of chromosomes. 540 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431475


 20 

 541 

MALDI-FTICR-MSI 542 

Tissue preparation steps for MALDI imaging mass spectrometry (MALDI-MSI) analysis was performed 543 

as previously described49,50. Frozen tissues were cryo sectioned at 10 µm from the same tissue block 544 

as used for spatial transcriptomics and thaw mounted onto indium-tin-oxide coated conductive slides 545 

(Bruker Daltonik, Bremen, Germany). The matrix solution consisted of 10 mg/ml 9-aminoacridine 546 

hydrochloride monohydrate (9-AA) (Sigma-Aldrich, Germany) in water/methanol 30:70 (v/v). 547 

SunCollectTM automatic sprayer (Sunchrom, Friedrichsdorf, Germany) was used for matrix application. 548 

The MALDI-MSI measurement was performed on a Bruker Solarix 7T FT-ICR-MS (Bruker Daltonik, 549 

Bremen, Germany) in negative ion mode using 100 laser shots at a frequency of 1000 Hz. The MALDI-550 

MSI data were acquired over a mass range of m/z 75-1000 with 50 μm lateral resolution. Following the 551 

MALDI imaging experiments, the tissue sections were stained with hematoxylin and eosin (H&E) and 552 

scanned with an AxioScan.Z1 digital slide scanner (Zeiss, Jena, Germany) equipped with a 20x 553 

magnification objective. After the MALDI-MSI measurement, the acquired data underwent spectra 554 

processing in FlexImaging v. 5.0 (Bruker Daltonics, Germany) and SCiLS Lab v. 2020 (Bruker Daltonik 555 

GmbH). MS peak annotation was performed using Human Metabolome Database (HMDB, 556 

https://www.hmdb.ca/)51 and METASPACE (https://metaspace2020.eu/)52. 557 

 558 

MALDI data analysis 559 

We read-in the files into R using the readImzML function from the cardinal package53. We reshaped the 560 

pixel data matrix into an intensity matrix and a matrix of coordinates for each tumor separately. We 561 

filtered the m/z matrix to annotated peaks (METASPACE database) using the match.closest function 562 

from the MALDIquant package resulting in a metabolic intensity matrix54. The intensity matrix and the 563 

corresponding spatial coordinated were imported into a SPATA object for further spatial data analysis 564 

using the SPATA::initiateSpataObject_MALDI. 565 

 566 

Human Organotypic Slice Culture 567 

Human neocortical slices were prepared as recently described21,55. Resected cortical tissue (assessed 568 

by EEG and MRI) was immediately brought to the lab in the “preparation medium” (Gibco HibernateTM 569 

media supplemented with 1 mM Gibco GlutaMaxTM , 13 mM Glucose, 30 mM NMDG and 1% Anti-Anti) 570 

saturated with carbogen (95% O2 and 5% CO2). Capillaries and damaged tissue were dissected away 571 
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from the tissue block. The combo of GlutaMax and NMDG in the collection medium has provided us 572 

with best tissue recovery post resection. 300 µm thick cortical slices were obtained using a vibratome 573 

(VT1200, Leica Germany) and incubated in preparation medium for 10 minutes before plating to avoid 574 

any variability due to tissue trauma. Tissue blocks (1 cm × 2 cm) typically permits preparation of 18–20 575 

sections. One to three sections were gathered per insert, with care to prevent them from touching each 576 

other. The transfer of the slices was facilitated by a polished wide mouth glass pipette. Slice were 577 

maintained in growth medium containing Neurobasal L-Glutamine (Lot No. 1984948; Gibco) 578 

supplemented with 2% serum-free B-27 (Lot No. 175040001; Gibco), 2% Anti-Anti (Lot No. 15240-062; 579 

Gibco), 13 mM d-glucose (Lot No. RNBG7039; Sigma-Aldrich), 1 mM MgSO4 (M3409; Sigma-Aldrich), 580 

15 mM Hepes (H0887; Sigma-Aldrich), and 2 mM GlutaMAX (Lot No. 1978435; Gibco) The entire 581 

medium was replaced with fresh medium 24 hours post plating and every 48 hours thereafter.  582 

