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Abstract

As genome sequencing tools and techniques improve, researchers are able to
incrementally assemble more accurate reference genomes, which enable sensitivity
in read mapping and downstream analysis such as variant calling. A more
sensitive downstream analysis is critical for a better understanding of the genome
donor (e.g., health characteristics). Therefore, read sets from sequenced samples
should ideally be mapped to the latest available reference genome that represents
the most relevant population. Unfortunately, the increasingly large amount of
available genomic data makes it prohibitively expensive to fully re-map each read
set to its respective reference genome every time the reference is updated. There
are several tools that attempt to accelerate the process of updating a read data
set from one reference to another (i.e., remapping) by 1) identifying regions that
appear similarly between two references and 2) updating the mapping location of
reads that map to any of the identified regions in the old reference to the
corresponding similar region in the new reference. The main drawback of existing
approaches is that if a read maps to a region in the old reference that does not
appear with a reasonable degree of similarity in the new reference, the read
cannot be remapped. We find that, as a result of this drawback, a significant
portion of annotations (i.e., coding regions in a genome) are lost when using
state-of-the-art remapping tools. To address this major limitation in existing
tools, we propose AirLift, a fast and comprehensive technique for remapping
alignments from one genome to another. Compared to the state-of-the-art
method for remapping reads (i.e., full mapping), AirLift reduces 1) the number of
reads (out of the entire read set) that need to be fully mapped to the new
reference by up to 99.99% and 2) the overall execution time to remap read sets
between two reference genome versions by 6.7×, 6.6×, and 2.8× for large
(human), medium (C. elegans), and small (yeast) reference genomes,
respectively. We validate our remapping results with GATK and find that AirLift
provides similar accuracy in identifying ground truth SNP and INDEL variants as
the baseline of fully mapping a read set.

Code Availability. AirLift source code and readme describing how to reproduce
our results are available at https://github.com/CMU-SAFARI/AirLift.

Keywords: Genome Read Mapping; Genome Assembly; Remapping; Crossmap;
LiftOver
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1 Introduction
Reference genomes are inaccurate and do not perfectly represent the average healthy

individual of a species for a variety of reasons [1,2]. First, reference genomes are con-

structed using imperfect sequencing technologies that result in error-prone reads [3].

Second, the sequenced reads of an individual (i.e., read set) are assembled into a

reference genome using imperfect assembly tools [4,5]. As genome sequencing tech-

nology and assembly algorithms improve, and as more sequenced samples become

available, researchers are able to incrementally assemble more accurate reference

genomes. As an example, the Genome Reference Consortium (GRC) releases minor

updates to the human reference genome every three months and major updates

every few years [6, 7]. Very recently, significant advances have resulted in a novel

full telomere to telomere reference [8]. These updates are critical to the accuracy

of the reference genome as they enable the latest reference genome to provide the

most accurate and complete representation of the reference’s respective population.

Therefore, a read set should be mapped to the latest and most relevant reference

genome to obtain the most accurate downstream genome analysis results [9].

Currently, the best way to adapt an existing genomic study (i.e., read sets from

many samples) to a new reference genome is to re-run the entire analysis pipeline

using the new reference genome. For example, the original analysis of the read sets

from the 1000 Genomes Project was completed using the human reference genome

build 37 (GRCh37) [10]. After the next version of the reference (GRCh38) became

available, each read set from the 1000 Genomes Project was mapped again to the

new human reference genome (GRCh38) [11]. Unfortunately, this approach is com-

putationally very expensive and does not scale to large genomic studies that include

a large number of individuals for three key reasons. First, mapping even a single

read set is computationally expensive [12,13] (e.g., 75 hours for aligning 300,000,000

short reads, which provides 30× coverage of the human genome) as it heavily re-

lies on a computationally-costly alignment algorithm [14, 15]. Second, the number

of available read sets doubles approximately every 8 months [16, 17], and the rate

of growth will continue to increase as sequencing technologies continue to become

more cost effective and sequence with higher throughput [18]. Third, researchers

are beginning to use highly-specific reference genomes that better represent diverse

populations and ethnic groups [2,19,20,21,22,23,24,25]. This may result in the need

to map each read set to multiple reference genomes that represent various popu-

lations within the same species in order to correctly identify the genome donor’s

genetic variations (i.e., differences from the most relevant reference genome).

