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ABSTRACT

Autism is noted for both its genotypic and phenotypic diversity. Repetitive action, resistance to
environmental change, and motor disruptions vary from individual to individual. In animal models,
conventional behavioral phenotyping captures such fine-scale variations incompletely. Here we use
advances in computer vision and deep learning to develop a framework for characterizing mouse
behavior on multiple time scales using a single popular behavioral assay, the open field test. We
observed male and female C57BL/6J mice to develop a dynamic baseline of adaptive behavior over
multiple days. We then examined two rodent models of autism, a cerebellum-specific model, L7-Tsc1,
and a whole-brain knockout model, Cntnap2. Both Cntnap2 knockout and L7-Tsc1 mutants showed
forelimb lag during gait. L7-Tsc1 mutants showed complex defects in multi-day adaptation, lacking
the tendency of wild-type mice to spend progressively more time in corners of the arena. In L7-Tsc1
mutant mice, failure-to-adapt took the form of maintained ambling, turning, and locomotion, and
an overall decrease in grooming. Adaptation in Cntnap2 knockout mice more broadly resembled
that of wild-type. L7-Tsc1 mutant and Cntnap2 knockout mouse models showed different patterns
of behavioral state occupancy. Our automated pipeline for deep phenotyping successfully captures
model-specific deviations in adaptation and movement as well as differences in the detailed structure
of behavioral dynamics.

Keywords Autism · Mouse behavior · Open-field test · Computer Vision · Ethology · Markerless tracking · Behavior
quantification · Posture · Dynamics
∗ These authors made similar contributions. † To whom correspondence should be addressed: klibaite@fas.harvard.edu,
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1 Introduction

Autism varies in its manifestations. Arising in early life, this neurodevelopmental disorder is defined by the behavioral
and diagnostic criteria of abnormal social interactions and communication, stereotyped repetitive behaviors, and
restricted interests [13, 41]. Measured by this collection of traits, the intensity of individual components is highly
variable. The entire range of variation is currently classified for treatment purposes as a single broad entity, autism
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spectrum disorder (ASD) [1, 43]. In addition to cognitive and social variation, persons on the autism spectrum
also express variable degrees of deficit in movement and sensory response [35, 36, 44]. Overall, the highly variable
combination of phenotypes associated with ASD presents a challenge to classification and diagnosis.

For a highly heritable disorder such as autism, mice are an attractive model because they open the possibility of studying
the consequences of a particular genetic or environmental factor repeatedly among many individuals. Mouse models of
autism have been designed to reflect known risk factors and causes in humans (construct validity) [10,30]. These models
are selected for investigation based on their signs that recall the human disorder (face validity), including perseveration,
disrupted social preference, and deficits in flexible learning. Face-valid traits can be observed in conjunction with other
traits that are considered of secondary interest, such as sensory and motor deficits. Those sensory and motor phenotypes
originate from the same genetic perturbation that produced the primary traits of interest, making them potentially useful
for linking symptoms to underlying mechanisms.

Traditionally, mouse behavioral testing consists of discrete measurements such as location in a multi-arm maze or
a three-chamber test apparatus [12, 14]. Such characterization omits both finer details of behavior and higher-order
complex behavioral motifs [49]. These details can now be extracted efficiently using modern computational methods.
Recent advances in automated tracking open the possibility of deep behavioral phenotyping consisting of simultaneous
tracking of body-centric joint and body part positions, x-y position in an arena, and task performance, thereby providing
a multilevel view of behavior [3,7,15,34]. This allows the measurement of both movement and cognitive/social features
from a single dataset [20,21]. We developed a method using such a system for semi-supervised behavioral classification
in individual mice during spontaneous activity. Our method describes long-term structure and fine-scale kinematic
details in repeated recordings. Body part identification is consistent within individual mice over multiple sessions in the
open field arena. From these detailed features we used posture-dynamical clustering [5, 24, 25, 33] to quantify the entire
repertoire of behavior.

We established a description of a commonly-used strain of mice, C57BL/6J ("Black6"), to characterize baseline behavior
and to identify sex differences. Sex-dependent differences in gene regulation have been suggested to underlie the
higher incidence of autism in males [17]. We then identified features of movement that were correlated with genetic
background and specific genetic manipulations [14,27,40]. As a test of the method’s discriminatory power, we explored
gene-knockout (KO) models of autism that perturb either the whole brain (Cntnap2 KO) or are cerebellum-specific
(L7-Tsc1 mutant). These two lines are well-studied monogenic strains used to investigate autism endophenotypes [48].
Cntnap2 KO mice have been reported as hyperactive and have been shown to display a mild change in gait, along
with reduced time spent with a novel partner in social behavior assays [8, 32]. Mice with Purkinje cell specific (L7)
null mutation of tuberous sclerosis 1 (Tsc1) reportedly exhibit a variety of social deficits compared to wild-type
littermates, along with changes in gait, increased time spent grooming, and decreased behavioral flexibility [9, 45, 46].
Postural defects have been recently observed in many mouse models of autism [40], revealing an opportunity for deep
phenotyping using machine-vision methods. Both of these strains exhibit similar altered spontaneous and task behavior
compared to wild-type when using coarse-grained metrics; we applied our deep behavioral phenotyping to test for
distinct signatures of behavior under spontaneous non-task conditions.

