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Summary  
Psilocybin is a serotonergic psychedelic with untapped therapeutic potential. There are hints that the use of 
psychedelics can produce neural adaptations, although the extent and time scale of the impact in a 
mammalian brain are unknown. In this study, we used chronic two-photon microscopy to image longitudinally 
the apical dendritic spines of layer 5 pyramidal neurons in the mouse medial frontal cortex. We found that a 
single dose of psilocybin led to ~10% increases in spine size and density, driven by an elevated spine 
formation rate. The structural remodeling occurred quickly within 24 hours and was persistent 1 month later. 
Psilocybin also ameliorated stress-related behavioral deficit and elevated excitatory neurotransmission. 
Overall, the results demonstrate that psilocybin-evoked synaptic rewiring in the cortex is fast and enduring, 
potentially providing a structural trace for long-term integration of experiences and lasting beneficial actions. 
 
Introduction 
Serotonergic psychedelics are compounds that produce an atypical state of consciousness characterized by 
altered perception, cognition, and mood. It has long been recognized that these compounds may have 
therapeutic potential for neuropsychiatric disorders including depression, obsessive-compulsive disorder, and 
addiction (Nichols, 2016; Vollenweider and Preller, 2020). Among serotonergic psychedelics, psilocybin is 
recently shown to relieve depression symptoms rapidly and with sustained benefits for several months 
(Carhart-Harris et al., 2016; Davis et al., 2020; Griffiths et al., 2016; Ross et al., 2016). This progress led to a 
‘Breakthrough Therapy’ designation by the FDA in 2019 and the initiation of multi-site clinical trials to test 
psilocybin as treatment for major depressive disorder. 
 
It is well established that structural neuroplasticity in the frontal cortex is key to the action of antidepressants. 
Synaptic atrophy is found in the prefrontal cortex of patients with depression (Drevets et al., 1997; Holmes et 
al., 2019). Likewise, synaptic deficiencies including loss of dendritic arborization, reduced spine density, and 
damped neurotransmission are present in the frontal cortex of rodent chronic stress models (Cook and 
Wellman, 2004; Liston et al., 2006; Radley et al., 2004; Yuen et al., 2012). By contrast, compounds with fast-
acting antidepressant effects promote structural plasticity to reverse the synaptic deficits caused by chronic 
stress (Duman and Aghajanian, 2012). For instance, a single dose of ketamine leads to higher spine density in 
the medial frontal cortex of rodents (Li et al., 2010), which is due to an increase in spine formation rate (Moda-
Sava et al., 2019; Phoumthipphavong et al., 2016), likely involving elevated calcium signaling in the dendritic 
compartment (Ali et al., 2020a). 
 
What is the current evidence that serotonergic psychedelics such as psilocybin can alter synaptic architecture? 
A few studies have shown that the expressions of genes involved in synaptic plasticity are elevated after 
administration of serotonergic psychedelics in rats (Nichols and Sanders-Bush, 2002; Vaidya et al., 1997). In 
neuronal cultures, bath application of serotonergic psychedelics induces transient increases in spine size 
(Jones et al., 2009) and proliferation of dendritic branches (Ly et al., 2018; Ly et al., 2020). A recent study 
showed that an analogue of ibogaine, a psychedelic with differing molecular targets from psilocybin, increases 
spine formation rate in mice (Cameron et al., 2020). Finally, in the pig, psilocybin administration was 
associated with higher binding of a presynaptic protein tracer in positron emission tomography (Raval et al., 
2021). Although these studies provided clues linking serotonergic psychedelics to structural and functional 
neuroplasticity, significant gaps remain. In particular, there has been no direct demonstration of psilocybin-
induced structural plasticity at cellular resolution in a mammalian brain. Importantly, the time scale in which 
such synaptic rewiring may occur in vivo is unknown. 
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Results 
 
A single dose of psilocybin leads to long-lasting increases in spine density and spine head width in the 
mouse medial frontal cortex 
To test the potency and dose dependence of psilocybin in mice, we measured the head-twitch response, a 
classic assay for characterizing psychedelic compounds in rodents. We observed that mice would exhibit high-
frequency headshakes intermittently after administration of psilocybin (Supplementary Video 1). We 
characterized 82 C57BL/6J mice including 41 males and 41 females with 5 doses of psilocybin (0, 0.25, 0.5, 1, 
2 mg/kg, i.p.; range = 7-10 per sex per dose). A sharp rise of elicited head-twitch responses occurred at 1 
mg/kg (Figure 1A), consistent with prior reports (Halberstadt et al., 2011; Sherwood et al., 2020). Thus, we 
chose to use 1 mg/kg – the inflection point of the dose-dependence curve – to assess psilocybin’s effect on 
structural plasticity. At this dose, the rate of head-twitch responses peaked at 6–8 minutes after administration 
and then gradually declined until they ceased at about 2 hr (Figure 1B). 
 
Next, to determine if this dose is associated with mitigation of stress-related phenotypes in mice,  we tested the 
effect of 1 mg/kg psilocybin in a learned helplessness paradigm (Chourbaji et al., 2005). Mice received 
prolonged stress in the form of repeated, inescapable footshocks over 2 induction sessions, then were tested 
for active avoidance behavior with escapable footshocks 1 day before and 1 day after treatment (Figure 1C). 
Susceptible animals are mice in a learned helpless state characterized by reduced attempts to escape from the 
footshocks. We used 68 C57BL/6J mice to compare psilocybin (1 mg/kg, i.p.) against saline and ketamine (10 
mg/kg, i.p.), which served as negative and positive controls (Wu et al., 2021). Within individuals, psilocybin 
reduced the proportion of escape failures (P=0.004, post hoc Bonferroni-corrected t-test; Figure 1D). For 
susceptible animals, the psilocybin group had a decrease or no change in escape failures in all but 1 of the 16 
mice tested (94%; Figure 1E; Supplementary Figure 1A). Across individuals, comparison between saline, 
ketamine, and psilocybin did not reveal a main effect of treatment (P=0.09, two-way ANOVA; Figure 1E), 
presumably because of the across-subject variability in the behavioral responses. Nevertheless, overall, these 
results indicate that psilocybin can ameliorate maladaptive behavior induced by uncontrollable stress in mice. 
 
