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Abstract  

Background: Chronic pain is a world-wide clinical challenge. Response to analgesic treatment is limited and 

difficult to predict. Functional MRI (fMRI) has been suggested as a potential solution. However, while most 

analgesics target specific neurotransmission pathways, fMRI-based biomarkers are not specific for any 

neurotransmitter system, limiting our understanding of how they might contribute to predict treatment response.  

Methods: Here, we sought to bridge this gap by applying Receptor-Enriched Analysis of Functional Connectivity 

by Targets (REACT) to investigate whether neurotransmission-enriched functional connectivity (FC) mapping can 

provide insights into the brain mechanisms underlying chronic pain and inter-individual differences in analgesic 

response after a placebo or duloxetine. Chronic knee osteoarthritis (OA) pain patients (n=56) underwent pre-

treatment brain scans in two clinical trials. Study 1 (n=17) was a 2-week single-blinded placebo pill trial. Study 2 

(n=39) was a 3-month double-blinded randomized trial comparing placebo to duloxetine, a dual serotonin-

noradrenaline reuptake inhibitor.   

Results: Across two independent studies, we found that chronic pain OA patients present FC alterations in the FC 

related to the serotonin (SERT) and noradrenaline (NET) transporters, when compared to age-matched healthy 

controls. Placebo responders presented with higher pre-treatment dopamine transporter (DAT)-enriched FC than 

non-responders. Duloxetine responders presented with higher pre-treatment SERT and NET-enriched FC than 

non-responders. Pre-treatment SERT and NET-enriched FC achieved predictive positive values of duloxetine 

response up to 85.71%.  

Conclusion: Neurotransmission-enriched FC mapping might hold promise as a new mechanistic-informed 

biomarker for functional brain alterations and prediction of response to pharmacological analgesia in chronic pain.   

 

Key-Words: chronic pain; biomarker; Receptor-Enriched Analysis of Functional Connectivity by Targets 

(REACT); analgesia; placebo; duloxetine 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 

Pain is a world-wide leading cause of disability, constituting one of the primary reasons for people to 

seek healthcare(1-3). Chronic pain is a disease in its own right, characterized by persistence of pain beyond normal 

healing time(1). Despite the high personal and societal costs(4), pain management in patients with chronic pain is 

still generally unsatisfactory(5). Although the number of potential treatments has grown substantially (i.e. 

antidepressants, anticonvulsants, opioids)(6), treatment response is overall low(7) and why only some patients 

respond remains poorly understood(8). On the other, most of the available pharmacological treatments for patients 

with chronic pain are accompanied by considerable side effects and risk of misuse (i.e. opioids)(9), motivating 

high rates of treatment non-adherence(10). A strong case has been made for a mechanism-based and individualized 

approach to chronic pain therapy(11); yet, our capacity to predict who may or may not benefit from a specific 

analgesic treatment is still limited(12), leading high numbers of non-responsive patients to experience a range of 

side effects with minimal or null clinical benefit. Therefore, developing mechanism-based biomarkers that can 

guide analgesic treatment selection for chronic pain patients based on prediction of treatment response remains an 

unmet target and a clinical need. 

Part of this problem stems from our limited understanding of the neurobiological mechanisms underlying 

chronic pain and, hence, of the mechanisms through which most of these pharmacological treatments might 

produce persistent pain relief in chronic pain patients(12). Currently, it is generally accepted that chronic pain is a 

multifactorial entity entailing physical, psychological, emotional, and social aspects(1). Preclinical studies have 

offered insights into key central mechanisms that might contribute to chronic pain, including sensitization 

phenomena in an array of nervous system pathways, imbalances in the facilitatory and inhibitory descending 

modulation pathways from the brain that regulate the transmission of noxious information in the spinal cord, 

neuroinflammation and glial dysfunction, among others(13-17). These findings have fuelled substantial interest in 

developing neuroimaging-based biomarkers that could unravel how chronic pain affects brain functioning and 

what form of brain pathophysiology in these patients can be targeted by different treatments(18, 19). While a range 

of preliminary diagnosis, prognosis and treatment response brain biomarkers have been suggested (for extensive 

reviews please see (18, 19)), to date these biomarkers have provided minimal direct clinical application in the 

management of chronic pain patients. 

Most pharmacological analgesic treatments target specific neurotransmission pathways. For instance, 

duloxetine, a dual antidepressant often used to manage pain in chronic pain patients, inhibits the reuptake of both 

serotonin and noradrenaline, increasing their bioavailability in the synapses(20). However, neuroimaging-based 
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biomarkers of brain function (i.e. such as those based on measurements of BOLD signal(21)) are not specific for 

any neurotransmission system, limiting the potential mechanistic understanding of how these biomarkers might 

contribute to explain treatment response. The same limitation applies to the potential neuroimaging biomarkers in 

unravelling functional changes in neuromodulatory pathways that could guide drug development or repurposing 

for patients with chronic pain(12).  

Here, we sought to bridge this gap by applying the recently developed Receptor-Enriched Analysis of 

Functional Connectivity by Targets (REACT) multimodal framework(22), which enriches resting-state functional 

magnetic resonance imaging (rs-fMRI) analysis with information about the distribution density of molecular 

targets derived from PET and SPECT imaging(22, 23). We performed secondary analyses of two openly available 

rs-fMRI datasets(24) to investigate two main questions: i) do patients with painful chronic knee osteoarthritis 

present functional alterations in key neurotransmitter-related circuits associated with pain control and regulation, 

when compared to age-matched healthy controls? ii) Can pre-treatment inter-individual differences in the 

functional connectivity (FC) of these neurotransmitter-related circuits predict analgesia in response to placebo or 

treatment with duloxetine? Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pre-treatment brain 

scans in two clinical trials. Study 1 (n = 17) was a 2-week single-blinded placebo pill trial. Study 2 (n = 39) was a 

3-month double-blinded, between-subject, randomized trial comparing placebo (n = 20) to duloxetine (n = 

19). Patients were compared to healthy controls (n=20).  