2 Results

2.1 Deep phenotyping of open field recordings

We recorded over 700 trials in an open field arena (Fig. 1a) from 162 mice (Table 1). Each mouse was recorded for 20
minutes every day for a period of four days. We imaged the mice from below a transparent floor to allow observation of
the paws and base of the tail (Fig. 1b). Movies were analyzed with a semi-supervised behavioral classification and
behavioral labeling scheme (Figs. 1 and S1). In the first step, we used a deep neural network to measure the posture of
each animal over time. Recent advances in body part tracking allow for the use of a small set of user-generated labels to
train a neural network for labeling body parts [33]. We trained the LEAP network with 660 human-annotated images
and achieved position estimates with median confidence probabilities ranging from 0.91 to 0.98 for the snout, chin,
inner and outer limbs, and base and tip of the tail. Ears, body center and sides, and the tail center point were excluded
due to lower estimation accuracy (median confidence probability of 0.81). This pose estimation step resulted in a time
series of the two-dimensional position of each body landmark, xi(t).

The next step in our analysis was a semi-supervised clustering of postural dynamics. Our previous work on behavioral
clustering analyzed the dynamics observed in whole images of an animal but did not specifically probe the dynamics of
individual body parts [5, 24, 25]. We adapted this method for use with the body part position time series, xi(t) [33]
and clustered the dynamics across timescales to define eight major classes of behavior in the open field (Figs. 1c, S1).
The resulting ethogram revealed details not visible from centroid tracking alone (Figure 1d), namely the structure of
spontaneous behavior across mesoscopic timescales.
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Figure 1: Processing of recordings in the open field produces multi-scale quantitative descriptions of behavior.
a) Mice are imaged from below using IR illumination in an open field. b) A composite of several images from the open
field recording. Both raw grey scale images (left) and skeletons obtained from virtual body markers labeled using the

LEAP neural network (right) are shown. Scale bar is 10 cm. c) Ethogram of behavioral classes produced from our
behavioral clustering and classification pipeline based on the posture and movement of animals over time. Below, the

same time series is visualized as a raster to demonstrate behavioral usage during a two-minute period. d) Mouse
centroid speed over the same two-minute period shown in panel (c). e) Raw power for select body parts. N: nose, FR:
front right foot, FL: front left foot, HR: hind right foot, HL: hind left foot, TT: tail tip. f) Position time series for the
nose, front and hind feet, and tail tip (left) during two behaviors. The y position, the anterior-posterior axis, is shown
for a locomotion bout (center). The x position, the medial-lateral axis, is shown for a grooming bout (right). We use the
full 2D position of each body part in our analyses, but show only the dominant axis for these behaviors here for brevity.

g) Normalized power spectra for several tracked body parts for each of the eight behavior classes.
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Figure 2: Behavioral cluster frequency across mouse models on Day 1.
(left) Heatmap of the total behavioral occupancy of each behavioral cluster; rows are individual animals and columns
are behavioral clusters. All rows within the 100-cluster matrix sum to one and describe behavior used over 20 minutes.
Clusters are ordered by median centroid speed for each of the eight behavioral classes (bottom). (right) Heatmap of the

behavioral occupancy for each of the eight behavioral classes.

The time series xi(t) was rotated and translated into the reference frame of the animal by aligning with the anterior-
posterior axis defined by the snout and tail base body parts and transformed into the frequency domain using wavelet
decomposition. This produced a high-dimensional output that captured multiscale (0.25-20 Hz) changes in posture
over time (Figure 1e). We then performed k-means clustering of this high-dimensional data on a balanced selection of
samples from recordings across all male mice. We initially clustered the sampled data into k = 100 clusters, enough to
achieve finely-grained clustering that in some cases was not distinguishable by eye. Data from all experiments were
then clustered by assigning each time point to the cluster of its nearest neighbors in the k-means training set.

An exploration of all 100 clusters revealed several broader classes of behavior exhibited by mice in the open field (Table
2). Similar to recent findings from fruit flies [4], we found that mouse behavior could be organized hierarchically with
coarse classes composed of sub-classes representing variable aspects of behavior. For example, the 21 clusters that
made up the ’locomotion’ class represented the diversity of locomotion movements recorded, differing in velocity,
amplitude and speed of limb movement, and the coordination of the limbs. We categorized each of the 100 clusters into
one of eight behavioral classes (Figs. 1g and 2). This manual curation step revealed that time spent in the open field
was composed of commonly studied behaviors such as locomotion and grooming, but also the less distinct movements
mice made for a large fraction of their time including spatial exploration and ambling. We defined the classes fast
exploration and slow exploration to characterize periods that are usually unaccounted for in traditional measurement
paradigms. Fast exploration, for example, included quick turns and sniffs that are characteristic of alertness or anxiety,
whereas slow exploration included head sweeps and extensions during calm periods.
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We validated the accuracy and interpretability of these categorizations by visually inspecting randomly sampled movies
of mouse behavior from each of the 100 clusters and the eight classes. Movie segments were sampled from all C57BL/6J
male movies (300 20-minute movies overall), and limited to examples where the behavior in question was performed
for at least 250 ms, or 20 frames at our frame rate of 80 Hz. Examples from the 100 behavioral clusters and eight
behavioral classes are available in the Supplementary Materials.

2.2 Behavioral differences upon introduction to the open field arena

The fraction of time spent in each cluster in the experimental arena on the first day of exposure (Day 1) is shown in
Figure 2. Clusters in Figure 2 are ordered horizontally according to their behavioral class, and then by median centroid
speed within each class. Mice spent the most amount of time on Day 1 locomoting after placement in the novel arena,
followed by turning, climbing, and rearing, but almost no time in the idle state.

