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Abstract	12	

Ancient	 genomes	 anchor	 genealogies	 in	 directly	 observed	 historical	 genetic	 variation,	 and	 contextualise	13	

ancestral	lineages	with	archaeological	insights	into	their	geography	and	lifestyles.	We	introduce	an	extension	14	

of	the	Relate	algorithm	to	incorporate	ancient	genomes	and	reconstruct	the	joint	genealogies	of	14	previously	15	

published	high-coverage	ancients	and	278	present-day	individuals	of	the	Simons	Genome	Diversity	Project.	16	

As	the	majority	of	ancient	genomes	are	of	lower	coverage	and	cannot	be	directly	built	into	genealogies,	we	17	

additionally	present	a	fast	and	scalable	method,	Colate,	for	inferring	coalescence	rates	between	low-coverage	18	

genomes	without	requiring	phasing	or	imputation.	Our	method	leverages	sharing	patterns	of	mutations	dated	19	

using	a	genealogy	to	construct	a	likelihood,	which	is	maximised	using	an	expectation-maximisation	algorithm.	20	

We	apply	Colate	to	430	ancient	human	shotgun	genomes	of	>0.5x	mean	coverage.	Using	Relate	and	Colate,	we	21	

characterise	dynamic	population	structure,	such	as	repeated	partial	population	replacements	in	Ireland,	and	22	

gene-flow	between	early	farmer	and	European	hunter-gatherer	groups.	We	further	show	that	the	previously	23	

reported	increase	in	the	TCC/TTC	mutation	rate,	which	is	strongest	 in	West	Eurasians	among	present-day	24	

people,	was	 already	widespread	 across	West	 Eurasia	 in	 the	 Late	 Glacial	 Period	~10k	 –	 15k	 years	 ago,	 is	25	

strongest	 in	 Neolithic	 and	 Anatolian	 farmers,	 and	 is	 remarkably	 well	 predicted	 by	 the	 coalescence	 rates	26	

between	other	genomes	and	a	10,000-year-old	Anatolian	individual.	This	suggests	that	the	driver	of	this	signal	27	

originated	in	ancestors	of	ancient	Anatolia	>14k	years	ago,	but	was	already	absent	by	the	Mesolithic	and	may	28	

indicate	a	genetic	link	between	the	Near	East	and	European	hunter-gatherer	groups	in	the	Late	Paleolithic.	29	

	30	

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431573doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431573
http://creativecommons.org/licenses/by/4.0/


	 2	

1 Introduction 31	

Genetic	variation	 is	shaped	through	evolutionary	processes	acting	on	our	genomes	over	hundreds	of	millennia,	32	

including	past	migrations,	 isolation	by	distance,	mutation	or	recombination	rate	changes,	and	natural	selection.	33	

Such	events	are	reflected	in	the	genealogical	trees	that	relate	individuals	back	in	time.	While	these	are	unobserved,	34	

recent	 advances	 have	 made	 their	 reconstruction	 from	 genetic	 variation	 data	 feasible	 for	 many	 thousands	 of	35	

individuals	and	have	enabled	powerful	inferences	of	our	genetic	past	(Rasmussen	et	al.	2014;	Speidel	et	al.	2019;	36	

Kelleher	et	al.	2019).		37	

Ancient	 genomes	 provide	 a	 direct	 snapshot	 of	 historical	 genetic	 variation,	 and	 so	 add	 substantial	 information	38	

compared	to	genealogies	built	only	from	modern-day	samples.	We	introduce	an	extension	to	the	Relate	algorithm	39	

to	 enable	 the	 incorporation	 of	 such	 non-contemporary	 samples.	 We	 use	 this	 approach	 to	 reconstruct	 joint	40	

genealogies	 of	 the	 Simon’s	 Genome	 Diversity	 Project	 (SGDP)	 dataset	 (Mallick	 et	 al.	 2016)	 and	 14	 previously	41	

published	high-coverage	ancient	humans	(Cassidy	et	al.	2020;	Broushaki	et	al.	2016;	Jones	et	al.	2015;	Sikora	et	al.	42	

2017;	 2019;	 Gallego-Llorente	 et	 al.	 2015;	 Lazaridis	 et	 al.	 2014;	 Fu	 et	 al.	 2014;	 Günther	 et	 al.	 2018;	 de	 Barros	43	

Damgaard	et	al.	2018).	These	genealogies	are	able	to	capture	the	shared	population	histories	of	present-day	and	44	

ancient	humans,	and	could	also	be	applied	in	other	species.	In	particular,	they	allow	identification	of	inbreeding,	45	

population	size	estimation	and	estimation	of	coalescence	rates	between	individuals,	analysis	of	the	age	and	spread	46	

of	individual	mutations,	and	in	future	might	be	used	to	infer	natural	selection	(Speidel	et	al.	2019).	47	

The	joint	inference	of	genealogies	for	ancients	and	moderns	currently	requires	accurate	genotypes,	which	is	not	48	

possible	for	the	majority	of	ancient	human	genomes	which	are	of	lower	coverage.	One	central	set	of	questions	for	49	

such	 samples	 involve	 estimation	 of	 their	 joint	 genetic	 history:	 their	 relationships	with	 one	 another,	 and	 other	50	

samples,	through	time,	reflected	in	their	varying	coalescence	rates	through	time.	These	coalescence	rates	can	be	51	

estimated	using	a	number	of	methods	(H.	Li	and	Durbin	2011;	Schiffels	and	Durbin	2014;	Terhorst,	Kamm,	and	52	

Song	2017;	Gutenkunst	et	al.	2009;	Kamm	et	al.	2020),	as	well	as	our	updated	Relate	approach,	but	to	date	none	of	53	

these	have	been	designed	to	work	 for	 low-coverage	genomes.	We	have	therefore	developed	a	 fast	and	scalable	54	

method,	 Colate,	 for	 inferring	 coalescence	 rates	 between	 low-coverage	 genomes	 without	 requiring	 phasing	 or	55	

imputation.	 Colate	 leverages	 age	 distributions	 of	 mutations	 from	 a	 Relate-inferred	 genealogy	 to	 construct	 a	56	

likelihood	that	summarises	sharing	patterns	of	mutations	through	time,	which	we	maximise	using	an	Expectation-57	
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Maximisation	(EM)	algorithm.	The	method	can	calculate	coalescence	rates	between	any	number	of	samples	and	58	

scales	linearly	in	sample	size	and	genome	lengths;	Colate	requires	only	a	constant	runtime	of	typically	5	seconds	59	

for	the	EM	step	after	parsing	the	data	(Methods).	60	

We	apply	Colate	to	430	genomes	of	>0.5x	coverage	spanning	the	late	Paleolithic,	Mesolithic,	Neolithic,	and	more	61	

recent	epochs	across	many	regions	outside	Africa	(SI	Table).	Using	Colate-inferred	coalescence	rates,	as	well	as	our	62	

Relate	 results	 for	 higher-coverage	 genomes,	 we	 trace	 genetic	 structure	 evolving	 through	 time.	 Among	 other	63	

findings,	we	readily	identify	genetic	clusters	corresponding	to	HGs,	Neolithic	farmers,	and	the	Bronze	age	in	Europe,	64	

and	map	out	the	coalescence	rates	of	modern	humans	worldwide	with	these	ancient	samples.	We	show	that	these	65	

indicate	localised	structure,	and	characterise	dramatic	population	replacements	in	Ireland	within	the	space	of	3,000	66	

years,	as	well	as	varying	gene	flow	between	HGs	and	Neolithic	farmers	across	Europe,	which	is	more	widespread	67	

than	previously	identified.	68	

Finally,	 we	 leverage	 our	 Relate-inferred	 genealogies	 and	 Colate-inferred	 coalescence	 rates	 to	 quantify	 the	69	

previously	reported	but	unexplained	elevation	in	TCC	to	TTC	mutation	rate	(K	Harris	2015)	in	all	SGDP	individuals	70	

and	161	ancient	individuals	of	>2x	mean	coverage,	providing	a	finer-scale	geographic	and	temporal	mapping	of	this	71	

signal	than	previously	available.	We	show	that	the	signal	has	a	remarkable	96%	correlation	with	coalescence	rates	72	

to	 an	 early	 Anatolian	 farmers	 from	 the	 pre-pottery	 Neolithic	 (Kılınç	 et	 al.	 2016),	 is	 absent	 in	 samples	 from	73	

>34,000YBP	 but	 was	 already	 widespread	 among	 HGs	 in	 Late	 Glacial	West	 Eurasia,	 and	 shows	 no	 increase	 in	74	

strength	over	the	last	10,000	years,	suggesting	that	the	driver	for	this	excess	was	extinct	by	the	Late	Mesolithic.	75	

This	strong	localisation	of	the	signal	in	both	time	and	space	suggests	either	a	genetic	cause,	or	a	somehow	tightly	76	

focussed	environmental	cause.	Moreover,	we	hypothesise	that	these	excess	TCC/TTC	mutations	spread	via	gene	77	

flow	through	ancestors	of	ancient	Anatolia	into	HG	groups	across	Western	Eurasia	before	the	expansion	of	farming,	78	

perhaps	associated	with	a	 link	between	 the	Near	East	and	Late	Upper	Paleolithic	Europe	 that	 started	with	 the	79	

Bølling–Allerød	interstadial	warming	period	(Fu	et	al.	2016).	80	
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	82	

	

Figure	1	

Colate	calculates	coalescence	rates	between	two	sets	of	chromosomes,	labelled	target	and	reference	(main	text).	
The	method	proceeds	by	recording	for	each	mutation	carried	by	a	reference	chromosome,	whether	it	is	shared	
in	the	target	chromosomes.	This	information	is	summarised	in	a	likelihood,	which	is	constructed	by	multiplying	
over	SNPs,	such	that	no	phase	information	is	required.	Whenever	more	than	one	chromosome	is	available	at	any	
given	site,	we	multiply	across	chromosomes.	The	 likelihood	 is	maximised	using	an	expectation-maximisation	
algorithm.	
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Figure	2	

a,	Simulation	emulating	real	human	groups,	including	three	modern	human	groups	(Mbuti,	Han,	and	Sardinian)	with	
100	haploid	sequences	each,	and	five	diploid	ancient	genomes.	We	calculated	coalescence	rates	between	groups	using	
true	genealogical	trees	of	all	samples	(true	trees;	direct	MLE),	Relate	trees	of	all	samples	(Relate	trees;	direct	MLE),	as	
well	as	Colate,	where	the	reference	genealogy	included	all	modern	human	groups	but	not	the	ancients.	For	the	direct	
MLEs,	coalescence	rates	are	symmetric	with	respect	to	target	and	reference	group	assignment;	for	Colate,	each	panel	
corresponds	 to	 a	 fixed	 reference	 group,	 with	 different	 coloured	 lines	 showing	 different	 target	 groups.	b,	 Colate-
inferred	coalescence	rates	between	four	1000	Genomes	Project	samples	(HG0096,	HG00268,	NA18525,	NA19017)	and	
the	remaining	1000	Genomes	samples	in	groups	CEU,	CHB,	and	YRI.	We	calculate	coalescence	rates	where	the	target	
samples	are	given	as	genotype	data	(VCF),	as	well	as	reference-aligned	read	data	downsampled	to	4x,	0.1x,	and	0.01x	
mean	coverage.		Confidence	intervals	are	constructed	using	100	block	bootstrap	iterations	with	a	block	size	of	20Mb.	
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Figure	3	

a,	Matrix	of	pairwise	coalescence	rates	of	all	SGDP	individuals	and	ancients	in	epoch	0	to	15,000	years	before	present	
(YBP),	calculated	using	Colate.	b,	Subset	of	samples	shown	in	a.	Sample	names	are	coloured	by	context.	Abbreviations	
in	 sample	names	are	WHG:	Western	hunter-gatherer,	 SHG:	 Scandinavian	hunter-gatherer,	EHG:	Eastern	hunter-
gatherer,	CHG:	Caucasus	hunter-gatherer,	F:	farmer,	BA:	Bronze	Age,	SP:	Steppe	Pastoralists	c,	Principal	component	
analysis	(PCA)	on	pairwise	coalescence	rates	of	ancient	individuals	in	epoch	0	–	15,000	YBP,	coloured	by	context.	d,	
PCA	 on	 pairwise	 coalescence	 rates	 for	 four	 epochs,	 coloured	 by	 Longitude	 outside	 Africa.	 In	 all	 PCAs,	 we	
standardised	columns	in	each	matrix	of	coalescence	rates	and	applied	the	R	function	prcomp	to	calculate	PCs.	
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2 Results 85	