We focused our analyses on the functional circuits related to the serotonin (SERT), noradrenaline (NET) 

and dopamine (DAT) transporters, and the µ-opioid receptor, as general indicators of the regional distribution of 

the neurotransmission related to the serotonin, noradrenaline, dopamine and opioid systems, respectively. We 

informed our selection of molecular targets by the fact that these neurotransmitter systems play pivotal roles in 

pain regulation, namely in those descendent modulatory pathways controlling the spinal transmission of 

nociceptive information(25, 26). Furthermore, they have also been implicated in placebo analgesia (i.e. dopamine 

and opioids)(27) and correspond to the main molecular targets of duloxetine (i.e. serotonin and noradrenaline 

transporters)(20), which treatment response was effectively studied herein.  

 

Results 

Here, we report in detail only the results of our analyses on molecular-enriched FC and summarize below 

some of the main findings from the original analyses(24) on sociodemographic and clinical variables that might 
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help to interpret our novel imaging findings. For a detailed description of sociodemographic and clinical variables 

we refer the reader to the original article published elsewhere(24). 

In study 1, eight patients met the criteria for placebo response and nine patients were classified as non-

responders. Responders and non-responders did not differ in baseline pain ratings, age, disease duration, 

depressive symptoms, pain catastrophizing or medication use at the entry of the study. In study 2, from those 

allocated to placebo, 10 patients met the criteria for responders and the other 10 were classified as non-responders. 

From those allocated to duloxetine, eight met the criteria for responders and 11 were classified as non-responders. 

Patients allocated to receive placebo did not differ in baseline pain ratings when compared to those randomized to 

duloxetine. In both groups, responders and non-responders did not differ in baseline pain ratings, age, disease 

duration, depressive symptoms or medication use at the entry of the study. However, in both groups non-

responders showed higher pain catastrophizing than responders. Both placebo and duloxetine produced significant 

reductions in pain ratings after 3-months of treatment; however, the extent of pain relief did not differ between 

those treated with placebo and those treated with duloxetine. 

 

Receptor-Enriched Analysis of Functional Connectivity by Targets (REACT). We used the templates of the molecular 

density distribution of the DAT, NET, SERT and µ-opioid receptor in the REACT analysis to estimate the 

corresponding molecular-enriched FC maps of these systems for every subject of the two datasets. In figure 1, we 

provide a summary of the molecular templates (on the left) and their corresponding functional circuits (on the 

right) estimated by averaging the fMRI maps across healthy controls from Study 1 (for visual purposes only). 

 

Figure 1. Receptor-Enriched Analysis of Functional Connectivity by Targets (REACT) multimodal framework. Maps 

of the molecular templates of the dopamine, noradrenaline and serotonin transporters (DAT, NET and SERT) and the µ-opioid 

receptor (on the left) and their respective molecular-enriched fMRI maps (on the right). The colour bar on the left represents 
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the molecular density distribution of each template, normalised between 0 and 1 after removing either the cerebellum (for the 

SERT) or the occipital regions (for the NET, DAT and µ-opioid receptor) as they were used as references for quantification of 

the molecular data in the kinetic models for the radioligands. The colour bar on the right represents the functional connectivity 

of each network, expressed in z-score. The fMRI maps are averaged across the sub-set of healthy subjects from Study 1.  

 

NET- and SERT-related functional connectivity differs between patients with chronic knee OA and healthy 

controls. We investigated our first main research question by comparing the FC associated with each 

neurotransmitter system between OA patients and healthy controls. We started by running exploratory whole-brain 

two-sample t-tests (controlling for age and gender) comparing, for each neurotransmitter system, the 

neurotransmission-enriched FC maps of healthy controls (HC) and patients with chronic knee osteoarthritis from 

Study 1 (OA1). We found significant differences in NET and SERT-enriched FC (pFWE < 0.05) between the OA1 

and HC groups (Figure 2, panel A). Specifically, the OA1 group showed increased NET-enriched FC (pFWE = 

0.012) in a set of regions spanning the right superior and middle frontal gyrus and the frontal pole, and increased 

SERT-related FC (pFWE = 0.032) in the frontal pole, middle and superior frontal gyrus, paracingulate gyrus and 

frontal medial cortex. We also found decreased SERT-enriched FC in the OA1 group (pFWE = 0.002) in the superior 

and middle temporal gyrus, supramarginal gyrus and angular gyrus. Of note, only the increase in the SERT-

enriched FC survived Bonferroni correction for multiple comparisons across maps and contrasts. We did not find 

any group differences in the DAT- and µ-opioid-enriched FC.  

To validate these findings, we conducted hypothesis-driven analyses comparing SERT- and NET-

enriched FC between chronic knee osteoarthritis from Study 2 (OA2) and HC. We extracted the mean SERT- and 

NET-enriched FC values in the clusters where we found case-control differences in OA1 from the OA2 patients 

and HC and performed direct comparisons between the two groups. The two-sample t-tests, corrected for age and 

gender, showed significant differences between OA2 and HC in SERT-related FC (HC > OA2: F(3,55)=7.117, 

p<0.0005; HC < OA2: F(3,55)=5.953, p=0.001), which were similar in direction and magnitude to those observed 

when we compared OA1 and HC. This analysis identified a similar pattern of alterations in SERT-enriched FC 

across the two cohorts of OA patients (Figure 2, panel B). 

Beyond the case-control group differences, we also investigated whether NET- and SERT-enriched FC 

in these regions would also be able to predict the pain ratings (VAS) at entry in each of the two groups of patients. 