To reduce the large overhead of fully mapping a read set to a new reference

genome, several existing tools [26,27,28,29,30,31,32,33] can be used to quickly remap

the reads (i.e., update a read’s alignment location from the original (old) reference

to another (new) reference). In the remainder of this paper, we collectively refer to

such methods as remapping tools. At a high level, state-of-the-art remapping tools

rely on chain files (described in Supplementary Section S2), which identify and list

constant regions, i.e., genome sequences that appear in both old and new references

(e.g., regions A and B in Figure 1) and their positional offsets into each reference

genome. A remapping tool uses a chain file to identify reads whose original mapping

locations in the old reference is sufficiently contained within constant regions and
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quickly updates the alignment location of each read according to how the location

of the constant region containing it changes between the old and new references.

For example, Read 2 in Figure 1 can be quickly remapped by shifting its location

by 5 base pairs from the old reference to the new reference.[1]

Unfortunately, these remapping tools 1) are not comprehensive in remapping a

read set, meaning that they cannot remap a significant proportion of reads due

to the limitations of using a chain file (e.g., a chain file only contains information

about genome sequences that appear exactly the same between two references and

their positional offsets into each reference), 2) are not accurate, meaning that some

remapped reads do not align to the sequence they are remapped to in the new

reference genome within the acceptable error rate, and 3) result in output on which

downstream analysis cannot be performed (i.e., do not provide an end-to-end BAM-

to-BAM[2] remapping solution). We identify two key limitations that we illustrate

in Figure 1. First, since each deleted region (i.e., a region that does not appear in

the new reference) does not have a corresponding region in the new reference, chain

files cannot provide information on how to remap reads that had originally mapped

to a deleted region. This is because, by definition, a deleted region has no similar

regions in the new reference. For example, Read 1 in Figure 1 maps to a deleted

region in the old reference and therefore cannot be remapped to the new reference

to any extent. Second, state-of-the-art remapping tools only consider the degree of

similarity between a read and the constant regions (from the chain file) in the old

reference, without considering the changes in the new reference when remapping

the read to the new reference. Therefore, remapping can result in a poor degree

of similarity between the read and the new reference. As an example, Read 3 in

Figure 1 maps to the old reference with high similarity (i.e., 4 deletions between

base pairs 1375 and 1379; < 5% error rate), so it is remapped to the new reference

at a location corresponding to the read’s original mapping in the old reference. This

remapping does not account for differences that appear in the new reference (e.g.,

20 insertions between base pairs 1380 and 1400) and result in a high error rate (i.e.,

> 5%).

Due to these limitations, existing remapping tools are unable to comprehensively

remap a read set from one reference to another. We observe that state-of-the-art

remapping tools miss at least 7% of gene annotations when remapping reads from

an older human reference genome (hg16) to its latest version (GRCh38), as shown

in Supplementary Table S1 and Supplementary Figure S1. These limitations require

researchers and practitioners to re-run the full genome analysis pipeline for each

read set on an updated reference genome for a comprehensive study.

Our goal is to provide the first read remapping technique across (reference)

genomes 1) that substantially reduces the time to remap a read set from an old

(i.e., previously mapped to) reference genome to a new reference genome, 2) that

is comprehensive in remapping a read set, i.e., attempts to remap all reads in a

read set, 3) provides accurate remapping results, i.e., provides alignments with er-

ror rates below a specified acceptable error rate, and 4) provides an end-to-end

[1]These tools are described in more detail in Supplementary Section S1.
[2]A BAM file is the binary version of a SAM file. A SAM file is a tab-delimited text

file that contains sequence alignment data [34].
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chain score tName tSize tStrand tStart tEnd qName qSize qStrand qStart qEnd id
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Figure 1: Limitations of Existing Remapping Tools. Existing remapping tools

correctly remap reads that mapped completely within a region indicated by the

chain file (e.g., Read 2). However, these tools 1) cannot remap reads that mapped

within a region in the old reference that does not appear in the new reference

(e.g., Read 1) and 2) may incorrectly remap reads that align to multiple constant

regions in the old reference (e.g., Read 3).

BAM-to-BAM remapping solution on which downstream analysis can be immedi-

ately performed. To this end, we propose AirLift, the first methodology and tool

that leverages the similarity between two reference genomes to satisfy our goal.

Specifically, AirLift greatly reduces the time to perform end-to-end BAM-to-BAM

remapping on a read set from one reference genome to another while maintaining

high accuracy and comprehensiveness that is comparable to fully mapping the read

set to the new reference.

We evaluate AirLift and demonstrate that AirLift satisfies the four design goals

of an effective remapping tool by comparing it against state-of-the-art remapping

tools and the previous best method of fully mapping a read set to a new reference

with BWA-MEM [35] across various versions of the human, C. elegans, and yeast

references (summarized in Table 1). We demonstrate that AirLift can identify SNPs

and Indels with precision and recall similar to full mapping (via GATK Haplotype-

Caller [36]) while providing 2.6× to 6.7× speedup over fully mapping a read set to

the new reference genome.

