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ABSTRACT 24 

Although carbon nanotubes’ (CNTs) toxicity in different experimental systems (in vivo and in vitro) 25 

is known, little is known about the toxic effects of carbon nanofibers (CNFs) on aquatic vertebrates. 26 

We herein investigated the potential impact of CNFs (1 and 10 mg/L) by using Physalaemus cuvieri 27 

tadpoles as experimental model. CNFs were able to induce nutritional deficit in animals after 48-h 28 

exposure to them, and this finding was inferred by reductions observed in body concentrations of 29 

total soluble carbohydrates, total proteins, and triglycerides. The increased production of hydrogen 30 

peroxide, reactive oxygen species and thiobarbituric acid reactive substances in tadpoles exposed to 31 

CNFs has suggested REDOX homeostasis change into oxidative stress. This process was correlated 32 

to the largest number of apoptotic and necrotic cells in the blood of these animals. On the other 33 

hand, the increased superoxide dismutase and catalase activity has suggested that the antioxidant 34 

system of animals exposed to CNFs was not enough to maintain REDOX balance. In addition, 35 

CNFs induced increase in acetylcholinesterase and butyrylcholinesterase activity, as well as changes 36 

in the number of neuromats evaluated on body surface (which is indicative of the neurotoxic effect 37 

of nanomaterials on the assessed model system). To the best of our knowledge, this is the first report 38 

on the impact of CNFs on amphibians; therefore, it broadened our understanding about 39 

ecotoxicological risks associated with their dispersion in freshwater ecosystems and possible 40 

contribution to the decline in the populations of anurofauna species. 41 

Keywords: Nanopollutants, neurotoxicity, cytotoxicity, REDOX imbalance, bioaccumulation. 42 
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1. INTRODUCTION  45 

The recent scientific and technological development, and the invention of nanomaterials 46 

have allowed the creation and production of highly promising and advantageous materials that have 47 

been applied to address several challenges associated with conventional Science (Bhagyaraj & 48 

Oluwafemi, 2018). Nanomaterials are gaining more and more interest given their unique properties 49 

and potential use in a wide range of technological applications. Recent studies have gathered vast 50 

information on the use of these materials by the food (Chaudhary et al., 2020; Shafiq et al., 2020), 51 

cosmetics (Fytianos et al., 2020; Singh et al., 2020) and civil construction sectors ( Firoozi et al., 52 

2020; Singh, 2020), as well as in the manufacture of personal care (Keller et al., 2014; Kaul et al., 53 

2018; Aziz et al., 2019), electronic (Zeb et al., 2019), medicinal and pharmaceutical (Velu et al., 54 

2020; Das et al., 2020; Siddique & Chow, 2020; Kumar et al., 2020) and industrial products 55 

(Thomas et al., 2019; Palit & Hussain, 2020), and in different environmental sciences fields (Taran 56 

et al., 2020). 57 

Carbon nanofibers (CNFs) that have conductivity and stability similar to that of carbon 58 

nanotubes (CNTs) (Lake & Lake, 2014; Mohamed et al., 2019; Yadav et al., 2020) are among the 59 

most prominent nanomaterials in recent years. The main features of CNFs distinguishing them from 60 

CNTs is the stacking of graphene sheets at different shapes. These sheets produce more edge sites 61 

on the outer wall of CNFs than CNTs, and it makes the electron transfer of electroactive analytes 62 

easier (Yadav et al., 2020). However, CNFs’ application has mainly focused on catalyst supports 63 

(Din et al., 2020), gas-storage systems (Conte et al., 2020), polymer reinforcements (Abdo et al., 64 

2020), probe tips (Cui et al., 2004; Goto et al., 2014) and biosensor development, due to their 65 

unique physical and chemical properties (good electrical conductivity, high surface area, 66 

biocompatibility, inherent and induced chemical functionalities, and easy manufacture) (Saunier et 67 

al., 2020; Senthamizhan et al., 2020). 68 

However, the assessment of ecological risks remain an incipient field involving CNFs, despite 69 

their dispersion and distribution in ecosystems - studies carried out with CNTs are much more 70 

numerous and comprehensive (Freixa et al., 2018; Gomes et al., 2021). Few investigations with 71 

CNFs include assays (Magrez et al., 2006; Brown et al., 2007; Jensen et al., 2012; Kalman et al., 72 

2019) or experiments in vitro with invertebrates (Lee et al., 2015) or mammals (DeLorme et al., 73 

2012; Jensen et al., 2012; Warheit, 2019). A small portion of studies in vivo has evaluated the effects 74 

of these nanomaterials on aquatic freshwater organisms (Chaika et al., 2020; Gomes et al., 2021; 75 

Montalvão et al., 2021). However, there is still an important gap in assessments on risk factors 76 

posed to, and physiological changes induced by, these compounds in aquatic organisms. Chaika et 77 

al. (2020) assessed CNF effects on the digestive system of different freshwater invertebrates 78 
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(Families: Gammaridae, Ephemerellidae and Chironomidae), but they did not observe any 79 

histopathotoxic effect on animals' gastrointestinal tract. In fact, these authors have shown the 80 

ability of Gammarus suifunensis to biodegrade CNFs (Chaika et al. 2020). Gomes et al. (2021) have 81 

evidenced that CNFs can be transferred by an experimental food chain (Eiseia fetida > Danio rerio 82 

> Oreochromis niloticus) and cause mutagenic and cytotoxic damage at the uppermost trophic level. 83 