We did not find a consistent pattern of association between NET- and SERT-enriched FC and pain intensity 

(Supplementary Table S1). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

Figure 2. Alterations in NET- and SERT-enriched functional connectivity (FC) in patients with chronic knee 

osteoarthritis (OA) as compared to healthy controls (HC). (A) Whole-brain exploratory analysis on data from Study 1, 

which identified regions with significantly higher NET- and SERT-enriched FC (top and bottom rows), and other regions with 

reduced FC in the SERT-enriched functional maps (central row) in OA1 patients, as compared to healthy controls. A cluster 

was deemed significant if it survived pFWE<0.05, after correction for multiple comparisons by using the null distribution of the 

maximum cluster size across the image. (B) Hypothesis-driven analyses on extracted data from patients in Study 2 (OA2) 

showed a similar pattern of alterations in SERT-enriched FC across the two cohorts. The asterisk denotes significant differences 

between OA2 and HC (* p<0.05). Abbreviations: NET – Noradrenaline transporter; SERT – Serotonin transporter. 

 

Placebo responders differ from non-responders in pre-treatment DAT-enriched functional connectivity. To 

test whether placebo responders and non-responder differ in pre-treatment FC associated with any of the 

neurotransmitter systems we tested, we ran exploratory whole-brain two-sample t-tests comparing FC related to 

each system between placebo responders and non-responders from the OA1 dataset, while accounting for age and 

gender. We found that placebo responders, as compared to non-responders, showed significant increases in DAT-

enriched FC in the central and parietal opercular cortex, Heschl's gyrus, anterior division of the superior temporal 

gyrus, planum polare and planum temporale (pFWE = 0.027; Figure 3A). Of note, this result would not have survived 

a strict Bonferroni correction for multiple comparisons across maps and contrasts. No significant differences 

between placebo responders and non-responders were observed for NET-, SERT- and µ-opioid-enriched FC.  
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We performed receiver operating curve (ROC) analysis to quantify the performance of DAT-enriched FC 

extracted from the cluster described above to discriminate between placebo responders and non-responders in our 

sample. For a cut-off of 4.47 arbitrary units, DAT-enriched connectivity discriminated between responders and 

non-responders in our sample with a sensitivity of 75%, specificity of 77.78%, positive and negative predictive 

values of 75% and 77.78%, respectively (AUC = 0.722) (Supplementary Figure S1).  

As a final check, we examined whether DAT-enriched connectivity differences in OA1 could reflect a 

regression to the mean phenomenon (rather than a placebo pill response) by testing whether DAT-enriched 

connectivity predicts symptom severity at time of entry into the study using both frequentist and Bayesian Pearson 

correlations. We found that DAT-enriched connectivity was not correlated with VAS prior to treatment 

(Supplementary Table S2).  

 

Figure 3. Differences in pre-treatment DAT-enriched functional connectivity (FC) between patients with chronic knee 

osteoarthritis (OA) who responded (R) and did not respond (NR) to placebo administration. (A) Whole-brain two-sample 

t-test conducted on data from Study 1 (OA1), which showed significantly higher pre-treatment FC in the DAT-enriched FC in 

placebo R as compared to NR. A cluster was deemed significant if it survived pFWE<0.05, after correction for multiple 

comparisons by using the null distribution of the maximum cluster size across the image. (B) Hypothesis-driven analysis on 

DAT-enriched FC values extracted from the cluster reported in (A) in patients from Study 2 did not show any significant 

differences between placebo R and NR. The violin plots show the mean FC values within the cluster in (A) for placebo R and 
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NR in both Studies 1 and 2. OA1: Nresponders = 8; Nnon-responders = 9; OA2: Nresponders = 10; Nnon-responders = 10. Abbreviations: DAT 

– Dopamine transporter. 

Next, we attempted to replicate these DAT-enriched FC findings in a hypothesis-driven analysis using 

data from OA2. We extracted the mean DAT-enriched FC values in the cluster that showed a significant difference 

between placebo responders and non-responders in OA1.We then used these values in a two-sample t-test 

comparing placebo responders and non-responders in OA2, but did not find any significant group differences 

(Figure 3B). In a Bayesian two-sample t-test of the same data we found that, given the data, the null hypothesis 

was about 2.46 times more likely than the alternative hypothesis of a group difference (BF01 = 2.46). Further 

exploratory analyses at the whole-brain level did not reveal any group differences for any of the neurotransmitter 

systems.  

 

Duloxetine responders and non-responders differ in pre-treatment NET- and SERT-related functional 

connectivity. Finally, we tested if different patterns of pre-treatment FC related to neurotransmission underlie 

differences in response to different analgesic treatments. We investigated this question using data from Study 2, 

which allowed us to examine differences in pre-treatment FC related to neurotransmission between responders 

and non-responders to placebo and duloxetine. For each functional circuit, we used two-way ANCOVA to 

interrogate a 2-way interaction effect between treatment type (duloxetine, placebo) and treatment response 

(responders, non-responders) on FC, after adjusting for patients’ age and gender. We found significant two-way 

interaction effects for NET- and SERT-enriched FC (respectively pFWE = 0.011 and pFWE = 0.024; Figure 4A). In 

the NET-enriched FC, this interaction spanned the frontal pole, insular cortex, middle and inferior frontal gyrus, 

precentral gyrus, superior and middle temporal gyrus, postcentral gyrus, supramarginal gyrus and planum 

temporale. Similarly, in the SERT-enriched FC the interaction spanned the frontal pole, middle and inferior frontal 

gyrus, precentral gyrus, postcentral gyrus, superior parietal lobule, supramarginal gyrus, lateral occipital cortex 

and cuneal cortex. Of note, only the result related to the NET-enriched functional circuit survived Bonferroni 

correction for multiple comparisons across maps and contrasts. No significant interaction effects were observed in 

the DAT- and µ-opioid-enriched FC maps. 