 583 

Human ex-vivo Glioblastoma Model:  584 

ZsGreen tagged BTSC#233 and BTSC#168 cell lines were cultured and prepared as described 585 

previously21. Briefly, post trypsinization, a centrifugation step was performed, following which the cells 586 

were harvested and re-suspended in PBS for 20,000 cells/µl. Cells were then used immediately for 587 

injection onto tissue sections. A 10 µL Hamilton syringe was used to inject 1 µL of GBM cells onto the 588 

white matter part of the section. Sections with injected cells were incubated at 37°C for a week and 589 

culture medium was refreshed every alternative days. Tumor proliferation was monitored by regular 590 

fluorescence imaging by means of an inverted microscope (Observer D.1; Zeiss). After a week, sections 591 

were either fixed and used for immunostaining or for single cell sequencing. 592 

 593 

Single cell suspension from cultured slices 594 

Nine sections per condition were processed using C-Tubes (Miltenyi Biotech, 130-093-237) with a 595 

shortened protocol for the Neural Tissue Dissociation Kit (T) (Milteny Biotech, 130-093-231). Briefly, the 596 

tissue as well as the first enzyme mix, containing enzyme T and buffer X, were transferred to a C-tube 597 

and incubated at 37°C for 5 minutes, followed by a rotation for 2 minutes. Next, second enzyme mix, 598 

containing enzyme A and buffer Y, was added and incubated for 5 minutes, followed by another rotation 599 

for 2 minutes. The sample was then filtered and centrifuged in a 50ml falcon and cell pellet was further 600 

used for cell sorting. 601 

 602 
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Cell sorting for scRNA-seq 603 

Freshly prepared cell suspensions were washed with FACS buffer containing 2% FCS and 1mM EDTA 604 

in PBS and stained with DAPI. Cells were sorted on the BD FACSAria™ Fusion flow cytometer at the 605 

core facility, University of Freiburg. To gather viable tumor cells, Zs-green positive, DAPI negative 606 

populations were collected in BSA-coated tubes containing 2% FCS in PBS and prepared for later 607 

droplet-based single cell RNA-Sequencing.  608 

 609 

Single cell RNA-sequencing 610 

Single cell RNA-sequencing was performed according to the Chromium Next GEM Single Cell 3´v3.1 611 

protocol (10x Genomics), based on a droplet scRNA-sequencing approach. In brief, collected cells were 612 

added to a prepared master mix containing reagents for a reverse transcription reaction and loaded onto 613 

separate lanes of a Chromium Next GEM Chip G. After running the chip on a Chromium Controller, 614 

generated GEMs were transferred to a tube strip. Following reverse transcription, GEMs were broken, 615 

and cDNA was purified from leftover reagents. Amplified cDNA was fragmented and size-selected using 616 

SPRIselect reagent (Beckman Coulter, B23318). i7 indexes as well as P5 and P7 Illumina primers were 617 

added to the libraries. The average length of final libraries was quantified using a Fragment Analyzer 618 

(HS NGS Fragment kit, Agilent, DNF-474) and the concentration of libraries was determined using a 619 

Qubit 1X dsDNA HS kit (Thermo Fisher, Q33231). Final libraries were diluted to 4nM, pooled and 620 

denatured before sequencing on an Illumina NextSeq 550 Sequencing System (Illumina, San Diego, 621 

CA, USA) using NextSeq 500/550 High Output kit v2.5 (Illumina, 20024906) with 28 cycles for read 1, 622 

8 cycles for i7 index and 56 cycles for read 2. 623 

 624 

Analysis of scRNA-seq 625 

Single cell RNA-seq were processed by 10x Genomics Cell Ranger 3.1.056. Postprocessing was 626 

performed by the MILO-pipeline for scRNA-seq (https://github.com/theMILOlab/scPipelines). Single cell 627 

analysis was performed by the Seuratv4.0 package and SPATA 1.0 package. We used the Seurat 628 

wrapper for scVelo45 to performe pseudotime analysis and Cell Rank26 for cell fate estimation. After 629 

preprocessing of the data through Seurat, we imported the data into SPATA. Further analysis was 630 

performed as explained in the sections above. 631 

 632 

Imaging mass cytometry antibody panel  633 
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A 39-marker IMC panel was designed including structural and tumor markers as well as markers to 634 

assess several innate and adaptive immune cells (Supplementary Table XX). Metal-labeled antibodies 635 

were either obtained pre-conjugated (Fluidigm) or labeled in-house by conjugating purified antibodies 636 

to lanthanide metals using the Maxpar X8 antibody labelling kit (Fluidigm) according to the 637 

manufacturer’s instructions. In addition, 89-Yttrium (III) nitrate tetrahydrate (Sigma Aldrich, cat. # 638 

217239-10G) and 157-Gadolinium (III) chloride (Trace Sciences Int.) were diluted in L-buffer to a 1M 639 

stock solution and further diluted to a 50 μM working solution for subsequent antibody labelling with the 640 

Maxpar X8 labelling kit. Metal-conjugated antibodies were titrated and validated on glioblastoma, brain, 641 

liver and tonsil tissue. 642 

 643 

Sample preparation and staining for imaging mass cytometry 644 

10 µm thick tissue sections on SuperFrost plus slides (R. Langenbrinck GmbH, 03-0060) were dried at 645 