Montalvão et al. (2021) reported that dragonfly larvae (Aphylla williamsoni) short-term exposure (48 84 

h) to CNFs induced predictive changes in REDOX imbalance and neurotoxicity - this finding was 85 

inferred by suppressing the activity of acetylcholinesterase (AChE). 86 

  Therefore, the inconclusive character of the investigative scenario about CNFs’ toxicity, as 87 

well as the gaps on knowledge about the impact of these nanomaterials on several groups of 88 

invertebrates and vertebrates are clear factors, so far. Amphibians are among these groups, but, 89 

although they have priceless ecological importance (Hocking & Babbitt, 2014), they have never 90 

been the subject of investigations involving CNFs. Our knowledge about the toxicity of carbon-91 

based nanomaterials (CNs) in amphibians is restricted to information available in reports by Saria et 92 

al. (2014) and Zhao et al. (2020). These authors were the first to show that the short-term exposure 93 

of Xenopus laevis tadpoles to multi-walled carbon nanotubes (MWCNTs) induced oxidative stress 94 

and caused damage to animals' erythrocyte DNA. Zhao et al. (2020) reported MWCNT 95 

accumulation in different organs of tadpoles belonging to species X. tropicalis increased their 96 

lethality rate and changed their heart rate. Thus, it is imperative carrying out further studies to 97 

assess how CNTs can have impact on the anurofauna and ecotoxicological effects of CNFs. These 98 

complementary investigations are essential, since amphibians are organisms sensitive to changes in 99 

their habitats (Roy, 2002; Wagner et al., 2014; Rohman et al., 2020), and are included in the list of 100 

animals presenting significant population decline in recent years (Green et al., 2020). 101 

Accordingly, we evaluated the likely toxicological effects of CNFs on tadpoles belonging to 102 

neotropical species Physalaemus cuvieri (Anura, Leptodactylidae). This species is exclusively 103 

distributed in South America and is typical of open biomes, such as Cerrado, Caatinga, Chaco and 104 

Llanos (Mijares et al., 2011; De-Oliveira-Miranda et al., 2019). Although the species is currently 105 

categorized as of “little concern” by the International Union for Conservation of Nature (stable, 106 

least concern, version 2020-3) (IUCN, 2020), its wide geographical distribution and presumed large 107 

populations, are features turning them into interesting model systems, since they can inhabit 108 

freshwater environments subjected to different pollution types, including CNFs. From different 109 

biomarkers, We herein aimed at testing the hypothesis that short exposure to CNFs (at 110 

environmentally relevant concentrations) induces changes in the nutritional status, metabolic 111 

changes altering REDOX homeostasis into oxidative stress, and cytotoxic and neurotoxic changes in 112 
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these animals. To the best of our knowledge, this is the first report on the biological impact of CNFs 113 

on a specific amphibian species. Therefore, this study has broadened our understanding about 114 

ecological risks associated with water pollution by these nanomaterials, as well as motivated further 115 

investigations on the impact of CNs on amphibians’ health and on the dynamics of their natural 116 

populations. 117 

2. MATERIALS AND METHODS 118 

2.1. Carbon nanofibers 119 

 We used pyrolytically stripped CNFs (i.e., polyaromatic hydrocarbons removed from fibers’ surface) 120 

provided by Sigma-Aldrich (San Luis, Missouri, USA) - their detailed chemical featuring was presented by 121 

Gomes et al. (2021). These pollutants are a mix of different sized and shaped CNFs [from 60 to 100 nm 122 

(mean: 86.85 ± 1.80 nm)], including the ones with open and clearly curved tips (Figure 1). According to the 123 

manufacturer, and as seen in the photoelectric micrographs taken during the transmission electron 124 

microscopy analysis, the assessed CNFs have different metallic particles (Ca, Si, S, Na, Mg and Fe), used as 125 

catalysts (Figure 1). 126 

 

Figure 1. (A) Scanning electron microscopy images and (B-D) transmission electron 

microscopy images of a CNF film, at different magnifications. Yellow arrows point out the 

presence of metallic particles inside CNFs, or around their surface, as shown in (D). 

 127 

2.2. Model system and experimental design 128 

We used tadpoles belonging to species P. cuvieri (Anura, Leptodactylidae) as model system 129 

to assess the aquatic toxicity of CNFs. Its wide geographical distribution in South America (Miranda 130 
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et al., 2019), stability and population abundance in the occupied areas (Frost, 2017), good 131 

adaptability to laboratory environment, early biological response to changes in its environment, and 132 

use in recent (eco) toxicological studies justify their choice as model in our study (Herek et al., 133 

2020; Araújo et al., 2020ab; Rutkoski et al., 2020). All tadpoles used in the experiment came from 134 

an ovigerous mass with approximately 1,500 eggs, based on Pupin et al. (2010). The ovigerous mass 135 

was collected in a lentic environment (Urutaí, GO, Brazil) surrounded by native Cerrado biome, 136 

under license n. 73339-1 - issued by the Brazilian Biodiversity Authorization and Information 137 

System (SISBIO/MMA/ICMBio). 138 

Eggs were kept in aquarium (40.1 x 45.3 x 63.5 cm) filled with 80 L of naturally 139 

dechlorinated water (for at least 24 h), under controlled 12h light-dark photoperiod and 140 

temperature (26 ° C ± 1 ° C - similar to that of the natural environment) conditions, and constant 141 

aeration (by air compressors) from the time they were taken to the laboratory. Animals were fed 142 

once a day (ad libitum) with commercial fish food (formula: 45% crude protein, 14% ether extract, 143 

5% crude fiber, 14% mineral matter and 87% dry matter). Tadpoles remained under the 144 

aforementioned conditions until they reached stage 27G (body biomass: 70 mg ± 4.1 mg; and total 145 

length: 20.1 mm ± 0.7 mm - mean ± SEM)., after egg hatching, based on Gosner (1960). The 146 

healthy tadpoles (i.e., the ones presenting normal swimming movements and no morphological 147 

deformities or apparent lesions) were divided into three experimental groups (n = 195 148 

tadpoles/each - 13 replicates composed of 15 animals/each). The control group (C) was composed of 149 

tadpoles kept in dechlorinate tap water (CNFs free) and groups CNF-I and CNF-II comprised 150 

animals exposed to water added with CNFs at concentrations of 1 and 10 mg/L, respectively (see 151 

below).  152 

 153 

2.3. Exposure conditions and CNF concentrations 154 

All experimental groups were kept in polyethylene containers filled with 180 mL of 155 

dechlorinated water where CNFs were diluted in. Exposure time was set at 48 h (static system) to 156 

simulate ephemeral exposure. Animals' food was kept during exposure - commercial feed was offered 157 

once a day. Concentrations of the tested CNFs were defined based on aquatic CNT concentrations, 158 

due to lack of information about environmental concentrations recorded for CNFs. Therefore, 159 

previous studies evaluating CNTs’ toxicity in different experimental models based on concentrations 160 

ranging from 0.1 to 100 mg/L were taken as basis to select CNF concentrations used in the current 161 

research (Mouchet et al., 2007; Mouchet et al., 2009; Mouchet et al., 2010; Mouchet et al., 2011; 162 