We then extracted the mean FC values within the significant clusters where we found a significant 

interaction in the whole-brain analyses and ran post-hoc tests to evaluate the simple main effects of response to 

treatment for the duloxetine and placebo groups separately (these analyses were adjusted for age and gender). In 

those allocated to receive duloxetine, responders had higher FC in both the NET and SERT-enriched maps than 
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non-responders; in those allocated to receive placebo, we found the opposite (Figure 4B). The full statistics 

resulting from the post-hoc tests are reported in Supplementary Table S3. To investigate a potential regression to 

the mean phenomenon, we also used these values to calculate frequentist and Bayesian Pearson correlations 

between NET- and SERT-enriched FC and baseline VAS pain ratings in the placebo and duloxetine groups 

separately. Here, we only found a significant negative correlation SERT-enriched FC and baseline VAS in the 

placebo group (Supplementary Table S4). 

 

Figure 4. Treatment type x treatment response interaction in NET- and SERT-enriched functional connectivity (Study 

2). (A) A two-way ANCOVA showed statistically significant interactions treatment type (duloxetine, placebo) x treatment 

response (responders, non-responders) in the NET- and SERT-enriched FC maps, after adjusting for patients’ age and gender. 

A cluster was deemed significant if it survived pFWE<0.05, after correction for multiple comparisons by using the null 

distribution of the maximum cluster size across the image. (B) Post-hoc tests were then run on extracted mean functional 

connectivity (FC) from those clusters to evaluate the simple treatment response main effects in each treatment group separately, 

after controlling for age and gender. Significant differences between responders (R) and non-responders (NR) are marked with 

an asterisk on top of the corresponding violin plots (* p<0.05 two-tailed, after Tukey correction for multiple comparison). 

Placebo: Nresponders = 10, Nnon-responders = 10; Duloxetine: Nresponders = 8, Nnon-responders = 11. Abbreviations: NET – Noradrenaline 

transporter; SERT – Serotonin transporter. 
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Finally, we performed ROC analysis to quantify the performance of NET- and SERT-enriched FC 

extracted from the clusters described above to discriminate between responders and non-responders to duloxetine 

in our sample. For a cut-off of 1.45 arbitrary units, NET-enriched connectivity discriminated between duloxetine 

responders and non-responders in our sample with a sensitivity of 75%, specificity of 90.91%, positive and 

negative predictive values of 85.71% and 83.33%, respectively (AUC = 0.852). For a cut-off of -2.79 arbitrary 

units, SERT-enriched connectivity discriminated between duloxetine responders and non-responders in our sample 

with a sensitivity of 75%, specificity of 72.73%, positive and negative predictive values of 66.67% and 80%, 

respectively (AUC = 0.773). Direct comparisons of the AUCs of the NET- and SERT-enriched ROCs yielded no 

significant differences (p=0.572) (Supplementary Figure S2). 

 

Discussion 

In this study, we investigated whether molecular-enriched FC mapping can provide insights into the brain 

pathophysiological mechanisms and inter-individual differences in treatment response to pharmacological 

analgesia during chronic pain. To that end, we applied a novel multimodal approach (REACT) to resting-state 

fMRI data from two studies on chronic pain patients with knee osteoarthritis. We found that, when compared to 

healthy controls, chronic patients with knee osteoarthritis presented alterations in the FC related to NET and SERT, 

two key neurotransmission systems involved in pain modulation and targeted by a class of drugs currently 

prescribed to control pain in these patients. Changes in SERT-enriched FC were consistent across the two datasets. 

In line with the known role of dopamine in expectancy and placebo response, we found that pre-treatment DAT-

enriched connectivity at rest was higher in patients that responded to a 2-week period of administration of a 

placebo, as compared to non-responders. We also found that patients that responded to duloxetine, but not those 

that responded to placebo, showed higher pre-treatment NET- and SERT-enriched FC at rest, which achieved 

specificity and positive predictive values for future duloxetine response of up to 85.71%. Based on these findings, 

we suggest that molecular-enriched FC mapping might constitute a step towards mechanism-based neuroimaging 

biomarkers for functional alterations in chronic pain and treatment response prediction. We discuss each of our 

main findings below. 

 Our first main finding was the observation that chronic pain patients with knee osteoarthritis present 

alterations in NET- and SERT-enriched FC at rest, when compared to healthy controls. We validated this finding 

further by showing that a similar pattern of alterations was present across two datasets of patients, at least for the 

SERT functional circuit. This finding is interesting for two reasons. First, both the serotonin and the noradrenaline 
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systems are part of the neurotransmission systems involved in pain control and modulation from the brain(25). 

The role of serotonin and noradrenaline in pain regulation is certainly complex and can encompass both inhibitory 

(analgesic) and excitatory (hyperalgesic) actions, depending on the site of action, cell type and type of receptor 

engaged(25). Yet, a vast number of studies in animal models have causally implicated alterations in serotonin and 

noradrenaline neurotransmission in the genesis of persistent pain (for an extensive review please see (28)). For 

instance, serotonin and noradrenaline depletion through repeated administration of reserpine in rodents is sufficient 

to induce patterns of persistent tactile allodynia and it has recently been used as a fibromyalgia-like animal model 

for research on disease mechanisms and drug development(29-32). Second, both the serotonin and noradrenaline 

transporters are targeted by drugs currently prescribed to control pain in patients with chronic pain, such as tricyclic 

antidepressants or non-selective inhibitors of the reuptake of serotonin and noradrenaline(20). While these drugs 

are often prescribed to patients with chronic pain, the understanding of the precise mechanisms through which 