Inspection of the 100-class usage across individuals revealed unique features that set the Cntnap2 KO and L7-Tsc1
mutants apart from their wild-type littermates, as well as from the large number of C57BL/6J mice, which had the same
genetic background. C57BL/6J mice were most likely to use the fourth- and fifth-fastest locomotion modes at around .2
m/s on Day 1. The Cntnap2 KO was visually distinct from its corresponding wild-type and heterozygote littermates by
the enriched usage of the several fastest locomotion clusters and a decrease in more moderate locomotion. This result
was in agreement with findings that Cntnap2 KO mice are hyperactive [32] and accounted for the large distance these
mice covered on the first day in the open field (Fig. S2). Full mutants from the L7-Tsc1 group showed the opposite
trend from Cntnap2 KO mice, spending less time in the fast locomotion clusters than any other group. The L7-Tsc1
mutants often used several clusters of slow locomotion that were uncommon in either their control littermates or the
baseline C57BL/6J mice.

2.3 Spatial habituation is reduced in L7-Tsc1 mutant mice

Mice, which are prey animals, tend to avoid open spaces in natural environments. Traditional analyses of open-field
experiments divide the area into zones to quantify time spent in the open space, near the edges, and in the highly
confining corners (Fig. 3). Mice spend most of their time at the edges and corners (thigmotaxis). Previous researchers
have sometimes interpreted spatial preferences in terms of the emotional state of the mouse, often anxiety [2]. We
found that in these corner positions, mice performed a variety of behaviors including grooming, rearing, climbing, and
exploration (Fig. 3f).

When first introduced to a new environment, mice explored the full space with some preference for corners. With time
and repeated exposure to the same environment, mice habituated and spent less time crossing through the center of the
arena and more time in the corners. We measured the time an animal spent in the corner zones of the arena for each of
the 4 days of observation to identify the development of thigmotaxis. C57BL/6J males and females, as well as negative
and heterozygote littermates of the ASD models, demonstrated a gradual increase over days in time spent in the corners
(Fig. 3d). Cntnap2 KO mice did not show altered levels of spatial habituation within the statistical detection capacity of
our experiments. In contrast, L7-Tsc1 mutant mice showed a significantly reduced level of habituation, with only a 26%
increase in time spent in the corners between Days 1 and 4 compared to 34% and 46% for the litter mates. This reduced
level of spatial habituation was also seen in the number of center crossings, where the mutants crossed 2.5 times more
frequently than controls after four days of habituation (Fig. 3e). While L7-Tsc1 mutant mice showed a similar level of
anxiety by these metrics compared to controls on Day 1 of the experiment, they were less capable of habituating to the
new environment even after four successive days of exposure.

2.4 Behavioral habituation is reduced in L7-Tsc1 mutant mice

Mice also modulate specific behaviors as they habituate to a new environment. We found that both male and female
C57BL/6J mice increased the time they spent idling, grooming, and exploring, and decreased the time they spent
climbing, turning, and locomoting over consecutive days in the same arena. The largest shift occurred between the first
and second day (Fig. 4a, S3a). Rearing stayed approximately constant from days 1 to 4.

Behavior also changed within the 20-minute observation period of each experiment (Fig. 4b). The pattern of behavioral
change exhibited by C57BL/6J mice within an observation period was similar to the across-day change: locomotion,
climbing, and turning decreased over time while idling, exploring, and grooming increased (Fig. 4b). On average, males
groomed for longer while females spent more time performing locomotion, with females in addition achieving higher
speeds. A comparison of habituation curves for each of eight behavioral classes over four days of recording revealed
this trend across all behaviors, with females performing active behaviors more at the onset of each experiment (Fig. S3).
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Figure 4: Behavioral usage over time for C57BL/6J mice.
a) Behavioral usage for each of eight coarse categories plotted for C57BL/6J male mice for each of four observation

days. All individuals are shown as points, colored traces correspond to the median fraction of time spent in the behavior
for each day. b) The usage of grooming and locomotion behaviors during the 20-min observation period for Days 1 and

4. Shaded regions represent the 95% confidence interval. c) The mean usage for each of eight behavioral classes is
shown for Days 1 and 4.

Cntnap2 KO mice were unaltered in their ability to habituate and were not significantly different from their littermates
although they did groom more often overall (Fig. 5). L7-Tsc1 mutant mice showed reduced habituation (Figures S3, S4,
and S5).

The defect in L7-Tsc1 mutant habituation was most apparent in locomotion and turning behaviors (Figs. 5 and
S5). These mice did not show the expected reduction in turning either over days or within the 20-min observation
period. Turning was used more often, but did not decrease to the same degree over the observation time as littermates.
Locomotion decreased over time but to a lesser degree and the level of locomotion in the L7-Tsc1 mutant mice was
always higher than in littermates.

2.5 Grooming behaviors vary in a complex manner in ASD models

Grooming refers to a variety of repetitive self-touching behaviors, and mouse self-grooming has been used as an animal
model for the self-stimulating behaviors observed in autism [11]. Previous reports have limited quantification to 10
minutes of observation and have not distinguished different types of self-grooming or reported sex differences [42, 46].
In our four-day recording period, we observed that all mouse groups groomed more frequently as the days passed (Figs.
4a, 5a,b, 6), with larger increases in males compared with females. We furthermore found that within-model contrasts
(male v. female, Cntnap2 KO v. Cntnap2 wild type, L7-Tsc1 mutant v. L7-Tsc1 wild type) were modest on Day 1 but
grew considerably over the next three days. The two ASD models showed opposite trends: Cntnap2 KO mice groomed
more frequently than their littermates, whereas L7-Tsc1 mutants mice groomed much less frequently (Fig. 6).