Proposal Year Fast Comprehensive Accurate BAM-to-BAM Memory Usage
CrossMap [30] 2014 3 7 7 7 low

LiftOver [26] 2014 3 7 7 7 low
Full Mapping

2013 7 3 3 3 high
(BWA-MEM [35])

AirLift 2021 3 3 3 3 high

Table 1: AirLift vs. existing state-of-the-art remapping tools.

2 AirLift
In order to accurately and comprehensively remap a read set, AirLift 1) categorizes

and labels each region (i.e., a contiguous sequence within a genome) in the old

reference genome depending on its degree of similarity to the most similar region

in the new reference and 2) remaps each read from the old reference to the new

reference according to the label of the region in the old reference that the read had

been originally mapped to.

For each pair of references that AirLift remaps reads between, we must first con-

struct an AirLift Index, i.e., a set of lookup tables (LUTs), in a one-time prepro-
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cessing step. AirLift queries the AirLift Index with a read and its original mapping

location in the old reference (from the BAM file) to efficiently identify the region

and the label of the region that the read mapped to in the old reference. This infor-

mation is then used to identify potential mapping locations of the read in the new

reference (based on regions in the new reference that are similar to the region that

the read mapped to in the old reference).

We next define these regions, show how to generate the AirLift Index, and then

explain how to use the AirLift Index to quickly remap a read set with high genome

coverage.

2.1 Reference Genome Regions

We identify four categories of regions that fully describe the relationship between

two reference genomes, old and new (shown in Figure 2):

1 A constant region is a region of the genome which is exactly the same in both

old and new reference genomes (colored in blue). The start and end positions

of a constant region are not necessarily the same in the old and new reference

genomes.

2 An updated region is a region in the old reference genome that maps to at

least one region in the new reference genome within a reasonable error rate,

i.e., differences from the old reference (colored in orange with some differences

marked with black bars).

3 A retired region is a region in the old reference genome that does not map to

any region in the new reference genome (colored in pink).

4 A new region is a region in the new reference genome that does not map to

any region in the old reference genome (colored in green).

We next describe how we identify and use these regions to quickly and comprehen-

sively remap a read set.

Old Reference Genome

New Reference Genome

…

…

Constant Region
Updated Region
Retired Region
New Region

Old Reference

New Reference

…

…

Constant Region Updated Region
Retired Region New Region

Old Reference Genome

New Reference Genome

…

…

Constant Region Updated Region
Retired Region New Region

Figure 2: An example pair of reference genomes (old and new) with regions

labeled (as constant, updated, retired, and new regions) and associated with

each other according to their degrees of similarity. Regions that are associated

with (i.e., similar to) each other are indicated with an arrow.

2.2 The AirLift Index

The AirLift Index is comprised of two lookup tables (LUTs), each of which has a

one-time construction cost for any pair of reference genomes. The LUTs describe

regions of similarity between a pair of reference genomes, which can then be used

to quickly remap reads between the references.

The first LUT, i.e., constant regions LUT, associates each constant region in the

old reference with its respective region in the new reference genome. AirLift queries

this constant regions LUT with a location (of a previously-mapped read) in the old
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reference to quickly find a list of corresponding locations in the new reference that

have the same genome sequence. AirLift uses this list of locations to update the

mapping of the read, as we explain in more detail in Section 2.4.

The second LUT, i.e., updated regions LUT, associates each updated region in the

old reference with its respective region in the new reference genome. AirLift queries

this updated regions LUT with a location (of a previously-mapped read) in the

old reference to quickly find a list of corresponding locations in the new reference

that have similar genome sequences. AirLift uses this list of locations to update the

mappings of the read, as we explain in more detail in Section 2.4.

Once constructed, the AirLift Index is used to aid in the efficient mapping of any

number of reads from one reference genome to another reference genome. We next

explain how to label regions in the reference and construct the AirLift Index.

2.3 Categorizing Regions of Similarity and Constructing the AirLift Index

The AirLift Index is constructed via eight key steps, as we show in Figure 3.

(1) First, we want to identify all regions (i.e., genome sequences) that appear

exactly the same in both the old and the new reference genomes. To do so, we use

a chain file (described in Supplementary Section S2), which can be generated via

BLAT [37] with exact matching (no errors allowed) global alignment. In Figure 3,

we indicate the constant regions in blue.