In the body, psilocybin is dephosphorylated to psilocin, an agonist of 5-HT2A receptors that are densely 
expressed in apical dendrites of layer 5 pyramidal neurons in the medial frontal cortex of primates and rodents 
(Aghajanian and Marek, 1997; Jakab and Goldman-Rakic, 1998; Willins et al., 1997). We therefore 
hypothesize that psilocybin may modify the dendritic architecture in the medial frontal cortex. We used chronic 
two-photon microscopy to track apical dendritic spines in the cingulate/premotor (Cg1/M2) region of the medial 
frontal cortex of Thy1GFP mice (line M), in which a sparse subset of infragranular (layer 5 and 6) pyramidal 
neurons express GFP (Feng et al., 2000) (Figures 1F and 1G). We imaged before and after administering 
psilocybin (1 mg/kg, i.p.) or saline at 2-day intervals and then again ~1 month later for a total of 7 imaging 
sessions (Figures 1H and 1I). In total, we tracked 1,820 dendritic spines on 161 branches from 12 animals 
including 6 males and 6 females. Spine morphology was analyzed blind to experimental conditions using 
standardized procedures (Holtmaat et al., 2009). We took advantage of the longitudinal data to normalize the 
change in spine density as fold-change in individual dendritic segments. For statistical analyses, we used a 
mixed-effects model, including treatment, sex, and days as factors, as well as all interaction terms. Variation 
within mouse and dendrite across days was accounted by including random effects terms for dendrites nested 
by mice. Our results indicate that a single dose of psilocybin induces a significant elevation in spine density 
(+7±2% on Day 1, +12±3% on Day 7; main effect of treatment, P=0.011, mixed-effects model; Figure 1J–L), 
increase in the width of spine heads (+11±2% on Day 1, and +5±1% on Day 7; main effect of treatment, 
P=0.013; Figure 1M–O), and higher spine protrusion length (Supplementary Figure 1B–1D). Details for all 
statistical tests including sample sizes are provided in Supplementary Table 1. 
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Figure 1. Psilocybin increases the density and size of dendritic spines in the mouse medial frontal cortex. (A) Head-twitch 
responses as a function of dose, tested on 82 C57BL/6J mice. (B) Time course of head-twitch responses after administrating 
psilocybin (1 mg/kg, i.p.), averaged from 2 males and 2 female C57BL/6J mice. Line, moving average. (C) Timeline for the learned 
helplessness assay. (D) The proportion of escape failure for all animals in Test 1 and Test 2, i.e., before and after psilocybin (1 
mg/kg, i.p.), ketamine (10 mg/kg, i.p.), and saline administration. (E) The change in escape failure, from Test 1 to Test 2, for 
susceptible animals for psilocybin, ketamine, and saline treatments. (F) Imaging setup. (G) Fixed coronal section from Thy1GFP mice. 
(H) Timeline for the longitudinal imaging study. (I) Example field of view. (J) Effects of psilocybin or saline treatment on spine 
density, plotted as fold-change from baseline value on Day -3. Mean ± SEM. (K, L) Similar to (J), plotted separately for females and 
males. (M–O) Similar to (J–L) for spine head width. Sample sizes and details of the statistical analyses are provided in 
Supplementary Table 1. 

 
Psilocybin elevates the formation rate of dendritic spines in vivo 
Increased spine density could be due to higher formation rate, lower elimination rate, or both. To distinguish 
between the possibilities, we analyzed the same dendritic segments across adjacent imaging sessions to 
determine the turnover of dendritic spines. In females, the spine formation rate increased by 8±2% after 
psilocybin (absolute values for the formation rate: 7±1% on Day -1, 15±2% on Day 1; main effect of treatment, 
P=0.034, mixed-effects model; Figures 2A and 2B). Likewise, the spine formation rate was higher by 4±2% in 
males after psilocybin (absolute values for the formation rate: 6±1% on Day -1, 10±2% on Day 1). By contrast, 
there was no change in the elimination rate of spines (Figure 2C). The increase in spine formation rate was 
highest shortly after psilocybin administration and then diminished in subsequent days to return to baseline 
level and in equilibrium with the elimination rate. These data therefore support the view that the long-term 
increase in spine density is due to an initial boost of enhanced spine formation. 
 

 

 
 
Figure 2. Psilocybin elevates the formation rate of dendritic spines. (A) Example field of view. Purple arrowhead, stable spine. 
Green arrowhead, new spine. (B) Effects of psilocybin or saline treatment on the formation rates of dendritic spines for female and 
male mice, plotted as difference from baseline value on Day -1. Mean ± SEM. (C) Similar to (B) for elimination rates. (D) Fraction of 
spines newly formed on Day 1 that remained stable on Day 7 and Day 34 for female and male mice. Filled circles, individual 
dendritic segments. Sample sizes and details of the statistical analyses are provided in Supplementary Table 1. 
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A fraction of the psilocybin-induced spines is persistent for at least a month 
A key question was whether the new spines formed after psilocybin administration would persist, because 
nascent dendritic spines can take 4 days to mature into functional synapses (Knott et al., 2006). For this 
reason, we tracked the new spines formed after psilocybin on Day 1 and found that about half of them 
remained stable on Day 7 (49±10% for females, 52±12% for males; Figure 2D). This suggests that a portion of 
the new dendritic spines induced by psilocybin would become functional synapses. Furthermore, because 
clinical trials indicated that psilocybin may provide long-term benefits for up to several months, for a subset of 4 
mice, we imaged yet again at a further time point at 34 days after administration to find that a fraction of the 
psilocybin-evoked new spines remained persistent (34±10% for females, 37±12% for males; Figure 2D and 
Supplementary Figure 2). Psilocybin-induced spines were not significantly different, and therefore no less 
stable than spines formed in control conditions (main effect of treatment, P=0.9, two-way repeated-measures 
ANOVA). Intriguingly, select individual dendritic branches appeared to retain all the new spines, while other 
branches lost them almost completely, suggesting heterogeneity and potentially responsive and non-
responsive subpopulations of pyramidal neurons. Altogether, these results demonstrate that a single dose of 
psilocybin induces rapid and long-lasting dendritic remodeling in layer 5 pyramidal neurons in the mouse 
medial frontal cortex. 
 