The grooming class could be further broken up into several modes of grooming: body grooming, face/paw groom-
ing/licking, small quick movements, foot scratching, and a mixture mode to account for time spent readjusting between
modes. The total number of episodes spent grooming was normalized to 1 to obtain a relative usage of these grooming
modes (Fig. 6c). Despite differences in total grooming frequency between C57BL/6J males and females, their relative
grooming-mode frequencies were similar and showed the same trend over time. Across days, body grooming increased
in relative frequency while face grooming and quick grooming movements became less frequent. Both ASD models
showed altered distributions of the grooming behaviors. Cntnap2 KO mice exhibited more body grooming compared to
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represent the 95% confidence interval.

their littermates on Days 2 through 4. L7-Tsc1 mutant mice showed the opposite effect with considerably less body
grooming and more face/paw grooming than wild type littermates on all days of observation.

Grooming frequency also increased dramatically within each day’s observation period. Cntnap2 KO mice and their
littermates groomed with similar frequency at the start of each day’s observation, but knockouts increased at a greater
rate during each 20-minute period (Fig. 6a). Conversely, L7-Tsc1 wild-type and heterozygote mice groomed more
as each day progressed, but mutant mice did not. These measurements show that systematic patterns of variation in
grooming within each day of observation typically exceeded the variation across days.

2.6 L7-Tsc1 mutant and Cntnap2 KO mice show locomotion speed and gait defects

All experimental conditions showed reduced amounts of locomotion after Day 1. However, the total amount of
locomotion and the distribution of locomotion speeds depended on condition. Male and female C57BL/6J mice showed
a similar trend in locomotion amount and speed with the female mice moving on average 17% faster than their male
counterparts (Fig. 7a). Cntnap2 KO mice did not differ from their littermates in the amount or speed of locomotion. In
contrast, while L7-Tsc1 mutant mice locomoted more than either the C57BL/6J mice or their heterozygote littermates,
they did so at a 15-25% slower speed. These differences persisted across all four days of testing.

Nearly all children with autism show motor impairment [18, 22], with gait following a locomotor pattern resembling
cerebellar ataxia [16, 37]. To explore the kinematics of locomotion, we identified all locomotion bouts (Figs. 1g and 7b)
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Figure 6: Habituation of grooming behaviors
a) The usage of grooming behaviors during the 20-min observation period for Days 1 through 4 for Cntnap2 and

L7-Tsc1 mice. Colors indicate the strain (blue-negative, green-heterozygote, orange-homozygote). Shaded regions
represent the 95% confidence interval. b) Stacked bar plots showing the mean frequency across mice for each of five
grooming behaviors across Days 1 through 4 with corresponding stacked bar plots below showing the normalized mean

frequency for each of five grooming behaviors.

and analyzed individual body part trajectories along the anterior-posterior axis. The front and hind paws moved in an
oscillating pattern in the frame of reference of the mouse as expected (Fig. 7b) [28]. We also found that the tail often
oscillated as well, matching the frequency of the paw oscillation.

Mouse locomotion could be broken into two different gaits depending on the speed. At very slow speeds (v < 0.1 m/s),
C57BL/6J mice used a walking gait with each paw moving for approximately one quarter of the gait cycle (Fig. 7d).
The order of movement and coordination in the walking gait was Front Right, Hind Left, Front Left, Hind Right. At
higher speeds, mice transitioned to a trot gait with alternating pairs of legs moving together. However, the opposite pairs
of legs are not in phase with each other within the gait cycle. We found that for speeds above ∼ 0.1 m/s, C57BL/6J
mice had an average phase difference of ∼ 0.5 rad, or about 8 percent of the gait cycle. This phase offset decreased
with speed from about ∼ 1 rad at v = 0.1 m/s to ∼ 0.25 rad at v = 0.4 m/s.

The ASD mutants displayed differences in both the gait transition speed and the phase difference between opposite
limbs. Cntnap2 KO mice showed a similar transition speed of about 0.1 m/s, as did to their littermates. In contrast,
L7-Tsc1 mutants used the walking gait much more and transitioned to the trotting gait at a much higher velocity of
∼ 0.2 m/s. The phase difference during trotting was larger for both ASD models. Cntnap2 KO had a phase difference
at 0.2 m/s of 0.8 rad compared to a difference of 0.6 rad for their littermates. L7-Tsc1 mutants had an even larger
difference of 1.0 rad at 0.2 m/s compared to 0.5 rad for their littermates.
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Figure 7: Locomotion kinematics are altered in the ASD models.
a) Stacked bar plots showing the mean frequency for each of four speed bins on Days 1 through 4. b) Left: Examples of
the motion of the limb and tail points during 5-second bouts of locomotion for C57BL/6J, Cntnap2 KO, and L7-Tsc1
mutants. The trajectory of the centroid of the mouse is color coded by time. Time series of the position of each body
part projected onto the anterior-posterior axis is plotted. The start of each gait cycle is marked with a dashed black line
and defined using the front right paw (FR, red). Center: An example image of a mouse is labeled with colors used for
each body part, and the axis of body alignment used when segmenting strides is shown as the axis between the nose and
tail base point (TP). Right: Polar plots of the phase θ of the gait cycle in which each paw reaches a minimum along the
alignment axis in the body frame. The front right paw is used to define θ = 0. The radial axis indicates the speed of
locomotion, which was used to bin the phase results, and the size of the circles indicate how frequent that particular

speed was for a given condition. For Cntnap2 KO and L7-Tsc1 mutants, the colors of dots correspond to the four
labeled paw points.
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3 Discussion

