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Summary 
In naturalistic environments, animals navigate in order to harvest rewards. Successful goal-
directed navigation requires learning to accurately estimate location and select optimal state-
dependent actions. Midbrain dopamine neurons are known to be involved in reward value 
learning1–13. They have also been linked to reward location learning, as they play causal roles 
in place preference14,15 and enhance spatial memory16–21. Dopamine neurons are therefore 
ideally placed to provide teaching signals for goal-directed navigation. To test this, we imaged 
dopamine neural activity as mice learned to navigate in a closed-loop virtual reality corridor 
and lick to report the reward location. Across learning, phasic dopamine responses 
developed to visual cues and trial outcome that resembled reward prediction errors and 
indicated the animal’s estimate of the reward location. We also observed the development of 
pre-reward ramping activity, the slope of which was modulated by both learning stage and 
task engagement. The slope of the dopamine ramp was correlated with the accuracy of licks 
in the next trial, suggesting that the ramp sculpted accurate location-specific action during 
navigation. Our results indicate that midbrain dopamine neurons, through both their phasic 
and ramping activity, provide teaching signals for improving goal-directed navigation. 

  

Highlights 

● We investigated midbrain dopamine activity in mice learning a goal-directed 
navigation task in virtual reality 

● Phasic dopamine signals reflected prediction errors with respect to subjective 
estimate of reward location 

● A slow ramp in dopamine activity leading up to reward location developed over 
learning and was enhanced with task engagement 

● Positive ramp slopes were followed by improved performance on subsequent trials, 
suggesting a teaching role during goal-directed navigation 

Results & Discussion 
To examine the activity of midbrain dopamine 
neurons during goal-directed navigation, we 
designed a task in a virtual reality (VR) 
corridor. Head-restrained mice were free to 
self-pace their locomotion on a treadmill, 
which accordingly updated visual scenes in a 
closed-loop system22 (Figure 1B, Video S1). 

A specific region of the virtual corridor had a 
hidden reward zone, where a lick triggered 
the delivery of a drop of sweetened water 
(Figure 1D). The reward zone was not 
explicitly marked by cues and therefore the 
mice had to learn to estimate their location 
based on visual cues presented along the 
corridor and their own locomotion. If the mice 
licked within the reward zone, they actively 
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triggered reward delivery (active trial), 
whereas if mice did not lick in the reward 
zone, reward was delivered at the end of the 
reward zone (passive trial). Active trials 
indicated that the mouse had learned the 
reward location and reported their subjective 
estimate of it by licking accurately within the 
reward zone. We assessed the effects of 
learning by dividing training sessions into 
three stages: ‘early’, ‘mid’, and ‘late’ per 

animal (see Methods). We found that mice 
performed more active trials and fewer 
passive trials with increased training (Figure 
1E, p=0.0078, Mann-Whitney U test, see 
Table S1), consistent with their learning the 
location of the reward zone. Early in training, 
passive trials indicate that the animal has not 
yet learned the reward location, whereas later 
in training, they may indicate task 
disengagement, erroneous estimation of 

Figure 1. Mice learn to navigate in virtual reality and report the reward location. A) DAT-cre 
mice were injected with AAV9.Syn.Flex.GCaMP6m in the VTA, and implanted with a GRIN lens over 
the VTA for imaging dopamine activity. B) Head-restrained mice performed a navigation task by 
running on a cylindrical treadmill and virtual corridor displayed on three screens. C) Example 
histological image showing GCaMP6m expression (green) in VTA TH+ neurons (red) and lens track. 
D) Example behavioural performance shown on a schematic of the corridor with the position of the 
cues and reward zone, with the licks (circles) and reward delivery (asterisks) on example trials 
shown in rows. Licking within reward zone results in active reward delivery (green), not licking within 
reward zone results in passive reward delivery (purple). E) Mean percentage of passive and active 
trials across training stages (late-stage, p=0.0078, n=8 animals, Mann-Whitney U test). Error bars 
indicate standard error. F) Comparison of pre-reward lick rate in the reward zone (60-67cm) versus 
pre-reward zone (50-59cm) at different training stages. G) Global fluorescence over several trials 
from a single animal from early-stage (top) and late-stage (bottom) training stages. Passive (purple) 
and active (green) reward deliveries (lines), licks (black circles), and intertrial intervals (ITIs, brown 
shaded regions) are indicated along the timeline. 
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reward location or attentional lapse. Mice also 
increased their licking frequency within the 
reward zone over training (Figure 1F, Figure 
S2A), indicating that their estimation of the 
reward location improves over training and 
they successfully learn to perform the goal-
directed navigation task. 

As mice learned to perform the goal-directed 
navigation task in virtual reality, we measured 
the global activity of midbrain dopamine 
neurons. We expressed a genetically-
encoded calcium indicator (GCaMP6m23) 
using viral transfection in the ventral 
tegmental area (VTA) of DAT-cre transgenic 
mice. We implanted a GRIN lens above the 

Figure 2. Phasic VTA dopamine activity reflects reward prediction errors. A-B) VTA 
dopaminergic activity as a function of time following rewarded (A) and unrewarded (B) licks for 
passive (purple) and active (green) trials. Rewarded licks were taken from trials with no licks prior to 
reward and the aligned lick is the first lick following reward delivery. Unrewarded licks were taken 
from trials with one lick >0.5s prior to reward delivery. C) Boxplots of change in fluorescence following 
rewarded (left) and unrewarded (right) licks, measured as maximum difference in the window of 0-
0.6s following the lick. Boxplots indicate median across recording sessions (white), 25th and 75th 
percentiles as edges, and whiskers indicate most extreme points (outliers not shown). Asterisks 
directly above boxplots indicate significant difference from zero (***: p<0.001, **: p<0.01, *: p<0.05; 
Wilcoxon signed rank test, see Table S1). D-I) Same as A-C, split by training stage. J-L) Mean 
dopamine activity as a function of position in the corridor, focused on 49-150cm. Change in 
fluorescence in L is calculated as the maximum value in the reward window (60-90cm) minus the 
mean value in the pre-reward window (50-60cm). Change in fluorescence decreases over learning 
(p<0.05, Mann-Whitney U test, see Table S1). 
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VTA, and measured global calcium indicator 
fluorescence using a Miniscope24 (Figure 1, 
Figure S1). We observed robust phasic 
responses that followed the reward delivery 
in individual trials (Figure 1G). Early in 

learning, dopamine responses mainly 
appeared after the reward delivery, while later 
in learning, we observed elevated activity 
both prior to as well as following the reward 