they might reduce pain in these patients is still relatively poor(20). The animal literature is strongly supportive of 

the hypothesis that antidepressants might enhance the engagement of descending inhibitory pain pathways by 

increasing serotonin and noradrenaline neurotransmission(20) (though this picture is likely to be more complex 

given that, for instance, different serotonin receptors can be inhibitory or facilitatory(33), or that increases in 

noradrenaline in regions of the brain involved in descending pain modulation, such as the dorsal reticular nucleus, 

can also facilitate pain(34)). However, whether the same mechanisms are responsible for the clinical effects 

observed in chronic pain patients has never been explored in depth. Based on our findings we could speculate that 

one of the mechanisms through which these drugs might improve pain control in chronic pain patients is through 

normalizing the alterations in NET- and SERT-enriched FC we report here. While we could not test this hypothesis 

using our datasets since imaging data at follow-up were not collected for these two studies, we believe this is an 

interesting question for future work, as it could help to strengthen the rationale for using SERT- and NET-targeting 

compounds to treat chronic pain. 

We did not find any alteration in DAT- or µ-opioid-enriched connectivity at rest in any of the two OA 

datasets we analysed. This was surprising for several reasons. First, the opioid system has a well-established role 

in pain regulation(35, 36) and the dopamine system has equally been suggested to be involved in the supraspinal 

modulation of pain(37, 38). Second, alterations in opioid and dopaminergic neurotransmission in chronic pain 

have been reported in human PET studies(39, 40). For instance, chronic neuropathic pain was shown to be 

associated with higher striatal dopamine D2/D3 receptor availability, for which low endogenous dopamine tone is 

a plausible explanation(41). Alterations in μ-opioid receptor availability has been showed across chronic pain 
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conditions (39), including arthritis(42). Third, opioids figure among the pharmacological agents used to manage 

chronic pain(43) and can achieve effective analgesia in at least some types of chronic pain(44). Based on these 

lines of evidence, it would be plausible that chronic pain in OA might be associated with DAT- or µ-opioid-

enriched FC changes. While we can only speculate around null findings, we believe at least two factors might have 

contributed to the lack of DAT- or µ-opioid-enriched connectivity we report here. First, we based our analyses on 

target-enriched FC measured at rest. Hence, we cannot exclude that such alterations might emerge under 

nociceptive stimulation, which has been shown to recruit the opioid system in human PET studies(45), and might 

enhance case-control differences in µ-opioid-enriched connectivity, if they exist. Second, while one of the 

exclusion criteria in both datasets was current treatment with MAO inhibitors or any centrally acting drug for 

analgesia and depression, to be eligible patients needed daily pain medication to manage symptoms. While we are 

unaware of the exact drug class used by these patients before enrolment, it is possible that such treatment might 

have mitigated potential case-control differences in µ-opioid- or DAT-enriched connectivity, if they existed. 

Future studies exploring these questions will be important. 

Our second main finding was the observation that patients experiencing analgesia in response to a course 

of 2 weeks of placebo administration (Study 1) present higher pre-treatment DAT-enriched FC, but not SERT-, 

NET- or µ-opioid-enriched FC, than patients that did not respond. DAT-enriched FC was not related to disease 

burden prior to start of placebo treatment in Study 1, diminishing the possibility that the measure is related to 

regression to the mean rather than a true placebo response. Furthermore, this difference is also unlikely to be 

confounded by differences between responders and non-responders in disease duration, depressive symptoms, pain 

catastrophizing or medication use since the groups did not significantly differ in any of these variables (see original 

study(24)). This finding suggests that inter-individual differences in DAT-enriched FC might contribute to 

explaining why patients differ in their responses to placebo. Positive medical responses to placebo treatments are 

a well-recognized phenomenon observed in many pathologies, particularly for neurological and painful 

conditions(46, 47). Analgesia in response to placebo is widely observed in pain clinical trials, in which it often 

exhibits sustained effectiveness rivalling in magnitude the one from the active treatment(48, 49). Historically, the 

placebo effect has been thought of as the end-product of biases in subjective symptom reporting(50). This 

interpretation has evolved through increasing evidence that the placebo effect is mediated by specific neural 

mechanisms(49-51). One of the key theories around the neurobiological mechanisms underlying the placebo effect 

postulates that it represents a form of reward expectation processing(52). Dopamine is thought to be centrally 

involved in reward expectation and variations from expected outcomes (prediction errors), and has therefore been 
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linked to placebo effects(53). For instance, one human PET study has shown that placebo-induced analgesia is 

associated with decreases in binding [11C]raclopride to D2/D3 dopamine receptors in the basal ganglia, possibly 

reflecting increases in the release of dopamine in these regions(27). The same study also reported placebo-induced 

decreases in [11C]carfentanil binding to the µ-opioid receptor, pointing to engagement of the endogenous opioid 

system during placebo-induced analgesia. However, changes in [11C]raclopride binding in the nucleus accumbens 

emerged as the strongest predictor of placebo-induced analgesia, accounting for 25% of the variance alone. 

Another study has shown that individual differences in reward response can explain placebo-induced effects and 

expectations(54). The differences in DAT-enriched FC between patients that responded versus those that did not 

respond to administration of placebo we report here are broadly compatible with this idea. Assuming that higher 

DAT-enriched FC might be driven by strongest dopamine-related neurotransmission within the dopaminergic 

circuits (which we index here through DAT density distribution in the brain), then it is plausible that those patients 

with strongest dopamine-related neurotransmission might benefit the most from expectancy effects, which rely on 

dopamine release and are at the core of the placebo effect.  