We have found that the observation of mice in an open arena is sufficient to characterize behavior on scales ranging
from sub-second individual limb movements to multi-day adaptive change. The two mouse models we used, Cntnap2
KO and L7-Tsc1 mutants, differed in distinct ways from wild-type mice on within-day measures of behavior, including
gait defects and self-grooming. In addition, L7-Tsc1 mutant mice showed defects in multi-day behavioral evolution.
Thus our methods can quantify complex behavior in ways that recall human autism, and differentiate between mouse
models’ capacity to express these phenotypes (Fig. 8).

Animal behavior is high dimensional. Changes in movement, transitions between states, and adaptive change are most
easily observed by different metrics on multiple time scales. Our method for semi-supervised behavioral classification
allows exploration of all three types of dynamics from a single video recording. Such deep behavioral phenotyping can
capture rich behavioral readouts that illuminate the effects of genetic and experimental perturbations in naturalistic
environments.

Previous methods for analyzing freely-moving behavior have been limited to restricted feature sets. Observations from
freely-moving animals have focused on simple measures, such as spatial location, using footprint measurement and
centroid tracking. Detailed limb movements have been observed in constrained environments such as a corridor or
treadmill to model the relationship between gait and postural features [28, 29], but this approach does not capture
movement in a more natural context. Our approach allows all these types of measurements to be made at once in an
automated manner.

The simplicity of the open field allows rapid characterization without need to train mouse or experimenter. This level of
automation and standardization may contribute to differences with past work. For example, we found that L7-Tsc1
mutant mice showed reduced grooming compared with wild-types, yet past studies report increased grooming. We
found that grooming included many sub-states that involved different movements. Differences in how human scorers
classify such states may lead to lab-to-lab variability in quantification. Additional sources of variation include conditions
that facilitate grooming, such as spraying mice with water or including bedding material in the chamber. Conversely,
our automated methods incorporated a temporal window for clustering, so that singular quick grooming movements
might have been missed. Further study is needed to reconcile these approaches.

Previous studies of mouse behavior have identified large sex differences in pairwise interactions (i.e. same-sex vs.
opposite-sex interactions). Our analysis identified robust sex differences even in the absence of a specific task or another
mouse in the chamber. The male-versus-female difference was also seen in Cntnap2 KO-versus-wild type mice, where
knockouts tended to display increased activity. In contrast, L7-Tsc1 mutant mice showed a reversed phenotype from
the Cntnap2 KO mice and presented with slower and less-coordinated behaviors. Our findings recall the observation
that men are identified as being on the autism spectrum four times as often as women, and would be consistent with
the possibility that regulation of some genes (by our measures, Cntnap2) but not others (Tsc1) might have differential
effects by sex [31].

Mouse models of autism are typically generated from a focal perturbation affecting as little as one gene. However, a
single-gene disruption can still affect many cell types and brain regions at once. Cntnap2 is expressed in neocortex,
striatum, hippocampus, and cerebellum [32]. Therefore behavioral changes in Cntnap2 KO mice may arise from
perturbation of any of these regions or a combination of them. In contrast, L7-Tsc1 mice exhibit reduced Tsc1
expression specifically in Purkinje cells, thus influencing behavior through cerebellar impacts on brain activity. The
patterns of disruption are therefore likely to differ. For example, Cntnap2 KO mice show reductions in neocortical spine
number [19] whereas L7-Tsc1 mutant mice show increased neocortical spine density [23].

The ability to simultaneously characterize movement kinematics and larger scale features of behavior, even without a
task condition, has particular relevance to the study of autism. Movement disruptions appear in 80 percent of children
with autism [18, 22], despite the fact that movement is not considered part of the classic triad of defining symptoms.
Injury to the cerebellum at birth leads to a sharply increased likelihood of autism, raising the possibility that the same
structure that regulates smooth movement may also play a key role in driving the development of higher-level behavioral
capacity [50]). In this way, movement and cognitive maturation may use shared neural substrates. Our analysis of
Cntnap2 KO and L7-Tsc1 mutant mice reveals a shared disruption to specific parameters of gait arising from different
genetic perturbations, one brain-wide and one cerebellar. We find that each model exemplifies different features of ASD
studied in humans: hyperactivity and perseveration in one case, and failure-to-adapt and gait defects in another. In the
future it may be possible to use alterations in movement to aid in the classification of autistic individuals. In addition,
early-life identification of motor symptoms may allow rapid risk stratification for early intervention.

Mouse tests for autism-like phenotypes are selected for their putative relevance to human behavior and for their ease of
administration. However, it is often difficult to probe systems-level mechanisms responsible for the observed alterations
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Figure 8: Summary of behavioral phenotypes of experimental groups

in performance. For example, Cntnap2 KO mice [8, 32] show disruptions on a wide array of tests, none of which are
well studied at a circuit level. Deep behavioral phenotyping allows systems-specific defects (gait) and higher-order
performance to be assayed within the same behavioral recording. In this way our methods open the future possibility
of investigating complex behavior with substantially increased depth, both of phenotyping and of neural mechanism.
The power of these methods will increase as they are integrated with specific task or test conditions, as well as neural
recording and perturbation.