(2) In order to label the remaining regions in the new reference, we first extract

seeds (i.e., smaller subsequences) from regions in the old reference that do not map

exactly to the new reference (non-blue regions). Note that these seeds a) are the

same length (N) as the reads that we want to remap, and b) are overlapping seeds,

i.e., completely overlap with each other such that a seed begins at each base pair

within each (non-blue) region and starting N − 1 base pairs before each (non-blue)

region. This is to ensure that AirLift completely accounts for all possible mapping

locations including sequences that may be partially included in a constant region.

(3) Next, we map the extracted seeds (from Step 2) to the new reference genome

to identify regions of approximate similarity across the reference genomes. Note that

this step can be done with any read mapper. We label as an updated region (colored

Find	exactly	matching	regions	
via	global	alignment1

Old	
Reference

New	
Reference

2 Extract	seeds	from	old	reference	
regions	that	do	not	align	exactly

100%	match

3 Align	extracted	seeds	from	the	
old	reference	to	the	new	reference

Overlapping	seeds

4

Constant	Region Updated	Region Retired	Region New	Region

✘
No	matches

Use	alignment	scores	
to	initially	label	regions

Seeds	from	a	retired	region
do	not	map	to	the	new	reference

Seeds	from	old	reference	
do	not	map	to	a	new	region

✘
✘

5 Extract	seeds	from	new	
regions	(in	the	new	reference)

Old	
Reference

New	
Reference

6 Align	seeds	from	new	regions to	
constant	regions	in	old	reference

Overlapping	seeds Categorize	regions	that	seeds	
align	to,	as	updated	regions

7 Form	constant	regions	LUT	based	
on	all	final	constant	region	labels 8 Form	updated	regions	LUT	based	

on	all	final	updated	region	labels

Figure 3: AirLift uses eight key steps to identify and label regions in the old and

new reference genomes as constant, updated, retired, or new in order to efficiently

map any number of reads from an old reference genome to a new reference

genome.
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in orange) 1) any continuous segment of base pairs that any seed has mapped to in

the new reference or 2) any continuous segment of seed locations in the old reference

whose seeds have mapped to the new reference. Since it is an approximate mapping,

we indicate differences between the updated regions in Figure 3 with black stripes.

These differences are accounted for by the resulting chain file.

While we describe in more detail how we use these regions in Section 2.4, we can

quickly tell that if a read mapped to an updated region in the old reference genome,

there is a high chance that the read will map to the respective updated region in the

new reference genome. In order to comprehensively identify all possible locations

in the new reference that a read can map to just by examining the read’s mapping

location in the old reference, we map seeds from the new reference using an error

rate of 2e, where e is the acceptable error rate for a successful alignment. Due to

our usage of a conservative error rate (2e), we are still able to find every potential

mapping with an alignment score within the acceptable error rate (Explained in

Supplementary Section S4).

(4) We find regions in the old reference where seeds (extracted from Step 2) do

not align to and label them as retired regions, since the region or anything similar

does not exist in the new reference genome. Similarly, we find regions in the new

reference whose seeds do not map to the old reference genome and label them as

new regions, since the region or anything similar to the region does not exist in the

old reference genome.

(5) Next, we check to see whether regions within the recently-identified new

regions can be approximately aligned to constant regions in the old reference, since

we had only previously attempted mapping them to the non-constant regions (in

Step 3), and constant regions were only identified with exact matching. We do this

by first extracting overlapping seeds from the new regions.

(6) We then map the extracted overlapping seeds (from Step 5) to the constant

regions in the old reference genome. For any seeds that result in a successful align-

ment, we 1) additionally label the corresponding segment of the constant region as

an updated region and 2) relabel the corresponding segment of the new region as

an updated region. We can now consider each of these regions as updated regions,

since this step has resulted in identifying an associated similar region in the other

reference. This step is necessary to ensure that all regions in the old reference are

checked for similarity to all regions in the new reference, enabling a comprehensive

mapping for reads that map to any region in the old reference.

(7) We show the associated constant regions between the two references within

the areas shaded in blue and use this information to create a constant regions LUT,

which can be queried with a location in the old reference to obtain locations in the

new reference that contain the exact same sequence. We encode the mapping with

the chain file format (described in Supplementary Section S2).

(8) We show the associated updated regions between the two references within

the areas shaded in orange and use this information to create the updated regions

LUT, which can be queried to immediately return candidate locations in the new

reference that a read should be aligned to. We encode the mapping and account for

the minor differences using the chain file format.
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2.4 Using AirLift to Remap a Read

AirLift follows the procedure illustrated in Figure 4 to comprehensively and accu-

rately remap a read set. AirLift first identifies the label of the region that the each

read had originally mapped to in the old reference using a series of steps (described

in Section 2.4.1). Depending on the label, AirLift remaps each read using one of

four independent cases (described in Section 2.4.2), depending on the label of the

region that the read originally mapped to within the old reference: (1) a read that

mapped to a constant region, (2) a read that mapped to an updated region, (3)

a read that mapped to a retired region, and (4) a read that never mapped to any

location in the old reference genome (i.e., an unmapped read).