Bourdiol et al., 2013; Saria et al., 2014; Verneuil et al., 2015; Zhao et al., 2020; Tavabe et al., 163 

2020). We herein applied the monitoring MWCNT data recorded by Nezhadheydari et al. (2019) in 164 
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aquatic environments and the experimental design proposed by Tavabe et al. (2020). The 165 

aforementioned authors observed concentration up to 20 mg/L of these materials, and it proved the 166 

significant changes in it (ng/L to mg/L). Concentrations tested in the current study were 167 

environmentally relevant, and it takes the present experimental design closer to realistic CNF-168 

pollution conditions. The herein adopted concentrations represented both optimistic (less pollution; 169 

1 mg/L) and pessimistic (higher pollution; 10 mg/L) conditions. 170 

 171 

 172 

2.4. Toxicity biomarkers 173 

2.4.1. Biochemical assessments 174 

2.4.1.1. Sample preparation 175 

Samples were prepared based on Guimarães et al. (2021), with modifications, to evaluate the 176 

biochemical parameters. In total, 144 tadpoles were used per experimental group (n = 12 samples, 177 

composed of a pool of 12 animals/each). These animals were weighed, macerated in 1 mL of 178 

phosphate buffered saline (PBS) solution and centrifuged at 13,000 rpm, for 5 min (at 4oC). The 179 

supernatant was separated into aliquots to be used in different biochemical evaluations. Whole 180 

bodies were used due to technical limitations in isolating certain organs from small animals. Unlike 181 

assessments in adult specimens, organ-specific biochemical assessment carried out in tadpoles 182 

require highly accurate dissection due to their small sized-bodies, which makes it difficult processing 183 

large numbers of samples under time constraint (Khan et al. 2015). Organ “contamination” by 184 

organic matter and/or by other particles consumed by tadpoles can be a bias for the biochemical 185 

analysis applied to organs during dissection time (Lusher et al. 2017; Guimarães et al., 2021). 186 

 187 

2.4.1.2. Nutritional status 188 

Different pollutants can affect the nutritional status of tadpoles (Bharatraj & Yathapu, 189 

2018); therefore, we evaluated total soluble carbohydrate, total protein, and triglyceride 190 

concentrations in different tissues of the exposed animals. Total soluble carbohydrate levels were 191 

determined through the Dubois method (Dubois et al., 1956) - detailed by Estrela et al. (2021). 192 

Protein level was determined in commercial kit (Bioténica Ind. Com. LTD, Varginha, MG, Brazil. 193 

CAS number: 10.009.00), based on biuret reaction (Gornall et al., 1949; Henry et al., 1957). 194 

Triglyceride levels were evaluated based on Bucolo & Davis (1973) by using a commercial kit 195 

(Bioténica Ind. Com. LTD, Varginha, MG, Brazil. CAS number: 10.010.00). 196 

 197 

2.4.1.3. REDOX state 198 
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2.4.1.3.1. Oxidative stress biomarkers 199 

Likely oxidative stress increase was assessed based on indirect nitric oxide (NO) 200 

determination, REDOX regulated processes through nitrite measurement (Soneja et al. 2005), 201 

thiobarbituric acid reactive species (TBARS) [predictive of lipid peroxidation (De-Leon & Borges, 202 

2020)], reactive oxygen species (ROS) production and on hydrogen peroxide (H2O2) - which plays 203 

essential role in responses to oxidative stress, in different cell types (Sies, 2020; Sies et al., 2020). 204 

The Griess colorimetric reaction [based on Bryan et al., (2007)] was used to measure nitrite 205 

concentrations. TBARS levels were determined based on procedures described by Ohkawa et al. 206 

(1979) and modified by Sachett et al. (2020). H2O2 and ROS production was assessed based on the 207 

methodological procedures proposed by Elnemma et al. (2004) and Maharajan et al. (2018), 208 

respectively. 209 

 210 

2.4.1.3.2. Antioxidant response biomarkers 211 

The activation or suppression of antioxidant activity in animals exposed to different CNF 212 

concentrations was evaluated by determining catalase and superoxide dismutase (SOD) activity. 213 

These enzymes are considered first-line antioxidants important for defense strategies against 214 

oxidative stress (Ighodaro & Akinloye, 2018). Catalase activity was assessed based on Sinha et al. 215 

(1972) [see details in Montalvão et al. (2021)] and SOD was determined according to the method 216 

originally described by Del-Maestro & McDonald (1985) and adapted by Estrela et al. (2021). 217 

 218 

2.4.1.4. Cytotoxicity 219 

 Blood samples were collected to assess cytotoxic effects induced by CNFs through 220 

erythrocytic apoptosis or necrosis. Procedures like those described by Singla & Dhawan (2013) and 221 

García-Rodríguez et al. (2013) were herein adopted. Briefly, 0.5-1.0 μL of blood from two animals in 222 

each group (n=16 por grupo) was mixed to 200 μL of PBS. Subsequently, 50 μL of acridine orange 223 

dye solution (AO) and 50 μL of ethidium bromide (EB) solution (both at 1 μg/mL) were added to 224 

the mix, which was incubated at room temperature, for 5 min. Samples were then centrifuged (at 225 