2.1 Extending Relate to work with non-contemporary samples 86	

We	extend	our	previously	developed	method,	Relate,	 for	 inference	of	genealogical	 trees	genome-wide	 for	 large	87	

sample	sizes	(Speidel	et	al.	2019)	to	work	with	ancient	genomes	(Supplementary	Information).	A	key	aspect	of	non-88	

contemporary	samples	is	that	these	impose	hard	constraints	on	the	ages	of	coalescence	events.	Our	updated	tree	89	

builder	restricts	which	lineages	can	coalesce	by	assigning	a	preliminary	date	to	each	coalescence	event	and	only	90	

allows	coalescences	of	non-contemporary	samples	with	lineages	that	predate	its	age.	Branch	lengths	are	sampled	91	

using	a	Markov-Chain	Monte	Carlo	sampler,	with	modified	proposal	distributions	to	allow	for	non-contemporary	92	

samples.	As	before,	we	sample	branch	lengths	from	a	posterior	distribution	that	fixes	tree	topology	and	combines	93	

the	 likelihood	of	 observing	 a	 certain	number	of	mutations	on	 a	branch	and	a	 coalescent	prior	with	piecewise-94	

constant	effective	population	sizes	through	time.	95	

2.2 Inferring coalescence rates for low-coverage genomes using Colate 96	

Colate	calculates	coalescence	rates	between	a	set	of	“target”	and	a	set	of	“reference”	chromosomes	by	leveraging	97	

mutations	dated	using	an	inferred	genealogy;	this	genealogy	may	(or	may	not)	have	overlapping	samples	with	the	98	

target	and	reference	chromosome	sets	(Figure	1,	Methods	and	Supplementary	Information).	Both	the	target	and	99	

reference	chromosomes	may	be	specified	as	VCF	files	containing	genotypes,	or	as	BAM	files	containing	reference-100	

aligned	reads.	The	latter	is	particularly	useful	for	low-coverage	sequencing	data,	where	accurate	genotype	calling	101	

is	 not	 possible.	 For	 ancient	 genomes,	 we	 specify	 a	 sampling	 date.	 In	 practise,	 we	 often	 specify	 two	 different	102	

individuals	as	 the	 target	and	reference,	and	obtain	 the	coalescence	rates	between	this	pair,	 though	 it	would	be	103	

possible	to	pool	information.	104	

The	Colate	likelihood	uses	as	input	data	whether	each	mutation	carried	by	a	reference	chromosome	is	shared,	or	105	

not	shared,	with	a	target	chromosome.	Sharing	indicates	that	coalescence	between	the	two	chromosomes	happened	106	

more	recently	than	the	age	of	this	mutation,	whereas	non-sharing	indicates	that	coalescence	happened	further	in	107	

the	past,	assuming	each	mutation	occurs	only	once	(the	 infinite-sites	model),	and	so	an	exact	 likelihood	can	be	108	

calculated,	given	coalescence	rates	between	the	sample	sets	(Methods).	We	multiply	this	likelihood	across	sites	109	

and	therefore	do	not	require	genomes	to	be	phased;	in	low-coverage	data,	we	additionally	multiply	across	pairs	of	110	

reads.	 This	 likelihood	 is	 then	 maximised	 using	 an	 expectation-maximisation	 (EM)	 algorithm	 (Methods,	111	
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Supplementary	Information).	Our	implementation	reduces	computation	time	by	using	a	discrete	time	grid	to	record	112	

sharing	and	non-sharing	of	mutations	through	time,	reducing	the	computation	time	of	the	EM	algorithm.	As	a	result,	113	

computation	time	is	independent	of	sample	size	and	genome	lengths	once	the	data	is	parsed,	and	typically	takes	114	

around	5	seconds	(~40	seconds	including	parsing	the	data,	Supplementary	Figure	1).	115	

We	 demonstrate	 high	 accuracy	 of	 Colate	 and	 Relate-inferred	 coalescence	 rates	 using	 the	 stdpopsim	 package	116	

(Adrion	et	al.	2020),	on	simulated	data	following	a	zigzag	demographic	history	(Supplementary	Figure	2)	as	well	117	

as	a	multi-population	model	of	ancient	Eurasia,	which	was	fitted	using	real	human	genomes	(Kamm	et	al.	2020)	118	

(Figure	 2a)	 (Methods;	 also	 see	 (Speidel	 et	 al.	 2019)	 for	 comparison	 of	Relate	 to	 other	methods).	We	 further	119	

evaluate	Colate’s	performance	on	low-coverage	sequencing	data	by	downsampling	high-coverage	genomes	of	the	120	

1000	Genomes	Project	(The	1000	Genomes	Project	Consortium	2015),	and	find	that	although	uncertainty	increases	121	

as	coverage	decreases,	Colate	recovers	meaningful	coalescence	rate	estimates	even	between	a	sequence	of	0.01x	122	

mean	 coverage	 and	 high-coverage	 sequences	 specified	 as	 a	 VCF	 (Figure	 2b),	 or	 between	 two	 low	 coverage	123	

sequences	of	0.1x	mean	coverage	(Supplementary	Figure	3).			124	

2.3 Relate and Colate applied to 278 SGDP moderns and 430 ancients 125	

We	 inferred	 joint	 genealogies	 of	 278	modern-day	 individuals	 of	 the	 Simons	 Genome	Diversity	 Project	 and	 14	126	

previously	published	high	coverage	ancients	of	>8x	mean	coverage,	which	we	collectively	rephase	using	Shapeit4	127	

(Delaneau	et	al.	2019)	and	the	1000	Genomes	Project	reference	panel	(Methods).	Tree	topologies	were	constructed	128	

using	 all	 mutations	 except	 CpG	 dinucleotides,	 but	 branch	 length	 inference	 used	 transversions	 only,	 to	 avoid	129	

confounding	due	to	deamination	errors	 in	the	ancient	genome	sequences	(Methods).	Additionally,	we	estimate	130	

pairwise-coalescence	rates	for	430	ancient	individuals	of	>0.5x	mean	sequencing	coverage	using	Colate	(SI	Table).	131	

For	Colate,	we	use	a	Relate-inferred	genealogy	for	the	SGDP	samples	to	date	mutations,	where	we	sampled	one	132	

haplotype	from	each	individual	to	remove	the	effects	of	recent	inbreeding	and	restrict	to	transversions	(Methods).	133	

2.4 PCA on Colate-inferred coalescence rates captures dynamic population structure 134	

Colate-inferred	coalescence	rates	demonstrate	intricate	relationships	that	vary	geographically	and	through	time	135	

and	manifest	vast	migrations	and,	in	places,	repeated	population	replacements	(Figure	3a,b).	In	the	recent	past	(0-136	

15KY),	populations	are	separated	based	on	both	geography	and	sample	age	(Figure	3a,b):	there	are	extremely	low	137	

coalescence	 rates	 between	 continental	 regions	 (excepting	 W.	 Eurasia,	 Central	 Asia,	 and	 Siberia,	 which	 show	138	
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patterns	 indicating	 migration).	 Taking	 samples	 from	 Ireland	 as	 one	 example	 (Figure	 3b),	 previous	 work	 has	139	

indicated	repeated	partial	or	complete	population	replacements,	first	of	ancestral	hunter-gatherers	by	Neolithic	140	

farmers,	and	then	in	the	Bronze	age	by	migrants	related	to	people	from	the	Eastern	steppe	(Cassidy	et	al.	2016).	141	

Using	Colate,	the	earliest	Irish	samples	have	highest	coalescence	rates	with,	and	similar	relatedness	to	other	groups	142	

as,	West	European	hunter-gatherers	(e.g.	Loschbour).	Neolithic	Irish	samples	show	much	lower	affinity	to	these	143	

hunter-gatherers,	but	are	 closely	 similar	 to	other	European	 farmers	 (e.g.	LBK,	an	early	 farmer	 from	Germany).	144	

Bronze	 age	 Irish	 samples	 again	 show	more	 similarity	 to	 hunter	 gatherers,	 but	 now	Eastern	 European	 hunter-145	

gatherers	 (and	 other	 Eastern	European	 groups),	 and	 in	 this	 and	 other	 respects	 they	 resemble	 the	 Yamnaya,	 a	146	

possible	source	group	(Figure	3b);	however	they	retain	some	farmer-like	haplotypes	not	present	in	the	Yamnaya	147	

sample.	 Comparing	 across	 the	whole	dataset,	we	observe	 that	 Irish	 ancient	 genomes	 are	 closest	 to	 other	 Irish	148	

ancients	 from	within	 the	 same	 time	period	 (Supplementary	Figure	4,	 5).	This	 implies	 that	 finer	 scale,	 regional	149	

stratification	existed	within	the	HGs,	Neolithic	farmers,	and	Bronze	age	samples,	but	there	is	no	clear	evidence	of	150	

continuity	 across	 periods,	 suggesting	 this	 arose	 independently	 repeatedly.	We	 also	 identify	 clear	 substructure	151	

among	 European	 HGs,	 consistent	 with	 previous	 findings	 (Lazaridis	 et	 al.	 2014)	 and	 pairwise	 F2	 statistics		152	

(Supplementary	Figure	6);	this	structure	corresponds	to	a	divide	of	Western,	Eastern,	Scandinavian,	and	Caucasus	153	

HGs	among	our	samples	in	Europe.		154	

One	approach	to	visualise	the	diverse	signals	in	these	data	is	to	adapt	the	widely	used	PCA	approach,	but	now	using	155	

coalescence	rates	within	particular	epochs	(Figure	3c,d	show	the	first	two	PCs	for	selected	epochs).	Structure	is	not	156	

seen	 in	the	deep	past	(>630k	years	before	present	(YBP))	but	 in	distinct	epochs	we	observe	separation	 first	of	157	

African	(e.g.,	Mota)	and	non-African	individuals,	and	by	45-55k	YBP,	a	separation	between	West	and	East	Eurasians,	158	

as	well	as	a	stronger	split	with	Ust’-Ishim	(Fu	et	al.	2014),	a	45k-year-old	Siberian	individual	who	also	appears	159	

slightly	closer	to	East	Eurasians	compared	to	later	European	samples,	such	as	Kostenki14	(Seguin-Orlando	et	al.	160	

2014)	and	Sunghir3	(Sikora	et	al.	2017),	who	are	closer	to	West	Eurasians.	In	the	most	recent	epoch	(0-15k	YBP),	161	

our	PCA	mirrors	geography	globally	(Novembre	et	al.	2008),	but	reflects	different	ancestries	more	regionally;	for	162	

instance,	 we	 detect	 three	 clusters,	 corresponding	 to	 Mesolithic	 HGs,	 Neolithic	 farmers,	 and	 Bronze/Iron	 age	163	

individuals	in	Europe	(Figure	3c).	The	Bronze	age	cluster	falls	closer	to	Steppe	Pastoralists	from	the	Pontic-Caspian	164	

Steppe	(e.g.,	Yamnaya),	consistent	with	previously	reported	gene	flow	from	this	region	 into	Bronze	age	Europe	165	

(Haak	et	al.	2015;	Allentoft	et	al.	2015).	Overall,	these	inferences	seem	in	strong	agreement,	across	time	and	space,	166	

with	previous	specific	analyses	of	these	samples.		167	
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Figure	4	

a,	Map	showing	Relate-inferred	coalescence	rates	of	a	9700-year-old	Caucasus	HG	(KK1),	7200-year-old	
early	European	farmer	(LBK),	a	nearly	8000-year-old	Western	hunter-gatherer	(Loschbour),	and	a	9000-
year-old	Scandinavian	HG	to	SGDP	moderns.	The	coalescence	rates	shown	in	the	map	correspond	to	the	
epoch	16k-25k	YBP.	b,	Relate-inferred	inverse	coalescence	rates	(effective	population	sizes)	for	KK1,	LBK,	
Loschbour,	and	sf12	to	 themselves	and	each	of	 the	other	 four	 individuals.	c,	Maps	 in	 top	diagonal	show	
Relate-inferred	coalescence	rates	of	lineages	with	descendants	shown	by	facet	titles	to	SGDP	moderns	in	
same	epoch	as	in	a.	Bottom	diagonal	shows	regression	coefficients	obtained	by	regressing	coalescence	rates	
(integrated	over	interval	0-50k	YBP)	of	lineages	with	descendants	given	by	facet	titles	to	SGDP	moderns	
against	Colate-inferred	 coalescence	 rates	 (integrated	over	 interval	0-50k	YBP)	of	Bichon	 (Western	HG),	
Bon002	(Anatolian),	SATP	(Caucasus	HG),	Sidelkino	(Eastern	HG)	to	SGDP	moderns.	Panels	involving	KK1	
and	Loschbour	or	sf12	are	greyed	out,	as	there	is	little	gene-flow	between	these	groups.	
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2.5 Relationship of European hunter-gatherer groups to Neolithic farmers 169	

We	assess	the	ancestry	contributions	of	several	potential	approximate	ancestral	sources:	early	European	farmers,	170	

Western,	Scandinavian,	and	Caucasus	HGs	to	present-day	West	Eurasians	(Figure	4),	by	measuring	the	coalescence	171	

rates	–	quantifying	shared	ancestry	–	of	modern	individuals	from	each	of	these	groups.	As	expected,	HG	ancestry	is	172	

more	 localised	 in	 present-day	Europeans	 compared	 to	 shared	 ancestry	with	Neolithic	 farmers,	who	 arrived	 to	173	

Europe	from	Anatolia	(Haak	et	al.	2010).	We	also	detect	a	previously	observed	South-North	cline,	with	the	highest	174	

farmer-like	ancestry	observed	in	Sardinians	(Figure	3b),	while	Western	and	Scandinavian	HG	ancestry	is	highest	in	175	

northern	European	groups	and	Caucasus	HG	ancestry	is	concentrated	around	present-day	Georgia	(Lazaridis	et	al.	176	

2014;	Skoglund	et	al.	2012;	2014;	Jones	et	al.	2015).	177	

While	there	is	strong	evidence	for	Anatolian	farmers	partially	replacing	HG	ancestry	across	Europe	in	the	Neolithic,	178	

the	deeper	relationship	of	ancestors	of	these	Anatolian	farmers	to	European	HGs	in	the	Late	Upper	Paleolithic	is	179	

not	fully	understood.	Caucasus	HGs	have	been	modelled	as	forming	a	clade	with	European	early	farmers	that	is	180	

deeply	diverged	 from	Western	HGs	 (>27k	YBP),	with	subsequent	directional	gene	 flow	 from	Western	HGs	 into	181	

Anatolia	(Jones	et	al.	2015).	More	recent	studies	have	demonstrated	that	the	major	ancestral	component	of	Western	182	

HGs	only	became	widespread	in	Europe	after	14k	YBP	and	harbours	an	increased	affinity	to	Anatolian	and	Caucasus	183	

populations,	relative	to	earlier	European	HGs	(Fu	et	al.	2016),	suggesting	an	expansion	from	Southeast	Europe	or	184	

the	 Near	 East	 following	 the	 Last	 Glacial	 Maximum	 (LGM).	 To	 address	 such	 questions,	 we	 first	 estimate	 and	185	

characterize	overall	pairwise	coalescence	rates	among	samples.	To	focus	on	migration	between	two	groups	A	and	186	

B,	we	examine	lineages	that	possess	descendants	in	each	group	as	a	result	of	recent	shared	ancestry,	and	might	187	

therefore	represent	migrants	from	one	population	to	another.	If	recent	migration	is	purely	directional	from	group	188	

A	into	group	B,	such	lineages	will	always	come	from	group	A	in	the	past,	and	thus	have	the	same	coalescence	rates	189	

as	this	group	(rather	than	group	B).	190	

Initially,	using	pairwise	coalescence	rates,	we	 find	 that	Western	and	Scandinavian	HGs	 form	a	clade	relative	 to	191	