Figure 3. Phasic RPEs and slower pre-reward ramping activity develop over training. A) 
Activity as a function of position in the corridor, focusing on the pre-reward region (0-60cm), split 
into passive (top) and active (bottom) trials and different training stages. B) Boxplots of the mean 
change in fluorescence in the cue windows indicated by the black bars in A. All distributions are 
significantly larger than zero (p<0.001, Wilcoxon signed rank test). Change in fluorescence 
increases over training (p<0.001 for passive, p<0.02 for active, Mann-Whitney U test, see Table 
S1). C) Boxplots of pre-reward ramp gradient, calculated by fitting a line to activity in the 0-60cm 
window. Asterisks indicate distribution is significantly different from zero (p<0.02, Wilcoxon signed 
rank test, see Table S1). Pre-reward ramp gradient increases over learning (p<0.05, Mann-Whitney 
U test, see Table S1). D-F) Data shown in A-C, directly comparing passive and active per training 
stage. Significant differences are found between active and passive ramp gradients at all training 
stages (Figure 3F, p=0.0243, p<0.0001, p=0.0426 respectively, Wilcoxon signed rank test). 
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delivery, consistent with previous studies1–

13,25. 

Dopamine activity showed sharp, transient 
increases and decreases following rewarded 
and unrewarded licks respectively (Figure 
2A-B). We calculated the magnitude of the 
phasic responses as the change in activity 
from the time of lick to the peak of the 
response (Figure S3A). Averaged across all 
sessions, rewarded licks had positive 
responses (Figure 2A, p<0.0001, Wilcoxon 
signed rank test), which were larger in active 
trials compared to passive trials (Figure 2C, 
p=0.0155, Wilcoxon signed rank test). In 
contrast, unrewarded licks before reward 
delivery were followed by a transient 
suppression in activity (Figure 2B, p<0.0001, 
Wilcoxon signed rank test). This suppression 
was followed by a positive phasic response 
later in the trial when reward was eventually 
delivered. The magnitude of suppression was 
similar in both active and passive trials 
(Figure 2C) but different from responses 
following rewarded licks (p<0.0001, Mann-
Whitney U test). The suppression was 
consistent with activity suppression we 
observed in trials where we omitted rewards 
late in training (Figure S3E-F).  

We also examined how these phasic 
responses changed over learning (Figure 2D-
I). In the time axis, phasic activity following 
rewarded licks did not change significantly 
over learning (Figure 2F). For unrewarded 
licks, we saw the post-lick suppression 
progressively increase across training in 
active trials (Figure 2I, e.g. early- vs late-
stage: p=0.0078, Mann-Whitney U test, see 
Table S1), but not in passive trials. Measured 
along corridor position (Figure 2J-K), we also 
observed the magnitude of reward responses 
decrease over training (Figure 2L, e.g. active 
early- vs late-stage: p<0.001, Mann-Whitney 
U test).  

In summary, the learning-related changes in 
peri-lick neural activity, particularly when 

examined in the spatial dimension, are 
broadly consistent with the reward prediction 
error term of temporal difference 
reinforcement learning (RL) models1,26. The 
activity suppression at the time of 
unrewarded lick further implies that mice in 
this task have an expectation of reward at the 
time of lick, reflecting their subjective 
estimate of the reward location. Finally, 
differences in phasic responses in active 
compared to passive trials are reminiscent of 
previous results showing modulation of 
dopamine reward prediction errors by factors 
such as satiety or effort cost27,28. 

Prior to reward delivery, we observed the 
development of phasic dopamine activity 
across training in response to reward-
predictive cues, as well as a slow ramp in the 
pre-reward activity leading up to the reward 
zone location (Figure 3). Phasic dopamine 
responses to cues increased over training for 
both passive and active trials (Figure 3B, e.g. 
early- vs late-stage: p<0.0001, Mann-
Whitney U test). We next examined the slow 
ramp in pre-reward activity leading up to the 
reward zone location. Strikingly, we saw that 
the gradient of the pre-reward ramping 
activity increased over learning in both 
passive and active trials (Figure 3C, early- vs 
late-stage: p<0.0001, Mann-Whitney U test). 
The gradient of the ramp also appeared to 
increase earlier in training in active trials 
compared to passive trials, with the median 
gradient of the ramp more than doubling for 
passive trials between mid- and late-stage 
training (from 0.18 to 0.45 ΔF/cm), while the 
median gradients were similar for active trials 
(0.462 and 0.468 ΔF/cm). We saw the same 
patterns of neural activity emerge over 
training in trials in which mice did not lick prior 
to the reward zone, indicating that the pre-
reward ramping activity was not caused by 
licks prior to the reward location (Figure S4). 
As it has been suggested that dopamine 
activity could reflect motor vigour29–33, we also 
examined whether locomotor speed could 
explain the ramping activity. However, 
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ramping dopamine activity did not reflect 
general locomotor vigour, as mice in our task 
slowed down on approach to the reward 
location, while dopamine activity ramped up 
instead (Figure S2). This resulted in the ramp 
gradient and change in speed leading up to 
the reward zone being anti-correlated (Figure 
S2C).  

To examine the effect of trial type, we 
compared cue responses and ramping 
activity between active and passive trials 
across the different training stages (Figure 
3D). We found that the slope of the pre-
reward ramp in active trials was larger than in 
passive trials at all training stages (Figure 3F, 
p=0.0243, p<0.0001, p=0.0426 for early-, 
mid- and late-stage respectively, Wilcoxon 
signed rank test), while mean cue responses 
remained similar (Figure 3E). This suggests 
that the gradient of the ramp was modulated 
by task engagement. 

While ramping of dopamine signals has been 
observed under certain conditions4,32,34–41, its 

functional role has yet to be agreed upon. 
Given our observations that the gradient of 
ramping increased across training, and was 
higher in active trials (where mice accurately 
report reward location), we hypothesised that 
a positive ramp slope might act as a teaching 
signal to improve performance in reporting 
the reward zone on a trial-to-trial basis, 
especially in late-stage training. Individual 
late-stage trials (with no licking before the 
reward zone) had pre-reward ramp slopes 
that ranged from negative to positive (Figure 
4A, left). We examined the effect of the sign 
of pre-reward ramp slope (on trial n) on 
performance in the subsequent trial (trial 
n+1), evaluated by the distribution of licks 
prior to reward delivery. If a positive pre-
reward activity ramp could act as a teaching 
signal, then we would expect to see 
increased accuracy of licking in the reward 
zone in the subsequent trial. Indeed, we 
found that a positive ramp slope on trial n was 
correlated with more accurate licking in the 
reward zone on trial n+1 compared to a 
negative ramp slope on trial n (Figure 4A, 