This finding was nevertheless not replicated in the hypothesis-driven analysis on data from Study 2, where 

placebo and non-placebo responders did not differ in pre-treatment DAT-enriched FC. The lack of between-groups 

differences was supported by our Bayesian analysis where we found the null hypothesis to be 2.46 times more 

likely given the data than the alternative hypothesis. We should highlight though that there is at least one important 

methodological difference between Study 1 and 2 that could potentially account for this discrepancy. In Study 1, 

placebo response was evaluated after 2 weeks of placebo administration, while in study 2 the placebo protocol 

lasted for 3 months. Studies have shown that duration of administration is a determinant of placebo response(55, 

56). Hence, it is possible that while inter-individual differences in DAT-enriched FC are particularly relevant to 

explain differences in short-term response to placebo, other mechanisms might be involved in the long term. Until 

further larger studies will revisit these findings, we urge for some caution when interpreting this association 

between pre-treatment DAT-enriched FC and placebo response. We also note the lack of differences between 

placebo responders and non-responder on µ-opioid-enriched FC in this study, despite previous evidence that the 

endogenous opioid system is recruited during placebo-induced analgesia(27). However, as explained above, 

whether that might reflect the fact that FC was measured at rest or that some carry-over effects of previous 

analgesic treatments biased this result is unclear. 

Our third key finding was the observation that patients that responded to a course of treatment with 

duloxetine showed higher pre-treatment NET- and SERT-enriched FC (but not DAT or µ-opioid-enriched FC) 
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than those that did not respond, while in those patients allocated to placebo we observed the opposite trend – i.e., 

lower pre-treatment NET- and SERT-related FC. Furthermore, NET- and SERT-related FC discriminated between 

duloxetine treatment response groups in our sample with good sensitivity and positive predictive values of up to 

85.71%. NET-enriched FC was not related to disease burden prior to start of placebo or duloxetine treatment in 

Study 2, diminishing the possibility that the measure is related to regression to the mean rather than a true response. 

SERT-enriched FC was also not related to baseline pain ratings in the duloxetine group, but we did find a 

significant negative correlation in those patients allocated to receive placebo. Furthermore, these differences are 

unlikely to be driven by differences between responders and non-responders within each group in disease duration, 

depressive symptoms or medication use, since the groups did not significantly differ in any of these variables (see 

original study(24)). Altogether, these findings suggest that pre-treatment NET- and SERT-related FC measured at 

rest might hold promise as a biomarker for duloxetine analgesia response in OA chronic pain patients.  

Duloxetine is a non-selective inhibitor of the reuptake of serotonin and noradrenaline, which enhances 

their bioavailability at the synaptic level(20). The main mechanisms suggested to underlie the analgesic effect 

observed under duloxetine include enhancement of descending inhibitory pain pathways from the brain through 

potentiation of serotoninergic and noradrenergic transmission, with consequent inhibition of ascendant 

transmission of nociceptive inputs from the spinal cord(20) (although peripheral actions have also received support 

from some preclinical studies(57)). This mechanism has received indirect support from a previous study linking 

response to duloxetine in painful diabetic neuropathy to the integrity of the descending pain inhibitory pathways, 

as assessed by conditioned pain modulation(58). Therefore, the fact that only pre-treatment differences in SERT 

and NET-enriched FC exist between duloxetine responders and non-responders matches the pharmacodynamics 

of the drug and aligns with the basic drug mechanisms through which most likely it induces analgesia. Based on 

this observation, we suggest that target-enriched FC mapping might open a new avenue in neuroimaging 

biomarkers of pharmacological treatment response in chronic pain, bringing the advantage of allowing to establish 

a clearer mechanistic link between the neuroimaging biomarker being measured and the neurotransmission-related 

mechanisms through which a pharmacological treatment targeting a specific neurochemical system might induce 

analgesia. For instance, since duloxetine acts by inhibiting the reuptake of serotonin and noradrenaline, it is 

conceivable that its ability to enhance serotoninergic or noradrenergic transmission is moderated by the amounts 

of these neurotransmitters available in the synapses, promoting lower accumulation of serotonin/noradrenaline in 

those where synthesis capacity and tonic release is reduced. Following this line of thought, patients with lower 

bioavailability of serotonin/noradrenaline, which for this reason might show lower SERT- and NET-related FC 
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connectivity, might not benefit from duloxetine treatment as much. We should highlight though that at this point 

any relationship between bioavailability of specific neurotransmitters and target-enriched FC remains speculative 

and will require validation in further studies.  

 While we could not find significant differences between NET- and SERT-enriched FC ability to 

discriminate between responders and non-responder to duloxetine, we note that NET-enriched FC showed higher 

AUC, specificity and positive predictive value. This empirical observation matches the clinical evidence that non-

selective inhibitors of the reuptake of serotonin and noradrenaline might be superior to selective inhibitors of the 

reuptake of serotonin in promoting analgesia in patients with chronic pain(20, 59). This superiority is thought to 

be linked to the fact that antidepressants which also increase the levels of noradrenaline by inhibiting NET might 

block the spinal transmission of nociceptive input directly through acting on spinal a2 receptors(20).   

Our study has some limitations worth mentioning. First, although REACT improves the specificity of FC 

analysis, the approach remains relatively indirect and relies on molecular templates estimated in independent 

cohorts of healthy individuals. Therefore, further specification from intra-regional variation across patients is not 

possible using the current dataset as it would require PET data for each ligand and patient. The availability of PET 

data from the same cohort of patients would allow the creation of patient-specific templates, which might enhance 

the accuracy of the maps of FC related to each target. This should be examined in future studies validating our 

work further. Second, the sample size of both cohorts was relatively small. This was in part mitigated by the fact 

that we attempted to replicate some of our findings in Study 1 using a second cohort of patients from study 2. 