Caucasus	 HGs	 (KK1),	 with	 almost	 no	 recent	 coalescences	 observed	 between	 these	 groups.	 However	 patterns	192	

observed	 for	 early	 farmers	 (LBK)	 imply	 a	 non-tree-like	 group	 relationship	 involving	 migration	 (Figure	 4b):	193	

Caucasus	HGs	show	greater	affinity	to	Neolithic	farmers	than	to	Western	or	Scandinavian	HGs	in	recent	epochs,	but	194	

this	is	not	reciprocated	by	early	farmers	who	have	higher	coalescence	rates	to	Western	and	Scandinavian	HGs	than	195	

to	Caucasus	HGs.		196	
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We	 therefore	 characterise	 lineages	 ancestral	 to	 two	 haplotypes	 that	 coalesced	 recently	 (<50k	 YBP),	 in	 the	197	

expectation	that	directional	migration	would	imply	that	lineages,	once	they	coalesce	with	the	migrating	group,	will	198	

appear	similar	to	lineages	ancestral	to	the	migrating	group	(Figure	4c).	To	gain	power,	we	calculate	the	coalescence	199	

rates	of	these	lineages	to	each	non-African	SGDP	modern	sample,	and	perform	a	linear	regression	against	Colate-200	

inferred	coalescence	rates	of	four	individuals	representing	independent	samples	from	similar,	but	older	groups:	201	

ancient	Anatolia	(Bon002)	(Kılınç	et	al.	2016),	Western	HGs	(Bichon)	(Jones	et	al.	2015),	Eastern	HGs	(Sidelkino)	202	

(de	Barros	Damgaard	et	al.	2018),	and	Caucasus	HGs	(SATP)	(Jones	et	al.	2015)	to	the	same	SGDP	moderns,	to	fit	203	

these	lineages	as	a	mixture	of	these	four	potential	surrogate	source	populations.	We	rescaled	Colate	coalescence	204	

rates	according	to	Supplementary	Figure	8	to	match	overall	levels	of	coalescence	rates	between	Colate	and	Relate.	205	

Encouragingly,	 we	 find	 that	 lineages	 ancestral	 to	 the	 two	 haplotypes	 of	 the	 same	 individual	 (not	 indicating	206	

migration)	are	well	captured	by	one	respective	ancestry	in	our	regression	in	three	cases	and	suggesting	these	are	207	

reasonable	surrogates.	The	exception	is	the	Scandinavian	HG	(sf12)	who	we	fit	as	an	approximately	equal	mixture	208	

of	Eastern	and	Western	HGs,	as	previously	reported	(Günther	et	al.	2018).	The	highest	recent	coalescence	rates	we	209	

see	are	between	the	Western	and	Scandinavian	HG:	recently	coalesced	lineages	between	these	samples	appear	very	210	

similar	to	Western	HGs	(Figure	4c),	indicating	strong	directionality	of	gene-flow,	from	Western	HG	into	Scandinavia.	211	

In	contrast,	lineages	that	are	ancestral	to	LBK	and	any	of	the	other	three	HGs	are	fit	as	a	mixture	of	early	Anatolian	212	

farmers	and	the	respective	HG	groups,	suggesting	gene-flow	both	into	and	from	ancestors	of	LBK,	though	biased	in	213	

some	cases.	214	
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Figure	5			

a,	Relate-inferred	coalescence	rates	between	SGDP	individuals	in	most	recent	epoch	(0	–	1,000	years	BP).		
b,	Within	individual	effective	population	sizes	in	the	most	recent	epoch	plotted	against	the	proportion	of	
the	genome	where	the	first	coalescence	occurs	within	the	individual.	All	coalescence	rates	were	calculated	
using	Relate	trees.	c,	Colate-inferred	coalescence	rates	in	the	most	recent	epoch	(<15k	YBP)	averaged	over	
pairs	of	samples	grouped	by	geographic	distance	and	time	period.	Error	bars	show	the	2.5%	and	97.5%	
percentiles,	respectively.		
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Figure	6	

a,	Map	showing	the	strength	of	the	TCC/TTC	mutation	rate	signature,	quantified	by	calculating	the	“area	under	the	
curve”	(AUC)	of	the	TCC/TTC	mutation	rate	(Methods).		Circles	correspond	to	present-day	individuals	in	the	SGDP	
data,	ancient	 individuals	are	 labelled.	b)	TCC/TTC	AUC	plotted	against	 the	Colate-inferred	coalescence	rates	 to	
Bon002,	a	10k-year-old	individual	from	Anatolia,	integrated	between	14k	–	50k	YBP.	Circles	correspond	to	SGDP	
samples,	 labels	 to	 ancients.	c,	Map	 showing	 the	TCC/TTC	mutation	 rate	 signature	 in	 lower	 coverage	 ancients,	
quantified	as	the	proportion	of	sites	that	are	TCC/TTC	relative	to	other	C/T	transitions	excluding	those	in	CpG	
contexts	(Methods).	Top	shows	a	subset	of	samples	<10k	years	old,	bottom	shows	samples	>10k	years	old	(see	
Supplementary	 Figure	 12	 for	 further	 samples).	 Samples	 of	 <2x	 mean	 coverage	 are	 shown	 with	 increased	
transparency	and	number	following	sample	ID	shows	sample	age.	d,	Proportion	of	TCC/TTC	sites	plotted	against	
coalescence	rates	to	Bon002,	integrated	between	14k	–	50k	YBP.	All	points	correspond	to	ancients,	colour	indicates	
their	age.	e,	Proportion	of	TCC/TTC	sites	plotted	against	sample	age.	Confidence	intervals	are	obtained	using	a	
block	bootstrap.	Samples	are	coloured	using	a	k-means	clustering	(k	=	2).	In	c,d,e,	samples	are	>2x	mean	coverage,	
except	for	those	>10k	years	old	where	we	included	samples	>1x	mean	coverage.	
	

	  216	
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2.6 Effective population sizes increased from Mesolithic Europe to the present 217	

Effective	population	sizes	calculated	within	an	individual	quantify	diversity	and	relatedness	of	parental	genomes.	218	

By	 focussing	 on	 the	 very	 recent	 past	 (<1000	 years),	we	 observe	 a	 broad	 spectrum	of	 recent	within-individual	219	

effective	population	sizes	in	SGDP	individuals	ranging	from	a	few	thousand	to	hundreds	of	thousands	not	limited	220	

to	particular	geographical	groups	(Figure	5a,	Supplementary	Figures	7)	and	correlating	well	between	Relate	and	221	

Colate	(Supplementary	Figures	8).	Haplotypes	of	individuals	with	small	recent	effective	population	sizes	coalesce	222	

with	 each	 other	 before	 coalescing	 with	 any	 other	 sample	 for	 larger	 proportions	 of	 the	 genome	 (Figure	 5b),	223	

indicative	 of	 longer	 runs	 of	 homozygosity	 (ROH)	 in	 these	 individuals	 (Supplementary	 Figure	 9).	While	 global	224	

patterns	 are	 comparable	 to	 previously	 reported	 heterozygosity	 estimates	 (Mallick	 et	 al.	 2016),	 the	 differences	225	

among	particular	individuals	are	more	pronounced	in	our	analysis,	which	focusses	on	very	recent	time.	226	

Small	 recent	 effective	 population	 sizes	 are	 also	 observed	 in	 the	 high	 coverage	 ancient	 genomes	 and	 are	most	227	

pronounced	in	European	Mesolithic	HGs,	who	also	tend	to	coalesce	with	themselves	for	larger	proportions	of	the	228	

genome,	however	this	may	at	least	in	part	be	driven	by	increased	divergence	from	other	samples,	in	addition	to	229	

ROH	(Figure	5b).	The	smallest	recent	effective	population	size	is	observed	for	the	NG10	individual,	a	5,200-year-230	

old	Neolithic	individual	buried	in	a	Megalithic	tomb	in	Ireland,	who	was	previously	identified	to	be	the	son	of	a	first-231	

degree	incestuous	union	(Cassidy	et	al.	2020).	We	next	compared	coalescence	rates	across	individuals	at	increasing	232	

geographic	distances	within	Europe,	and	within	Central	Asia,	in	each	time	period,	including	only	moderns	within	233	

500km	of	an	ancient	sample	(Figure	5c).	At	short	distances	we	observe	a	clear	trend	for	smaller	coalescence	rates	234	

(larger	effective	population	sizes)	towards	the	present,	suggesting	strongly	increasing	local	population	sizes.	At	235	

larger	distances	the	relationship	is	non-monotonic,	with	coalescence	rates	not	decreasing	consistently,	implying	a	236	

trend	of	increasing	migration,	countering	the	larger	population	sizes.	Finally,	we	see	a	trend	of	decreasing	similarity	237	

with	distance,	 implying	 local	 population	 structure	 at	 all	 times,	with	 the	 interesting	 exception	of	 samples	more	238	

recent	 than	the	beginning	of	 the	 Iron	age	(yet	not	modern)	 in	Europe.	More	widespread	sampling	 is	needed	to	239	

understand	this	pattern,	although	this	period	does	overlap	e.g.,	increased	mobility	during	the	Roman	Empire	and	240	

the	 following	 “migration	age”	 in	Europe	 characterized	by	widespread	movements	of	peoples	 (Martiniano	et	 al.	241	

2016).	242	
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2.7 Elevation in TCC to TTC mutation rate is present in Mesolithic HGs and Neolithic 243	
farmers 244	

The	triplet	TCC	has	seen	a	remarkable	increase	in	mutation	rates	towards	TTC	in	humans,	first	identified	by	(K	245	

Harris	2015).	This	signature	has	no	known	cause	to	date,	and	appears	strongest	in	Europeans	and	weaker	in	South	246	

Asians.	 It	was	previously	 estimated	 to	have	 started	 around	15,000	YBP,	 and	 its	 driver	 is	most	 likely	 absent	 in	247	

present-day	 individuals	 (Kelley	Harris	 and	Pritchard	2017;	 Speidel	 et	 al.	 2019),	 although	 there	 is	 considerable	248	

uncertainty	about	this	estimate	–	for	example,	a	recent	study	dates	the	onset	to	up	to	~80k	YBP	depending	on	the	249	

demographic	history	used	(DeWitt,	Harris,	and	Harris	2020).	One	study	previously	quantified	the	signal	in	an	early	250	

farmer	(LBK)	and	Western	HG	(Loschbour),	suggesting	that	both	carried	the	signal,	while	the	signal	was	missing	in	251	

Ust’-Ishim,	Neanderthals,	and	Denisovans	(Mathieson	and	Reich	2017).	252	

We	 first	 inferred	 the	 rate	 through	 time	 at	which	 TCC	mutates	 towards	 TTC	 in	 every	 individual	 built	 into	 our	253	

genealogy	of	moderns	and	ancients,	after	excluding	singletons,	and	then	quantified	signal	strength	by	calculating	254	

the	area	under	the	curve	(AUC)	of	this	rate	(Methods).	Among	SGDP	individuals,	the	quantified	signal	varies	and	is	255	

strongest	in	Southern	Europeans	such	as	Sardinians,	who	are	known	to	have	an	increased	affinity	to	early	Neolithic	256	

farmers	(Figure	6a,	Supplementary	Figure	10).	Among	the	high-coverage	ancients	built	into	our	Relate	genealogies,	257	

we	observe	the	signature	in	Mesolithic	HGs,	as	well	as	in	Neolithic	and	Bronze	age	samples,	including	the	Yamnaya	258	

(Figure	6a),	but	infer	it	to	be	weaker	in	HGs	and	strongest	in	Neolithic	farmers.	The	signal	is	absent	in	an	Ethiopian	259	

HG,	as	expected,	as	well	as	in	both	the	45,000	year	old	Ust’-Ishim	sample	and	the	34,000	year-old	Sunghir3	sample	260	

(Figure	6a).	261	

To	quantify	the	signal	in	individuals	of	lower	coverage,	we	calculate	the	proportion	of	TCC/TTC	mutations	relative	262	

to	C/T	transitions	in	each	individual,	restricting	to	mutations	ascertained	in	SGDP	samples,	of	at	least	4x	coverage	263	

in	the	ancient,	and	dated	by	Relate	to	be	<100k	YBP	(Methods).	We	confirm	that	signal	strength	is	highly	correlated	264	

(97%)	to	our	AUC	estimate	for	the	high-coverage	samples	built	into	our	Relate	genealogy,	where	both	estimates	are	265	

available	(Supplementary	Figure	11).	We	do	not	observe	the	signal	in	Neanderthals	(Prüfer	et	al.	2014;	2017)	or	266	

Denisovans	 (Meyer	 et	 al.	 2012),	 consistent	 with	 (Mathieson	 and	 Reich	 2017).	 The	 signal	 appears	 already	267	

widespread	in	the	Late	Upper	Paleolithic,	as	it	is	carried	by	Bichon,	a	13,700-year-old	Western	HG,	by	Sidelkino,	a	268	

11,000-year-old	Eastern	HG,	by	SATP	(Satsurblia),	a	13,000	year-old	Caucasus	HG,	and	Bon002,	a	10,000	year-old	269	

Anatolian	Pre-Pottery	 individual	 (Figure	6c,	Supplementary	Figure	12).	We	note	 that	SATP	has	a	strong	signal,	270	
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however	confidence	intervals	are	large	due	to	its	lower	coverage	and	this	estimate	may	therefore	be	somewhat	271	

unreliable,	although	it	seems	clear	that	this	individual	carried	the	signal.	The	Mal’ta	individual	(MA1)	(Raghavan	et	272	

al.	2014)	has	a	similarly	large	confidence	interval	but	may	not	have	been	a	carrier	of	this	signal;	WC1,	a	9000-year-273	

old	Iranian	farmer,	who	can	be	modelled	as	a	mixture	of	a	“basal	Eurasian”	and	Mal’ta-like	ancestry	(Broushaki	et	274	

al.	 2016),	 and	 who	 is	 not	 closely	 related	 to	 Anatolian	 farmers,	 likely	 only	 carried	 the	 signal	 weakly,	 if	 at	 all.	275	