Figure 4. Positive pre-reward ramp slope increases reward zone licking on subsequent trial. 
A) Left: Distributions of pre-reward ramp gradients per late-stage training trial n with no licks prior to 
reward zone, for passive (top) and active (bottom) trials, showing groups of positive (red) and 
negative (blue) slope trials. Inset above distributions: mean activity trace for each group of trials. 
Right: Distributions of pre-reward licks on trials following positive slope trials (red) and negative 
slope trials (blue), focusing on 50-70cm in the virtual corridor. Black bars denote significant 
difference between distributions (p<0.05, Mann-Whitney U test, see Table S1). B) Difference 
between lick distributions shown in A right for passive (top) and active (bottom) trials. C) Distributions 
of pre-reward licks on trials following positive slope trials (red) and preceding positive slope trials 
(black, dashed). D) Difference between lick distributions shown in C for passive (top) and active 
(bottom) trials (p<0.05, Mann-Whitney U test, see Table S1). 
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p<0.05, Mann-Whitney U test). We also 
visualised the effect of the positive ramp 
slope by subtracting the negative slope lick 
distribution from the positive slope lick 
distribution (Figure 4B), showing that there is 
increased licking within the reward zone as a 
result of the positive slope. The influence on 
subsequent trials was similar regardless of 
whether trial n was active or passive, albeit 
with slightly different localisations within the 
reward zone. 

One possible reason to see this effect of ramp 
slope on subsequent trials might be that slow 
fluctuations in behavioural performance 
cause correlations between neighbouring 
trials42. Such slow fluctuations, however, are 
not expected to show trial-by-trial 
improvements in performance. Therefore, to 
assess trial-by-trial improvements, we used 
the lick distribution of the trial preceding (trial 
n-1) the positive ramp slope trial n as a 
baseline, and subtracted it from the lick 
distribution of the subsequent trial n+1. If the 
positive ramp slope improved licking 
accuracy on a trial-to-trial basis, then we 
would see an increase in reward zone licking 
in the lick distribution of trial n+1 relative to 
trial n-1. As predicted, we saw this effect on 
subtraction of the trial n-1 lick distribution 
from the trial n+1 lick distribution (Figure 4C-
D, p=0.0236 and p=0.0174 for passive and 
active respectively, Mann-Whitney U test). 
The effect of the trial n positive ramp slope 
shared similar trial type-specific localisation 
within the reward zone as we had previously 
shown (Figure 4B). Interestingly, the same 
analysis on the effects of reward response 
sizes on subsequent trials, showed that a 
small reward response on trial n was followed 
by increased reward zone licking on trial n+1 
when trial n was active, but not passive 
(Figure S5). Together, these data suggest 
that a positive pre-reward ramp slope acts as 
a teaching signal, improving the accuracy and 
frequency of reward location reporting on a 
trial-to-trial basis. 

Overall, our results indicate that both phasic 
as well as slower ramping of dopamine 
activity provide teaching signals that can 
improve the accuracy of goal-directed 
navigation. We observed the development of 
positive phasic responses to the reward and 
the reward-predictive cues, and negative 
phasic responses following unrewarded licks. 
In addition, we observed a ramping of the 
dopamine activity leading up to the reward 
location, the gradient of which was increased 
with learning and task engagement. We also 
saw that a positive ramp slope improved the 
accuracy of reward location estimation on a 
trial-to-trial basis. 

Our results support the hypothesis that 
midbrain dopamine neurons provide teaching 
signals for reward location learning and 
selecting location-specific actions required to 
obtain the reward. Phasic dopamine activity 
represents prediction errors in temporal 
difference RL models1,26, and has been 
shown to induce learning in various 
behavioural contexts5,7,8,11–13. Phasic 
dopamine signals incorporate inferred belief 
state into prediction error computation, 
reflecting subjective estimates of sensory 
signals43 or reward delivery timing44. Our 
results suggest that phasic dopamine signals 
also represent belief about the reward 
location inferred from visual and self-motion 
cues. Using passive temporal approach tasks 
in VR, a recent study has shown that ramping 
dopamine activity mimics RPE40. Our results 
build on this by showing that positive slope 
ramps improve reward location estimation on 
a trial-to-trial basis, revealing a role of these 
ramps in learning in a spatial domain (see 
Supplementary Discussion). Overall, our 
results indicate that midbrain dopamine 
neurons provide teaching signals for goal-
directed navigation through both their phasic 
and slower ramping activity. 
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Methods 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse anti-TH ImmunoStar Cat # 22941 

Alexa Fluor 594 Goat anti-mouse BioLegend Cat # 405326 

Bacterial and Virus Strains 

AAV9-Syn-FLEX-GCaMP6m  Addgene #100838 

Experimental Models: Organisms/Strains 

Mouse: DAT-IRES-cre 
(Slc6a3tm1.1(cre)Bkmn)  

The Jackson Laboratory JAX006660 

Mouse: C57BL/6 Charles River 
Laboratories 

Strain code: 027 

Software and Algorithms 

Bonsai Lopes et al., 201545 https://bonsai-rx.org/  

UCLA Miniscope Bonsai node Jonathan Newman https://github.com/jonnew/Bonsai.Minisc
ope 

MATLAB 2018a MathWorks https://www.mathworks.com/ 

Custom MATLAB VR code Saleem et al., 201346 
Saleem et al., 201822 

https://github.com/amansaleem/Saleem
Lab-VR  

Custom Arduino code for VR 
interfaces 

- https://github.com/SaleemLab/ArduinoC
odes  

LAS X (Leica Application Suite) 
confocal microscopy software 

Leica Microsystems https://www.leica-microsystems.com/  

All procedures were conducted in accordance with the UK Animals Scientific Procedures Act 
(1986). Experiments were performed at University College London under personal and project 
licenses released by the Home Office following appropriate ethics review. 

Mouse line creation and maintenance 

The DAT-cre transgenic mouse line was started by breeding one male DAT-IRES-cre 
(Slc6a3tm1.1(cre)Bkmn) mice (JAX006660, The Jackson Laboratory) with a female C57BL6 mouse 
(Charles River). Following genotypic identification (Transnetyx) of DAT-cre offspring, 
heterozygous DAT-cre breeders were selected and subsequently paired with C57BL6 
breeders in order to maintain the colony. Following pregnancy confirmation, males were 
separated out. Pups were weaned three weeks after birth, earmarked for genotyping, and 
group-housed in single-sex cages. 
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All mice were given environmental enrichment, standard chow and water ad libitum prior to 
the experiment. Mice were housed in a colony room at 21.5°C, 45% humidity on a 12h/12h 
light/dark cycle. Selected experimental mice were single-housed and underwent implant and 
baseplating surgeries. Following at least 7 days recovery, water-restriction was initiated to 
increase motivation, with free access to water overnight once every two weeks. Mice were 
weighed each day, received hydrogel in their home cage following behavioural training to 
ensure sufficient hydration (>40ml/kg), and had free access to standard chow to maintain their 
weight between 85-90% of their predicted unrestricted weight. Data from eight mice are 
presented (5 female, 3 male). 