Check	mapping	location	to	old	
reference	in	constant	regions	LUT	

Read	data	set	&mapping	information	to	old	reference	(BAM	file)		

For	each	read	that	mapped	
to	old	reference

If	read	mapped	to	a	
constant	region	

Check	mapping	location	to	old	
reference	in	updated	regions	LUT	

Fo
r	e
ac
h	r
ea
d	t
ha
t	d
id	

no
t	m

ap
	to
	ol
d	r
efe
re
nc
e

If	read	did	not	map	
to	any	constant	region

Remap	the read to new and updated regions	in	the
new	reference	using	a full mapper (e.g., BWA-MEM)

If	read	mapped	to	an	
updated	region	

The read mapped to	a
retired	region	in	the	old	reference	

If	read	did	not	map	
to	any	updated	region

4

Remap the	read	to	the	new	reference	
using	a	full	mapper	(e.g.,	BWA-MEM)

Remap	the	read	using	any	
remapping	tool	(e.g.,	CrossMap)

Mark	read	as	unmapped	
in	the	new	reference	

1

2

33

2

1

Figure 4: Using AirLift to remap a read set. AirLift remaps each read differently

depending on the label of the region in the old reference that the read had

originally mapped to: constant, updated, retired, or unmapped.

2.4.1 Determining how to Remap each Read

To determine which case AirLift should apply when remapping a read, AirLift

performs the following steps on each read in the read set that originally mapped to

any location in the old reference. First, AirLift checks the read’s mapping location

to the old reference in the constant regions LUT ( 1 in Figure 4). If the mapping

location returns an associated location in the new reference, the read had been

originally mapped to a constant region in the old reference and AirLift remaps the

read via Case 1 (described in Section 2.4.2).

If the constant regions LUT does not return a location in the new reference, AirLift

next checks the read’s mapping location to the old reference in the updated regions

LUT ( 2 in Figure 4). If the mapping location returns an associated location in the

new reference, the read had been originally mapped to an updated region in the old

reference and AirLift remaps the read via Case 2 (described in Section 2.4.2).

If the updated regions LUT does not return a location in the new reference, the

read had been originally mapped to a retired region in the old reference ( 3 in

Figure 4). This is because an old reference is only comprised of constant, updated,

and retired regions, and AirLift already determined that the read was not originally

mapped to a constant or updated region. AirLift handles such reads via Case 3

(described in Section 2.4.2).
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In order to be comprehensive in remapping a read set, AirLift also considers the

reads that were unmapped in the old reference and attempts to remap them to the

new reference using Case 4 (described in Section 2.4.2).

2.4.2 Remapping each Read

Case 1: For a read that had originally mapped to a constant region, we simply

translate the mapping locations according to the offset in the specific constant

region from the old reference to the new reference. Since this is the extent of existing

state-of-the-art remapping tools capabilities, we can perform this step with any of

these tools (e.g., LiftOver, CrossMap) for any read that is fully encapsulated within

a chain file interval. In our analysis, we use CrossMap[3], since it outputs BAM files

that can be used for downstream analysis (e.g., variant calling) for validating our

results. The chain file represents only regions that are exact matches, so remapped

reads will perfectly match to regions in the new reference genome as well.

Case 2: For a read that maps to an updated region, we first query the updated

regions LUT to quickly obtain a list of locations in the new reference genome that

are similar (within a 2e error rate) to the location that the read mapped to in the

old reference genome. We can then use any aligner to align the read to all locations

returned by the updated regions LUT and return the locations in the new reference

genome that align with an error rate smaller than a user defined error rate (e).

Case 3: For a read that maps to a retired region (in the old reference genome),

we already know that the read will not map anywhere in the new reference genome,

since retired regions are not similar to any region in the new reference genome.

Therefore, we can mark that read as an unmapped read in the new reference genome.

Case 4: For a read that never mapped anywhere in the old reference genome,

we know that the read will not map to any constant region in the new reference

genome. However, there is a chance that the read can align to updated or new

regions in the new reference genome. Therefore, we must fully map the read to each

new and updated region using any read mapper.

3 Evaluation
Before showing our evaluations of AirLift’s execution time (in Section 3.2), memory

usage (in Section 3.3), and accuracy and comprehensiveness (in Section 3.4), we

describe our methodology for evaluation.