Our approach to characterizing behavior may also eventually be useful in the understanding of human autism. Predictors
of autism such as unusual patterns of sensory response are known to emerge in the first year of life. Deep behavioral
phenotyping can expand the range of observations without need for a specific task. By characterizing fine-grained
movement, limb coordination, and long-time-scale adaptation, it may be possible to identify distinctive features of
behavior that precede a formal diagnosis of ASD. Such information can potentially stratify at-risk children according
to different points of departure from neurotypical paths of cognitive and social development. As the brain-wide
mechanisms of autism also become better understood, such stratification may aid in the understanding and treatment of
the many forms of autism.
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4 Methods

4.1 Experimental animals

C57BL/6J male (n = 60) and female (n = 20) were ordered from Jackson Laboratory (The Jackson Laboratory,
Bar Harbor, ME) and had at least 48 hours of acclimation in the Princeton Neuroscience Institute vivarium before
experimental procedures. Two mouse models were used to analyze autistic endophenotypes.

L7-Tsc1: To test cerebellar modulation of naturalistic behaviors, a Purkinje cell degeneration model with a tuberous
sclerosis 1 gene mutation was used [26, 46]; L7Cre;Tsc1flox/flox). Initially, Tsc1flox/flox (Tsc1tm1Djk/J, Jackson
Laboratory stock #005680) mutant mice were crossed into L7/Pcp2 mice (B6.129-Tg(Pcp2-cre)2Mpin/J, Jackson
Laboratory stock 004146) to create a Purkinje cell specific mutation L7Cre;Tsc1 flox/+. The progeny used from this
cross are control (L7Cre;Tsc1+/+), heterozygous (L7Cre;Tsc1flox/+) mice and mutant (L7Cre;Tsc1flox/flox) mice.
Only male animals were used for behavior experiments. Mice are of mixed genetic backgrounds (C57Bl/6J, 129 SvJae
and BALB/cJ).

Cntnap2: A knockout of Cntnap2 associated with cortical dysplasia-focal epilepsy, Cntnap2-/- (B6.129(Cg)-
Cntnap2tm1Pele/J, Jackson Laboratory stock 017482) was bred to C57BL/6J (Jackson Laboratory stock #000664) male
mice to obtain heterozygote (Cntnap2+/-) progeny. These litters were then bred as a heterozygote strategy to obtain
litters with wild type (Cntnap2+/+), full KO (Cntnap2-/-), and heterozygote (Cntnap2+/-) mice.

All animals were tested in adulthood (>10 weeks of age) and housed with four littermates per cage in Optimice cages
(Animal Care Systems, Centennial, CO). PicoLab Rodent Diet food pellets (LabDiet, St. Louis, MO) and drinking
water were provided ad libitum. All mice were kept in a reverse light cycle for behavioral testing. All experimental
procedures were approved by the Princeton University Institutional Animal Care and Use Committee and performed in
accordance with animal welfare of National Institutes of Health.

4.2 Open Field Test recordings

Animals were placed in an open field area measuring 45.72 cm2 and 30.48 cm in height with a transparent polycarbonate
floor. A Point Grey grayscale camera (12-bit grayscale, 1280 × 1024 pixel resolution at 80 HZ) was used to image
animals from below. The ventilated soundproof box was illuminated with far-red LEDs. To prevent noise disturbance,
doors were kept closed during acquisition. Each mouse was recorded for 20 minutes before being returned to group
housing. Movies were saved as h5 files for further processing in MATLAB.

4.3 Centroid tracking and clipping

Full-frame movies were imaged at 1280 × 1024 pixel resolution, and contain the entire arena in their field of view.
Mouse centroids were tracked and movies are clipped prior to performing joint tracking. Each movie was first sampled
at random to generate a median image from 50 frames across the experiment. 1000-frame chunks were then loaded and
each frame was median-subtracted, down-sampled, and Gaussian-blurred. The centroid of the brightest point after this
procedure identified the approximate location of the centroid of the mouse, and a 400× 400 pixel frame centered at
these coordinates was kept in memory after mean-subtraction. Finally the fully-resolved clipped movie was saved as
an h5 file for further analysis, along with an information file containing the coordinates used to clip the movie from
the original frame. As a validation of comparability with past work, center-of-mass tracking [39] showed that in all
experimental groups, mice covered the most distance on their first day of exposure to the open field, declining on later
days [6, 38].

4.4 Frame alignment and preprocessing

350 frames sampled from among clipped movies were used to train a deep neural network (DNN) using LEAP in order
to identify the coordinates of the snout, center point, and tail point (where the tail meets the body) of the mouse [33].
Each movie was then labeled using this network. The resulting body part coordinates were loaded along with each
clipped movie and info file, and each frame of the original clipped movie was centered at the tail point and aligned to
the tail point-to-nose axis using image translation and rotation functions in MATLAB. The centroid information was
updated to incorporate the new centroid after translation, and the rotation values were also saved for each frame in an
updated information .mat file.
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4.5 Body-part coordinate identification

We used 660 frames to train a deep neural network (DNN) from the aligned clipped movies described in the previous
methods [33]. The neural network was trained iteratively using the LEAP interface, where the network was used to
label a sample set of frames that were then fixed manually and used as training data in order to update the network.
In particular, the training set was designed to include examples of various postures during diverse behaviors that the
network failed to label in early iterations. Frames with multiple occlusions of the head and limbs during grooming were
trained with a ‘best guess’ of where the body part in question would be located, and the network was updated until all
postures were labeled satisfactorily. Overall the network was trained to identify 18 body points (snout, ears, chin, inner
and outer limbs, center, sides, tail point, tail center, and tail tip), which would be used for behavioral classification.