Miniscope surgeries 

Experimental mice underwent two surgeries. In the first surgery, mice were induced with 3% 
isoflurane and maintained at 1.5%. Lacrilube was applied to eyes to maintain eye moisture, 
5% carprofen was administered subcutaneously and the head was shaved. In six animals, 
5mg/kg of 2%w/v colvasone (active ingredient: dexamethasone) was administered 
intramuscularly to reduce inflammation and brain swelling. A craniotomy was performed 
directly over the VTA of one hemisphere (2 left, 6 right). 600nl of AAV9-Syn-FLEX-GCaMP6m 
(Addgene Plasmid #100838) diluted 1:3 in aCSF was injected at a rate of 50nl/min into the 
VTA (AP -3mm, ML 0.5mm, DV -4.6mm from dura) and the pipette was left in place for 10 
minutes. Following this, for six of the mice, a blunt needle was inserted and lowered between 
1.5 and 2mm from dura before being removed. The GRIN lens (Inscopix 1050-002179) was 
then inserted, at an approximate rate of 400-500um/min to a depth around -4.3mm, and 
secured in place using dental cement (Super-Bond C&B, Sun Medical). A custom metal 
headplate was cemented behind the lens, and a plastic cap (cut-off end of Eppendorf tube) 
was cemented over the lens for protection. Following recovery, mice were closely monitored 
and given 20ul Metacam (Boehringer Ingelheim) in condensed milk (Nestlé Carnation), and 
high-protein wet food for 3 days post-surgery. 

The second surgery was performed 2-3 weeks after the first, to allow for viral expression and 
inflammation reduction. The mouse was similarly induced, maintained and monitored. 
Following head-fixation, the protective cap was drilled out and the lens was cleaned. A 
modified UCLA Miniscope24 with an incorporated GRIN lens and with an attached baseplate 
was lowered to around 100-300um above the implanted lens, and the field of view explored 
using Bonsai software45 and the UCLA Miniscope node 
(https://github.com/jonnew/Bonsai.Miniscope). When the optimal field of view was found, the 
baseplate was carefully cemented to the skull over the implanted lens. The Miniscope was 
removed and a protective Delrin cap (S. Stiteler, miniscope.org) was secured to the baseplate 
using a set screw. 

Behavioural training and imaging 

Mice were handled, water-restricted and acclimatised to head-fixation on a custom Styrofoam 
wheel22 and Miniscope attachment for a few days prior to behavioural testing. Mice were also 
offered rewards (~1.5-2ul cherry-flavoured Kool-Aid, Kraft Foods), pseudo-randomly 
delivered, through a lick spout to encourage running and identify putative dopamine reward 
responses, while monitoring licks using a custom IR sensor. Mice were free to run in the task 
as much as they desired for about 30 minutes during the dark cycle each day (~5 days/week) 
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on a custom rig, where they were presented with a virtual corridor on three screens (Figure 
1B). The three 9.7” screens (LP097QX1-SPAV with 4:3 aspect ratio, controlled by HDMI driver 
boards) were fixed in portrait mode at 120° from each other, such that they formed half a 
hexagon, and the mouse was placed at the centre of the hexagon. The mouse’s movements 
on the wheel were yoked to the visual display using a rotary encoder such that they could only 
navigate towards the end of the virtual corridor by moving in a forward direction (closed-loop 
system)22 (github.com/amansaleem/SaleemLab-VR). The rotary encoder, infrared lick 
detector, and reward valve (225P011-21, NResearch, USA) interfaced with the VR code 
through an Arduino Leonardo board (github.com/SaleemLab/ArduinoCodes). The task used a 
150cm long corridor, with a low-contrast white noise pattern along the ceiling, walls and floor 
(8cm width and height). The visibility of the corridor was limited to 70cm ahead. A full traversal 
through the corridor is considered a completed trial. Reaching the end (or timing out) initiated 
an intertrial interval (ITI) where the corridor was replaced with isoluminant grey. The ITI was 
chosen randomly between 4 and 6s, to ensure that timing between spatial features could not 
carry past each trial. 

As the mice travelled down the corridor, they would pass two distinct patterned cues (8cm 
wide) on the walls, centred at 20cm and 45cm along the corridor respectively. An unmarked 
reward zone spanned 60.5cm to 67cm in the corridor. On each trial, a reward was delivered 
to a spout in front of them. The spout incorporated an infrared sensor to detect licking. The 
exact location of the reward zone was not indicated by any cue and instead had to be 
estimated by the mouse based on prior cues and actions. If the mouse did not lick in the reward 
zone, then it would passively receive the reward at the end of the zone (passive trials). 
However, if it licked within the zone, then reward delivery was actively triggered (active trials), 
and therefore delivered earlier than in the passive trials (Figure 1D). The mouse could then 
continue down the virtual corridor and pass a final, non-reward-predictive patterned cue 
(centred at 140cm) before the end of the corridor was reached (grey screen). If the mouse did 
not reach the end of the corridor within 30 seconds, the trial was terminated (timed out). A pre-
reward licking threshold was also imposed to reduce licking and indicate the mouse’s 
estimation of the reward location. This was gradually reduced over training (following the 
mouse’s natural inhibition of excessive licking in incorrect locations) to approximately 8-10 
licks in late-stage training. If the mouse exceeded this threshold prior to reward delivery, the 
trial was terminated. 

For comparison of data across training, training sessions were split into three stages: early, 
mid and late training. Early and late stages were defined as the first and last quartile of 
sessions respectively for each animal, with the rest being classified as mid-training. 

Calcium fluorescence was detected using a Miniscope through an implanted GRIN lens 
(Figure 1A) which acted as a proxy for dopamine neuron activity. A custom Bonsai workflow45 
and Miniscope node (https://github.com/jonnew/Bonsai.Miniscope) were used to acquire 
images (at 15Hz) and calculate global calcium signal. Mice had a mean of 24 training sessions 
over the course of the experiment. In early to mid-training, active trials were incentivised by 
offering slightly larger rewards (~2-3ul) until the mice demonstrated the ability to repeatedly 
perform active trials (as judged by the experimenter), at which point the active trial reward 
volume was decreased to be the same as the passive trial reward volume. Later in training, 6 
of the 8 mice had reward omission trials introduced pseudo-randomly in 5-7% of the trials in 
each session, where no reward was delivered but the mouse still traversed the corridor. 
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Data pre-processing 

Imaging data collected using Bonsai was imported into Matlab for pre-processing. Rarely, 
unstable signal was produced by Miniscope movement or power surges or lapses. Two types 
of signals were considered unstable. The first type was fluorescence that exceeded or fell 
below a threshold of 1.5 standard deviations away from the mean fluorescence across the 
whole training session. The second type was when fluorescence surrounding the first type 
(±100ms) exceeded half of the difference between the maximal fluorescence and mean 
fluorescence, therefore constituting an ‘upswing’ or ‘downswing’ of a large transient. Following 
removal of these two types of unstable signal, a photobleaching curve was fitted across the 
entire session using Matlab polyfit (2nd order) and subtracted from the fluorescence trace. The 
trace was then corrected for jitter by subtracting the lower 10% quantile baseline using a 60s 
window. The resulting signal was then aligned to the virtual corridor times. Trials with unstable 
signals were removed from subsequent analysis. 