13,000 rpm and 4oC, for 5 min). The pellet was resuspended, placed on slide and covered with a 226 

glass cover slip after the supernatant was discarded. A barrier filter for immediate evaluation under 227 

fluorescence microscope (BEL Engineering®, model FLUO3 - excitation 510-560 nm) was used in 228 

the experiment. The total number of 100 cells from each slide was scored for apoptosis extent 229 

quantification. Living cells were green, apoptotic cells were orange and presented fragmented nuclei, 230 

and necrotic cells were red (Kasibhatla et al., 2006; Singla & Dhawan, 2013). The rate of each cell 231 

type, in each animal, was calculated. 232 
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2.4.1.4. Neurotoxicity 233 

The induction of likely neurotoxic effect caused by CNFs was evaluated by determining 234 

acetylcholinesterase (AChE) activity based on the method by Ellman et al. (1961) and the activity 235 

of butyrylcholinesterase (BChE) - also known as serum cholinesterase or pseudocholinesterase – 236 

based on Silva et al. (2020). We also evaluated whether CNFs could change the viability of 237 

neuromats living on tadpoles’ surface (Russell, 1976) – this feature has been considered a good 238 

ecotoxicological biomarker (Guimarães et al., 2021). Accordingly, 10 living tadpoles from each 239 

group were exposed (for 15 min) to water reconstituted with 4- (4-Diethylaminostyryl) -1-240 

methylpyridinium iodide (4-Di-2-ASP) at 5 mM, similar to procedures adopted by Krupa et al. 241 

(2020) and Guimarães et al. (2021). Subsequently, animals were anesthetized (on ice) and taken to 242 

fluorescence microscope (BEL Engineering®, model FLUO3 - excitation 510-560 nm) to have 243 

images of their heads and tails captured. The number of neuromats was manually determined; 244 

neuromats located on the sides of the tadpoles were excluded because they were out of focus or 245 

absent, due to their position in the microscope. We also excluded the lower part of their head and 246 

their back-posterior region, which overall had expressive amounts of non-specific coloring. 247 

Neuromats on the head and tail sides were quantified, as shown in Figure 2. 248 

 249 

2.6. CNF accumulation 250 

 CNF accumulation was estimated by determining total organic carbon (TOC) 251 

concentrations by taking into consideration the specific quantification of CNs in environmental and 252 

biological samples. This process is a huge challenge, given the lack of accessible standard methods to 253 

quantify these nanomaterials (Wang et al., 2013; Chang et al., 2014; Bourdiol et al., 2015; Petersen 254 

et al., 2016). We herein adopted the Walkley-Black method used by Schwab et al. (2011) and 255 

Gomes et al. (2021); this method is based on using dichromate as oxidizer in acid medium (Walkley 256 

& Black, 1934). Detailed methodological procedures can be observed in a previous study carried out 257 

by our research team (Gomes et al., 2021). Results were expressed in “g of TOC/kg of body biomass” 258 

(n = 16/group, 8 samples composed of a pool of 2 animals/each). 259 
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 260 

 261 

 

Figure 2. Representative images of the (A) head and (B) tail regions of P. cuvieri tadpoles, whose number of superficial neuromats were counted. 

 262 
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2.7. Visual assessment 264 

Nine tadpoles randomly selected from each group were euthanized on ice and incubated in 265 

acridine orange dye (AO) and ethidium bromide (EB) solution (both at 1 μg/mL), at room 266 

temperature for 10 min, in addition to CNF accumulation estimates. Such procedure allowed better 267 

differentiating different regions of animal's body displaying accumulated CNFs. Their animals were 268 

captured in fluorescence microscope (BEL Engineering®, model FLUO3 - excitation 510-560 nm) 269 

for further qualitative evaluation. 270 

 271 

2.8. Statistical analysis 272 

GraphPad Prism Software Version 8.0 (San Diego, CA, USA) was used to the statistical 273 

analyses. Initially, data were checked for normality and homogeneity variance deviations before the 274 

analysis. Normality data were assessed through Shapiro-Wilks test, and variance homogeneity was 275 

assessed through Bartlette’s test. Multiple comparisons were performed by applying  one-way 276 

ANOVA and Tukey’s post-hoc analysis to non-parametric data or Kruskal-Wallis test,  Dunn’s 277 

post-hoc test  to non-parametric data. Significance levels were set at Type I error (p) values lower 278 

than 0.05, 0.01 or 0.001.  279 

 280 

3. RESULTS  281 

By assuming the possible interference of CNFs in tadpoles’ energy metabolism, we evaluated 282 

the concentration of different macromolecules. Both concentrations recorded for the tested CNFs 283 

have significantly reduced total soluble carbohydrate and total protein levels in these animals, 284 

except for triglyceride levels, whose reduction was only observed in animals in the CNF-II group 285 

(Figure 3) - with no concentration-response effect. Based on our data, CNFs induced nitrite 286 

production increase in animals belonging to group CNF-I (Figure 4A), as well as in H2O2 and ROS 287 

production in both groups exposed to nanomaterials (Figure 4B-C, respectively), and TBARS 288 

production in animals kept in water added with 10 mg/L of CNFs (Figure 4D). 289 

 290 
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Figure 3. Boxplot of (A) total soluble carbohydrate, (B) total protein and (C) triglycerides 

concentration in P. cuvieri tadpoles exposed, or not, to different CNF concentrations. Summaries 

of statistical analyses are shown in the upper left corner of the figures. Different lowercase letters 

indicate significant differences between experimental groups. CONTROL: group of tadpoles not 

exposed to CNFs. CNF-I and CNF-II groups: tadpoles exposed to carbon nanofibers at 

concentrations of 1 and 10 mg/L, respectively. n = 144 tadpoles/group, 12 samples/group 

composed of a pool of 12 animals/each. 