Interestingly,	Chan,	a	9000-year-old	Iberian	HG	(Olalde	et	al.	2019)	who	has	little	ancestry	related	to	Western	HGs	276	

such	as	Bichon,	has	the	weakest	signal	among	all	Mesolithic	Europeans,	which	is	at	a	similar	level	to	WC1.		277	

Already	10,000	years	ago,	the	signal	appears	weaker	in	Western	HGs	compared	to	the	Anatolian,	who	is	among	the	278	

strongest	carriers	of	this	signal	(similar	strength	to	later	Neolithic	individuals	and	present-day	Sardinians)	(Figure	279	

6e),	 suggesting	 that	 the	driver	of	 this	mutation	rate	change,	which	may	have	been	of	genetic	or	environmental	280	

nature,	was	already	extinct	by	the	Mesolithic.	Eastern	HGs	have	a	slightly	elevated	signal	compared	to	Western	HGs.	281	

Moreover,	the	strength	of	the	TCC/TTC	signal	shows	a	remarkable	correlation	with	recent	coalescence	rates	to	this	282	

Anatolian	individual	(96%	using	AUC	for	SGDP	non-Africans	and	13	high-coverage	ancients,	71%	using	TCC/TTC	283	

proportion	for	ancients)	(Figure	6b,	d),	and	does	not	correlate	as	well	with	coalescence	rates	to	any	other	HG	group	284	

for	whom	we	have	data	(88%	or	58%	with	Caucasus	HGs	(SATP),	83%	or	53%	with	Scandinavian	HGs	(sf12),	76%	285	

or	37%	with	Eastern	HGs	 (Sidelkino),	73%	or	53%	with	Western	HGs	 (Bichon),	where	 first	number	uses	AUC,	286	

second	number	uses	TCC/TTC	proportion)	(Supplementary	Figures	13).	We	therefore	hypothesise	that	the	signal	287	

spread	through	ancestors	of	this	Anatolian	individual	across	Europe	before	the	arrival	of	farming,	and	subsequently	288	

arrived	in	Europe	for	a	second	time	with	Neolithic	farmers.		289	

The	genetic	relationship	among	West	Eurasian	HG	groups	in	the	Late	Paleolithic	is	not	fully	understood	and,	to	the	290	

best	of	our	knowledge,	current	models	do	not	include	a	clear	source	group	contributing	widely	across	these	HG	291	

groups,	while	able	to	explain	the	strong	correlation	to	ancestry	from	Anatolia.	One	potential	source	are	ancestors	292	

of	the	Dzudzuana,	a	group	inhabiting	the	Caucasus	~26k	years	ago	(Lazaridis	et	al.	2018).	This	group	is	closely	293	

related	to	ancient	Anatolians,	and	to	a	lesser	extend	to	Caucasus	HGs	and	may	have	contributed	ancestry	to	Eastern	294	

and	 Scandinavian	 HGs	 before	 the	 spread	 of	 farming.	 The	 Dzudzuana	 have	 a	 pre-LGM	 common	 ancestor	 with	295	

Western	HGs,	including	Bichon,	however,	placing	the	signal	on	this	common	ancestor	lineage	would	not	explain	296	

their	signal	strength	difference	and	correlation	to	shared	ancestry	with	Anatolia.	Instead,	one	possibility	is	that	the	297	

signal	spread	during	the	Bølling-Allerød	interstadial,	a	brief	warming	following	the	last	glacial	maximum,	during	298	
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which	Western	HGs	spread	across	Europe	replacing	earlier	HG	groups	and	which	may	have	introduced	gene-flow	299	

from	the	Near	East	into	Europe	(Fu	et	al.	2016).	300	

We	note	that	while	the	cause	of	this	mutation	rate	elevation	remains	uncertain,	our	results	would	fit	well	with	a	301	

genetic	 cause	within	 a	 specific	 ancient	 population	 (for	 example	 a	mutation	 in	 some	 repair	 protein,	 transiently	302	

present).	If,	alternatively,	the	cause	is	environmental,	it	appears	highly	localised	in	both	time	and	place,	and	this	303	

seems	potentially	harder	to	explain.	304	

3 Discussion 305	

The	last	decade	has	seen	an	explosion	in	the	number	of	sequenced	ancient	genomes,	uncovering	remarkable	stories	306	

of	population	replacements	and	admixture	that	are	associated	with	dramatic	shifts	in	lifestyle	arounds	the	world	307	

(Skoglund	and	Mathieson	2018).	While	ancient	genomes	are	still	typically	available	in	smaller	numbers	and	lower	308	

quality	compared	to	genomes	of	present-day	people,	they	are	uniquely	valuable	in	providing	direct	insight	into	the	309	

genetic	makeup	of	our	ancestors.	We	have	extended	the	Relate	method	for	inference	of	genome-wide	genealogies	310	

to	work	with	ancient	genomes	and	introduced	a	new	method,	Colate,	 for	inference	of	coalescence	rates	for	low-311	

coverage	unphased	genomes.	Together,	these	tools	enable	us	to	harness	the	power	of	genealogy-based	analyses	on	312	

a	wider	range	of	samples,	including	those	of	lower	quality,	which	were	previously	inaccessible.		313	

We	demonstrated,	using	278	moderns	of	the	SGDP	data	set,	14	high-coverage,	and	430	lower-coverage	ancients,	314	

that	Relate	and	Colate	can	uncover	dynamic	population	histories	and	evolution	in	the	processes	that	drive	genetic	315	

variation.	 The	 extent	 to	 which	 directional	 gene-flow	 occurred	 from	 groups	 related	 to	 ancient	 Anatolia	 into	316	

European	HGs	 predating	 the	 spread	 of	 farming	 in	 Europe	 has	 remained	 controversial.	We	 have	 provided	 two	317	

further	lines	of	evidence	that	such	gene-flow	existed,	first	using	coalescence	rates	of	lineages	recently	coalesced	318	

between	 Anatolia	 and	 HGs.	 The	 TCC/TTC	 mutation	 rate	 elevation	 in	 all	 these	 ancient	 groups,	 and	 its	 strong	319	

correlation	 to	 inferred	 recent	 shared	 ancestry	 with	 Anatolia,	 offers	 complementary	 support	 that	 the	 shared	320	

ancestry	detected	by	Colate	indeed	reflects	recent	gene	exchange,	given	the	age	distribution	of	samples	showing	321	

this	mutational	phenomenon.				322	

Future	avenues	of	research	may	 include	using	genealogies	 for	parametric	 inference	of	population	histories	and	323	

admixture,	 inspired	by	approaches	based	on	site-frequency	spectra	(Excoffier	et	al.	2013;	Terhorst,	Kamm,	and	324	
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Song	2017)	and	F-statistics	(Patterson	et	al.	2012;	Peter	2016;	Ralph,	Thornton,	and	Kelleher	2020).	Coalescence	325	

rates	 can	be	 interpreted	as	a	 function	of	gene	 flow	(or	 the	 lack	 thereof);	 for	 instance,	 (Wang	et	al.	2020)	have	326	

recently	developed	a	method	that	infers	migration	rates	through	time	given	pairwise	coalescence	rate	estimates.	327	

Genealogies	of	modern	individuals	have	proven	to	be	very	powerful	in	quantifying	positive	selection	(Speidel	et	al.	328	

2019;	Stern,	Wilton,	and	Nielsen	2019;	Stern	et	al.	2021)	and	genealogies	including	ancient	genomes	should	further	329	

boost	power.	330	

While	Colate	 has	made	 it	possible	 to	 leverage	genealogies	 for	 the	 study	of	 low-coverage	genomes	possible,	we	331	

ideally	would	 like	 to	 incorporate	 such	 genomes	 directly	 into	 genealogical	 trees.	 This	 is	 currently	 not	 possible,	332	

however	recent	work	building	on	the	tsinfer	methodology	(Kelleher	et	al.	2019)	provides	an	alternative	approach	333	

that	 constrains	 the	 age	 of	 ancestral	 haplotypes	 using	 low-coverage	 ancient	 genomes	 to	 infer	 genome-wide	334	

genealogies	for	phased	sequences	(incl.	ancients	and	moderns)	(Wohns	et	al.	2021).	A	possibility	for	making	lower	335	

coverage	 ancient	 genomes,	 or	 indeed	 hybrid	 capture	 array	 data,	 accessible	 to	 these	 methods	 is	 imputation	336	

(Rubinacci	et	al.	2020;	Hui	et	al.	2020).	A	potential	concern	is	that	imputation	may	introduce	biases,	particularly	in	337	

ancient	genomes	with	ancestries	that	are	not	well	reflected	in	modern	groups.	These	biases	are	often	difficult	to	338	

assess.	Because	Colate	does	not	require	imputation,	we	expect	that	it	will	be	a	useful	tool	to	investigate	such	biases	339	

in	future.		 	340	
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4 Methods 341	

4.1 Colate 342	

Coalescence	 rates	 are	 inferred	 by	 attempting	 to	 maximise	 the	 following	 likelihood	 using	 an	 expectation-343	

maximisation	(EM)	algorithm.	For	any	derived	mutation	carried	by	a	reference	chromosome	𝑗,	we	ask	whether	this	344	

mutation	is	shared	by	the	target	chromosome	𝑖,	which	we	denote	by	an	indicator	variable	𝐼ℓ"# 	(ℓ	indexing	SNPs).	345	

We	 multiply	 across	 SNPs,	 such	 that	 no	 phase	 information	 is	 required	 to	 compute	 the	 likelihood.	 To	 obtain	346	

coalescence	rates	between	groups	of	individuals,	we	also	multiply	the	likelihood	across	homologous	chromosomes	347	

in	both	the	target	and	reference	groups.	To	calculate	within-individual	coalescence	rates,	the	method	assigns	one	348	

allele	to	each	category,	at	random	at	every	SNP.	When	input	is	specified	in	BAM	format	(as	reference-aligned	reads),	349	

we	multiply	 across	 reads.	The	maximum	 likelihood	estimate	 is	 then	given	by	𝜽& = 	argmax
𝜽
∏ ∏ 𝑃0𝐼ℓ"# 	1	𝑎ℓ, 𝜽)",#ℓ ,	350	

where	𝜽	denotes	piecewise-constant	coalescence	rates	and	𝑎ℓ	is	the	age	of	the	ℓth	mutation,	which	we	assume	to	351	

be	known	here,	but	have	to	integrate	out	in	practice.			352	

To	 integrate	 out	 mutation	 age,	 we	 assume	 neutrality	 of	 every	 mutation,	 implying	 that	 its	 age	 is	 uniformly	353	

distributed	 on	 the	 branch	 onto	 which	 it	 maps.	 The	 EM	 algorithm	 requires	 us	 to	 integrate	 out	 mutation	 age	354	

conditional	on	 sharing	or	not	 sharing	between	 target	 and	 reference	 chromosomes.	This	 theoretically	 implies	 a	355	

deviation	 from	 the	 uniform	 distribution.	 This	 deviation	 is	 strongest	 for	 mutations	 that	 are	 singletons	 in	 the	356	

genealogy	used	to	date	these	mutations	and	are	shared	between	sequences	in	the	target	and	reference	chromosome	357	

sets;	 in	 this	 case,	 knowledge	 of	 sharing	 implies	 that	 the	mutation	 is	 older	 than	 the	 coalescence	 time	 of	 these	358	

chromosomes,	biasing	mutation	age	upwards	compared	to	a	uniform	distribution	(Supplementary	Figure	14).	We	359	

use	an	empirical	approach	to	sample	mutation	ages	for	these	shared	singletons	and	use	the	uniform	distribution	360	

for	all	other	mutations	in	practise,	which	we	demonstrate	is	a	reasonable	approximation	(SI).	Moreover,	we	note	361	

that	 the	Colate	 approach	 requires	 the	 inclusion	of	 sites	 fixed	 and	derived	 in	 all	 samples	used	 for	 inferring	 the	362	

genealogy,	as	samples	can,	in	theory,	coalesce	into	the	root	branch.		To	obtain	an	approximate	upper	bound	on	the	363	

age	of	such	mutations,	we	fix	the	time	to	the	most	recent	common	ancestor	(TMRCA)	to	an	outgroup	(10M	YBP	for	364	

human-chimpanzee	in	this	study).		365	

We	bin	mutation	ages	into	a	discrete	time	grid	to	reduce	computation	time	of	the	EM	algorithm.	As	a	result,	the	366	

algorithm	only	requires	the	number	of	shared	and	not-shared	mutations	in	each	time	grid	as	input;	compilation	of	367	
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this	 input	 data	 is	 linear	 in	 sample	 size	 and	 number	 of	mutations.	 Once	 in	 this	 form,	 the	 input	 data	 to	 the	 EM	368	

algorithm,	and	hence	the	computation	time	of	the	EM	algorithm,	is	independent	of	sample	size	or	the	number	of	369	

mutations	and	takes	approximately	5	seconds	(~40	seconds	including	parsing	of	the	data).			370	

4.2 Simulations 371	

We	used	stdpopsim	to	simulate	genomes	with	different	demographic	histories	(Adrion	et	al.	2020)	and	hotspot	372	

recombination	rates	to	evaluate	Relate	and	Colate.	For	Colate,	we	additionally	require	an	outgroup	to	determine	373	

mutations	that	are	fixed	in	all	samples.	Instead	of	simulating	an	outgroup	explicitly,	we	fixed	the	time	to	the	most	374	

recent	common	ancestor	 (TMRCA)	𝑡&'(	to	 the	outgroup	(𝑡&'( = 10M	years	in	our	simulations),	and	sampled	 the	375	

number	 of	 fixed	mutations	 in	 any	 given	 region	 as	 a	 Poisson	 distributed	 random	 variable	with	mean	𝜇𝑙(𝑡&'( −376	