To be included in further analysis, trials, sessions and animals had to fulfil certain criteria. 
Aborted trials (time-outs, too many licks before reward or experimenter-terminated), and trials 
with unstable signal were excluded from analysis. Sessions were included if they had >50% 
trials with at least one lick, and >10% active trials. Four animals were excluded from further 
training as they did not show visible reward responses to random reward, and were later 
confirmed to have mistargeted GRIN lens placement. One animal was excluded due to a visual 
defect (cataract), and another one was excluded as it did not learn the task (based on having 
<50% of the sessions containing active trials). Subsequent analysis was performed on data 
that met these conditions (eight animals). Fluorescence was z-scored prior to comparisons 
across sessions or animals. 

Data analysis 

Behaviour during training was assessed through binned mean licks/cm across the virtual 
corridor, as well as through the speed of the wheel rotation. Phasic responses to the cues 
were calculated as the maximum minus the minimum values within each 12cm cue window 
(10-22cm, 32-44cm and 132-144cm respectively). Phasic responses to the reward were 
calculated as the maximum value in the reward window (60-90cm) minus the mean of the 
activity within the pre-reward window (50-60cm). Ramp gradient was calculated as the 
gradient of a fitted linear line (Matlab polyfit, 1st order) to the fluorescence in the window 0-
60cm. 

Rewarded lick traces (Figure 2) included only trials that did not have any licks before the 
reward zone, to avoid contamination of the signal by prior licks. Rewarded lick traces were 
also averaged across each animal before averaging over all animals to counter the 
appearance of an electrical artifact that was presented in two animals when reward was 
delivered during active trials. Unrewarded lick traces included only trials that had only one lick 
prior to the reward zone that was at least 0.5s before reward delivery. For comparison with 
reward omission trials, the data in Figure S3 only includes sessions that contained omission 
trials. Suppression gradient was calculated as the mean of the gradients of fitted lines (Matlab 
polyfit, 1st order) between the fluorescence at zero and the minimum fluorescence in the 
second half of the window of fluorescence being examined (here -2.5 to 3s around the lick, so 
minimum value between 0.25 and 3s) for each trial. Paired data was tested for differences 
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using the Mann-Whitney U test (Matlab ranksum), as were tests of difference from zero, while 
the Wilcoxon signed rank test (Matlab signrank) was used to test for differences between 
different training stages. 

Ramp slopes were classified as positive or negative by considering all ramp slopes across all 
trials, sessions and animals and taking the most positive third as ‘positive’ and the most 
negative third as ‘negative’. For analysis of the effect of ramp slope on trial n on lick distribution 
on trial n+1, only trials with no licks before the reward zone were considered to eliminate any 
contamination of signal by licks. Lick distributions in Figure 4 were calculated as licks/cm 
smoothed from 2cm bins. Figure 4C-D analysis used lick distribution from trial n-1 for 
normalisation to isolate trial-by-trial effect42. 

Histology 

Mice were deeply anaesthetised using 3.5% isoflurane, injected with a lethal dose of 
pentobarbital (Euthatal, Boehringer Ingelheim) intraperitoneally and transcardially perfused 
with 1X phosphate-buffered saline (PBS) followed by 10% formalin solution. Following 
perfusion, the brain was extracted and placed in 10% formalin for short-term storage. Prior to 
sectioning, the brain was placed into a 30% sucrose solution until it sank, for cryoprotection. 
The brain was then mounted upright in OCT (Sakura FineTek) and 40um slices were made 
using a cryostat (Leica CM1850 UV). Slices were washed five times in 1X PBS before 
overnight incubation on a rotating platform at room temperature in primary solution: 1:5000 
mouse anti-TH (ImmunoStar 22941) in PBS-T (0.4% Triton in 1X PBS), to label tyrosine 
hydroxylase-positive (including dopamine) cells. The following day, slices were washed five 
time in 1X PBS before a 2-hour secondary incubation, in 1:1000 Alexa Fluor 594-goat anti-
mouse (Biolegend) in PBS-T. Slices were then washed five times in 1X PBS before being 
mounted and allowed to dry. Mounting medium with DAPI (Vectashield, Vector Laboratories) 
was added to stain cell bodies, before adding the coverslip and sealing with nail polish. Slices 
were then imaged at 10x magnification (Figure S1) using a confocal microscope (Leica DMi8) 
and LAS X software (Leica). 
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Supplemental Information 

Supplementary Discussion 

Midbrain dopamine neurons and spatial navigation 
Our study revealed the presence of reward prediction error signals during goal-directed 
navigation in the dopaminergic neurons of the VTA. Previous work using manipulations of 
midbrain dopamine neural activity established their role in spatial learning, such as in place 
preference assays14,15 and in spatial memory tasks via their effects on hippocampal plasticity, 
place fields and ensemble reactivation16–21. However, their well-known function in signalling 
reward prediction error (RPE), which was established in the temporal domain1,26,48, has not yet 
been precisely demonstrated in spatial tasks. This is partly because most studies of midbrain 
dopamine neurons during navigation have used freely-moving animals in tasks that don’t have 
precise temporal features or behavioural readouts. By performing experiments in virtual reality 
(VR), we were able to create a navigation task with high temporal precision and a precise 
readout of the animal’s estimate of reward location through licking22,49. This allowed us to 
measure neural responses to precise events such as cues, rewards, and licks, and establish 
the presence of reward prediction errors during spatial learning. 
 
Our implementation of VR also has the advantage of being closed-loop. If progression through 
the virtual corridor was simply presented as a video of movement at a predefined speed, 
irrespective of the animal’s own movements, spatial components could not be differentiated 
from an equivalent temporal task40. In contrast, our closed-loop task gives control of movement 
(and corresponding visual scenes) to the animal, simulating more naturalistic navigation. We 
were therefore able to characterise neural activity as a function of spatial position, which 
revealed ramping activity of VTA dopaminergic activity along the corridor leading up to the 
reward location, similar to dopamine ramps observed in animals navigating real 
environments37,38. 
 