 291 
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Figure 4. Boxplot of (A) nitrite, (B) hydrogen peroxide, (C) reactive oxygen species (ROS) and 

(D) thiobarbituric acid reactive substances concentrations in P. cuvieri tadpoles exposed, or not, 

to different CNF concentrations. Summaries of statistical analyses are shown in the upper left 

corner of the figures. Different lowercase letters indicate significant differences between 

experimental groups. CONTROL group: tadpoles not exposed to CNFs. CNF-I and CNF-II 

groups: tadpoles exposed to carbon nanofibers at concentrations of 1 and 10 mg / L, respectively 

(n = 144 tadpoles/group, 12 samples/group composed of a pool of 12 animals/each). 

 292 

We observed significant increase in SOD and catalase levels in animals exposed to CNFs , 293 

but no concentration-response effect (Figure 5A-B, respectively). SOD levels were positively and 294 

significantly correlated to H
2
O

2
, ROS and TBARS levels (Table 1). Catalase concentrations were 295 

correlated to H
2
O

2
 and ROS production (Table 1). 296 

 297 

 298 

 299 

 300 

 301 
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Figure 5. Boxplot of (A) superoxide and (B) dismutase concentration in tadpoles belonging to 

species P. cuvieri exposed, or not, to different CNF concentrations. Summaries of statistical 

analyses are shown in the upper left corner of the figures. Different lowercase letters indicate 

significant differences between experimental groups. CONTROL group: tadpoles not exposed to 

CNFs. CNF-I and CNF-II groups:  tadpoles exposed to carbon nanofibers at concentrations of 1 

and 10 mg/L, respectively (n = 144 tadpoles/group, 12 samples/group composed of a pool of 12 

animals/each). 

 302 

Based on our data, there was cytotoxic effect induced by CNFs on tadpoles’ erythrocytes. 303 

Figure 6 depicts that the groups exposed to nanomaterials recorded lower rates of viable 304 

erythrocytes and, consequently, higher rates of apoptotic and necrotic cells than animals in the 305 

control group. The rate of viable cells was negatively and significantly correlated to ROS and 306 

TBARS concentrations (Table 1). According to the neurotoxic evaluation, there was AChE and 307 

BChE increase in animals exposed to nanomaterials, and this finding suggests the stimulatory effect 308 

induced by CNFs on tadpoles’ cholinergic system (Figure 7A-B, respectively). On the other hand, 309 

tadpoles exposed to CNFs showed smaller number of superficial neuromats in their heads (Figure 310 

8A) and a larger amount of them in their tail (Figure 8B), but no concentration-response effect. 311 

However, the total number of neuromats (head + tail) did not differ between experimental groups 312 

(Figure 8C). 313 
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 314 

 315 

 316 

Table 1. Summary of correlation analyses carried out between different biochemical biomarkers. 317 

Correlated biomarkers Spearman r P value 

SOD vs. H2O2 0.4152 0.0118 

SOD vs. ROS 0.5806 0.0002 

SOD vs. TBARS 0.5477 0.0005 

CAT vs. ROS 0.4929 0.0023 

CAT vs. H2O2 0.3393 0.0429 

VER vs. ROS -0.5270 0.0080 

VER vs. TBARS -0.4920 0.0150 

TBARS vs. AChE 0.3510 0.0313 

TBARS vs. BChE 0.3710 0.0280 

H2O2 vs. AChE 0.5690 0.0002 

H2O2 vs. BChE 0.3840 0.0223 

ROS vs. AChE 0.6270 0.0004 

ROS vs. BChE 0.5280 0.0010 

TOC vs. ROS 0.5245 0.0029 

TOC vs. TBARS 0.3911 0.0312 

TOC vs. SOD 0.4691 0.0136 

TOC vs. CAT 0.4269 0.0264 

TOC vs. APOP 0.4462 0.0173 

TOC vc. NECR 0.4750 0.0106 

TOC vs. VER 0.4686 0.0119 

TOC vs. NH -0.4744 0.0081 

TOC vs. AChE 0.5777 0.0008 

TOC vs. BChE 0.5707 0.0012 

SOD: superoxide dismutase; H
2
O

2
: hydrogen peroxide; TBARS: thiobarbituric acid reactive 318 

substances; AChE: acetylcholinesterase activity; BChE: butyrylcholinesterase activity; APOP: rate 319 

of apoptotic erythrocytes; NECR: rate of necrotic erythrocytes; VER: rate of viable erythrocytes; 320 

NH: number of neuromats in the tadpoles’ heads; TCO: total organic carbon. 321 

 322 
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Figure 6. Boxplot of viable (green), apoptotic (orange) and necrotic (red) erythrocyte rates in P. 

cuvieri tadpoles exposed, or not, to different CNF concentrations. Fluorescence images 

representative of acridine orange and ethidium bromide staining are presented above the boxplot. 

Summaries of statistical analyses are shown in the upper left corner of the figures. Asterisks 

indicate differences between the respective cell types from each group exposed to CNFs and from 

the control group. CONTROL group:  tadpoles not exposed to CNFs. CNF-I and CNF-II groups: 

tadpoles exposed to carbon nanofibers at concentrations of 1 and 10 mg/L, respectively (n = 16 

tadpoles/group, 8 samples, composed of a pool of two animals/each). 
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Figure 7. Boxplot of (A) acetylcholinesterase and (B) butyrylcholinesterase activity in P. cuvieri 

tadpoles exposed, or not, to different CNF concentrations. Summaries of statistical analyses are 

shown in the upper left corner of the figures. Different lowercase letters indicate significant 

differences between experimental groups. CONTROL group: tadpoles not exposed to CNFs. 

CNF-I and CNF-II groups: tadpoles exposed to carbon nanofibers at concentrations of 1 and 10 

mg/L, respectively (n = 144 tadpoles/group, 12 samples/group composed of a pool of 12 

animals/each). 
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Figure 8. Boxplot of number of superficial neuromats in the (A) head and (B) tail of tadpoles, and 

the total number (C) of P. cuvieri tadpoles exposed, or not, to different CNF concentrations. 