𝑡)*+,-.),	where	𝜇	is	the	per	base	per	generation	mutation	rate,	𝑡)*+,-.	is	the	TMRCA	of	the	sample	in	this	region	377	

and	𝑙	is	the	number	of	base-pairs	in	this	region.	If	𝑡)*+,-.	was	greater	than	𝑡&'( ,	we	sampled	no	fixed	mutations.	We	378	

then	 chose	 the	 base-pair	 positions	 of	 these	 fixed	mutations	 uniformly	 at	 random	with	 replacement	within	 the	379	

corresponding	region.	For	simplicity,	we	assumed	a	two-state	mutation	model,	such	that	a	repeat	mutation	at	one	380	

genomic	site	return	to	the	original	state.		381	

Supplementary	Figure	2	shows	the	performance	on	a	zigzag	history	(Schiffels	and	Durbin	2014),	demonstrating	382	

near	 perfect	 recovery	 of	 coalescence	 rates	when	 using	 true	mutation	 ages	 in	Colate,	 and	 high	 accuracy	when	383	

mutation	ages	are	sampled	given	a	genealogy;	the	discrepancy	highlights	that	our	sampling	distribution	of	mutation	384	

age	given	a	genealogy	(Methods,	Supplementary	Information)	is	reasonable	but	not	exact.	385	

We	also	simulated	the	multi-population	model	of	ancient	Eurasia	from	the	stdpopsim	package,	which	was	fitted	386	

using	 real	human	genomes	 (Kamm	et	al.	2020).	We	simulated	200	haploid	 sequences	 in	each	of	 three	modern	387	

human	groups	(Mbuti,	Sardinian,	Han),	as	well	as	four	ancient	Eurasians	(LBK,	Loschbour,	Ust’-Ishim,	MA1)	and	a	388	

Neanderthal	 (two	 haploid	 sequences	 in	 each	 group)	 (Figure	 2a).	 From	 this	 simulation,	 we	 obtained	 true	389	

genealogical	trees	and	Relate	trees	for	all	samples.	In	addition,	we	inferred	a	separate	set	of	Relate	trees	using	only	390	

the	three	modern	human	groups	(Mbuti,	Sardinian,	Han),	which	we	used	to	date	mutations	for	Colate.	391	

Colate	recovered	within	and	across	group	coalescence	rates	accurately	compared	to	the	corresponding	direct	MLEs	392	

calculated	on	true	or	Relate-inferred	trees	(Figure	2a).	In	particular,	these	coalescence	rates	clearly	captured	the	393	
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admixture	from	Neanderthals	into	an	ancestral	Eurasian	lineage,	as	well	as	more	recent	genetic	structure,	such	as	394	

separation	of	the	Loschbour	HG	and	early	farmer	lineages,	represented	by	LBK.	We	observed	a	closer	affinity	of	the	395	

Loschbour	HG	to	modern-day	Sardinians,	compared	to	LBK,	consistent	with	modern	Sardinians	being	an	admixture	396	

of	HG	and	farmer	ancestry	in	this	simulation.		397	

One	case	for	which	Colate	performed	less	well	compared	to	direct	MLEs	obtained	from	Relate	trees	is	the	cross-398	

coalescence	rates	between	Neanderthals	and	Mbuti,	calculated	by	assigning	the	Neanderthal	as	reference	and	Mbuti	399	

as	 target.	This	 is	because	 the	genealogy	used	 to	date	mutations	contains	only	variants	segregating	 in	 the	 three	400	

modern	groups	and	therefore	captured	almost	none	of	the	Neanderthals	variation	that	postdates	the	Neanderthal-401	

Mbuti	split.	In	this	case,	it	would	therefore	be	preferable	to	instead	assign	Mbuti	as	reference.		402	

4.3 Evaluating Colate on downsampled high-coverage genomes 403	

We	evaluated	the	performance	of	Colate	on	low-coverage	sequencing	data,	by	comparing	estimates	obtained	from	404	

downsampled	BAM	files	(Figure	2b).	To	date	mutations,	we	constructed	a	genealogy	containing	25	diploid	samples	405	

from	each	of	the	three	1000	Genomes	populations	-	YRI	(Yobura	in	Ibadan,	Nigeria),	CEU	(Northern	and	Central	406	

European	ancestry	individuals	from	Utah,	USA),	and	CHB	(Han	Chinese	from	Beijing,	China)	(The	1000	Genomes	407	

Project	Consortium	2015),	downloaded	from	http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.	We	408	

then	 chose	 four	 1000	Genomes	 samples	 that	 do	 not	 overlap	 the	 genealogy	 as	 target	 chromosomes	 (HG00096,	409	

HG00268,	NA18525,	NA19017)	and	included	the	remaining	samples	in	groups	YRI,	CEU	and	CHB	in	the	reference	410	

chromosomes	set.		The	BAM	files	of	these	four	genomes	were	obtained	from		411	

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140203_broad_high_cov_pcr_free_validation/ma412	

tching_LC_samples_bwamem/	413	

subsequently	downsampled	using	SAMtools	v1.9	(H.	Li	et	al.	2009).	414	

Across	a	wide	range	of	mean	coverages,	Colate-inferred	coalescence	rates	remained	unchanged	and	nearly	identical	415	

to	rates	 inferred	using	called	genotypes	(VCF).	To	obtain	95%	confidence	 intervals,	we	used	a	block	bootstrap,	416	

dividing	the	genome	into	20Mb	blocks,	and	resampling	100	times.	Confidence	intervals	become	wider	for	lower	417	

coverage	sequencing	data;	encouragingly,	we	could	infer	meaningful	coalescence	rates	between	a	target	sequence	418	

of	0.01x	mean	coverage	and	the	reference	VCFs.	419	
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We	additionally	evaluated	Colate	when	both	target	and	reference	samples	are	of	low	coverage	by	calculating	the	420	

coalescence	rates	between	LBK,	a	7200	year	old	early	European	farmer,	and	Loschbour,	a	nearly	8000	year	old	421	

Mesolithic	Western	HG	(both	>14x	coverage)	(Lazaridis	et	al.	2014)	using	a	genealogy	for	SGDP	to	date	mutations.	422	

We	downsampled	both	individuals	to	a	minimum	of	0.1x	mean	coverage	(Supplementary	Figure	3).	While	inference	423	

of	 coalescence	 rates	 became	 challenging	 when	 both	 genomes	 are	 at	 0.1x,	 estimates	 still	 appeared	 reasonably	424	

accurate	and	unbiased.	425	

4.4 Data 426	
4.4.1 Simons Genome Diversity Project Data 427	

We	downloaded	phased	haplotypes	for	278	individuals	from	428	

https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/PS2_multisample_public/,	and	429	

rephased	these	jointly	with	high	coverage	ancients	(Section	4.4.2)	using	SHAPEIT4	(Delaneau	et	al.	2019).	We	430	

first	used	the	1000	Genomes	Project	(1000GP)	reference	panel	431	

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/)	to	phase	all	sites	overlapping	with	1000GP	and	432	

then	internally	phased	all	remaining	sites,	while	keeping	the	already	phased	sites	fixed.		433	

4.4.2 Ancient genomes data 434	

We	downloaded	430	ancient	genomes	for	use	in	this	study	(Supplementary	Table	1).	All	samples	had	a	genome-435	

wide	mean	coverage	of	0.5x	or	more.	We	selected	14	high	coverage	ancient	genomes	(mean	genomic	coverage	>	436	

7.8X)	for	Relate	analysis.		437	

For	the	14	high	coverage	genomes	(Supplementary	Table	1)	genotypes	were	called	using	samtools	mpileup	(input	438	

options:	-C	50,	-Q	20	and	-q	20)	and	bcftools	call	--consensus-caller	with	indels	ignored	(H.	Li	2011).	A	modified	439	

version	of	the	bamCaller.py	script	from	https://github.com/stschiff/msmc-tools	was	used	to	output	variant	sites.	440	

We	generated	a	mask	for	each	ancient	genome,	declaring	only	sites	with	at	least	5X	coverage	and	below	twice	the	441	

mean	genomic	coverage	as	passing.		442	

We	 merged	 these	 14	 ancient	 genomes	 with	 the	 278	 Simon	 Genome	 Diversity	 Project	 samples	 to	 infer	 joint	443	

genealogies	using	Relate.	We	applied	a	conservative	mask,	declaring	only	sites	passing	in	all	of	the	14	ancients,	as	444	
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well	as	a	universal	mask	file	provided	with	the	SGDP	data	set,	as	passing.	The	SGDP	universal	mask	was	obtained	445	

from	https://reichdata.hms.harvard.edu/pub/datasets/sgdp/filters/all_samples/.		446	

4.5 Joint genealogies of ancients and moderns 447	

We	inferred	joint	genealogies	of	ancients	and	moderns	using	our	updated	Relate	algorithm	(Supplementary	448	

Information).	We	used	all	mutations,	excluding	those	in	CpG	contexts,	to	infer	tree	topologies	and	restricted	to	449	

transversion	only	for	inference	of	branch	lengths.	We	therefore	used	a	reduced	mutation	rate	of	3e-9	per	base	per	450	

generation.	We	used	a	recombination	map	obtained	from	451	

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html	and	realigned	alleles	relative	to	an	ancestral	452	

genome	obtained		from	453	

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/ancestral_alignments/.	We	used	454	

default	parameters	in	Relate	otherwise.	455	

To	infer	branch	lengths,	we	used	a	precomputed	average	coalescence	rate	estimate	obtained	by	applying	Relate	to	456	

the	278	SGDP	moderns.	To	compute	these	coalescence	rates,	we	jointly	sampled	branch	lengths	and	effective	457	

population	sizes	using	our	updated	iterative	algorithm,	which	we	show	can	be	interpreted	as	an	approximate	EM	458	

algorithm	for	finding	maximum	likelihood	coalescence	rates.	This	approximate	EM	algorithm	samples	genealogies	459	

using	Relate	instead	of	integrating	over	all	possible	genealogies	(see	Supplementary	Information	Section	B).	To	460	

obtain	a	coalescence	rate	estimate	that	matches	the	mutation	rate	used	for	inferring	the	genealogy	of	ancients	and	461	

moderns,	we	inferred	branch	lengths	using	transversions	only	and	set	the	mutation	rate	to	3e-9	per	base	per	462	

generation.		463	

4.6 Colate-inferred coalescence rates for SGDP and 430 ancients 464	

We	inferred	coalescence	rates	for	pairs	of	ancient	individuals	using	Colate,	restricting	to	transversions	only.	For	465	

each	pair	of	samples,	when	given	as	a	VCF	file,	we	applied	the	respective	mask	files.	When	a	sample	was	given	in	466	

BAM	file	format,	we	accepted	a	read	whenever	mapping	quality	exceeded	30,	read	length	exceeded	34	bps,	and	467	

there	 were	 fewer	 than	 three	mismatching	 sites.	We	 further	 excluded	 2	 base-pairs	 at	 each	 end	 of	 a	 read	 and	468	

restricted	our	analysis	to	sites	where	at	most	two	different	alleles	were	observed.	469	
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To	date	mutations,	we	used	a	Relate-inferred	genealogy	of	the	SGDP	dataset.	As	the	degree	of	inbreeding	varied	470	

across	SGDP	individuals	(main	text)	and	to	avoid	biases	in	mutation	ages	resulting	from	extensive	inbreeding	in	471	

some	 individuals,	we	selected	one	haploid	sequence	 from	each	 individual.	We	 jointly	 fitted	branch	 lengths	and	472	

coalescence	rates	using	a	mutation	rate	of	1.25e-8	per	base	per	generation.	473	

4.7 Calculation of mutation rate 474	

We	calculated	mutation	rates	for	76	mutation	triplets	in	each	individual,	after	excluding	any	singletons	and	terminal	475	

branches	in	our	genealogy.	We	only	considered	mutation	triplets	that	are	not	in	a	CpG	context,	which	excludes	20	476	

of	96	possible	triplets.	To	remove	trends	shared	across	mutation	triplets,	we	divided	the	TCC/TTC	mutation	rate	477	

by	the	average	over	all	triplets	(excl.	CpG	contexts)	in	each	epoch,	to	obtain	the	mutation	rate	relative	to	the	average	478	

mutation	rate.		479	

To	calculate	the	area	under	the	curve	for	the	TCC/TTC	mutation	rate	signature,	we	first	scaled	the	mutation	rate	in	480	

each	individual	by	the	average	over	the	time	interval	[1e5,1e6]	YBP.	We	then	calculated	the	area	under	the	curve	481	

between	14k	to	1M	years	BP.	For	samples	 that	are	older	 than	14k	years	(Ust’-Ishim,	Sunghir3,	and	Yana1),	we	482	

extrapolated	the	earliest	value	to	14k	YBP.	We	then	subtracted	the	equivalent	value	of	a	constant	mutation	rate	483	

from	this	AUC,	such	that	any	sample	without	the	elevation	in	TCC/TTC	mutation	rates	is	expected	to	have	an	AUC	484	

of	0.	485	

4.8 Quantifying the TCC/TTC signal in lower coverage individuals 486	

We	 quantified	 the	 TCC/TTC	 signal	 in	 lower	 coverage	 individuals	 (>2x	 mean	 coverage)	 by	 restricting	 to	 sites	487	

segregating	in	our	SGDP	genealogy	that	we	also	used	to	date	mutation	in	Colate.	We	additionally	restricted	to	sites	488	

where	the	age	of	the	upper	coalescence	event	of	the	branch	onto	which	the	mutation	maps	is	<100k	YBP.	For	each	489	

sample,	at	any	such	site,	we	then	further	restricted	to	sites	where	at	least	four	mapping	reads,	and	added	a	count	490	

towards	a	mutation	category	if	at	least	four	reads	supported	the	derived	allele.	In	this	way,	we	counted	the	number	491	

of	sites	that	are	likely	to	be	in	heterozygous	or	homozygous	state	for	the	derived	allele.	We	finally	calculated	the	492	

proportion	of	such	sites,	relative	to	any	C/T	transitions,	excluding	those	in	CpG	context.	We	calculated	confidence	493	

intervals	using	a	block	bootstrap	with	block	size	of	10Mb.	494	
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4.9 Calculation of pairwise F2 statistics 495	

We	calculated	F2	statistics	between	ancients	for	comparisons	to	matrices	of	pairwise	coalescence	rates	(used	in	496	