Ketanserin pretreatment, sufficient to abolish head-twitch responses, does not block psilocybin-
induced structural plasticity 
Multiple lines of evidence demonstrated that 5-HT2A receptors are essential for serotonergic psychedelics’ 
psychotomimetic effects in humans (Vollenweider et al., 1998) and head-twitch responses in mice (Gonzalez-
Maeso et al., 2007; Keiser et al., 2009). To study whether the effects of psilocybin on structural plasticity may 
involve 5-HT2A receptors, we reduced the number of available 5-HT2A receptors in the brain by pre-treating 
animals with the 5-HT2A receptor antagonist ketanserin (1 mg/kg, i.p.), 10 minutes prior to the administration of 
psilocybin (1 mg/kg, i.p.) or saline. Behaviorally, the ketanserin pretreatment abolished completely the 
psilocybin-induced head-twitch responses (Figure 3A). Next, we repeated the two-photon imaging 
experiments in ketanserin-pretreated mice and tracked 1,443 dendritic spines on 120 branches from 8 animals 
including 4 males and 4 females (Figure 3B). We found that although the enhancing effect of psilocybin on 
spine density was no longer statistically significant (+5±2% on Day 1, +8±2% on Day 7; main effect of 
treatment, P=0.09, mixed-effects model; Figure 3C; Supplementary Figure 3A and 3B), there were still 
detectable increases in spine head width (+12±1% on Day 1, and +12±1% on Day 7; main effect of treatment, 
P=0.01; Figure 3D; Supplementary Figure 3C and 3D), spine protrusion length (Supplementary Figure 3E–
G), and spine formation rate (absolute values for the formation rate: 5±1% on Day -1, 10±2% on Day 1 for 
female mice; 8±1% on Day -1, 14±2% on Day 1 for male mice; Figure 3E; Supplementary Figure 3H). It was 
previously determined that 1 mg/kg of ketanserin led to only a ~30% blockade of 5-HT2A receptors in the rat 
neocortex (Smith et al., 1995), likely due to limited transport into the brain for rodents (Syvanen et al., 2009). 
Therefore, in agreement with a recent study in the hippocampus (Hesselgrave et al., 2021), our results 
demonstrate that while a moderate knockdown of 5-HT2A receptor function eliminates head-twitch responses, it 
is not sufficient to abolish the psilocybin-induced structural remodeling in mice.  
 
Psilocybin elevates excitatory neurotransmission in medial frontal cortex 
Most but not all dendritic spines are functional glutamatergic synapses. To elaborate on the effects of 
psilocybin on synaptic function, we performed whole-cell recordings in brain slices to measure miniature 
excitatory postsynaptic currents (mEPSCs) from putative layer 5 pyramidal neurons, identified based on 
morphology, in Cg1/M2 (Figure 3F). The results showed that, 24 h after treatment, we could detect an 
increase in mEPSC frequency in psilocybin-treated animals compared to saline controls (main effect of 
treatment, P = 0.0002, two-way ANOVA; Figure 3G). We also report a moderate effect of psilocybin on 
mEPSC amplitude (main effect of treatment, P = 0.06, two-way ANOVA; Figure 3H). Because mEPSC 
frequency and amplitude reflect the number and strength of synapses, these results demonstrate that the 
psilocybin-induced structural remodeling is accompanied by enhanced excitatory neurotransmission. 
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Figure 3. Mechanistic details revealed by ketanserin pretreatment and electrophysiological characterizations. (A) Head-
twitch responses after administrating psilocybin without saline pre-treatment (10 min prior; n = 3 mice), psilocybin (1 mg/kg, i.p.) with 
ketanserin pre-treatment (1 mg/kg, 10 min prior; n = 3), and saline with ketanserin pre-treatment (n = 4). (B) Timeline for the 
experiment. (C) Effects of psilocybin or saline treatment on spine density in animals pretreated with ketanserin, plotted as fold-
change from baseline value on Day -3. Mean ± SEM. (D) Similar to (C) for spine head width. (E) Effects of psilocybin or saline 
treatment on the formation rates of dendritic spines for female and male mice pretreated with ketanserin, plotted as difference from 
baseline value on Day -1. (F) Representative traces of mEPSCs recorded from putative layer 5 pyramidal neurons of Cg1/M2 in 
brain slices. (G) Grouped and cumulative distribution plots of mEPSC frequency for animals that received psilocybin or saline 24 h 
before recording. Each open circle denotes a cell (n = 25 cells from 4 females for saline; 24 cells from 4 females for psilocybin; 19 
cells from 5 males for saline; 23 cells from 4 males for psilocybin). (H) Similar to (G) for mEPSC amplitude. Sample sizes and details 
of the statistical analyses are provided in Supplementary Table 1. 