Nevertheless, future larger studies revisiting these findings will be welcome. Third, we explored the ability of 

NET- and SER-enriched FC to discriminate between responders and non-responders to duloxetine and provided 

preliminary evidence that it might offer good specificity and true positive predictive value in discriminating 

between them in our sample. However, given that we conducted such analyses using data from the same sample 

we used for biomarker discovery, these results cannot reiterate the validity of our candidate biomarkers in 

predicting placebo or duloxetine response yet. The validity of our candidate biomarkers will need to be inspected 

in future studies using larger independent cohorts. Finally, our findings are restricted to OA patients and to the 

prediction of placebo and duloxetine response in this group of chronic pain patients; hence, direct extrapolation to 

other chronic pain conditions or other pharmacological analgesics should be avoided. Indeed, chronic pain 

manifests in a range of clinical phenotypes; and even within the boundaries of a specific chronic pain syndrome 

such as OA, it is likely that different pathophysiological mechanisms are in play in different patients(60, 61). 
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However, from the findings we gathered in this study, we suggest that future studies expanding the approach we 

presented here to other chronic pain populations and drug classes are worth investing and might reveal fruitful. 

In conclusion, while further clinical validation in larger cohorts is warranted, we suggest that molecular-

enriched FC mapping might hold promise as a new mechanistic-informed biomarker for functional brain 

alterations and prediction of response to pharmacological analgesia in chronic pain. The mechanistic insights 

introduced by this approach might help to identify chronic pain mechanisms enabling rational and individualized 

treatment choice. Ultimately, these informed decisions might contribute to decrease unnecessary exposures of 

patients to ineffective therapies and undesirable side-effects, facilitate treatment adherence and accelerate pain 

control without long periods of treatment trial-and-error, decreasing the chance that the pain becomes 

intractable(62). 

 

Methods 
Participants and study design. For this work, we used two openly available rs-fMRI datasets(24) of chronic knee 

OA pain patients who underwent pre-treatment brain scans in two clinical trials. The full details on demographics, 

inclusion and exclusion criteria have been provided in the original article(24). Here, we will simply present a brief 

summary to help to contextualize the reader. Study 1 was a 2-week single-blinded placebo pill trial where 17 OA 

patients (M/F:8/9; 56.9 ± 5.7 years) ingested a lactose placebo pill once a day for 2 weeks. Study 2 was a 3-month 

double-blinded randomized trial in which 39 OA patients ingested either placebo pills (n = 20; M/F: 9/12; 57.6 ± 

9.5 years) or duloxetine (n = 19; M/F: 9/10; 59.2 ± 4.6 years) at a dose of 30 mg for the first week and escalated 

to 60 mg for the rest of the treatment period, except for the last week, when the dose was decreased back to 30 mg. 

In addition, Study 1 also included 20 age-matched healthy control subjects (M/F:10/10; 57.9 ± 6.7 years). For 

Studies 1 and 2, behavioural and clinical parameters were obtained before and after treatment, while brain scans 

were collected only before treatment. Patients were asked to discontinue their medications 2 weeks before the 

beginning of the trial and were provided with acetaminophen as rescue medication. All participants gave written 

informed consent to procedures approved by the Northwestern University Institutional Review Board committee 

(STU00039556).  

 

Behavioural and clinical measures. Patients from both studies completed a general health questionnaire, 

a Visual Analogue Scale (VAS) on a 0 to 10 scale for their knee OA pain, the Western Ontario and McMaster 

Universities Osteoarthritis Index (WOMAC), the Beck Depression Inventory (BDI) and the Pain Catastrophizing 

Scale (PCS) (please note we could only access the raw VAS and WOMAC data). All questionnaires were 
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administered on the day of brain scanning. In Study 2, to partially compensate for regression to the mean effects, 

VAS was measured 3 times over a 2-week period prior to the start of treatment and after cessation of medication 

use, averaged, and used as baseline. Analgesic response was defined a priori on an individual basis as at least a 

20% decrease in VAS pain from baseline to the end of treatment period; otherwise, subjects were classified as 

non-responders. This threshold for analgesic response was chosen following the same procedure adopted by the 

previous study on these datasets(24). While the choice of this threshold is arbitrary, we note though that a 20% 

reduction in VAS ratings of pain is higher than the 15% considered to be minimal clinically important(63). As a 

further reference, a 30% reduction in VAS ratings of pain is typically considered a clinical important pain 

diminution(64). 

 

Image acquisition.	For all participants in Studies 1 and 2, imaging data were collected with a 3T Siemens 

Trio whole-body scanner. A 3D T1-weighted anatomical scan was obtained for each participant using an 

MPRAGE acquisition (voxel size = 1×1×1 mm; TR/TE = 2,500/3.36 ms; flip angle = 9°; in-plane matrix resolution 

= 256 × 256; slices = 160; field of view = 256 mm). Functional MRI data were obtained during rest using a multi-

slice T2*-weighted echo-planar sequence (TR/TE = 2500/30 ms, flip angle = 90°, number of slices = 40, slice 

thickness = 3 mm, and in-plane resolution = 64 × 64; number of volumes = 300). All MRI data are available on 

https://openneuro.org/datasets/ds000208/versions/1.0.0.  

 

Image pre-processing. The rs-fMRI datasets from Studies 1 and 2 were pre-processed using FMRIB 

Software Library (FSL). Pre-processing steps included volume re-alignment with MCFLIRT(65), non-brain tissue 

removal with the brain extraction tool (BET)(66), an initial spatial smoothing with a 6-mm FWHM Gaussian 

kernel and de-noising with ICA-based Automatic Removal Of Motion Artifacts (ICA-AROMA)(67). 