Supplementary	Figure	6).	To	calculate	F2	statistics,	we	first	made	pseudohaploid	calls	for	each	individual	using	497	

“pileupcaller”	 (https://github.com/stschiff/sequenceTools),	where	we	 restricted	 to	1240k	ascertained	genomic	498	

sites	known	to	be	varying	among	present-day	humans	(Mathieson	et	al.	2015).	We	then	merged	individuals	using	499	

“mergeit”	 (https://github.com/DReichLab/EIG).	 To	 calculate	 F2	 statistics,	we	 used	 the	 R	 package	 admixtools2	500	

(https://github.com/uqrmaie1/admixtools).	501	

	 	502	
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 656	

A. Colate 657	

A.1 Notation 658	

We	will	use	the	following	notation	in	this	section:	659	

- 𝑒	indexes	epochs	660	

- 𝜏. 	denotes	the	lower	boundary	of	epoch	𝑒	661	

- 𝜃(𝑡)	denotes	coalescence	rates	through	time	and	takes	the	form	𝜃(𝑡) = 	∑ 𝜃. 	1/!"#0(1	/!
3
.45 ,	where	1	is	the	662	

indicator	function.	We	write	𝜽 = (𝜃.).45,…,3 .	663	

- 𝐼ℓ	is	the	indicator	of	sharing/non-sharing	of	a	mutation	at	site	ℓ	664	

- 𝑡ℓ	is	the	coalescence	time	at	SNP	𝓵,	which	is	unknown	665	

- 𝑎ℓ	is	the	age	of	a	mutation	at	site	ℓ	and	𝑙ℓ	and	𝑢ℓ	are	the	lower	and	upper	times	of	the	branch	onto	which	666	

this	mutation	maps.	667	

A.2 Overview of the Colate method 668	

Throughout,	we	assume	to	have	one	reference	and	one	target	sequence.	In	cases	where	we	have	multiple	reference	669	

or	 target	 sequences	 (e.g.,	 in	 non-haploid	 organisms,	 or	 groups	 of	 individuals),	 we	 use	 a	 composite	 likelihood	670	

approach	 and	multiply	 the	 likelihood	 across	 individuals.	 Colate	 can	 be	 applied	 to	 reference-aligned	 read	 data	671	

directly	 by	 constructing	 a	 composite	 likelihood	 that	multiplies	 over	 reads.	We	 also	 use	 a	 composite	 likelihood	672	

approach	across	genomic	sites	and	therefore	require	no	phase	information	for	non-haploid	organisms.		673	
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Epoch	boundaries	𝜏. 	are	prespecified	parameters	and	we	assume	that	the	coalescence	rate	is	given	by	a	piecewise-674	

constant	 function	𝜃(𝑡) = 	∑ 𝜃. 	1/!"#0(1	/!
3
.45 .	We	aim	 to	 find	 a	maximum	 likelihood	estimate	of	 the	 coalescence	675	

rates	𝜽 = (𝜃.).45,…,3 .		676	

For	any	mutation	carried	by	the	reference	sequence,	we	observe	whether	the	mutation	is	also	carried	by	the	target	677	

sequence.	This	is	our	observed	data	and	is	stored	in	the	indicator	variable	𝐼ℓ	equaling	1	if	mutation	ℓ	is	shared	and	678	

0	if	 it	 is	not	shared.	In	the	following	Expectation-maximisation	(EM)	algorithm,	the	coalescence	time	𝑡ℓ	at	SNP	ℓ	679	

between	the	target	and	the	reference	sequence	is	the	unobserved	latent	variable	which	we	will	integrate	out.	In	the	680	

first	part,	we	will	assume	that	mutation	age	𝑎ℓ	is	known	and	we	will	extend	our	method	to	the	case	when	mutation	681	

age	is	unknown	in	the	second	part.	The	EM	algorithm	maximises		∏ 𝑃(𝐼ℓ	|	𝑎ℓ, 𝜽)ℓ 	(ℓ	indexing	SNPs)	with	respect	to	682	

coalescence	 rates	𝜽,	outputting	 an	 approximate	maximum	 likelihood	 estimate	 (MLE)	𝜽&.	We	obtain	 uncertainty	683	

estimates	around	this	MLE	using	a	block	bootstrap	on	genomic	regions.	684	

A.3 Expectation-Maximisation algorithm with known mutation ages and genotypes 685	

We	assume	that	mutation	ages	𝑎ℓ	are	known.	Then,	the	loglikelihood	of	𝜽	given	the	data	𝐼ℓ	and	latent	variable	𝑡ℓ	is	686	

log 𝑃(	𝐼ℓ, 𝑡ℓ	|	𝑎ℓ, 𝜽	) = 	 log 𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝜽) + log 𝑓(𝑡ℓ	|𝑎ℓ, 𝜽),	 (1)	

where	𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝜽)	is	a	step	function	given	by	687	

𝑃(𝐼ℓ = 1|	𝑡ℓ, 𝑎ℓ, 𝜽) = 	 K
1
0					

, if	𝑡ℓ ≤ 𝑎ℓ
, otherwise	

𝑃(𝐼ℓ = 0|	𝑡ℓ, 𝑎ℓ, 𝜽) = 	 K
1
0					

, if	𝑡ℓ > 𝑎ℓ
, otherwise.	

(2)	

This	step	function	reflects	our	infinite-sites	assumption:	a	mutation	can	only	be	shared	if	it	is	older	than	the	time	to	688	

the	most	recent	common	ancestor	 (TMRCA)	between	 the	 target	and	reference	sequence	and	 it	 can	only	be	not	689	

shared	 if	 it	 is	 younger	 than	 the	TMRCA.	 In	 particular,	 this	 step	 function	 does	 not	 depend	 on	𝜽.	The	 density	 of	690	

coalescence	rates	𝜽	is	a	non-homogeneous	exponential	given	by	the	standard	coalescent,	which	does	not	depend	691	

on	mutation	age	𝑎ℓ;	it	is	given	by		692	
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log 𝑓(𝑡ℓ	|	𝑎ℓ, 𝜽	) = log 𝜃(𝑡ℓ) − T 𝜃(𝑠)	𝑑𝑠	.
(ℓ	

7
	 (3)	

By	using	that	𝜃(𝑡) = 	∑ 𝜃. 	1/!"#0(1	/!
3
.45 ,	we	can	rewrite	Eq.	(3)	as	693	

log 𝑓(𝑡ℓ	|𝑎ℓ, 𝜽	) =Wlog𝜃. 	1/!"#0(ℓ1/!
.

−W𝜃.X(𝑡ℓ − 𝜏.85)1/!"#0(ℓ1/! + (𝜏. − 𝜏.85)1(ℓ9/!Y
.

,	 (4)	

where	1:	denotes	the	indicator	function	equaling	one	if	and	only	if	𝑋	is	true	and	0	otherwise.	694	

The	EM-algorithm	requires	us	to	integrate	out	the	latent	variable	𝑡ℓ	conditional	on	the	data	and	the	coalescence	695	

rates	of	the	previous	iteration,	denoted	by	𝜽(𝒌).	Substituting	Eq.	(4)	in	Eq.	(1)	and	taking	the	expectation,	we	obtain	696	

𝐸(ℓXlog 𝑃(	𝐼ℓ, 𝑡ℓ	|	𝑎ℓ, 𝜽	)	|	𝐼ℓ, 𝑎ℓ, 𝜽
(>)Y

= 	𝑐𝑜𝑛𝑠𝑡 +Wlog𝜃. 	𝑃(𝜏.85 ≤ 𝑡ℓ < 𝜏. 	|	𝐼ℓ, 𝑎ℓ, 𝜽(𝒌))
.

−W𝜃. `T (𝑠 −	𝜏.85)	𝑓(𝑠|	𝐼ℓ, 𝑎ℓ, 𝜽(𝒌))	𝑑𝑠
/!

/!"#
+	(𝜏. −	𝜏.85)	𝑃(𝑡ℓ ≥	𝜏. 	|		𝐼ℓ, 𝑎ℓ, 𝜽(𝒌))b

.

.	

(5)	

Equation	(5)	is	the	expected	log-likelhood	for	one	SNP.	We	use	a	composite	likelihood	across	SNPs,	such	that	the	697	

expected	log-likelihood	genome-wide	is	a	sum	of	Eq.	(5)	across	all	SNPs.	To	complete	the	EM	update,	we	maximise	698	

the	expected	loglikelihood	with	respect	to	𝜽	to	obtain	our	updated	estimate	𝜽(𝒌?𝟏).	By	finding	the	root	of	the	first	699	

derivative	with	respect	to	𝜃. ,	we	obtain	700	

𝜃.
(>?5) =	

∑ 𝑃(𝜏.85 ≤ 𝑡ℓ < 𝜏. 	|	𝐼ℓ, 𝑎ℓ, 𝜽(𝒌))ℓ

∑ ∫ (𝑡ℓ −	𝜏.85)	𝑓(𝑡ℓ|	𝐼ℓ, 𝑎ℓ, 𝜽(𝒌))	𝑑𝑡ℓ
/!
/!"#

+	(𝜏. −	𝜏.85)	𝑃(𝑡ℓ ≥	𝜏. 	|		𝐼ℓ, 𝑎ℓ, 𝜽(𝒌))ℓ
.	 (6)	

The	numerator	of	Eq.	(6)	is	the	probability	that	the	coalescence	event	occured	in	epoch	𝑒.	The	denominator	of	Eq.	701	

(6)	is	the	opportunity	(or	expected	branch	length)	of	the	coalescence	event	happening	in	epoch	𝑒.	Evaluation	of	Eq.	702	

(6)	requires	calculating	integrals	of	𝑓(𝑡ℓ|	𝐼ℓ, 𝑎ℓ, 𝜽(𝒌)) ∝ 𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝜽(𝒌))	𝑓(𝑡ℓ	|	𝑎ℓ, 𝜽(𝒌)),	which	is	given	by	Eqs.	(1)-703	

(3)	and	is	effectively	an	integral	of	the	exponential	prior	density	of	coalescence	times	over	an	adjusted	domain	that	704	

excludes	coalescence	events	incompatible	with	the	data	(i.e.,	sharing/non-sharing	of	the	mutation).	705	
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In	practice,	we	use	a	discrete	time	grid	to	calculate	Eq.	(6).	By	doing	so,	we	can	bin	SNPs	by	age	bins,	such	that	we	706	

only	have	to	calculate	a	constant	number	of	integrals	(not	growing	with	the	number	of	SNPs)	to	evaluate	Eq.	(6).	707	

When	multiple	target	and/or	reference	sequences	are	used,	we	precompute	the	how	often	the	mutation	is	shared	708	

and	non-shared	by	age	bin.	Given	these	precomputed	values,	evaluation	of	Eq.	(6)	is	not	dependent	on	the	number	709	

of	SNPs	or	the	number	of	target	and	reference	sequences.	Counting	how	often	a	mutation	is	shared	and	non-shared	710	

only	requires	computing	the	derived	allele	frequencies	in	the	target	and	reference	sample	and	is	given	by	𝑓ℓ(𝑓ℓA 	and	711	

(𝑁( − 𝑓ℓ()𝑓ℓA ,	respectively,	where	𝑓ℓ∗	denotes	the	derived	allele	frequency	and	𝑁∗	the	number	of	sequences.	712	

Overall,	the	computational	complexity	of	this	EM	algorithm	is	constant	with	respect	to	number	of	SNPs	and	number	713	

of	sequences,	beyond	calculating	the	number	of	shared/non-shared	mutations	by	age	bin,	which	itself	takes	linear	714	

time	(in	number	of	SNPs	and	number	of	sequences)	and	requires	little	computation	beyond	parsing	the	data	and	715	

computing	derived	allele	frequencies.	716	

A.4 Expectation-Maximisation algorithm with unknown mutation ages and known 717	

genotypes 718	

In	practice,	mutation	ages	are	unknown	and	we	infer	mutation	ages	using	a	genealogy.	This	genealogy	is	inferred	719	

for	individuals	that	are	usually	distinct	from	the	reference	sequences	in	the	EM	algorithm,	e.g.,	in	practice,	we	might	720	

use	a	large	sample	to	infer	a	genealogy	to	date	mutations,	and	subsequently	infer	coalescence	rates	between	targets	721	

and	a	 subset	of	 the	 sequences	used	 to	 infer	 the	genealogy,	 or	 two	 target	 sequences.	A	genealogy	will	 limit	 the	722	

mutation	age	𝑎ℓ	to	a	range	between	the	lower	and	upper	boundaries	of	the	branch	onto	which	the	mutation	maps,	723	

which	we	denote	by	𝑙ℓ	and	𝑢ℓ.	We	modify	our	EM	algorithm	and	treat	mutation	age	as	an	additional	latent	variable,	724	

in	addition	to	the	coalescence	time	𝑡ℓ,	such	that	Eq.	(1)	is	updated	to	725	

log 𝑃(	𝐼ℓ, 𝑡ℓ, 𝑎ℓ	|	𝑙ℓ, 𝑢ℓ, 𝜽	) = 	 log 𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽) + log 𝑓(𝑡ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽) + log 𝑓(𝑎ℓ	|	𝑙ℓ, 𝑢ℓ, 𝜽) .	 (7)	

Here,	𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽)	is	 still	 the	 same	 step	 function	 and	 does	 not	 depend	 on	𝑙ℓ ,	𝑢ℓ ,	 and	𝜽 .	 The	 density	 of	726	

mutation	ages	𝑓(𝑎ℓ	|	𝑙ℓ, 𝑢ℓ, 𝜽)	is	given	by	the	uniform	distribution	between	𝑙ℓ	and	𝑢ℓ	and	does	not	depend	on	𝜽.	We	727	

note	that	𝑓(𝑡ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽)	is	no	longer	given	by	a	non-homogeneous	exponential,	as	we	are	conditioning	on	𝑙ℓ	and	728	

𝑢ℓ.	729	

Using	Eq.	(7),	the	expected	log-likelihood	is	given	by	730	
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𝐸*ℓ,(ℓXlog 𝑃(	𝐼ℓ, 𝑡ℓ, 𝑎ℓ	|	𝑙ℓ, 𝑢ℓ, 𝜽	)	|	𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽
(>)Y

= 𝑐𝑜𝑛𝑠𝑡 + T 𝐸(ℓX	log 𝑓(𝑡ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽)	|	𝑎ℓ, 𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽
(𝒌)Y

'ℓ

-ℓ
	𝑓(𝑎ℓ	|	𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	𝑑𝑎ℓ.	