 
Dependence of psilocybin-induced structural remodeling on brain region and dendrite type 
To further support the conclusions, we tried to replicate the findings in a completely separate cohort of animals 
using a different approach. We administered Thy1GFP mice with psilocybin (1 mg/kg, i.p.) or saline, sacrificed 
them 24 hours later, and imaged coronal brain sections using confocal microscopy. We expanded analyses to 
6 areas of the brain, including 2 zones that encompass apical and basal dendrites and 3 regions of the frontal 
cortex: Cg1/M2, prelimbic/infralimbic (PrL/IL), and primary motor cortex (M1) (Figures 4A–4C). The results, 
consisting of 23,226 dendritic spines counted on 1,885 branches from 12 animals including 6 males and 6 
females, reaffirmed the ability of psilocybin to promote the growth of new dendritic spines in Cg1/M2 in female 
mice (spine density: 0.46±0.02 versus 0.50 ±0.01 μm-1; Figure 4D). Effects of psilocybin on spine density were  
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Figure 4. Region-specific effects of psilocybin. (A) Stitched confocal image of a coronal brain section from a Thy1GFP mouse. (B) 
Magnified images showing apical and basal dendritic segments. (C) Images of apical dendrites in Cg1/M2. (D) Effects of psilocybin 
and saline on spine density for apical dendrites in Cg1/M2. Open circles, individual dendritic segments. Gray line, mean ± SEM. (E) 
Similar to (D) for spine protrusion length. (F) Similar to (D) for spine head width. (G – J) Similar to (C – F) for PrL/IL. (K – N) Similar 
to (C – F) for M1. (O – R) Similar to (C – F) for basal dendrites in Cg1/M2. Sample sizes and details of the ANOVA models are 
provided in Supplementary Table 1. 

 
more pronounced in female animals than in male animals (treatment x sex, P = 0.013, two-way ANOVA; 
Figure 4D). We did not detect differences in spine protrusion length and spine head width (Figures 4E and 
4F), which may be due to the across-subjects design, as we could not normalize the changes to the same 
dendritic branch and therefore this approach had less power than the within-subjects design of the chronic 
imaging experiment. We detected select morphological differences in PrL/IL and M1, including increases in 
spine protrusion length in PrL/IL (main effect of treatment, P = 0.026, two-way ANOVA), spine density in M1 in 
females (treatment x sex, P = 0.021, two-way ANOVA), and spine head width in M1 in females (treatment x 
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sex, P = 0.008, two-way ANOVA), suggesting that the plasticity-promoting impact may not be unique to 
Cg1/M2 (Figures 4G–4N; Supplementary Figure 4). Furthermore, psilocybin had significant impact on basal 
dendrites in Cg1/M2, leading to higher spine density and spine protrusion length (spine density: main effect of 
treatment, P = 0.0004; spine protrusion length: main effect of treatment, P = 0.012, two-way ANOVA, Figures 
4O–4R). Overall, the two sets of data converge to show that psilocybin promotes the growth of dendritic spines 
in layer 5 pyramidal neurons in the medial frontal cortex. 
 
Discussion 
This study demonstrates that a single dose of psilocybin evokes growth of dendritic spines in the medial frontal 
cortex of the mouse. The persistence of the neural modifications is notable and may relate to the compound’s 
therapeutic effects for at least two reasons. First, depression is associated with a loss of synapses in the 
frontal cortex (Holmes et al., 2019). Restoring the number of neuronal connections may correct such deficit, 
providing a biological mechanism for alleviating symptoms of depression. Second, structural remodeling is 
integral to learning and facilitates the storage of lifelong memories (Xu et al., 2009; Yang et al., 2009). 
Psilocybin-induced neural plasticity could prime the brain for integrating new psychological experiences. 
Regardless of relative importance of these mechanisms, which are not mutually exclusive, our results indicate 
that the underlying structural trace in the brain is enduring and can be observed a long time after the initial drug 
exposure. 
 
There is an ongoing debate over whether the hallucinogenic effects of serotonergic psychedelics are 
dissociable from the therapeutic effects (Olson, 2020; Yaden and Griffiths, 2020). Consistent with another new 
study (Hesselgrave et al., 2021), our results indicate that structural remodeling in the medial frontal cortex is 
undeterred by a moderate knockdown of 5-HT2A receptor availability. The possibility to disrupt psilocybin’s 
acute behavioral effects without abolishing structural plasticity actions has clear implications for treatment in 
the clinic. However, it is not yet clear if the results will extrapolate to humans, because 5-HT2A receptors have 
species-dependent differences in dissociation kinetics with serotonergic psychedelics (Kim et al., 2020). 
Moreover, our results do not rule out the involvement of 5-HT2A receptors because this dose of ketanserin only 
blocks ~30% of 5-HT2A receptors in rodents (Smith et al., 1995), and the unaffected receptors might be enough 
to drive the dendritic remodeling. This number may be compared to the 50-70% 5-HT2A receptor occupancy 
level required for the more intense psilocybin-induced psychological experience in humans (Madsen et al., 
2019). Future studies with region- and cell-type-specific knockout of serotonin receptor subtypes are needed to 
produce more decisive evidence on the role of 5-HT2A and other receptors in mediating the effects of psilocybin 
on dendritic plasticity. 
 
By showing that the time course for psilocybin-induced structural remodeling is rapid and persistent in vivo, our 
study suggests that synaptic rewiring may be a mechanism shared by compounds with rapid antidepressant 
effects. Of note, the timing of psilocybin’s effect on the neural architecture is reminiscent of ketamine, which at 
subanesthetic dose causes similar rapid increase in spine density and elevation of spine formation rate in the 
medial frontal cortex (Moda-Sava et al., 2019; Phoumthipphavong et al., 2016). However, still unknown is how 
drugs with disparate molecular targets may yield comparable modifications on neural architecture and behavior 
(Kadriu et al., 2021; Savalia et al., 2021). Elucidating the mechanisms will be crucial towards unraveling the 
neurobiology of rapid-acting antidepressants. 
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Methods 
 
Resource availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled by the 
Lead Contact Alex C. Kwan (alex.kwan@yale.edu). 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and Code Availability 
The data that support the findings and the code used to analyze the data in this study will be made publicly 
available at https://github.com/Kwan-Lab. 
 