3.1 Evaluation Methodology

AirLift Tools. We evaluate AirLift using 1) CrossMap [27,30] to quickly move all

reads that map to constant regions in the old reference and 2) BWA-MEM [35] to

map reads when constructing the AirLift Index and when fully mapping all other

reads that do not map to constant regions (i.e., reads that map to updated regions

and never mapped to the old reference), according to the AirLift Index.

Evaluated Remappers. We evaluate two state-of-the-art remappers, CrossMap [27,

30] and UCSC LiftOver [26] to compare against AirLift. Note that these two remap-

pers do not provide a comprehensive or accurate solution to remapping reads from

[3]We make some necessary modifications to the CrossMap code such that its output

is compatible with GATK (See Supplementary Section S5).
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one reference to another. Due to the limitations of prior remappers (described in

Supplementary Section S3), we evaluate and compare against the only comprehen-

sive and accurate baseline of fully mapping the read set (from scratch without using

any prior mapping information) to the new reference genome with BWA-MEM [35].

Evaluated Reference Genomes. We evaluate AirLift with several versions of

reference genomes of varying size across 3 species (i.e., human, C. elegans, yeast)

as shown in Supplementary Table S2.

Evaluated Read Data Sets. We use DNA-seq read sets from four different sam-

ples of the set of species whose reference genomes we examine (as shown in Supple-

mentary Table S3).

GATK Variant Calling Evaluation. We evaluate AirLift remapping results via

variant calling with GATK HaplotypeCaller [36] by following the best practices [38],

VCFtools [39] to filter variant calling files based on a minimum quality score of 30

(i.e., −−minQ 30), and use the hap.py tool (https://github.com/Illumina/hap.py)

to benchmark the variant calling results.

Evaluation System. We run AirLift on a server with 64 cores (2 threads per core,

AMD EPYC 7742 @ 2.25GHz), and 1TB of the memory. We assign 32 threads for

C. elegans and yeast and 48 threads for human genomes when running all tools and

collect their runtimes (usr and sys) and memory usage using the time command in

Linux with -vp flags. We report the runtime (in seconds) and peak memory usage

(in megabytes) of our evaluations based on these configurations.

AirLift Evaluation Plots. In each AirLift evaluation plot, we show on the x-axis,

both the old reference genome (below) and the new reference genome (above) used

in the evaluation. Note that in our evaluations of AirLift, we only consider the

remapping stage (as other stages are preprocessing stages that are performed once

for each pair of reference genomes). We show the execution times of the preprocess-

ing stage in Supplementary Table S4.

3.2 AirLift Execution Time

We first demonstrate how AirLift reduces the time to map a set of reads to an

updated reference genome by reducing the number of reads that we must map.

Figure 5 plots the execution times (y-axis) for mapping a read set to a new refer-

ence genome using three different remapping tools, CrossMap, AirLift, and LiftOver

compared to the baseline of fully remapping the entire read set from an old reference

genome to the new reference genome. We provide the speedup of AirLift over fully

mapping the read set to the new reference (i.e., TFull Mapping/TAirLift) above each

bar.

The execution time of AirLift is calculated as the sum of the execution times for

performing each of the cases (described in Section 2.4.2) as follows:

TAirLift = Tconstant reads + Tupdated reads + Tretired reads + Tunmapped (1)

where Tconstant reads is the time to translate all reads that originally map to a con-

stant region in the old reference, Tupdated reads is the time to map all reads that

originally mapped to an updated region in the old reference, Tretired reads is the

time to map all reads that originally mapped to a retired region in the old refer-

ence, and Tunmapped is the time to map all reads that never mapped anywhere in the
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Figure 5: AirLift execution time results. We show the execution time (log-

scale y-axis) of running three remapping tools, CrossMap (blue), AirLift (or-

ange), and LiftOver (green) on a read set to a new reference genome against

the baseline (red) of fully mapping a read set to the new reference genome. We

plot the execution times of each tool for various pairs of reference genomes (x-

axis; where the old reference is at the bottom and the new reference is above

the old reference) in three separate plots for different sizes of reference genomes,

i.e., large (human), medium (C. elegans), small (yeast). We indicate the speedup

of AirLift against the full mapping baseline above each grouping of bars, since

AirLift and the baseline are the only comprehensive and accurate remapping

techniques available.

old reference. The exact execution time breakdowns for each of these four cases are

shown in Supplementary Table S6). We also provide the number of reads that Air-

Lift must remap in each case for each pair of references in Supplementary Table S7,

and the average time per read per case for each pair of references in Supplementary

Table S8.