(8)	

Instead	of	evaluating	the	integral	over	𝑎ℓ,	we	will	attempt	to	sample	𝑎ℓ	from	the	distribution	𝑓(𝑎ℓ	|	𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)).	731	

If	we	can	sample	𝑎ℓ	in	an	unbiased	way,	we	on	average	“know”	the	age	of	the	mutation	and	expect		732	

𝐸(ℓX	log 𝑓(𝑡ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽)	|	𝑎ℓ, 𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽
(𝒌)Y ≈ 𝐸(ℓXlog 𝑓(𝑡ℓ	|	𝑎ℓ, 𝜽)	|	𝑎ℓ, 𝐼ℓ, 𝜽

(𝒌)Y,	 (9)	

which	will	bring	us	back	to	the	case	where	mutation	age	is	known.	733	

A.5 Sampling mutation ages given genealogical constraints 734	

It	is	key	to	sample	from	𝑓(𝑎ℓ	|	𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	in	an	unbiased	way.	Here	we	illustrate	an	approximate	approach	that	735	

works	well	in	practice.	We	use	Bayes’	theorem	and	obtain	736	

𝑓(𝑎ℓ	|	𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)) ∝ 𝑃(𝐼ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	𝑓(𝑎ℓ	1	𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)g	

																																								= 𝑃(𝐼ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	𝑓(𝑎ℓ	|	𝑙ℓ, 𝑢ℓ)	

																																								=
	𝑃(𝐼ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))

𝑢ℓ − 𝑙ℓ
,	

(10)	

where	we	 use	 that	 unconditionally,	 the	 age	 of	 a	mutation	 is	 uniformly	 distributed	 between	𝑙ℓ	and	𝑢ℓ .	We	 are	737	

therefore	interested	in	the	functional	form	of	𝑃(𝐼ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)).	At	first	glance,	it	seems	as	if	we	can	approximate	738	

𝑃(𝐼ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)) = ∫ 𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	𝑓(𝑡ℓ1	𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)g𝑑𝑡ℓ	

																																							≈ 	∫ 𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	𝑓(𝑡ℓ1	𝜽(𝒌)g𝑑𝑡ℓ,	
(11)	

where	 	 𝑃(𝐼ℓ	|	𝑡ℓ, 𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)) 	is	 the	 step	 function	 taking	 1	 if	 sharing	 (or	 non-sharing)	 is	 compatible	 with	739	

coalescence	 time	 and	mutation	 age	 (defined	 in	 Eq.	 (2))	 and	 the	 approximation	 is	 based	 on	𝑓(𝑡ℓ1	𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)g ≈740	

𝑓(𝑡ℓ1	𝜽(𝒌)g,	with	the	latter	being	the	coalescent	prior.	However,	this	approximation	introduces	a	bias,	which	will	741	

invalidate	our	earlier	approximation	in	Eq.	(9).	742	
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Instead,	we	argue	that		743	

𝑃(𝐼ℓ	|	𝑎ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)) ≈ 𝑃(𝐼ℓ	|	𝑙ℓ, 𝑢ℓ, 𝜽(𝒌)),	 (12)	

where	the	right-hand	side	does	not	depend	on	mutation	age	𝑎ℓ,	implying	that	Eq.	(10)	is	the	uniform	distribution	744	

on	[𝑙ℓ, 𝑢ℓ).	Intuitively,	this	means	that	the	probability	of	sharing	(or	non-sharing)	does	not	depend	on	the	mutation	745	

age,	 beyond	 conditioning	 on	 boundaries	 of	 the	 branch	 it	 falls	 on;	 this	 should	 be	 accurate	 if	 the	 probability	 of	746	

coalescing	into	this	branch	is	negligible,	and	the	more	likely	scenario	is	that	coalescences	happen	either	before	𝑙ℓ	747	

or	after	𝑢ℓ.	We	show	that	empirically,	this	is	the	case	in	Supplementary	Figure	14.	748	

As	Supplementary	Figure	14	shows,	approximating	𝑓(𝑎ℓ	|	𝐼ℓ, 𝑙ℓ, 𝑢ℓ, 𝜽(𝒌))	by	the	uniform	distribution	is	reasonable	749	

in	most	cases.	An	important	exception	are	shared	singletons.	The	age	of	a	shared	singleton	is	not	well	approximated	750	

by	a	uniform	distribution,	because	the	target	and	reference	sequence	coalescence	into	the	branch	onto	which	this	751	

singleton	maps	with	certainty.		752	

We	therefore	treat	shared	singletons	separately	by	sampling	from	the	following	empirical	distribution	of	singleton	753	

age.	For	shared	singletons,	we	therefore	approximate	the	distribution	function	of	its	age	𝑎	by	754	

𝐹(𝑡) = 𝑃(𝑎 ≤ 𝑡	|𝐼ℓ = 1, 𝜽(𝒌)) ∝ 𝑃(𝐼ℓ = 1	|	𝑎 ≤ 𝑡, 𝜽(𝒌))	𝑃(𝑎 ≤ 𝑡	1	𝜽(𝒌)g		

																																																						≈ 𝑃(𝐼ℓ = 1	|	upper	boundary ≤ 𝑡)
𝑡

𝑐𝑜𝑛𝑠𝑡.	
(13)	

We	 calculate	 𝑃(𝐼ℓ = 1	|	upper	boundary ≤ 𝑡) 	empirically	 using	 the	 fraction	 of	 shared	 singletons	 with	 upper	755	

boundary	not	greater	than	𝑡.	The	term	𝑡/𝑐𝑜𝑛𝑠𝑡	assumes	that	a	mutation	happens	sometime	between	time	0	and	the	756	

time	to	the	shared	ancestor	with	an	outgroup,	such	that	unconditionally	of	sharing/non-sharing,	the	distribution	of	757	

the	age	of	a	singleton	is	approximately	uniform.	Using	Eq.	(13),	we	can	now	sample	the	age	of	a	singleton	conditional	758	

on	whether	it	is	shared,	using	the	inverse-transform	trick,	such	that	𝑎 ∼ 	𝐹85(𝑈),	with	𝑈	being	a	uniform	random	759	

variable	on	[0,1].	 	760	
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B. Relate: Approximate EM algorithm for inferring coalescence rates from a 761	

genealogy 762	

In	(Speidel	et	al.	2019),	we	described	an	iterative	algorithm	for	estimating	branch	lengths	and	coalescence	rates;	763	

this	algorithm	iteratively	inferred	maximum	likelihood	coalescence	rates	given	a	tree,	and	then	used	these	764	

coalescence	rates	to	reestimate	branch	lengths.	This	algorithm	worked	well	in	practise,	but	was	heuristic.		765	

Here,	we	describe	how	a	minor	modification	of	this	algorithm	can	be	interpreted	as	an	approximate	EM	algorithm	766	

that	attempts	to	find	the	maximum	likelihood	coalescence	rates	for	given	data,	essentially	integrating	out	the	767	

possible	genealogical	histories	by	sampling	these	using	Relate.	768	

As	before,	we	let	𝜽 = (𝜃.).45,…,3 	be	the	coalescence	rates	in	epochs	𝑒 = 1,… , 𝐸.	Here,	we	describe	a	method	that	is	769	

slightly	modified	from	the	method	in	Speidel	et	al.	(2019)	for	inferring	coalescence	rates	using	genealogies.	We	770	

aim	to	find	the	maximum	likelihood	estimate		771	

𝜽& = argmax𝑃(𝑫	|	𝜽)	 = argmax∫ 𝑃(𝑫, 𝑻	|	𝜽)	𝑑𝑻 ,		 (14)	

where	𝑫	is	the	observed	genetic	variation	data	and	𝑻 = (𝑇ℓ)𝓵	is	the	collection	of	local	genealogies,	which	we	treat	772	

as	unobserved	latent	variables	in	the	following	EM	algorithm.	For	one	marginal	tree	𝑇ℓ	the	log	likelihood	is	given	773	

by	774	

log 𝑃(𝑫, 𝑇ℓ	|	𝜽	) = log𝑃(𝑫	|	𝑇ℓ) + log 𝑓(𝑇ℓ	|	𝜽),		 (15)	

where	𝑃(𝑫	|𝑇ℓ)	is	typically	given	by	a	Poisson	model	(mutations	happening	at	a	constant	rate	𝜇),	which	does	not	775	

depend	on	coalescence	rates	𝜽,	and	𝑓(𝑇ℓ	|	𝜽)	is	the	coalescent	prior	of	the	marginal	tree	given	coalescence	rates.	776	

Denoting	our	estimate	of	the	coalescence	rate	in	step	𝑘	of	the	EM	algorithm	by	𝜽(𝒌)	and	multiplying	likelihoods	777	

across	trees,	the	update	of	the	EM	algorithm	is	given	by	778	

𝜽(𝒌?𝟏) = argmax 	W𝐸DℓX	log 𝑓(𝑇ℓ	|	𝜽)	|	𝑫, 𝜽
(>)Y

𝓵

	.		 (16)	

Integrating	formally	over	marginal	trees	given	the	data	is	difficult,	so	instead	we	use	genealogies	sampled	by	779	

Relate.	In	this	approach,	tree	topology	is	fixed,	and	branch	lengths	are	sampled	from	the	posterior	distribution	780	

given	the	data	(mutations	mapped	to	branches).	In	Speidel	et	al.	(2019),	where	the	algorithm	for	estimating	781	

coalescence	rates	was	formulated	in	a	more	heuristic	way,	we	instead	used	posterior	mean	branch	lengths;	by	782	

sampling	branch	lengths	the	algorithm	is	now	an	approximate	EM	algorithm.	783	

Another	difference	to	Speidel	et	al.	(2019)	is	that	we	use	the	full	coalescent	prior	in	our	approach	here,	whereas	784	

we	used	the	coalescent	prior	for	two	haploid	sequences	in	Speidel	et	al.	(2019)	and	then	averaged	over	all	pairs	of	785	
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haploid	sequences	afterwards.	Denoting	by	𝑡# 	the	time	of	the	coalescence	event	reducing	the	number	of	lineages	786	

from	𝑗 + 1	to	𝑗	back	in	time,	the	coalescent	prior	is	given	by	787	

𝑓(𝑇ℓ	|	𝜽) =xy𝑗2{ 	𝜃0𝑡#g	𝑒
8E#F

G	∫ I())	J)
%&
%&'# 	

K

#4F

,		 (17)	

where	coalescence	rates	are	piecewise	constant,	i.e.,	𝜃(𝑡) = ∑ 𝜃. 	1/!"#0(0/!
3
.45 .	Applying	this	to	the	logarithm	of	788	

Eq.	(17),	we	obtain	789	

log 𝑓(𝑇ℓ	|	𝜽	) =W|log y𝑗2{ +Wlog𝜃. 	1/!"#0(&1/!
.

−	y𝑗2{W𝜃.0𝑡# −max0𝜏.85, 𝑡#?5gg1/!"#0(&1/!
.

K

#4F

− y𝑗2{W𝜃.0𝜏. −max0𝜏.85, 𝑡#?5gg1	(&'#1/!,	(&9/!
.

}.	

(18)	

Substituting	Eq.	(18)	in	Eq.	(16)	and	assuming	that	we	only	sample	one	marginal	tree	per	locus	(which	is	the	case	790	

in	practice),	we	obtain	791	

𝜽(𝒌?𝟏) = argmax 	WW|Wlog𝜃. 	1/!"#0(ℓ,&1/!
.

−	y𝑗2{W𝜃.0𝑡ℓ,# −max0𝜏.85, 𝑡ℓ,#?5gg1/!"#0(ℓ,&1/!
.

K

#4F𝓵

− y𝑗2{W𝜃.0𝜏. −max0𝜏.85, 𝑡ℓ,#?5gg1	(ℓ,&'#1/!,	(ℓ,&9/!
.

}	,		

(19)	

where	𝑡ℓ,# 	denotes	the	coalescence	time	of	the	event	reducing	the	number	of	lineages	from	𝑗 + 1	to	𝑗	in	the	ℓth	792	

tree.	Calculating	the	root	of	the	first	derivative	with	respect	to	𝜃. 	gives	793	

𝜃.
(>?5)

=	
∑ ∑ 1/!"#0(ℓ,&1/!