37°C for one minute and fixed in 100% methanol for 30 minutes at -20°C. Slides were rinsed three times 646 

in TBS for 5 minutes each. Tissue sections were encircled with a PAP pen (ImmEdge, Vector 647 

laboratories, H-4000) and blocked for 45 minutes at room temperature using SuperBlock (TBS) Blocking 648 

Buffer (ThermoFisher Scientific, 37581). The sections were then stained with a mix of metal-labeled 649 

primary antibodies diluted in TBS with 0.5% BSA as well as 10% FBS and incubated at room 650 

temperature for one hour. Slides were rinsed in TBS-T (TBS supplemented with 0.2% Tween-20) twice 651 

and twice in TBS for 5 minutes each. Tissue sections were then stained with Iridium Cell-ID intercalator 652 

(500 μM, Fluidigm, 201192B) diluted 1:2000 in TBS for 30 minutes at room temperature. Slides were 653 

rinsed three times for 5 minutes in TBS, dipped in ddH2O for 5 seconds and air-dried. Slides were stored 654 

at room temperature until image acquisition. 655 

 656 

Image acquisition 657 

Two to three 1000 μm² images per patient were acquired using a Hyperion Imaging System (Fluidigm). 658 

Briefly, tuning of the instrument was performed according to the manufacturer‘s instructions. Tissue 659 

sections were laser ablated spot-by-spot at 200 Hz resulting in a pixel size/resolution of 1 μm². 660 

Preprocessing of the raw data was conducted using the CyTOF software v7.0 (Fluidigm) and image 661 

acquisition control was performed using MCD Viewer v1.0.560.6 (Fluidigm). 662 

 663 

IMC data analysis 664 
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Raw data were processed by the bodenmiller pipline57. For single-cell analysis we segmented the cells 665 

based on the nucleus (DNA-staining) using 6 random crops of each image for training. Training was 666 

performed by pixel-wise classification using ilastik58. We imported the classification trained images into 667 

cell profiler to extract single cell intensities of segmented cells. We analyzed the spatially resolved 668 

single-cell matrix by SPATA. For import, we used the SPATA::initiateSpataObject_MALDI() function and 669 

performed batch effect removal between images by matching mutual nearest neighbors40. Cluster 670 

analysis was performed as explained above.  671 
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Extended Data Figures: 820 

Extended Data Figure 1: 821 

 822 
  823 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431475


 30 

Extended Data Figure 2: 824 
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Extended Data Figure 3: 827 

 828 
 829 
Extended Data Figure 1-3: a) Overview of samples with H&E staining (left) and SNN clustering (right) b) Validation of different 830 
cluster algorithm. The barplot indicate the estimated optimal number of clusters using a gap statistical approach. c) Dimensional 831 
reduction (tSNE) of a classical PCA analysis and a GLM-PCA approach. d) Line plot of sum CNV alterations estimated by 832 
InferCNV. The gray area indicates the variance of alterations at each chromosome.  e) CNV heatmap with gains in red and losses 833 
in blue.  834 
  835 
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Extended Data Figure 4: 836 

 837 
Extended Data Figure 4: a) Heatmap of shared genes across individual clusters (jaccard index). ~2/3 of genes are shared across 838 
clusters. b) Gap statistic plot of the optimal number of clusters (shared genes of clusters) by various cluster algorithms. i) 839 
Dimensional reduction of genes shared in all patients using the first three eigenvectors. c) Number of genes of all identified clusters 840 
(signature genes of subclasses). d) Illustration of the pattern recognition approach. e) Example of the distance matrix of genes 841 
detected by SPARK. The correspondent PCA plots are illustrated at the right side (f) g) Gap statistics analysis of the optimal 842 
number of clusters using different algorithms. Colors indicate the individual patients. h) Heatmap of the three major cluster 843 
recognized by hierarchical clustering. i) Gap statistic plot of the optimal number of clusters by various cluster algorithms.  844 
  845 
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Extended Data Figure 5: 846 

 847 
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Extended Data Figure 5: a) Network plot of top enriched pathways of the hypoxic signature. Surface plot of four example genes 848 
related to hypoxic response (right) b) Network plot of top enriched pathways of the immune signature. Surface plot of three 849 
example genes related to immune response (right) c) Estimated spatial overlap using a Bayesian correlation analysis. The plot 850 
indicates signatures occupying similar regions in space. d) Network plot of top enriched pathways of the lineage signatures. e) 851 
Analysis of similarity for all lineage stages using the Nowakowski59 dataset as reference. f-h) comparison of the Neftel subgroups 852 
and the novel signatures. I) Comparison between the signatures of reactive astrocytes, pattern analysis, shared genes approach 853 
and the Neftel study.  854 
 855 
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Extended Data Figure 6: 857 