We make three observations based on Figure 5 and the supplementary tables.

First, AirLift consistently provides significant speedup over the baseline (of fully

mapping a read set) across all tested pairs of references, ranging from 2.60×
(sacCer1→sacCer2) up to 6.7× (hg19→hg38). Second, AirLift execution time is

largely comprised of the time to remap reads that originally mapped to the constant

region in the old reference. This is because the number of reads remapped by Air-

Lift are mostly (i.e., between 86.57% for hg16→hg38 and 98.47% for ce10→ce11)

comprised of reads that originally mapped to a constant region. Third, AirLift ex-

ecution time is significantly lower than the full mapping baseline since the average

time to remap a read from the constant regions is significantly lower than the av-

erage time to fully map a read. This is because AirLift can very efficiently remap

reads from constant regions. Fourth, remapping a read set with AirLift between a

pair of references with a smaller constant regions size results in a higher execution

time. Therefore, AirLift performs faster when remapping reads between pairs of

references that are more similar to each other.

We conclude that AirLift significantly improves the execution time for comprehen-

sively and accurately remapping a read set from an old reference to a new reference

compared to the baseline of fully mapping the read set to the new reference.

3.3 AirLift Memory Usage
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Figure 6: AirLift memory usage results. Peak memory usage results for each

of the remapping tools during remapping.

Figure 6 plots the peak memory usage in MB (y-axis) across the remapping tools

(i.e., CrossMap, AirLift, and LiftOver) and baseline full mapping method (i.e.,

BWA-MEM ) for our set of evaluated reference pairs (x-axis). We find that across

all tested reference pairs, AirLift has similar peak memory requirements as our

full mapping baseline, BWA-MEM. This is because AirLift relies on BWA-MEM

to remap a portion (i.e., up to 16.61%) of the read set, which is large enough to

require the same amount of memory as mapping the full read set.

3.4 GATK Variant Calling Results

To demonstrate that AirLift provides similar mapping results as a full mapper

(baseline) and it is much more comprehensive and accurate than CrossMap and

LiftOver [4], we perform downstream analysis (i.e., variant calling). We use the

GATK HaplotypeCaller tool to call variants from both the 1) full mapping BAM

file and 2) Airlift-generated BAM file. We use the hap.py tool to benchmark 1) the

AirLift variant calls against full mapping, 2) the AirLift variant calls against the

gold standard (i.e., ground truth), and 3) full mapping variant calls against the

ground truth, if the ground truth is available. We use the variant calling ground

truth from the Platinum Genomes [40] and Genome in a Bottle [41] for the human

NA12878 sample. We only benchmark Airlift against full mapping for the C. elegans

and yeast data sets, since we do not have the ground truth for these species. We

report the precision and recall results for the SNPs and insertion-deletions (indels)

as calculated by hap.py (https://github.com/Illumina/hap.py).

Table 2 shows the variant calling results for human, C. elegans, and yeast genomes,

respectively. Each row contains quality measurements of identifying single nu-

cleotide polymorphisms (SNPs) and insertion-deletions (indels) for a pair of refer-

ence genomes in terms of precision and recall (written as ‘precision score(%)/recall

score(%)’). For the human results, we show the precision and recall scores of full

mapping when identifying the set of SNPs and indels compared against the set of

SNPs and indels that the ground truth reports, to demonstrate how AirLift com-

pares against full mapping when identifying ground truth SNPs and indels. The

[4]The GATK HaplotypeCaller tool cannot analyze the outputs of CrossMap or LiftOver

since their outputs are not compatible with downstream analysis tools (as described

in Supplementary Section S5). Therefore, we do not analyze the outputs of CrossMap

or LiftOver in this section.
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columns are separated to show separate precision and recall scores for identifying

the set of SNPs and indels when compared against the set of SNPs and indels that

full mapping identifies (vs. Full Mapping) and the ground truth reports (vs. Ground

Truth; only available for human results).