4.6 Classical measures using centroid tracking

Mouse centroid coordinates throughout each open field recording were used to calculate basic measures of activity and
spatial occupancy for each experimental trial. The centroid was used to calculate the velocity and position of the animal
at any given time-point, and this value was further used to calculate the spatial distribution of animals in the arena and a
number of other metrics such as center-crossings throughout all recordings.

4.7 Postural representations over time

Mouse bodies are not rigid and the choice of axis for egocentric alignment introduces bias that depends on the relative
position of body parts used to establish alignment. Instead of aligning to a body axis, we used the distances between all
pairs of virtual marker coordinates to capture the posture of the animal at each frame. The distance matrix for a given
frame Dn was calculated as follows.

Dn(i, j) =
√
((xni − xnj )

2 + (yni − ynj )
2 (1)

The posture of an animal over a recording is now represented as an 11× 11× n array where n is the number of frames
in a given movie. We performed online PCA on the entire set of movies by sampling batches of frames and calculating
the mean and covariance of D for each batch, keeping a running tab of the total mean and covariance across all movies
and finally finding the eigenvectors of the ultimate covariance matrix. We projected the distance matrix onto the top 10
of these eigenvectors to produce a set of projections that captured about 90 percent of the variance in D with a greatly
reduced dimensionality. The 10× n array describing the projections along the top ten principal components was saved
for each movie and captured the posture of each animal over time.

4.8 Temporal representation of behavior

We performed a wavelet decomposition on the projection matrix containing the top ten posture modes in order to find
the power spectrum across a dyadically spaced set of frequencies between .25Hz and 20Hz. The 10 × n postural
representation was transformed into a (10× 25)× n wavelet spectrogram where each of the ten postural modes was
described by power along 25 frequencies. The relative power among different frequencies corresponds to how quickly
the posture of the animal is changing in time, and power in high frequencies means that the projection along a particular
postural mode is changing quickly. The postural-dynamic representation described by the wavelets was the final signal
used to compare time points from behavioral movies. We used the log of this signal, with all values below -3 set
to -3 to cluster all recorded behavior into fine- and coarse-grained categories that were used in all further behavioral
descriptions. The same transformation was applied to the wavelets from each movie during the reembedding step.

4.9 Clustering and dimensionality reduction to form behavioral classes

Because of the unbalanced nature of our data, where extremely specific yet common behaviors like locomotion and a
particular speed might overwhelm an automated clustering algorithm, we first used importance sampling to design a
representative behavioral sample set, like we did with postures for training the DNN. We sampled movies from each
experimental condition and created a dataset that encompassed all of the types of movements that were found in our
recordings. This was particularly important for labeling uncommon behaviors that may not have appeared in many
movies but were still behaviorally interesting.

In order to sample all behaviors present among our recordings, we first performed dimensionality reduction on the
time series xi from each movie independently using tSNE [47]. The resulting maps were sampled to find a variety of
templates, or examples of the wavelet values, that were present in the given movie, ensuring that even rare templates
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were represented. These templates, on the order of 100 per movie used, were concatenated to form a training set that was
then clustered into classes that formed the basis of our behavioral labels. We performed clustering using two methods
that are complimentary when visualizing data: tSNE mapping and k-means clustering. First, as previously described [5],
we performed dimensionality reduction on a training set of ∼ 40, 000 samples by embedding the 250-dimensional
wavelet signal into a 2-dimensional tSNE map. The final map can be used to cluster behaviors using the watershed
transformation, or to visualize the density of the behavioral repertoire used by an animal or group of animals. Instead
of clustering in the 2-dimensional map, we also performed k-means clustering on the training set, with a target of
k=100 clusters. Comparing the tSNE and k-means methods reveals similar results, however it is simpler to embed new
samples into the k-means clusters by simply finding the nearest neighbor of a given sample, and assigning it the cluster
designation of the nearest neighbor.

4.10 Posture-dynamical fingerprinting

The power in the wavelet spectrum across tracked body parts could be used to interpret the results of behavioral
clustering. For interpretability, the wavelet decomposition was recalculated using the raw displacement in real space
for each tracked body part, in lieu of performing PCA to find a postural representation. The body part wavelet signals
associated with time-points assigned each to a given behavioral class were averaged and reshaped to generate a power
spectrum. These ‘fingerprints’ detail the power in each frequency used in the decomposition for each tracked body part,
and correspond to visible features of the behaviors found in each cluster or class.

4.11 Calculating behavioral time-series and normalized usage of behavioral classes

Each 20-minute behavioral movie contained approximately 96,000 frames sampled at 80 Hz. The posture-dynamics
clustering method we described previously was used to assign a behavioral label or class, from 1 to 100, to each of these
frames. The creation of 100 clusters, more than were easily distinguishable by the human eye, allowed us to manually
curate behavioral groups by viewing randomly-sampled examples from each cluster. We then grouped behaviors into
coarse groups that aligned with an understanding of behavior and the rodent phenotyping literature, and also were
already combined into building blocks based on our automated method.