 858 
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Extended Data Figure 6: a) H&E staining (left upper) and enrichment surface plots of lineage (NPC- and OPC-like signatures) 859 
and reactive genes (hypoxic and immune) b) RNA-velocity stream analysis with arrow which indicate the pseudotemporal 860 
development trajectories. Subgroup location is marked as well major differentiation trajectories. c) Aggregation of individual fate 861 
maps into a cluster-level fate map using partition-based graph abstraction (PAGA) with directed edges indicates the direction of 862 
differentiation at spatial resolution d) Surface plot of estimated CNV alterations of individual patients, red indicate chromosomal 863 
gains, blue reveals chromosomal losses. 864 
  865 
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Extended Data Figure 7: 866 

 867 
Extended Data Figure 7: a) H&E staining (left upper) and surface plots with colored clusters (SNN-cluster approach) of MALDI. 868 
Clusters with high probability of noisy signal were located at the edge of each sample, most likely indicating a technical artifact. 869 
These clusters are excluded for analysis. b) Integration of stRNA-seq and MALDI data indicate regional differences of metabolic 870 
processed between tumor core and edge. H&E staining is illustrated at the left side, with magnifications of the three separate 871 
areas, namely the tumor core, border or transition area and the infiltrating edge. CNV analysis confirmed the lack of CNV 872 
alterations at the infiltrating edge (bottom middle plot). Subtype signatures indicate the enrichment of hypoxic areas (upper middle 873 
plot), radial glia-like and NPC-like areas. NPC enrichment is overlaid by the strong enrichment in the non-malignant areas. 874 
Predominantly, the hypoxic enrichment (right surface plot) and RG-like signature sharply separate the areas which were correlated 875 
to distinct metabolic patterns (right plot).  876 
  877 
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 878 
Extended Data Figure 8: 879 

 880 
Extended Data Figure 8: a) H&E staining (left upper) and surface plots with colored clusters (SNN-cluster approach) of non-881 
malignant cortex samples. The correspondent age is given at the right side. b) CNV heatmap with gains in red and losses in blue 882 
indicate no CNV alteration in the collected samples. c-d) Dimensional reduction (UMAP) with colored age (left side, c) and 883 
pseudotime annotation (d). e) The pseudotime and real time (age patients) significantly correlate (R^2=0.67, p=0.031). f) Heatmap 884 
of age-related gene expression modules. g) Dimensional reducion (UMAP) with expression scores for age related modules. h) 885 
Gene expression of selected age-related genes. Spots are arranged along the pseudotime axis and colors indicate the age. I-j) 886 
Surface plots of gene expression scores of different modules.  887 
 888 
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Extended Data Figure 9: 890 
 891 

 892 
Extended Data Figure 9: a-b) Weighted correlation network analysis of transcriptional data of the TCGA database. The analysis 893 
was designed to identify age-related gene expression signatures. Two modules were found to be significant associated with age 894 
(magenta and grey60) (b). c) Scatterplot of age (y-axis) and module expression (x-axis) with significant correlation (R^2 0.76 895 
p<0.001). Top associated genes as printed. d) GSEA of genes (module magenta) confirmed a strong correlation of age and 896 
inflammatory gene expression signatures. e) Four-state scatterplot (Neftel et al.) indicate the four Neftel states based on the 897 
signature expression. The age of all patient in the Neftel dataset is annotated and colored.  898 
 899 
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Extended Data Figure 10  901 

 902 
 903 
Extended Data Figure 10: a) Scatter plots of used gate-strategy for cell sorting. b) Quality plots of the acquired scRNA-seq dataset. 904 
c) CNV plot of all cells, sharply separating between tumor and non-malignant cells. d) Dimensional reduction (UMAP) of separated 905 
tumor cells (cell phase plot) and correspondent fraction of cell phases between both sample sets. e) Dimensional reduction 906 
(UMAP) with colored cycling cells (Mitosis score). f) Enrichment analysis of genes highly differently expressed between both 907 
sample sets. g) Staining’s of slices with injection of “young tumor cells” (38 years) in slices (n=3) from different age groups. Tumor 908 
formation was highly different with a maximum growth in elderly cortex samples.  909 
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Supplementary Table: 911 

 912 
Supplementary Table 1: Tissue Type (Macroscopic): T: Tumor, C: Cortex, TC: Tumor Core: TI: Tumor 913 
Infiltrative region 914 
Supplementary Table 2: Gene sets from gene expression modules 915 
 916 
Supplementary Table 3: Gene sets from pattern analysis 917 
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