Table 2: GATK Variant Calling Results for Human, C. elegans, and Yeast Genomes
Remap Read Sets vs. Full Mapping vs. Ground Truth

Technique from to SNP (%) Indel (%) SNP (%) Indel (%)

Full Mapping - hg38 - - 97.73/99.25 81.46/96.27

AirLift

hg16

hg38

92.69/92.31 85.01/87.14 95.05/97.73 76.22/94.12
hg17 92.52/95.27 84.67/88.61 94.58/98.45 75.93/94.76
hg18 93.10/95.33 85.10/88.64 95.00/98.49 76.25/94.81
hg19 93.77/95.61 85.28/89.02 95.47/98.64 76.22/95.03

AirLift

ce2 ce4 90.82/97.29 96.97/97.66 - -
ce4

ce10
91.06/96.96 96.81/97.30 - -

ce6 91.11/97.00 96.81/97.33 - -
ce6

ce11
90.01/96.12 95.86/96.18 - -

ce10 90.03/96.48 95.90/96.44 - -

AirLift
sacCer1 sacCer2 95.30/98.82 95.83/94.74 - -
sacCer1

sacCer3
86.35/94.27 90.38/88.65 - -

sacCer2 87.03/91.19 91.14/88.65 - -
GATK results of the read sets from all evaluated species remapped by AirLift from an older reference
version (e.g., hg16, hg17) to a more recent reference version (e.g., hg38) and for fully mapping (via
BWA-MEM) the read set to the latest human reference version (since we only have ground truth
GATK values for the human reference). For each read set remapped by AirLift, we show the pre-
cision(%)/recall(%) results of identifying SNPs and indels compared to 1) full mapping and 2) the
ground truth. We also show the results of fully mapping the read set to hg38 compared to the ground
truth. All results were obtained using GATK HaplotypeCaller [36] and hap.py.

We make two key observations. First, we observe that AirLift is able to identify

SNPs reported by full mapping with high precision and recall scores (as shown

under the first column, vs. Full Mapping). This is because AirLift 1) identifies all

possible mapping locations for each read in the read set similarly to the full mapping

approach, 2) comprehensively maps each read accordingly, and 3) reports accurate

alignment results (i.e., alignments with error rates below a specified acceptable error

rate) unlike existing remapping tools. Second, we observe that AirLift indentifies

SNPs and indels reported by the ground truth with precision similar to full mapping.

We observe this by comparing the results in the first row (i.e., Full Mapping) against

the AirLift results directly underneath them (e.g., 95.47%/98.64% precision/recall

values for identifying SNPs when full mapping to hg38 compared to 97.73%/99.25%

when using AirLift between hg19→hg38; only available for human results). We note

the small variation across precision and recall values in the table and attribute

them to two main factors. First, since AirLift performs the most efficient method

for remapping a read in the case that multiple methods are available (i.e., a read

that maps to a constant region and updated region will be treated as a read in a

constant region), AirLift may report mapping results that do not necessarily result

in the best alignment score. Second, these discrepancies may occur as a result of

genomic repeats and reproducibility issues in BWA-MEM [42]. We argue that these

alignment differences do not cause a significant loss in variant calling quality, as

AirLift precision and recall results for SNPs and indels are very similar to full

mapping (when both are benchmarked against the ground truth).

We have shown in our evaluations against existing state-of-the-art remapping

tools, that AirLift can comprehensively and accurately remap a read set from one

reference genome to another at high speeds (i.e., up to 6.7× faster than our full
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mapping baseline). Since AirLift accomplishes our four goals of remapping a read

set quickly, comprehensively, accurately, and end-to-end, providing a BAM-to-BAM

result that can be immediately used in downstream analysis, we conclude that

AirLift is a viable tool to be used as a quick alternative to fully mapping a read set

when it had previously been mapped to a similar reference genome.

4 Conclusion
We introduce AirLift, a methodology and tool for quickly, comprehensively, and

accurately remapping a read data set that had previously been mapped to an older

reference genome to a newer reference genome. AirLift is the first tool that pro-

vides BAM-to-BAM remapping results of a read data set on which downstream

analysis can be immediately performed. The key idea of AirLift is to construct and

and use an AirLift Index, which exploits the similarity between two references to

quickly identify candidate locations that the read should be remapped to based on

its original mapping in the old reference. We compare AirLift against several exist-

ing remapping tools, CrossMap and LiftOver, which we demonstrate have several

major limitations. These tools either do not provide accurate and comprehensive

remapping results or do not result in remapping results on which downstream anal-

ysis can be immediately performed (summarized in Table 1). We compare AirLift

against the only comprehensive and accurate method of fully mapping a read data

set to the new reference using BWA-MEM, and find that AirLift significantly re-

duces the execution time by 6.7×, 6.6×, and 2.8× for large (human), medium (C.

elegans), and small (yeast) reference genomes, respectively. We validate our results

against the ground truth and show that AirLift identifies similar rates of SNPs and

Indels as the full mapping baseline. We conclude that AirLift is the first compre-

hensive and accurate remapping tool that substantially reduces the execution time

of remapping a read data set, while providing end-to-end BAM-to-BAM results on

which downstream analysis can be performed. We look forward to future works that

take advantage of as well as improve AirLift for various genomic analysis studies.
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