Another key advantage of our task is the ability to assess the engagement of animals in the 
task. We were able to split trials into ‘active’ and ‘passive’, based on whether the animal 
actively triggered reward delivery by licking in the reward zone or not. Once animals had 
learned how to perform the task, this allowed us to define two degrees of task engagement, 
and revealed that both the phasic post-rewarded lick responses and the ramping of pre-reward 
dopaminergic activity were greater when the animal was engaged and actively reporting the 
reward location. 

Function of ramping dopaminergic activity 

Pre-reward dopamine ramping has been observed4,32,34–41,50 in tasks that tend to have two 
particular features: first, reward is distant, often requiring several seconds to be attained, and 
second, progress towards the reward can be tracked, such as through sensory cues or action 
sequences4,32,34–41,50. These criteria are both naturally met during goal-directed navigation. The 
pre-reward ramp has been reported in both VTA dopamine neuron activity34,39–41,52 and 
dopamine release into downstream striatum4,32,35–38 and across species. We also observed 
pre-reward ramping in VTA dopaminergic neural activity in our goal-directed navigation task 
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in mice. This ramping activity developed over learning, was modulated by task engagement 
and was correlated with improvements in reward location estimation on a trial-to-trial basis. 
However, the functional significance of the pre-reward ramping is currently up for debate. 

One hypothesis suggested for pre-reward ramping activity is that it represents reward 
prediction error (RPE)40. Our results are largely consistent with this hypothesis. Specifically, 
we observed the pre-reward ramp develop over learning, increasing in gradient while phasic 
RPE signals to reward-predictive cues increased in magnitude. We also found that positive 
slope ramps are followed by increased reward zone licking on the subsequent trial on a trial-
to-trial basis, indicating that a positive slope ramp is correlated with improved reward location 
estimation and performance, much like RPE improves performance on a trial-to-trial basis11,42. 

An alternate hypothesis is that dopamine ramps reflect value based on the animal’s inferred 
current state4,32,51. Many of our results are consistent with this hypothesis. In addition, during 
navigation, the value of the animal’s current state may not be distinguishable from estimated 
goal proximity37,41,52. These representations reflect ongoing behaviour, however, our finding 
that dopamine ramps are followed by improved reward location estimation on a trial-by-trial 
basis suggests that ramping has a teaching role for improving future behaviour. However, 
these functions may not be mutually exclusive, as ramping could be present in multiple 
neuronal populations or the ramp could represent a multiplexed signal39,50. 
 
General motivation and vigour are other functions that have been suggested to be fulfilled by 
ramping dopamine32,37,38,51, such that ramping dopamine might serve to motivate the animal 
to locomote and act vigorously as it approaches the goal and harvests the reward. However, 
our data are inconsistent with this hypothesis, as our animals slow down on approach to the 
reward zone in our task, while VTA dopamine neuron activity ramps up (Figure S2). This 
presumably reflects a speed-accuracy trade-off required to accurately lick in the reward zone 
while also moving rapidly, maximising the number of trials (and therefore amount of reward 
harvested) during each training session. This is in contrast to many other studies of dopamine 
function, where instead the animal aims to perform the task as quickly as possible, and 
therefore self-paced movement speed correlates with VTA dopaminergic activity37,53–55. Our 
task is therefore able to delineate vigorous action from accurate action, and indicates that 
ramping dopamine activity does not reflect behavioural vigour or a general motivation to exert 
more effort (or energy) in a scalar fashion (i.e. run faster). An alternate explanation is that 
accurate reward zone licking might require more cognitive effort. Slowing down is therefore a 
strategy to increase accuracy, and ramping dopamine activity might represent the specific 
goal-directed motivation to slow down and/or lick accurately. This highlights the problem of 
ambiguity in how motivation and effort are interpreted in different studies, and the need for 
replication with respect to task requirements, motor actions performed, and the subpopulations 
and anatomical localisation of the dopamine neurons recorded. 

Dopamine neural activity has also been suggested to encode action initiation and aspects of 
movement3,33,39,50,53–56. However, we find no relation between ramping VTA dopamine neuron 
activity and action (lick) initiation, as ramps are also seen in trials where no licking occurs prior 
to the reward zone (Figure S4). We also did not find transients preceding or peaking at lick 
time, but only phasic responses following the lick which show RPE based on whether the lick 
was rewarded or not (Figure 2). In terms of locomotion, we found that our mice mostly ran 
continuously, mediating their speed along the virtual corridor. As they slowed down on 
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approach to movement, speed and ramping activity were negatively correlated (Figure S2). 
Our results indicate that VTA dopamine neuron activity does not reflect action initiation or 
speed in our goal-directed navigation task. 

Overall, our data show a ramping of VTA dopamine neuron activity that is consistent with 
encoding of RPE, state value and goal proximity. It could also be construed as supporting a 
specific, goal-directed motivation signal, but not a general behavioural activation, movement 
or vigour signal. Our analysis of trial-by-trial improvement in reward location estimation 
following ramping activity favours a role in learning, similar to RPE encoding. Together, we 
conclude that VTA dopamine neurons provide teaching signals, through both their phasic and 
slower ramping activity, for goal-directed navigation. 

Supplementary Figures 

Video S1. Video of mouse behaviour. Video showing experimental setup and the 
behaviour of a mouse over two trials of the goal-directed navigation task in virtual reality. 
The mouse was head-fixed over a cylindrical treadmill with a Miniscope attached to its head. 
The mouse ran at a self-defined pace through a virtual corridor displayed on three screens, 
and licks in the lick port to receive reward. Reward delivery is heard as a click as the reward 
valve opens. The video is annotated to visually show when the reward is delivered (blue 
dot). After the corridor has been traversed, the screens display iso-luminant grey for an 
intertrial interval (4-6s), after which the animal is transported back to the start of the corridor 
to initiate the next trial. 