Summaries of statistical analyses are shown in the upper left corner of the figures. Different 

lowercase letters indicate significant differences between experimental groups. CONTROL group: 

tadpoles not exposed to CNFs. CNF-I and CNF-II groups: tadpoles exposed to carbon nanofibers 

at concentrations of 1 and 10 mg/L, respectively (n = 10 tadpoles/group). 

 327 

Finally, we observed the accumulation of nanomaterials in tadpoles belonging to groups 328 

CNF-I and CNF-II - this finding was inferred based on TOC concentrations (Figure 10A) and on 329 

animals’ visual evaluation (Figure 10B-C) - with concentration-response effect. We noticed 330 

significant CNF accumulation in animals' gastrointestinal tract; it prevailed in the ones exposed to 331 

the highest CNF concentration (10 mg/L). These data have confirmed that CNFs were ingested by 332 

tadpoles; the statistical analyses have shown significant correlation among the accumulation of 333 
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these nanomaterials, different biomarkers predictive of oxidative stress (ROS and TBARS), 334 

antioxidant activity (SOD and CAT), as well as cytotoxic (viable, apoptotic, and necrotic 335 

erythrocytes) and neurotoxic effect (number of neuroblasts in tadpoles, as well as AChE and BChE 336 

activity in these models) (Table 1). 337 

 338 

 

Figure 10. Boxplot of (A) total organic carbon concentration and (B-I) representative images of 

P. cuvieri tadpoles exposed, or not, to different CNF concentrations. “A”, the summary of the 

statistical analysis is shown in the upper left corner of the figure. Different lowercase letters 

indicate significant differences between experimental groups. Background TOC concentrations in 

tadpoles in the control group were detected and subtracted from that of CNFs-exposed samples. 

(B-C): representative images of P. cuvieri tadpoles not exposed to CNFs, (D-F) images of animals 

exposed to the lowest (1 mg / L) and (G-I) highest concentrations (10 mg / L) of the pollutant. 

CNF-I and CNF-II groups: tadpoles exposed to carbon nanofibers at concentrations of 1 and 10 

mg/L, respectively. Representative images of n = 9 tadpoles/group. “A”, data about n = 16/group, 
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8 samples, composed of a pool of two animals/each. Arrows indicate CNF accumulation in 

animals. 

 339 

 340 

4. DISCUSSION 341 

 Identifying and featuring the effect of organisms’ exposure to different pollutants and 342 

contaminants are essential procedures to assess ecotoxicological risks associated with environmental 343 

pollution (Eason & O'Halloran, 2002; O'Halloran, 2006; Rand, 2020). Furthermore, the 344 

aforementioned studies can generate important subsidies for further remediation/mitigation 345 

measures to prevent the occurrence of lethal effects on the herein assessed animals (Madear et al., 346 

2020; Wang et al., 2020). Accordingly, our study was the first to show how CNFs can have impact 347 

on the health of anurofauna. This finding reinforces the toxicological potential of these 348 

nanomaterials inferred through tests carried out in vitro and in vivo with organisms from other 349 

taxonomic groups (Magrez et al., 2006; Brown et al., 2007; Jensen et al., 2012; DeLorme et al., 350 

2012; Jensen et al., 2012; Lee et al., 2015; Kalman et al., 2019; Warheit, 2019). 351 

The herein evidenced significant reduction in total soluble carbohydrate, total protein and 352 

triglyceride concentrations in P. cuvieri tadpoles exposed to CNFs (Figure 3) and to other types of 353 

pollutants (e.g.: atrazine: Dornelles & Oliveira, 2014; glyphosate: Dornelles & Oliveira, 2016; 354 

quinclorac: Dornelles & Oliveira, 2014; basudin: Ezemonye & Ilechie, 2007; naphthenic acids: 355 

Melvin et al., 2013; polycyclic aromatic hydrocarbons: Gendron et al., 1994, among others) has 356 

proven that CNFs can have impact on the energy metabolism of these models. Therefore, our 357 

results have suggested the direct or indirect activation of metabolic pathways related to 358 

glycogenolysis, proteolysis and lipolysis by CNFs. In this case, assumingly, the high energy 359 

consumption demanded by physiological processes of antioxidant defense, whose association was 360 

previously discussed (Strong et al., 2017) can explain the lower concentrations of the assessed 361 

macromolecules. Therefore, it is possible stating that CNF accumulation in animals' gastrointestinal 362 

system (Figure 9) was affected by nutrient absorption either by space occupation in the intestinal 363 

lumen [like reports involving microplastic consumption by tadpoles (Araújo et al., 2020a)] or by its 364 

negative effects on intestinal absorptive cells or on tadpoles' hepatic system. We could rule out the 365 

hypothesis that CNF accumulation in tadpoles’ gastrointestinal tract itself can trigger physiological 366 

mechanisms capable of diminishing these models’ food capture motivation, as also proposed by 367 

Araújo & Malafaia (2020). The false satiety feeling of the animals can reduce carbohydrate, lipid, 368 

and tissue protein rates in tadpoles’ bodies. In any case, nutritional deficits can have broader 369 

ecological consequences in tadpoles, regardless of the physiological mechanisms altered during 370 
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exposure to CNFs, since the diverting energy from other processes, such as growth and 371 

development, to maintain physiological homeostasis, often has negative effect on these animals’ 372 

health.  373 

On the other hand, our data have evidenced CNFs’ ability to induce oxidative stress 374 

increase, which was inferred based on ROS, H2O2 and TBARS concentrations (Figure 4) - SOD and 375 

catalase activation (Figure 5) was not enough to maintain homeostasis REDOX in tadpoles exposed 376 

to the tested nanomaterials. Although the literature about studies involving amphibians’ exposure 377 

to any CN carried out in vivo is scarce, our data have corroborated results in reports by Sari et al. 378 

(2014). These authors reported that increased H2O2, glutathione reductase, SOD and catalase rates 379 

in tadpoles belonging to species Xenopus leavis were exposure-time (2, 4, 8, 12 and 24 h) and 380 