Additionally, subject-specific WM and CSF masks, obtained from the segmentation of the subjects' structural 

images and eroded in order to minimize the contribution of grey matter partial volume effects, were used to extract 

and regress out the mean WM and CSF signals from each participant's pre-processed dataset. A high-pass temporal 

filter with a cut-off frequency of 0.005 Hz was applied, followed by an additional spatial smoothing at FWHM = 

6mm, in order to obtain a final smoothing of the fMRI images of approximately 8mm (FWHM2final = 

FWHM21+FWHM22). A study-specific template representing the average T1-weighted anatomical image across 

subjects was built using the Advanced Normalization Tools (ANTs)(68). Each participant's dataset was co-
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registered to its corresponding structural scan, then normalized to the study-specific template before warping to 

standard MNI152 space. Images were finally resampled at 2 mm3 resolution. 

 

Functional connectivity analysis with REACT. For the analysis with REACT, we used the templates 

of the molecular density distribution of the DAT, NET, SERT and µ-opioid receptor. The DAT map is a publicly 

available template of 123I-Ioflupane SPECT images (https://www.nitrc.org/projects/spmtemplates) from 30 HC 

without evidence of nigrostriatal degeneration(69). The NET atlas is a publicly available template of the [11C]MRB 

PET brain parametric maps from 10 HC (M/F: 6/4; 33.3 ± 10 years)(70, 71). The SERT atlas is a publicly available 

template(72) of [11C]DASB PET images of 210 healthy controls from the Cimbi database(73). The µ-opioid 

receptor map is a publicly available template of [11C]Carfentanil PET images of 89 HC 

(https://identifiers.org/neurovault.image:115126). All molecular atlases were normalised by scaling the image 

values between 0 and 1, although preserving the original intensity distribution of the images, and masked using a 

standard grey matter mask. Of note, for each atlas we masked out the regions that were used as references for 

quantification of the molecular data in the kinetic models for the radioligands, namely the occipital areas for DAT, 

NET and µ-opioid receptor, and the cerebellum for SERT. Finally, we resampled the SERT image in order to have 

all atlases in standard MNI space with 2 mm3 voxel size. 

A detailed explanation of REACT methodology and its applications can be found elsewhere(22, 23). In 

brief, the functional circuits related to the DAT, NET SERT and µ-opioid receptor systems were estimated using 

a two-step multivariate regression analysis(74, 75) implemented with the fsl_glm command of FSL. In the first 

step, the rs-fMRI volumes were masked using a binarized atlas derived from the molecular data to restrict the 

analysis to the voxels for which the density information of the neurotransmitter was available in the template. 

Then, the molecular templates were used as a set of spatial regressors to weight the rs-fMRI images and estimate 

the dominant BOLD fluctuation related to each molecular system at the subject level. Those subject-specific time 

series were then used as temporal regressors in a second multivariate regression analysis to estimate the subject-

specific spatial map associated with each molecular atlas. The output consists of four maps per subject, each one 

reflecting the molecular-enriched FC associated with a specific neurotransmitter. At this stage, the analysis was 

conducted on the whole grey matter volume. Both data and the design matrix were demeaned (--demean option); 

the design matrix columns were also normalised to unit standard deviation with the --des_norm option(74). 
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Statistics. For our analyses on case-control differences, first we run exploratory whole-brain two-sample 

t-tests comparing OA1 and healthy controls, after controlling for age and gender, for each neurotransmission 

system separately. For this and all subsequent whole-brain analyses, we applied cluster-based inference within 

Randomise(76), using 5,000 permutations per test and contrast, considering a cluster significant if pFWE < 0.05, 

corrected for multiple comparisons by using the null distribution of the maximum cluster size across the image. 

Then, we used a two-sample t-test in SPSS (version 27) to investigate differences in mean SERT- and NET-

enriched FC values, extracted from the clusters where we found significant OA1 vs healthy controls differences, 

between OA2 and healthy controls after controlling for age and gender. For our exploratory analyses on differences 

in pre-treatment FC between placebo responders and non-responders, we used whole-brain two-sample t-tests 

comparing responders and non-responders, after controlling for age and gender, for each neurotransmission system 

separately. Our hypothesis-driven analysis for DAT-enriched differences in pre-treatment FC between responders 

and non-responders in Study 2 used a two-sample t-test implemented in SPSS. We investigated two-way 

interactions between treatment type (placebo, duloxetine) and treatment response (responders, non-responders) 

using exploratory whole-brain F-tests, adjusting for age and gender, for each neurotransmission system separately. 

We followed up each significant interaction by extracting the mean FC values within the significant clusters found 

in the whole-brain interaction analysis and ran post-hoc tests in SPSS to evaluate the simple main effects of 

treatment response within each treatment type groups separately, after controlling for age and gender. Levene’s 

test was also performed to check the homogeneity of variances. The correlations between mean molecular-enriched 

FC and pain ratings were calculated using Pearson’s correlations (bootstrapping 1,000 samples), as implemented 

in SPSS. The ROC analyses on treatment response discrimination were implemented in JAMOVI, using the PPDA 

package. Here, we defined response as a binary variable taking the value 0 for non-responders and 1 for responders. 

We set 1 (responders) as the positive class and used the Youden’s J statistic to select the cut-off that maximizes 

the performance of the discrimination (larger is better). All Bayesian analyses were implemented in JAMOVI 

(version 1.16.2.0), using the default uninformative priors from the software. An increase in Bayes Factor (BF) in 

our analyses corresponds to an increase in evidence in favour of the null hypothesis. To interpret BF, we used the 

Lee and Wagenmakers’ classification scheme(77): BF < 1/10, strong evidence for alternative hypothesis; 

1/10<BF<1/3, moderate evidence for alternative hypothesis; 1/3 < BF < 1, anecdotal evidence for alternative 

hypothesis;  BF > 1, anecdotal evidence for the null hypothesis; 3<BF<10, moderate evidence for the null 

hypothesis; BF > 10, strong evidence for the null hypothesis. 
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