New Results
A mixture of generative models strategy helps humans generalize across tasks
View ORCID ProfileSantiago Herce Castañón, View ORCID ProfilePedro Cardoso-Leite, View ORCID ProfileIrene Altarelli, View ORCID ProfileC. Shawn Green, View ORCID ProfilePaul Schrater, View ORCID ProfileDaphne Bavelier
doi: https://doi.org/10.1101/2021.02.16.431506
Santiago Herce Castañón
1Department of Psychology and Educational Sciences, University of Geneva, Switzerland
Pedro Cardoso-Leite
2Department of Behavioural and Cognitive Science, University of Luxembourg, Luxembourg
Irene Altarelli
3Université de Paris, LaPsyDÉ, CNRS, France
C. Shawn Green
4Department of Psychology, University of Wisconsin-Madison, USA
Paul Schrater
5Department of Computer Science, University of Minnesota, USA
Daphne Bavelier
1Department of Psychology and Educational Sciences, University of Geneva, Switzerland
Article usage
Posted February 25, 2021.
A mixture of generative models strategy helps humans generalize across tasks
Santiago Herce Castañón, Pedro Cardoso-Leite, Irene Altarelli, C. Shawn Green, Paul Schrater, Daphne Bavelier
bioRxiv 2021.02.16.431506; doi: https://doi.org/10.1101/2021.02.16.431506
Subject Area
Subject Areas
- Biochemistry (12726)
- Bioengineering (9597)
- Bioinformatics (31106)
- Biophysics (16011)
- Cancer Biology (13095)
- Cell Biology (18726)
- Clinical Trials (138)
- Developmental Biology (10132)
- Ecology (15123)
- Epidemiology (2067)
- Evolutionary Biology (19321)
- Genetics (12829)
- Genomics (17698)
- Immunology (12830)
- Microbiology (30038)
- Molecular Biology (12525)
- Neuroscience (65433)
- Paleontology (484)
- Pathology (2026)
- Pharmacology and Toxicology (3497)
- Physiology (5420)
- Plant Biology (11225)
- Synthetic Biology (3099)
- Systems Biology (7739)
- Zoology (1745)