MWCNT- (0.1, 1 and 10 mg/L) dependent. 381 

From the biochemical viewpoint, the most important enzymatic pathways for antioxidant 382 

defense against ROS are those involving SOD, since they convert the superoxide anion radical (O2

-) 383 

into H2O2, and catalase, which converts H2O2 into H2O molecules and O2 (Lee et al., 2018; Ransy 384 

et al., 2020; Damiano et al., 2020). Based on such an information, it is tempting to speculate that 385 

the increased oxidative stress observed in our study can be explained by different responses to CNFs. 386 

One possibility for this statement could be related to the negative effect of CNFs on catalases’ 387 

molecular structure, because it decreases catalases’ enzymatic efficiency or influences its affinity with 388 

the substrate. It is so because H2O2 molecules formed through SOD activity would not be 389 

neutralized by catalase, although its activity increases in animals exposed to CNFs. In this case, even 390 

greater increase would be necessary to balance SOD and catalase activity. However, assumingly, 391 

H2O2 is released as the product from other metabolic routes [see review by Hernandez et al. (2012)], 392 

catalyzed by enzymes, such as alcohol (Siebum et al., 2006; Ferreira et al., 2010; Turner, 2011), 393 

glucose (Zhou et al., 2010; Wang et al ., 2011), galactose (Siebum et al., 2006; Turner et al., 2011), 394 

lactate (Gao et al., 2011), glycolate (Das et al., 2010), cholesterol (Pollegioni et al., 2009; Saxena et 395 

al., 2011), L-amino acid (Schrittwieser et al., 2011), D-aminoacid (Pollegioni & Molla, 2011) and 396 

monoamine oxidase (Buto et al., 1994; Edmondson et al., 2014). It is also plausible assuming that 397 

high ROS production in tadpoles in the CNF-I and CNF-II groups is associated with inflammasomes 398 

activation [intracellular multiprotein complexes activating caspases] by nanomaterials, whose 399 

reactive species formed in these systems are part of biochemical signaling reactions that can also 400 

activate inflammation through the production of several pro-inflammatory cytokines [see more 401 

details in Tschopp & Schroder (2010)]. Increased TBARS, mainly in the CNF-II group (Figure 4), 402 

suggested lipoperoxidation oxidative stress induced by CNFs, whose changes in biological 403 

membranes can further intensify ROS production (Itri et al., 2014).  404 
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Nevertheless, oxidative stress increase can cause different physiological consequences in 405 

organisms, such as increase in apoptotic and necrotic processes, as observed in our study (Figure 6). 406 

These data are particularly interesting, since they corroborate other studies that have already shown 407 

the induction of cell death processes in different model systems exposed to CNFs (either in vitro or 408 

in vivo). This finding is indicative of nanomaterials activating apoptotic and necrotic pathways 409 

through different pathways (Bottini et al., 2006; Elgrabli et al., 2008; Ravichandran et al., 2009; 410 

Patlolla et al., 2010; Srivastava et al., 2011; Wang et al., 2012; Kim et al., 2014; Salehcheh et al., 411 

2020). Furthermore, data in our study also suggested that the increased rate of apoptotic and 412 

necrotic erythrocytes may have happened because of damages to cell membranes caused by direct 413 

contact of these models with CNFs or by increased oxidative stress, which was inferred through 414 

different biomarkers (H2O2, ROS and TBARS). However, assumingly, CNFs induced increased 415 

expression of apoptosis genes (as demonstrated by Lee et al (2015)], mitochondrial membrane 416 

potential collapse (as suggested by Salehcheh et al. (2020)], DNA damage [ whose plausibility has 417 

already been demonstrated by Li et al. (2005) and Zhu et al. (2007)], and caspase activation [as 418 

suggested by Sohaebuddin et al. (2010)]. Shen et al. (2010) and Wang et al. (2012) have reported 419 

that CNs can cause, Ca2 + homeostasis imbalance and mitochondrial damage, as well as oxidative 420 

stress. These factors can be involved in MWCNTs-induced apoptosis and activate the production of 421 

the tumor necrosis factor by activating macrophages and monocytes, whose association with 422 

apoptosis and necrosis induction is well documented (Laster et al., 1988; Larrick & Wright, 1990; 423 

Van-Herreweghe et al., 2010; Ni et al., 2016; Yao & Cadwell, 2020; Liu & Jiao, 2020). 424 

Interestingly, we also noticed neurotoxic effect on tadpoles exposed to CNFs, and this 425 

finding was mainly inferred through increased AChE and BChE activity (Figure 7). BChE played 426 

important role in supporting AChE in cholinergic transmission regulation, mainly in the absence of 427 

AChE (Li et al., 2000). However, these data are different from those reported in previous studies, 428 

such as those by Wang et al. (2007), Wang et al. (2009) and Cabral et al. (2013). Wang et al. 429 

(2009) and Cabral et al. (2013) reported that the anticholinesterase action of CNTs can be related 430 

to different action mechanisms, including the ones related to these nanomaterials’ ability to adsorb 431 

AChE, to compete with AChE for its substrate and even to reduce the higher reaction speed (Vmax) 432 

of this enzyme due to the substrate’s inability to reach the active site of the enzyme by immobilizing 433 

the nanomaterials. Wang et al. (2007) suggested that high BChE adsorption by the tested CNs 434 

promoted structural and functional changes that have led to significant reduction in enzyme 435 

activity.  436 

Our data is following the study by Ibrahim et al. (2013), according to which, the direct effect 437 

of CNs on AChE activity did not cause significant change in the association and catalysis 438 
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mechanism was observed. According to these authors, the catalytic constant increased as the 439 