Usage during a given experiment or segment of experiment was defined as the normalized histogram over behavioral
classes. Evolution of behavior over the course of an experiment was found by choosing a time-window, for example
180-seconds, and calculating this histogram over a sliding window of this size over the course of the experiment. The
95% confidence interval was calculated using the density values from each individual mouse.

4.12 Finding locomotion bouts, steps, and phase

Locomotion was first identified using the k-means clustering method. All time-points that were identified as belonging
to the locomotion class were found, and a structure of joint trajectories and centroid positions of bouts over 500 ms
long was created for each movie. Each locomotion bout was then further characterized. First all bouts were up-sampled
by a factor of 100 and Z-scored, and the findpeaks function in MATLAB was used to locate the time indices of the
beginning of each stride for each of the four limbs. Peaks were required to be at least 80 ms apart and with a minimum
peak prominence of .2 after Z-scoring. The peaks were used to assign a phase to each limb at each time-point, where
the end of the swing, or upward motion of the paw, corresponds to θ = 0. For each time at which the front right paw has
a phase of θ = 0, the phase of each other limb was sampled and recorded, along with the centroid speed and angular
velocity of the animal, and the arena coordinates at which the step was performed.

5 Data availability statement

All data required to reproduce results are available at Princeton Library Research Databases. All code for the mouse
LEAP models and accompanying metrics are packed with skeleton and labeling data. Raw behavior movies are
available upon request. Database with time-series of predicted positions of virtual markers, training dataset, and PCA
components can be downloaded at digital DataSpace repository (https://doi.org/10.34770/bzkz-j672). The
Github repository (https://github.com/PrincetonUniversity/MouseMotionMapper) is set up to use the batch
processing system Slurm and contains the code to reproduce the analysis pipeline. The repository contains code for
reproducing all figures in the main text and supplement. Examples of preprocessing steps, unsupervised classification,
reembedding, fingerprinting, and all other utility functions used are also included.
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Supplementary Materials

Strain Number of Mice
C57BL/6J Males 60

C57BL/6J Females 20
Cntnap2 knockout Negative Littermates (male) 14

Cntnap2 knockout Heterozygote (male) 15
Cntnap2 knockout Homozygote (male) 10
L7-Tsc1 Negative Littermates (male) 17

L7-Tsc1 Heterozygote (male) 17
L7-Tsc1 Homozygote (male) 9

Table 1: Summary of experimental strains and number of mice recorded. Each mouse was recorded performing the
open field test on four consecutive days.

Class Label Description
Idle Mouse is still, no body parts are moving.

Groom Variety of movements that involve repetitive motions, mainly using the
front limbs and head, but also including tail grooming and hind leg
scratches

Slow Explore Slow head turning and sniffing
Fast Explore Quick or directed movements of the head, sniffing, some forelimb place-

ments
Rear Moving into reared posture, slow hover on hind limbs

Climb Reared posture with limb movement occurring mainly at walls and
corners

Amble and Turn Slow or uncoordinated locomotion that does not appear regular, single
steps

Locomotion Regular directed movement that involves limb coordination
Table 2: Eight coarse behavioral classes are used to describe the 100 fine-grained clusters obtained from a k-means
clustering of the posture-dynamics signal. Descriptions were obtained by viewing movies sampling mice from each
fine-grained behavioral cluster and grouping movies based on broad qualitative similarities.
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Figure S1: Supplement to Figure 1
I. A visual representation of the calculations performed to find the 100 k-means clustered classes is described by steps
A-D. II. Raw joint trajectories are used to create wavelet signatures or ’behavioral fingerprints’ by finding the mean

power spectrum during each behavioral class found in part I. Visualizations of the tSNE embedding for a sub-selection
of data show how the methods are related.

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431500


Distance covered during 20 minute recording

D
is

ta
nc

e 
(m

et
er

s)

160

0

a

b

Median speed during locomotion
.3

0

Day
 1

Day
 2

Day
 3

Day
 4

m
et

er
s/

se
co

nd

Figure S2: Supplement to Figure 3
Common metrics for open field performance plotted for all conditions. A) Median velocity during locomotion, B)

Median distance covered during 20 minutes in the open field.
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Figure S3: Behavioral summary of C57BL/6J male and female mice
a) Behavioral usage for each of eight coarse categories plotted for C57BL/6J male(top) and female (bottom) mice for
each of five observation days. All individuals are shown as points, colored traces correspond to the median fraction of

time spent in the behavior for each day. b) The mean usage of each coarse behavioral class during 20 minutes of
observation for each of five days. Shaded regions represent 95% confidence interval.
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Figure S4: Behavioral summary of Cntnap2 KO mice
a) Behavioral usage for each of eight coarse categories plotted for Cntnap2 KO negative (top), heterozygote (middle),
and homozygote (bottom) mice for each of four observation days. All individuals are shown as points, colored traces

correspond to the median fraction of time spent in the behavior for each day. b) The mean usage of each coarse
behavioral class during 20 minutes of observation for each of four days. Shaded regions represent 95% confidence

interval.
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Figure S5: Behavioral summary of L7-Tsc1 mutant mice
a) Behavioral usage for each of eight coarse categories plotted for L7-Tsc1 mutant negative (top), heterozygote
(middle), and homozygote (bottom) mice for each of four observation days. All individuals are shown as points,

colored traces correspond to the median fraction of time spent in the behavior for each day. b) The mean usage of each
coarse behavioral class during 20 minutes of observation for each of four days. Shaded regions represent 95%

confidence interval.
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