 
 
 

 

Figure S1. Histology from example mice. A) Figures 56 and 57 from Paxinos and Franklin 
(2001)47, showing diagram of horizontal section of mouse brain at -3.08cm at -3.16cm from 
bregma, with VTA highlighted in green. B) Inset of Figures 56 and 57 from Paxinos and 
Franklin (2001)47 showing diagram of sagittal section of mouse brain, with sections at -3.08cm 
and -3.16cm from bregma indicated. C) Example histology from three mice, showing 
GCaMP6m (green) and tyrosine hydroxylase (TH) staining (red). 
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Figure S2. Behaviour and speed analysis. A) Mean lick distribution per training stage for 
active (green) and passive (purple) trials. B) Mean speed profile per training stage for active 
and passive trials. Black bars indicate significant difference between active and passive speed 
profiles for positions indicated (early-stage: n=55, p<0.001 for bins 30, 34, 38-78cm, p<0.01 
for bins 26-28, 32, 36, 80cm, p<0.05 for bin 82cm, mid-stage: n=83, p<0.001 for bins 28-74cm, 
p<0.01 for bin 26cm, p<0.05 for bins 10, 22, 24, 76cm, late-stage: n=55, p<0.001 for bins 34-
70, 80, 84, 90-92cm, p<0.01 for bins 24-32, 78, 82, 86-88, 94-98, 104cm, p<0.05 for bins 22, 
72, 100-102, 108, 140-142cm, Wilcoxon signed rank test). C) Gradient of fitted line to change 
in speed over pre-reward distance (mean rate of pre-reward speed change, calculated as 
change in speed per cm) plotted against gradient of fitted line to pre-reward calcium activity 
per session for each training stage for passive (top) and active (bottom) trials. Line fitted to 
points using Matlab polyfit shown in red. Wilcoxon signed rank test for passive early 
(p=0.2134, n=54), mid (p<0.0001, n=83), late (p<0.001, n=56) and active early (p=0.0063, 
n=54), mid (p<0.0001, n=83) and late (p<0.0001, n=55). 
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Figure S3. Gradient of post-lick responses following rewarded and unrewarded licks, 
and reward omission. A) Schematic of how change in fluorescence and lines are fitted to 
mean of activity traces from active trials following rewarded and unrewarded licks (as shown 
in Figure 2A-B). B) Boxplots of gradient of slope following lick for both rewarded and 
unrewarded licks, as shown in Figure 2A-B. Asterisks directly above boxplots indicate 
significant difference from zero (p<0.0001 for all, n=188 (passive, rewarded), n=176 (active, 
rewarded), n=187 (passive, unrewarded), n=193 (active, unrewarded), Wilcoxon signed rank 
test). Difference between gradient of slope for rewarded licks in active and passive trials is 
significant (p=0.0376, n=176, Mann-Whitney U test), as is the gradient of the slope following 
rewarded licks vs unrewarded licks (p<0.0001, n=191, Mann-Whitney U test). C-D) Boxplots 
of gradient of post-lick response following rewarded and unrewarded licks, split by training 
stage, corresponding to trace in Figure 2D-E. All boxplots are significantly different from zero 
(p<0.0001 for all, n=54, 82, 52 (passive, rewarded, early-mid-late respectively), n=45, 78, 53 
(active, rewarded, early-mid-late respectively), n=48, 57, 36 (passive, unrewarded, early-mid-
late respectively), n=31, 43, 33 (active, unrewarded, early-mid-late respectively), Wilcoxon 
signed rank test). The mean gradient of the post-rewarded lick response is significantly greater 
in active compared to passive trial (p=0.0075, n=176, Wilcoxon signed rank test). E) Mean 
activity traces averaged over sessions from reward omission trials aligned to time of lick in 
reward zone (blue) and unrewarded licks with only one lick occurring before the reward zone 
(and reward following later in the trial) from the same sessions as the omission trials (grey). 
F) Comparison of pre-lick gradient (calculated by fitting a line to activity in the window of -3s 
to time of aligned lick) and post-lick gradient for the traces shown in E. Pre-lick gradients are 
significantly greater than zero, whereas post-lick response gradients are significantly lower 
than zero (p<0.0001 for all, n=37 (omission, pre-lick), n=50 (non-omission, pre-lick), n=35 
(omission, post-lick), n=39 (non-omission, post-lick), Wilcoxon signed rank test). The post-lick 
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gradients are also significantly different between the reward omission trials and the 
unrewarded trials (p=0.0427, n=35, Wilcoxon signed rank test). 

 

 

Figure S4. Pre-reward activity in trials that had no licking prior to the reward zone. A)  
Mean activity traces from trials where no licking occurred prior to the reward zone, focusing 
on the pre-reward corridor region from 0-60cm, split into different training stages. Black bars 
indicate position windows where cue responses are calculated for use in B. B) As in Figure 
3B, boxplots of the mean of maximal change in fluorescence for the two cue windows indicated 
by the black bars in A, split by training stage. Values from each trial are averaged over each 
session. All distributions are significantly larger than zero (p<0.0001 for all, n=54, 83, 54 
(passive, early-mid-late respectively), n=45, 78, 54 (active, early-mid-late respectively), 
Wilcoxon signed rank test). Change in fluorescence for passive trials is significantly different 
between early- and late-stage training, as well as mid- and late-stage training (p=0.003 and 
p=0.005 respectively, n=54, Mann-Whitney U test). For active trials, change in fluorescence 
is significantly different between early- and late-stage training, as well as mid- and late-stage 
training (p<0.0335 and p<0.0001 respectively, n=45, 54, Mann-Whitney U test). C) Boxplots 
of the mean pre-reward ramp gradient, calculated by fitting a line to activity in the 0-60cm 
window. Asterisks above mid- and late-stage boxplots for active and passive trials indicate 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431585doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431585
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

distribution is significantly greater than zero (p<0.001 for all, n=83 (passive, mid), n=54 
(passive, late), n=78 (active, mid), n=54 (active, late), Wilcoxon signed rank test). Pre-reward 
ramp gradient for passive trials is significantly different between early- and mid-stage training, 
and early- and late-stage training (p=0.0049 and p<0.001 respectively, n=54, Mann-Whitney 
U test). For active trials, ramp gradient is significantly different between early- and mid-stage 
training as well as early- and late-stage training (p=0.0013 and p=0.0014 respectively, n=45, 
Mann-Whitney U test). D-F) Same data shown in A-C, but directly comparing passive and 
active for each training stage. For E, significant differences are found between active and 
passive mean change in fluorescence per session for the two cues at early-, mid- and late-
stage training (p<0.001 and n=45, p=0.0042 and n=58, p=0.0026 and n=73 respectively, 
Wilcoxon signed rank test). 