Experimental model and subject details 
All experiments were performed on males and females. Animals were randomly assigned in the saline and 
psilocybin groups. No animals were excluded from data analysis. Thy1GFP line M (Tg(Thy1-EGFP)MJrs/J, 
Stock No.007788) transgenic mice and C57BL/6J (Stock No. 000664) mice were obtained from Jackson 
Laboratory. For head-twitch response and learned helplessness, 6 to 10-week-old C57BL/6J mice were used. 
For electrophysiology, 6 to 8-week-old C57BL/6J mice were used. For two-photon imaging, Thy1GFP mice 
underwent surgery when they were 6 to 8-week-old and then were used for imaging ~2 weeks later. For 
confocal imaging, 8 to 12-week-old Thy1GFP mice were used. Mice were group housed (2 – 5 mice per cage) 
under controlled temperature in a 12hr light–dark cycle (7:00 AM to 7:00 PM) with free access to food and 
water. Animal care and experimental procedures were approved by the Institutional Animal Care & Use 
Committee (IACUC) at Yale University. 
 
Method details 
Psilocybin 
Psilocybin was obtained from Usona Institute's Investigational Drug & Material Supply Program. The chemical 
composition of psilocybin was confirmed by high performance liquid chromatography. 
 
Head-twitch response 
Head-twitch response was evaluated using 40 male and 42 female C57BL/6J mice. Upon arrival, animals 
habituated at the housing facility for >2 weeks before behavioral testing. Behavioral testing took place between 
10:00 AM and 4:00 PM. Animals were weighed and injected intraperitoneally with saline or psilocybin (0.25, 
0.5, 1, or 2 mg/kg). For ketanserin pretreated groups, animals received ketanserin (1 mg/kg, i.p.; S006, Sigma-
Aldrich) 10 min before administration of saline or psilocybin (1 mg/kg, i.p.). Meanwhile, a group of animals 
received saline (10 mL/kg, i.p.) 10 min before administration of psilocybin (1 mg/kg, i.p.) as positive controls. 
We tried a higher dose of ketanserin (4 mg/kg, i.p.; n = 8 mice), however animals became visibly ill. We 
measured head-twitch response in groups of two animals: after injections, the two animals were immediately 
placed into separate chambers, made by inserting a plastic divider to halve an open-field-activity box (12” W x 
6” H x 10” D). The box was within a sound attenuating cubicle with a built-in near-infrared light source and a 
white light source (interior: 28” W x 34” H x 22” D, Med Associates Inc.). Videos were recorded by a high-
speed (213 fps), near-infrared camera (Genie Nano M1280, Teledyne Dalsa) mounted overhead above the 
open-field-activity box. Typical recordings were 30 minutes long and, for a subset of mice (2 males and 2 
females), extended to >150 minutes. Between each measurement, the open-field activity box was thoroughly 
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cleaned with 70% ethanol. The videos were scored for head twitches by an experienced observer blind to the 
experimental conditions. 
 
Learned helplessness 
Learned helplessness was evaluated using 34 male and 34 female C57BL/6J mice. Upon arrival, animals 
habituated at the housing facility for >2 weeks before behavioral testing. Behavioral testing took place between 
7:00 AM and 4:00 PM. All animals underwent a 5-day protocol, adapted from previously described procedures 
for mice (Chourbaji et al., 2005). An animal was placed in a shuttle box separated by a guillotine door which, 
when open, allowed the animal to shuttle between two compartments (16” x 6.5” x 8.5”, Med Associates Inc.). 
On Day 1, the mouse received an induction session which involved 360 inescapable footshocks (0.15 mA) with 
variable duration (1–3 s) and variable inter-shock interval (1–15 s). The guillotine door was open throughout 
the induction session. On Day 2, the animal received another induction session with the same parameters. On 
Day 3, the animal underwent Test 1. The test session began with the guillotine door opening. Each test 
session involved a series of 30 footshocks (0.15 mA). The animal would receive a footshock from the grid floor 
of the compartment it was presently in. Footshock was terminated if the animal shuttled to the other 
compartment (“escape”) or at the end of the 10 s if it did not shuttle (“escape failure”), whichever occurred 
earlier. Each footshock was followed by an inter-shock interval (30 s), during which the guillotine door was 
closed. Escape latency was defined as the time elapsed from onset of footshock to time crossing the guillotine 
door, measured by infrared photobeams, for escape trials. Escape latency was set to 10 s for escape failure 
trials. On Day 4, 24 hr after Test 1, the animal was weighed and injected with saline (10 mL/kg, i.p.), ketamine 
(10 mg/kg, i.p.), or psilocybin (1 mg/kg, i.p.) and then immediately returned to their home cages. On Day 5, 24 
hr after treatment, the animal underwent Test 2 which followed the same procedures as Test 1. At the end, 
data from all animals were collated, and mice were classified as “resilient / non-learned helpless” or 
“susceptible / learned helpless” based on their performance in Test 1. Escape failures and escape latencies 
were used as indicators of learned helplessness, and a k-means (k = 2) clustering algorithm was applied for 
classification. 
 