Michaelis constant slightly decreased, and this finding is indicative of enzyme efficiency increase due 440 

to increased substrate affinity with the active site. The thermodynamic data of the enzyme’s 441 

activation mechanisms showed no change in substrate interaction mechanism with the anionic 442 

binding site. Therefore, assumingly, similar mechanism could explain the AChE and BChE increase 443 

identified in tadpoles exposed to CNFs. Therefore, it is possible that the activation of these enzymes 444 

took place due to the indirect effects of CNFs rather than to the aforementioned process. Studies 445 

carried out in vitro have already shown that H2O2 strongly increased the AChE activity (Schallreuter 446 

et al., 2004; Garcimartín et al., 2017), and it reinforces the hypothesis that the high production of 447 

this reactive oxygen species has also stimulated the cholinesterase activity. It is plausible supposing 448 

interactions between CNFs and acetylcholine receptors, and that such interactions led to increased 449 

AChE and BChE synthesis for the decomposition of higher levels of this neurotransmitter. The 450 

hypothesis that the stimulatory effect of CNFs on the activity of these enzymes has been associated 451 

with positive regulation of the AChE and BChE genes due to the inhibitory effect of nanomaterials, 452 

but it needs to be tested in future studies. 453 

We also observed that the exposure to CNFs seems to have affected populations of 454 

neuromats living in some regions of tadpoles’ bodies, although in a different way. These cells are 455 

found in different amphibian species (Russel, 1976; Krupa et al., 2020) and make up a 456 

mechanosensory lateral line system with hair cells sensitive to movement, vibrations, and pressure 457 

gradients in the surrounding water (Lannoo, 1999). These cells are similar in morphology and 458 

function to hair cells in the auditory and vestibular system of other vertebrates (Mogdans, 2019; 459 

Roberts et al., 1988). Small movements in the water move the hair bundles of neuromast hair cells, 460 

and it mechanically opens the blocked ion channels (Harris et al., 1970; Sand et al., 1975). Hair 461 

cells (inside the neuromasts) depolarize and release neurotransmitters to the afferent neuronal 462 

terminals after water-flow deflection. These terminals transmit this information to the posterior 463 

brain (Jung et al., 2020).  464 

Animals exposed to nanomaterials had fewer neuromast in their head (anterior) and a larger 465 

number of them in their caudal (posterior) region (Figure 8). This finding suggested differentiated 466 

action by CNFs, and it could have had important biological consequences in the evaluated animals. 467 

Neuromats in the head (be it in amphibians or in fish) are sensitive to surface wave movements in 468 

water, to detect prey, as well as present better spatial solution due to their greater density. Caudal 469 

neuromats (i.e., posterior) are more adept to detecting predators and water disorders (Russell, 1976; 470 

Schwartz & Hasler, 1996; Bleckmann & Zelick, 2009). Previous studies have also shown effect like 471 

that observed in our study, given differences between innervations of anterior and posterior 472 
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neuromats. Hernandez et al. (2006) exposed Danio rerio larvae to different copper concentrations 473 

and reported differential hair cell regeneration between neuromats in the head and body of these 474 

larvae. Neuromats in the body were unable to regenerate at concentrations higher than 3.18 mg/L, 475 

whereas neuromats in the head regenerated at copper levels up to 25.42 mg/L. Similarly, posterior 476 

neuromasts were more sensitive in D. rerio embryos exposed to caffeine, dichlorvos, 4-nonylphenol 477 

and perfluorooctane sulfonic acid (Stengel et al. 2017). Posterior neuromats were more affected by 478 

copper sulphate and neomycin than previous neuromats in the aforementioned species after 30-min 479 

and 96-h exposure. Anterior neuromats exhibited greater cellular damage (Stengel et al. 2017). In 480 

this case, similarly to these findings, our data suggested differentiated action of CNFs on neuromats 481 

evaluated in the anterior and posterior regions of P. cuvieri tadpoles. 482 

Although the action mechanisms of CNFs have not been explored in-depth in our study, it is 483 

tempting to speculate that these nanomaterials have acted in in neuromast populations through 484 

different ways. Assumingly, CNFs have affected these cells by competing with calcium ions at the 485 

fixation sites, and this process has avoided the flow of ions necessary for signal transduction, as 486 

observed by Hudspeth (1983) and Faucher et al. (2006). Thus, damage could be reversible. On the 487 

other hand, the reduced number of neuromats observed in the head of tadpoles exposed to CNFs 488 

can correspond to permanent damage to these cells because of increased oxidative stress, necrosis, 489 

or apoptosis. This hypothesis is supported by results of correlation analyses carried out between the 490 

number of neuromats in the head and CNF accumulation in the tested animals (see Table 1), as 491 

well as by reports by Olivari et al. (2008), who suggested similar mechanisms to explain the reduced 492 

number of neuromats in D. rerio larvae exposed to different copper concentrations. On the other 493 

hand, the increased number of neuromats observed in groups exposed to CNFs can be a 494 

physiological compensation mechanism to balance damages caused by nanomaterials to head cells, 495 

since the total number of neuromats did not differ between experimental groups (Figure 8C).  496 

 497 

5. CONCLUSION  498 

Based on the information above, our study confirmed the initial hypotheses and 499 

demonstrated that CNFs can accumulate in animals and have negative effects on the health of P. 500 

cuvieri tadpoles, even at short-term exposure, at environmentally relevant concentrations. The 501 

induction of nutritional deficit, oxidative stress and cyto-and neurotoxic effects are factors affecting 502 

these animals’ growth and development. However, it is necessary accepting that our results are only 503 

the “tip of the iceberg”; therefore, it is essential conducting further investigations to evaluate the 504 

biological impacts of CNFs on anurofauna. Limitations of our study are the starting point for future 505 

research. It is interesting further evaluating the long-term CBF’s effects and their impact on other 506 
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physiological functions of the assessed model, as well as identifying and featuring possible damages 507 

caused by it in other amphibian species. This finding will be especially important to expand our 508 

knowledge about the action mechanisms of these pollutants. This information will be an important 509 

basis to assess ecotoxicological risks associated with the presence and dispersion of these pollutants 510 

in freshwater ecosystems and, their impact on anurofauna. 511 

 512 
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