 

 

Figure S5. Trial-to-trial analysis of reward response. A) Left: Distributions of post-reward 
delivery reward responses (RPEs) per late-stage training trial n with no licks prior to reward 
zone, for passive (top) and active (bottom). Groups are big positive RPE trials (red), small 
positive RPE trials (brown) and negative RPE trials (blue). Right: Distributions of pre-reward 
licks on trials following big positive RPE trials (red), small positive RPE trials (brown) and 
negative RPE trials (blue), focusing on 50-70cm in the virtual corridor. B) Difference between 
lick distributions shown in A) right for passive (top) and active (bottom) trials. Black bars denote 
a significant difference between distributions (for passive p=0.0253, n=570 for 55-56cm, for 
active p=0.0229, n=420 for 69-70cm, Mann-Whitney U test). C) Distributions of pre-reward 
licks on trials following small positive RPE trials (brown) and preceding small positive RPE 
trials (black, dashed). D) Difference between lick distributions shown in C for passive (top) and 
active (bottom) trials (for active p=0.0048, n=531 for 63-64cm, Mann-Whitney U test). 
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Table S1: List of statistical tests shown in figures  
[M-W: Mann-Whitney U test (paired); W(u): Wilcoxon signed rank test (unpaired); W(p): 
Wilcoxon signed rank test (paired)] 
 

Fig Variables p-value n Test 

1E Late-stage percentage passive trials, late-stage percentage active 
trials 

0.0078 8 M-W 

2C Passive post-rewarded lick responses 5.9094e-23 188 W(u) 

2C Active post-rewarded lick responses 8.8950e-24 176 W(u) 

2C Passive post-unrewarded lick responses 1.4454e-07 141 W(u) 

2C Active post-unrewarded lick responses 2.2765e-10 107 W(u) 

2C Passive post-rewarded lick responses, active post-rewarded lick 
responses 

0.0155 194 W(p) 

2C Post-rewarded lick responses, post-unrewarded lick responses 2.7494e-22 194 W(p) 

2F Early-stage passive post-rewarded lick responses 6.3378e-09 54 W(u) 

2F Mid-stage passive post-rewarded lick responses 7.2065e-12 82 W(u) 

2F Late-stage passive post-rewarded lick responses 1.1845e-05 52 W(u) 

2F Early-stage active post-rewarded lick responses 6.2459e-07 45 W(u) 

2F Mid-stage active post-rewarded lick responses 1.5766e-10 78 W(u) 

2F Late-stage active post-rewarded lick responses 3.8267e-09 53 W(u) 

2F Late-stage passive post-rewarded lick responses, late-stage active 
post-rewarded lick responses 

0.0406 52 W(p) 

2I Early-stage passive post-unrewarded lick responses 2.8253e-04 48 W(u) 

2I Mid-stage passive post-unrewarded lick responses 0.0012 57 W(u) 

2I Late-stage passive post-unrewarded lick responses 6.5155e-04 36 W(u) 

2I Late-stage active post-unrewarded lick responses 0.0044 33 W(u) 

2I Early-stage active post-unrewarded lick responses, late-stage active 
post-unrewarded lick responses 

0.0078 31, 33 M-W 

2I Mid-stage active post-unrewarded lick responses, late-stage active 
post-unrewarded lick responses 

0.0352 43, 33 M-W 

2L Early-stage passive post-reward responses 2.2765e-10 54 W(u) 

2L Mid-stage passive post-reward responses 2.7928e-15 83 W(u) 

2L Late-stage passive post-reward responses 2.9637e-10 55 W(u) 

2L Early-stage active post-reward responses 1.9244e-10 54 W(u) 

2L Mid-stage active post-reward responses 3.3498e-15 83 W(u) 

2L Late-stage active post-reward responses 7.7267e-10 56 W(u) 
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2L Mid-stage passive post-reward responses, late-stage passive post-
reward responses 

0.0237 83, 55 M-W 

2L Early-stage active post-reward responses, late-stage active post-
reward responses 

4.0522e-04 54, 56 M-W 

2L Mid-stage active post-reward responses, late-stage active post-
reward responses 

0.0039 83, 56 M-W 

3B Early-stage passive mean cue responses 1.6257e-10 54 W(u) 

3B Mid-stage passive mean cue responses 2.5034e-15 83 W(u) 

3B Late-stage passive mean cue responses 1.1076e-10 55 W(u) 

3B Early-stage passive mean cue responses, late-stage passive mean 
cue responses 

1.0094e-05 54, 55 M-W 

3B Mid-stage passive mean cue responses, late-stage passive mean 
cue responses 

1.0300e-04 83, 55 M-W 

3B Early-stage active mean cue responses 1.6257e-10 54 W(u) 

3B Mid-stage active mean cue responses 2.5034e-15 83 W(u) 

3B Late-stage active mean cue responses 7.5475e-11 56 W(u) 

3B Early-stage active mean cue responses, mid-stage active mean cue 
responses 

0.0169 54, 83 M-W 

3B Early-stage active mean cue responses, late-stage active mean cue 
responses 

5.3701e-05 54, 56 M-W 

3B Mid-stage active mean cue responses, late-stage active mean cue 
responses 

0.0015 83, 56 M-W 

3C Early-stage passive ramp gradients 0.0185 54 W(u) 

3C Mid-stage passive ramp gradients 1.2954e-04 83 W(u) 

3C Late-stage passive ramp gradients 3.9987e-09 55 W(u) 

3C Early-stage passive ramp gradients, mid-stage passive ramp 
gradients 

1.4195e-05 54, 83 M-W 

3C Early-stage passive ramp gradients, late-stage passive ramp 
gradients 

6.0579e-09 54, 55 M-W 

3C Mid-stage passive ramp gradients, late-stage passive ramp gradients 0.0212 83, 55 M-W 

3C Mid-stage active ramp gradients 2.9572e-09 83 W(u) 

3C Late-stage active ramp gradients 5.4663e-09 56 W(u) 

3C Early-stage active ramp gradients, mid-stage active ramp gradients 8.6079e-08 54, 83 M-W 

3C Early-stage active ramp gradients, late-stage active ramp gradients 2.7530e-08 54, 56 M-W 

3F Early-stage active ramp gradients, early-stage passive ramp 
gradients 

0.0243 54 W(p) 

3F Mid-stage active ramp gradients, mid-stage passive ramp gradients 1.3368e-05 83 W(p) 

3F Late-stage active ramp gradients, late-stage passive ramp gradients 0.0426 55 W(p) 

4A/B Late-stage zero licks before reward passive positive slope 
subsequent trial lick distribution, late-stage zero licks before reward 

0.0116, 
0.0009 

568, 
392 

M-W 
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passive negative slope subsequent trial lick distribution: bin 61-62cm, 
bin 67-68cm 

4A/B Late-stage zero licks before reward active positive slope subsequent 
trial lick distribution, late-stage zero licks before reward active 
negative slope subsequent trial lick distribution: bin 63-64cm, bin 65-
66cm, bin 67-68cm 

0.0283, 
0.0032, 
0.0403 

398, 
262 

M-W 

4C/D Late-stage zero licks before reward passive positive slope 
subsequent trial lick distribution, late-stage zero licks before reward 
passive positive slope previous trial lick distribution: bin 61-62cm 

0.0236 568, 
564 

M-W 

4C/D Late-stage zero licks before reward active positive slope subsequent 
trial lick distribution, late-stage zero licks before reward active positive 
slope previous trial lick distribution: bin 63-64cm 

0.0174 398, 
398 

M-W 
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