Surgery 
Prior to surgery, the mouse was injected with carprofen (5 mg/kg, s.c.; 024751, Henry Schein Animal Health,) 
and dexamethasone (3 mg/kg, i.m.; 002459, Henry Schein Animal Health). During surgery, the mouse was 
anesthetized with isoflurane (3 – 4% for induction and 1 – 1.5% for the remainder of surgery) and fixed in a 
stereotaxic apparatus (David Kopf Instruments). The body of the mouse rested on a water-circulating heating 
pad (Stryker Corp) set to 38 °C. Petrolatum ophthalmic ointment (Dechra) was used to cover the animal’s 
eyes. The hair on the head was shaved, and the scalp was wiped and disinfected with ethanol pad and 
betadine. An incision was made to remove the skin and the connective tissue above the skull was removed. 
Subsequently, a dental drill was used to make a ~3-mm-diameter circular craniotomy above the right medial 
frontal cortex (center position: +1.5 mm anterior-posterior, AP; +0.4 mm medial-lateral, ML; relative to bregma). 
Artificial cerebrospinal fluid (ACSF, containing (in mM): 135 NaCl, 5 HEPES, 5 KCl, 1.8 CaCl2, 1 MgCl2; pH 
7.3) was used to irrigate the exposed dura above brain. A two-layer glass window was made from two round 3-
mm-diameter, #1 thickness glass coverslip (64-0720 (CS-3R), Warner Instruments), bonded by UV-curing 
optical adhesive (NOA 61, Norland Products). The glass window was carefully placed over the craniotomy and, 
while maintaining a slight pressure, adhesive (Henkel Loctite 454) was used to secure the glass window to the 
surrounding skull. A stainless steel headplate was affixed on the skull with C&B Metabond (Parkell) centered 
on the glass window. Carprofen (5 mg/kg, s.c.) was given to the mouse immediately after surgery and on each 
of the following 3 days. The mouse would recover for at least 10 days after the surgery before the start of 
imaging experiments. 
 
Two-photon imaging 
The two-photon microscope (Movable Objective Microscope, Sutter Instrument) was controlled by ScanImage 
2019 software (Pologruto et al., 2003). The laser excitation was provided by a tunable Ti:Sapphire 
femtosecond laser (Chameleon Ultra II, Coherent) and focused onto the mouse brain with a water-immersion 
20X objective (XLUMPLFLN, 20x/0.95 N.A., Olympus). The laser power measured at the objective was ≤ 40 
mW. To image GFP-expressing dendrites, the laser excitation wavelength was set at 920 nm, and a 475 – 550 
nm bandpass filter was used to collect the fluorescence emission. During an imaging session, the mouse was 
head fixed and anesthetized with 1 – 1.5% isoflurane. Body temperature was controlled using a heating pad 
and DC Temperature Controller (40-90-8D, FHC) with rectal thermistor probe feedback. Each imaging session 
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did not exceed 2 hours. We imaged apical tuft dendrites at 0 – 200 µm below the dura. To target Cg1/M2 
region, we imaged within 0 – 400 µm of the midline as demarcated by the sagittal sinus. Multiple fields of view 
were imaged in the same mouse. For each field of view, 10 – 40-µm-thick image stacks were collected at 1 µm 
steps and at 1024 × 1024 pixels at 0.11 µm per pixel resolution. We kept the same set of imaging parameters 
for the different imaging sessions. 
 
For longitudinal imaging, we would return to the same fields of view across imaging sessions by locating and 
triangulating from a landmark on the left edge of the glass window. Each mouse was imaged on days -3, -1, 1, 
3, 5 and 7 relative to the day of treatment. A subset of mice (2 males and 2 females) was imaged additionally 
on day 34. On the day of treatment (day 0), there was no imaging, and the mouse was injected with either 
psilocybin (1 mg/kg, i.p.) or saline (10 mL/kg, i.p.). For ketanserin pretreated groups, animals received 
ketanserin (1 mg/kg, i.p.) 10 min before administration of psilocybin (1 mg/kg, i.p.) or saline (10 mL/kg, i.p.). 
After injection, the mouse was placed in a clean cage under normal room lighting to visually inspect for head-
twitch responses for 10 minutes, before returning the mouse to its home cage.  
 
Confocal imaging 
Each mouse was injected with either psilocybin (1 mg/kg, i.p.) or saline (10 mL/kg, i.p.). At 24 hr after injection, 
the mouse was deeply anesthetized with isoflurane and transcardially perfused with phosphate buffered saline 
(PBS, P4417, Sigma-Aldrich) followed by paraformaldehyde (PFA, 4% in PBS). The brains were fixed in 4% 
PFA for 24 hours at 4 °C, and then 50-µm-thick coronal brain slices were sectioned using a vibratome 
(VT1000S, Leica) and placed on slides with coverslip with mounting medium. The brain slices were imaged 
with a confocal microscope (LSM 880, Zeiss) equipped with a Plan-Apochromat 63x/1.40 N.A. oil objective for 
dendritic spine imaging and a Plan-Apochromat 20x/0.8 N.A. objective for stitching images of an entire brain 
slice. 
 
Brain slice preparation 
Female and male mice were randomly selected to receive either psilocybin (1 mg/kg, i.p.) or saline (10 mL/kg, 
i.p.) 24 hours before the experiment. The experimenter performing the electrophysiological recordings and 
analysis was blinded to the treatment condition. Coronal brain slices containing Cg1/M2 were prepared 
following procedures in a prior study (Ali et al., 2020b). Briefly, mice were deeply anesthetized with isoflurane 
and rapidly decapitated. The brain was quickly isolated into ice-cold slicing solution containing (in mM): 110 
choline, 25 NaHCO3, 11.6 sodium ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 KCl, 1.25 NaH2PO4, 0.5 
CaCl2, and 20 glucose. Acute coronal slices (300 μm thick) were cut with a vibratome (VT1000 S, Leica 
Biosystems). The vibratome chamber was surrounded by ice and filled with oxygenated slicing solution. Slices 
were incubated in artificial cerebral spinal fluid (aCSF) containing (in mM): 127 NaCl, 25 NaHCO3, 2.5 KCl, 2 
CaCl2, 1.25 NaH2PO4, 1 MgCl2, and 20 glucose for 30 min at 34°C. The slices were then maintained at room 
temperature for a minimum of 30 min before recording. The slicing solution and aCSF were prepared with 
deionized water (18.2 MΩ-cm), filtered (0.22 μm), and bubbled with 95% O2 and 5% CO2 for at least 15 min 
prior to use and throughout the slice preparation and recording. 

