Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Plant trait heterosis is quantitatively associated with expression heterosis of the plastid ribosomal proteins

View ORCID ProfileDevon Birdseye, View ORCID ProfileLaura A. de Boer, View ORCID ProfileHua Bai, View ORCID ProfilePeng Zhou, Zhouxin Shen, Eric A. Schmelz, Nathan M. Springer, Steven P. Briggs
doi: https://doi.org/10.1101/2021.02.16.431485
Devon Birdseye
1Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Devon Birdseye
Laura A. de Boer
1Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura A. de Boer
Hua Bai
1Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hua Bai
Peng Zhou
2Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peng Zhou
Zhouxin Shen
1Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric A. Schmelz
1Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan M. Springer
2Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven P. Briggs
1Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sbriggs@ucsd.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The use of hybrids is widespread in agriculture, yet the molecular basis for hybrid vigor (heterosis) remains obscure. To identify molecular components that may contribute to the known higher photosynthetic capacity of maize hybrids, we generated paired datasets of the proteomes and transcriptomes from leaf tissues of maize hybrids and their inbred parents. Expression patterns in the hybrids were semi-dominant to overdominant for subunits of the digenomic protein complexes required for the light reactions of photosynthesis and for chloroplast protein synthesis; nuclear and plastid-encoded subunits were elevated similarly. These patterns were not mirrored in the nuclear transcriptomes. We compared growth to transcript and protein levels of multiple hybrids with varying levels of heterosis. Expression heterosis (hybrid/mid-parent expression levels) of chloroplast ribosomal proteins and of nuclear transcripts for the photosynthetic light reactions was positively correlated with plant height heterosis (hybrid/mid-parent plant height). Ethylene biosynthetic enzymes were expressed below mid-parent levels in the hybrids, and the ethylene biosynthesis mutant acs2/acs6 partially phenocopied the hybrid proteome, indicating that a reduction in ethylene biosynthesis may be upstream of the elevated expression of photosynthetic and ribosomal proteins in chloroplasts of hybrids.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 22, 2021.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Plant trait heterosis is quantitatively associated with expression heterosis of the plastid ribosomal proteins
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Plant trait heterosis is quantitatively associated with expression heterosis of the plastid ribosomal proteins
Devon Birdseye, Laura A. de Boer, Hua Bai, Peng Zhou, Zhouxin Shen, Eric A. Schmelz, Nathan M. Springer, Steven P. Briggs
bioRxiv 2021.02.16.431485; doi: https://doi.org/10.1101/2021.02.16.431485
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Plant trait heterosis is quantitatively associated with expression heterosis of the plastid ribosomal proteins
Devon Birdseye, Laura A. de Boer, Hua Bai, Peng Zhou, Zhouxin Shen, Eric A. Schmelz, Nathan M. Springer, Steven P. Briggs
bioRxiv 2021.02.16.431485; doi: https://doi.org/10.1101/2021.02.16.431485

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Plant Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2646)
  • Biochemistry (5264)
  • Bioengineering (3678)
  • Bioinformatics (15796)
  • Biophysics (7253)
  • Cancer Biology (5627)
  • Cell Biology (8095)
  • Clinical Trials (138)
  • Developmental Biology (4765)
  • Ecology (7516)
  • Epidemiology (2059)
  • Evolutionary Biology (10576)
  • Genetics (7730)
  • Genomics (10130)
  • Immunology (5192)
  • Microbiology (13904)
  • Molecular Biology (5384)
  • Neuroscience (30778)
  • Paleontology (215)
  • Pathology (878)
  • Pharmacology and Toxicology (1524)
  • Physiology (2254)
  • Plant Biology (5022)
  • Scientific Communication and Education (1041)
  • Synthetic Biology (1385)
  • Systems Biology (4146)
  • Zoology (812)