𝑵
𝒋4𝟐𝓵

∑ ∑ ~y𝑗2{	�0𝑡ℓ,# −max0𝜏.85, 𝑡ℓ,#?5gg1/!"#0(ℓ,&1/! +	0𝜏. −max0𝜏.85, 𝑡ℓ,#?5gg1	(ℓ,&'#1/!,	(ℓ,&9/!�	�
𝑵
𝒋4𝟐𝓵

.		 (20)	

Similarly	to	Eq.	(6),	the	numerator	of	Eq.	(20)	counts	the	number	of	coalescence	events	happening	in	epoch	𝑒	and	794	

the	denominator	of	Eq.	(20)	measures	the	total	opportunity	for	a	coalescence	event	in	this	epoch.	We	note	that	if	795	

𝑁 = 2,	𝑡ℓ,F	is	the	coalescence	time	between	two	sequences	and	𝑡ℓ,O = 0,	such	that	Eq.	(20)	reduces	to	the	796	

estimator	derived	in	Speidel	et	al.	(2019)	for	two	haploid	sequences.	797	

	798	
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C. Adapting Relate to build genealogies including ancient genomes  799	

We	modified	the	tree	builder	for	constructing	tree	topologies	and	the	branch	length	sampling	scheme	in	our	Relate	800	

method;	the	remainder	of	the	method	is	unchanged	and	we	refer	the	reader	to	Ref.	(Speidel	et	al.	2019)	for	details	801	

of	the	method.	802	

Tree	builder	for	ancient	genomes	803	

The	 challenge	 with	 including	 ancient	 genomes	 is	 that	 these	 impose	 hard	 constraints	 on	 branch	 lengths	 and	804	

coalescence	times;	any	coalescence	events	has	a	minimum	age	which	is	the	maximum	age	of	its	descendants.	We	805	

therefore	modified	 the	 tree	 builder	 to	 discourage	 coalescences	 between	 contemporary	 and	 non-contemporary	806	

genomes	when	there	is	no	strong	evidence	for	this	coalescence.	807	

To	do	this,	we	calculate	a	preliminary	date	for	coalescence	events	while	inferring	tree	topology.	Our	tree	builder	808	

constructs	 local	genealogical	 trees	bottom-up	and	we	assign	an	age	by	calculating	 the	expected	 time	under	 the	809	

coalescent	model,	given	the	number	of	remaining	lineages	and	a	pre-specified	effect	population	size	as	input.	We	810	

then	only	allow	coalescences	between	non-contemporary	samples	and	other	 lineages,	 if	 the	age	of	 that	 lineage	811	

exceeds	the	sampling	age	of	the	non-contemporary	sample,	except	when	this	is	the	only	feasible	coalescence	event.		812	

Identification	of	feasible	coalescence	events	is	identical	to	before,	where	we	find	pairs	of	lineages	that	are	mutually	813	

minimal	 in	a	non-symmetric	distance	matrix	 calculated	using	a	modified	chromosome	painting	hidden	Markov	814	

model	(Speidel	et	al.	2019;	N.	Li	and	Stephens	2003).	Whenever	we	have	more	than	one	feasible	pair	of	lineages	815	

(that	are	allowed	to	coalesce	in	our	rule	for	non-contemporary	samples	above),	we	choose	the	pair	with	minimal	816	

distance	in	the	symmetrised	distance	matrix.	817	

Markov-chain	Monte	Carlo	sampler	for	branch	lengths	818	

We	modified	the	MCMC	update	rules	to	allow	for	non-contemporary	samples.	This	MCMC	algorithm	samples	from	819	

the	following	posterior	distribution	820	
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𝑃(branch	lengths	|	tree	topology,mutations, 𝜽)

∝ 𝑃(mutations	|	branch	lengths	)	𝑓(branch	lengths	|	tree	topology, 𝜽),	
(21)	

where	𝑃(mutations	|	branch	lengths	)	is	the	likelihood	function	given	by	a	Poisson	model	with	a	constant	mutation	821	

rate	and	𝑓(branch	lengths	|	tree	topology, 𝜽)	is	the	coalescent	prior	on	branch	lengths.	822	

We	have	two	ways	of	proposing	new	branch	lengths,	which	are	chosen	at	random	with	probability	0.4	and	0.6,	823	

respectively.	824	

Swapping	the	times	of	two	events	(same	as	before)	825	

This	step	is	unchanged.	We	choose	two	events	at	random	and	propose	a	switch	of	their	coalescence	times,	if	this	826	

does	not	violate	tree	topology.	The	times	while	𝑘	lineages	remain	are	unchanged	and	the	update	step	only	requires	827	

recalculation	 of	 the	 likelihood	 function	 of	 the	 six	 branches	 that	 have	 been	 proposed	 to	 change	 in	 length	 (two	828	

daughter	and	one	parent	branch	for	each	of	the	two	events).		829	

Update	a	single	event	between	older	daughter	and	parent	(new)	830	

For	modern	samples,	we	additionally	used	an	update	step	that	proposed	a	new	time	for	the	time	while	𝑘	ancestors	831	

remain.	 Here,	 we	 replace	 this	 step	 with	 a	 new	 update	 step	 that	 proposes	 to	 only	 change	 the	 timing	 of	 one	832	

coalescence	event	to	anywhere	between	its	older	daughter	event	and	parent	event.	We	first	choose	one	coalescence	833	

event	 at	 random.	 Defining	 the	 age	 of	 the	 older	 daughter	 coalescence	 event	 by	 𝑡P 	and	 the	 age	 of	 the	 parent	834	

coalescence	event	by	𝑡Q,	the	proposed	age	of	the	chosen	event	is	drawn	from	a	uniform	distribution	on	[𝑡P, 𝑡Q).		835	

The	 acceptance	 probability	 in	 a	 Metropolis-Hastings	 type	 MCMC	 sampler	 is	 given	 by	 the	 ratio	 of	 proposal	836	

probabilities	 of	 the	 old	 and	 new	 age	 of	 the	 chosen	 coalescence	 event,	 multiplied	 by	 the	 ratio	 of	 posterior	837	

probabilities	of	the	old	and	new	branch	lengths.	Conveniently,	the	proposal	distribution	is	symmetric	with	respect	838	

to	 old	 and	new	ages,	 such	 that	 the	 ratio	 for	 the	proposal	 probabilities	 is	 1.	 It	 remains	 to	 evaluate	 the	 ratio	 of	839	

posterior	probabilities	of	branch	lengths,	which	are	given	by	Eq.	(21).	840	

	841	

	842	

	843	

	844	
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Supplementary Figures 845	

	

Supplementary	Figure	1	

Runtime	of	Colate	on	ancient	genomes	of	<4x	coverage,	using	mutations	dated	in	a	genealogy	estimated	using	
SGDP	individuals	(Methods).	Step	1	converts	BAM	files	into	an	input	file	format	used	for	Colate,	that	stores	the	
number	of	reads	supported	each	allele	at	sites	dated	in	the	genealogy.	This	step	is	linear	in	coverage.	Step	2	
parses	two	sequences	that	were	each	processed	using	Step	1	and	scales	linearly	with	the	number	of	mutations	
used	in	the	analysis,	which	scales	somewhat	with	increasing	coverage	as	more	mutations	are	included	in	the	
analysis.	Step	3	infers	maximum	likelihood	coalescence	rates	using	an	EM	algorithm	that	is	now	independent	of	
input	sequence	coverage	and	the	number	of	mutations	used	in	the	analysis.	The	x-axis	in	steps	2	and	3	denotes	
the	coverage	of	the	target	sequence;	coverage	of	the	reference	sequence	ranges	from	0.5x	to	4x	and	is	reflected	
in	the	error	bars.	

	

	 	846	
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Supplementary	Figure	2	

Inferred	effective	population	sizes	using	(a)	true	trees	and	(b)	Relate	trees	for	a	stdpopsim	simulation	
equivalent	to	whole	human	genomes	of	102	diploid	sequences	with	a	sawtooth	history	and	a	human-like	
recombination	map.	We	divide	samples	into	a	group	of	100	diploid	samples	(ref),	and	two	groups	with	one	
diploid	sample	each	(tsk_0	and	tsk_1).	Rows	show	the	target	sequence	used	(tsk_0	or	tsk_1)	and	columns	show	
the	reference	sequences	used	(ref	or	tsk_0),	where	panel	tsk_0	vs	tsk_0	corresponds	to	the	within	individual	
effective	population	size.	For	the	direct	MLE,	we	use	joint	trees	of	all	102	samples.	For	Colate,	we	use	trees	
corresponding	to	the	100	diploid	samples	(ref)	to	date	mutations.	We	also	evaluate	Colate	in	the	case	where	
true	mutation	ages	are	known.		

	

	 	847	
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	848	

	849	

	 	850	

	

Supplementary	Figure	3	

Colate-inferred	effective	population	sizes	between	LBK	(target	sample;	rows)	and	Loschbour	(reference	

sample;	columns),	with	each	individual	downsampled	to	5x,	1x,	0.5x,	and	0.1x.	We	additionally	also	show	the	

within	individual	effective	population	sizes	for	each	individual	in	green	and	blue,	which	is	identical	in	all	

panels	and	is	calculated	using	VCFs	that	were	called	on	the	original	BAM	files	(>10x	coverage).	
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Supplementary	Figure	4	

Matrix	of	coalescence	rates	calculated	using	Colate	for	epoch	spanning	the	age	of	the	sample	to	15,000	YBP.	
Rows	and	columns	of	the	matrix	are	sorted	by	applying	UPGMA.	Annotations	at	the	top	correspond	to	
geographical	region	of	the	sample,	burial	type	for	the	Irish	genomes,	and	time	period.	
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Supplementary	Figure	5	

Colate-estimated	coalescence	rate	of	an	Irish	HG	(SRA62),	Irish	Neolithic	farmer	(NG10),	and	an	Irish	Bronze-
age	sample	(RM127)	to	other	ancients,	calculated	for	an	epoch	ranging	from	the	date	of	the	sample	to	15,000	
years	BP.	In	each	panel,	samples	are	sorted	in	descending	order.	Colours	indicates	Irish	samples	(red)	and	
labels	annotate	geographic	region.	
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Supplementary	Figure	6	

a,	Matrix	containing	pairwise	F2	statistics	calculated	using	pseudohaploid	calls	for	each	individual	(Methods).	
Matrix	is	sorted	by	applying	UPGMA	to	this	matrix.	Annotations	at	the	top	correspond	to	geographical	region	of	
the	sample,	burial	type	for	the	Irish	genomes,	and	time	period.	b,	Matrix	of	Colate-inferred	coalescence	rates	
integrated	over	0	–	50k	YBP,	ordered	in	the	same	way	as	the	matrix	in	a.	c,	Matrices	of	pairwise	coalescence	rates	
for	four	epochs.	All	matrices	are	sorted	in	the	same	way	as	the	matrix	in	a.	
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Supplementary	Figure	7	

Within-individual	effective	population	sizes	for	278	samples	in	the	Simons	Genome	Diversity	Project	inferred	
using	Relate	(top)	and	Colate	(bottom).		
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Supplementary	Figure	8	

a,	Colate-estimated	within	individual	effective	population	sizes	plotted	against	their	Relate-estimated	
equivalents.	Epochs	are	grouped	into	four	bins,	shown	by	different	colours.	b,	Coalescence	rates	between	
sample	shown	in	facet	title	against	non-African	SGDP	individuals,	integrated	over	0	–	50k	YBP,	compared	
between	Relate	and	Colate.	We	performed	a	linear	regression	on	all	four	samples	jointly,	with	the	line	shown	
corresponding	to	y	=	0.38x-0.01,	which	was	used	to	rescale	Colate	coalescence	rates	in	Figure	4c.	
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	867	

	

Supplementary	Figure	9	

Number	of	heterozygous	sites	in	1Mb	bins	for	the	SGDP	samples	S_French-1	and	S-Tajik-1	(red	in	top	and	
bottom	plot)	compared	to	S_French-2	(blue	in	both	plots),	showing	long	runs	of	homozygosity	(ROH)	in	
S_French-1	and	S_Tajik-1	compared	to	S_French-2.	These	ROH	appear	in	different	locations	in	S_French-1	and	
S_Tajik-1.	While	S_French-1	is	a	cell	line,	which	could	artificially	introduce	such	ROH,	S_Tajik-1	is	a	blood	
sample.	The	Relate-inferred	effective	population	sizes	in	the	most	recent	bin	for	these	individuals	are	10,898	
for	S_French-1,	161,112	for	S_French-2,	and	909	for	S_Tajik-1.		
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Supplementary	Figure	10	

a,	TCC/TTC	mutation	rate	relative	to	the	mutation	rate	in	the	time	interval	100k-1M	YBP	for	four	modern	
individuals	and	five	ancient	individuals.	b,	Correlation	calculated	between	the	“area	under	the	curve”	(AUC)	of	
the	TCC/TTC	mutation	rate	(Methods)	and	Colate-inferred	coalescence	rates	to	all	non-African	SGDP	
individuals	and	non-Africans	ancients.	Correlations	for	SGDP	individuals	are	shown	by	circles	and	correlations	
for	ancient	individuals	are	labelled.		
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Supplementary	Figure	11	

Comparison	of	two	different	ways	of	quantifying	the	TCC/TTC	mutation	rate	signature	plotted	against	each	
other	(Methods).	X-axis	shows	area	under	the	curve	(AUC)	calculated	from	mutation	rates	directly	obtained	
using	Relate	genealogies,	whereas	y-axis	shows	the	number	of	TCC/TTC	mutations	relative	to	other	transitions	
(excl.	CpGs),	for	mutations	dated	to	be	younger	than	100k	YBP.		
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Supplementary	Figure	12	

The	proportion	of	TCC/TTC	mutations	relative	to	C/T	transitions	(excluding	those	in	CpG	contexts)	(Methods),	
for	ancient	samples	of	>2x	mean	coverage.	Each	map	shows	a	different	cultural	context/time	period	and	
colours	indicate	signal	strength.	
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	883	

Supplementary	Figure	13	884	

Strength	of	the	TCC/TTC	mutation	rate	signal,	quantified	using	the	proportion	of	TCC/TTC	mutations	relative	to	885	

transitions	 (left	 column)	 or	 area	 under	 the	 mutation	 rate	 curve	 (right	 column)	 (Methods)	 plotted	 against	886	

cumulative	coalescence	rates	with	Bon002,	a	10k-year-old	Anatolian	individual,	Bichon,	a	13k-year-old	Western	887	

HG,	SATP,	a	13k-year-old	Caucasus	HG,	and	Sidelkino,	a	11k-year-old	Eastern	HG.	The	cumulative	coalescence	rates	888	

are	calculated	as	the	integral	of	the	coalescence	rate	from	sample	age	to	50k	YBP.		889	
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Supplementary	Figure	14	

For	mutations	segregating	in	the	100	diploid	samples	(ref)	in	the	zigzag	simulation	of	Supplementary	Figure	2,	
we	plot	a	histogram	of	the	true	age	of	the	mutation	relative	to	lower	and	upper	ages	of	the	coalescence	events	
of	the	branch	on	which	this	mutation	occurred,	using	the	genealogy	of	these	100	diploid	samples	only	and	
stratified	by	whether	or	not	it	is	shared	with	sample	tsk_0	(left	and	right	panel).	We	additionally	stratify	by	age	
bins	of	lower	(rows)	and	upper	(columns)	coalescence	ages.	This	shows	that	mutations	that	are	singletons	in	
the	group	of	100	diploid	samples	and	are	shared	with	tsk_0	have	a	non-uniform	age,	whereas	all	other	
categories	are	close	or	nearly	identical	to	uniform	distributions.	
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