 
Whole-cell recording 
Slices were placed into an open bath chamber and perfused constantly with aCSF (2-3 mL/min) supplemented 
with tetrodotoxin (0.5 μM; Abcam) and picrotoxin (50 μM) to block Na+ currents and GABAA receptors for 
isolating miniature excitatory post-synaptic currents (mEPSCs). aCSF was warmed and maintained at 34°C via 
an inline heater with closed-loop feedback control. Recording pipettes were pulled from borosilicate glass (BF-
150-86-10, Sutter Instruments) to a resistance of 2-4 MΩ with a puller (P97, Sutter Instruments) and filled with 
double-filtered (0.22 μm) internal solution containing (in mM): 100 CsMeSO4, 25.5 CsCl, 10 Glucose, 10 
HEPES, 8 NaCl, 4 Mg-ATP, 0.3 Na3-GTP, and 0.25 EGTA (pH 7.3, adjusted with 1M CsOH). Liquid junction 
potential was calculated to be 12.1mV and was not corrected for in recordings. Slices were visualized using 
differential interference contrast in a microscope (BX51W, Olympus) with a CCD camera (Retiga Electro, 
QImaging). Putative layer 5 pyramidal neurons were targeted for recording based on morphological features 
including large cell body, prominent apical dendrite, and distance from the pia. Cells were targeted with a depth 
of at least 30 μm below the surface of the slice. Electrophysiological recordings were performed on neurons 
that initially formed a stable seal and subsequently broke in successfully to the whole-cell configuration. 
Recordings were amplified (MultiClamp 700B, Molecular Devices) and digitized at 20 kHz (Digidata 1550, 
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Molecular Devices). Neurons were held at −70 mV during recording. Recordings were excluded if the holding 
current >200 pA when held at -70 mV or if the access resistance increased by >10% from baseline during the 
recording o if the access resistance exceeds 25 MΩ at any point of the recording. Analysis of mEPSCs was 
conducted offline using the Easy Electrophysiology software (Easy Electrophysiology Ltd), with a template 
search algorithm. All drugs and regents were obtained from Sigma-Aldrich or Tocris unless otherwise noted. 
 
Quantification and statistical analysis 
Analysis of the imaging data 
Analyses of the two-photon and confocal imaging data were mostly similar, with an additional pre-processing 
step for motion correction of the two-photon imaging data using the StackReg plug-in (Thevenaz et al., 1998) 
in ImageJ (Schneider et al., 2012). Structural parameters such as spine head width and spine protrusion length 
were quantified based on a standardized protocol (Holtmaat et al., 2009; Phoumthipphavong et al., 2016). 
Briefly, if a protrusion extended for >0.4 µm from the dendritic shaft, a dendritic spine was counted. The head 
width of a dendritic spine was measured as the width at the widest part of the head of the spine. The protrusion 
length of a dendritic spine referred to the distance from its root at the shaft to the tip of the head. The line 
segment tool in ImageJ was used to measure the distances. Change in spine density, spine head width and 
spine protrusion length across imaging sessions were shown as fold-change from the value measured on the 
first imaging session (day -3) for each dendritic segment. The spine formation rate was calculated as the 
number of dendritic spines newly formed between two consecutive imaging sessions divided by the total 
number of dendritic spines observed in the first imaging session. The spine elimination rate was calculated as 
the number of dendritic spines lost between two consecutive imaging sessions divided by the total number of 
dendritic spines observed in the first imaging session. To assess the long-term dynamics of the spine formation 
and elimination rates across imaging sessions, we calculated the difference from the baseline rate, which was 
the spine formation or elimination rate of the same dendritic segment before psilocybin and saline injection 
(i.e., from day -3 to day -1). To quantify the persistence of newly formed spines, we calculated the number of 
dendritic spines newly formed on day 1 that are still present on day 7 and day 34, and divided by the total 
number of newly formed dendritic spines on day 1. 
 
Statistics 
Sample sizes and statistical analyses for each experiment are listed in Supplementary Table 1. Sample sizes 
were selected based on previous experiments reported in related publications (Grutzendler et al., 2002; 
Phoumthipphavong et al., 2016). GraphPad Prism 8 and R were used for statistical analysis. In the figures, 
data are presented as the mean ± SEM per dendritic branch. 
 
For learned helplessness, we used a mixed effects model to test how proportion of escape failures (dependent 
variable) was impacted by fixed effects of treatment (saline vs. ketamine vs. psilocybin), test number (Test 1 
vs. Test 2), and sex (female vs. male), including all second and higher-order interaction terms. Within-mouse 
variation was included as a random effects term. Post hoc paired-samples t-tests were used to analyze the 
change in Day 1 and Day 2 proportion of escape failures for the three treatment conditions, using Bonferroni 
correction for multiple comparisons. For ketanserin pretreatment experiments, a Kruskal-Wallis test (non-
parametric one-way ANOVA) was used to test the difference in 10-minute head twitch responses across 
treatment groups (Saline + Psilocybin vs. Ketanserin + Psilocybin vs. Ketanserin + Saline), followed by Dunn's 
multiple comparisons test for post hoc pairwise comparisons. 
 
For in vivo two-photon imaging, dendritic spine scoring was performed while blind to treatment and time. 
Longitudinal measurements of dendrite structure were analyzed with mixed effects models for repeated 
measures using the lme4 package in R. Linear mixed effects models were preferred to the commonly used 
repeated measures analysis of variance (ANOVA) due to fewer assumptions being made about the underlying 
data (e.g., balanced sampling, compound symmetry). Separate mixed effects models were created for each of 
five dependent variables: fold-change in spine density, fold-change in average spine head width, fold-change 
in average spine protrusion length, spine formation rate, and spine elimination rate. Each model included fixed 
effects for treatment (psilocybin vs. saline), sex (female vs. male), and time (Day 1, 3, 5, and 7) as factors, 
including all second and higher-order interactions between terms. Importantly, variation within mouse and 
dendrite across days was accounted by including random effects terms for dendrites nested by mice. Visual 
inspection of residual plots revealed no deviations from homoscedasticity or normality. P-values were 
calculated by likelihood ratio tests of the full model with the effect in question against the model without the 
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effect in question. Post hoc t-tests were used to contrast psilocybin and saline groups per day, with and without 
splitting the sample by sex, applying Bonferroni correction for multiple comparisons. Spine persistence from 
two-photon imaging was analyzed with separate repeated measures ANOVAs for male and female mice, using 
fixed effects of treatment (psilocybin vs. saline), time (day 7 vs. day 34), and their interaction as independent 
predictors within dendrite. The same statistical analysis was applied to two-photon imaging data following 
ketanserin pretreatment, where the treatment groups were ketanserin + psilocybin vs. ketanserin + saline.  
 
For electrophysiology data, blinding procedures involved one person inject psilocybin or saline, another person 
performing recording and measurements blind to treatment. Data were unblinded after all the measurements 
were completed. Two-way ANOVAs were used for mEPSC frequency and amplitude statistics. Treatment 
(psilocybin vs. saline), sex (female vs. male), and their interaction were included as independent predictors. 
Post hoc t-tests were used to contrast psilocybin and saline groups within sex, applying Bonferroni correction 
for multiple comparisons. 
 
For confocal imaging data, blinding procedures involved one person performing imaging, another person 
scrambling the image file names, and a third person performing dendritic structural measurements blind to sex, 
treatment, and brain region. Data were unblinded after all of the measurements were completed. For each 
brain region in the confocal dataset (Cg1/M2, PrL/IL, and M1), separate two-way ANOVAs were constructed 
for apical and basal dendrites using spine density, spine head width, or spine protrusion length as the 
dependent variable. Treatment (psilocybin vs. saline), sex (female vs. male), and their interaction were 
included as independent predictors. Post hoc t-tests were used to contrast psilocybin and saline groups within 
sex, applying Bonferroni correction for multiple comparisons. 
 
Supplementary Video 1: Head-twitch response recorded with a high-speed camera; Related to Figure 
1. The mouse on the left received psilocybin (1 mg/kg, i.p.). The mouse on the right received saline. Video was 
recorded at 180 frames per second and played back at 30 frames per second, i.e., slowed down by 6 times. 
The left mouse had one head-twitch response during the video. 
 
Supplementary Table1. Detailed statistical analysis of all datasets, related to Figures 1, 2, 3, 4, and 
Supplementary Figures S1 to S4. 
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Supplementary Figure 1. Details for learned helplessness and effects of psilocybin on spine protrusion length in Cg1/M2; 
Related to Figure 1.  
(A) Escape failure and escape latency in Test 1 for all the mice used in the learned helplessness assay (n = 68). A k-means 
clustering procedure was used to classify animals into resilient and susceptible groups. Green asterisk, the centroid location of each 
group. (B) Effects of psilocybin or saline treatment on spine protrusion length in Thy1GFP mice, plotted as fold-change from baseline 
value on Day -3. (C, D) Similar to (B), plotted separately for females and males. Mean ± SEM. Sample sizes and statistical analyses 
are provided in Supplementary Table 1. 

 
 

 
Supplementary Figure 2. Survival curves for spines newly formed on Day 1; Related to Figure 2. 
(A) Survival curves of spines newly formed on Day 1 that remained stable in the following imaging sessions for female mice. (B) 
Similar to (A) for male mice. Mean ± SEM. Sample sizes and details of the ANOVA models are provided in Supplementary Table 1. 
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Supplementary Figure 3: Psilocybin increases spine protrusion length in Cg1/M2 in mice with ketanserin pretreatment; 
Related to Figure 3.  
(A, B) Effects of psilocybin or saline treatment on spine density in animals pretreated with ketanserin, plotted as fold-change from 
baseline value on Day -3, plotted separately for females and males. Mean ± SEM. (C, D) Similar to (A, B) for spine head width. (E) 
Effects of psilocybin or saline treatment on spine protrusion length in Thy1GFP mice with ketanserin pretreatment, plotted as fold-
change from baseline value on Day -3. (F, G) Similar to (E), plotted separately for females and males. (H) Effects of psilocybin or 
saline treatment on the elimination rates of dendritic spines for female and male mice pretreated with ketanserin, plotted as 
difference from baseline value on Day -1. Sample sizes and statistical analyses are provided in Supplementary Table 1. 
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Supplementary Figure 4. Effects of psilocybin on basal dendrites in PrL/IL and M1; Related to Figure 4.  
(A) Images of basal dendritic segments in PrL/IL from coronal brain sections from a Thy1GFP mouse. (B) Effects of psilocybin and 
saline on spine density for basal dendrites in PrL/IL. Open circles, individual dendritic segments. (C) Similar to (B) for spine 
protrusion length. (D) Similar to (B) for spine head width. (E – H) Similar to (A – D) for M1. Mean ± SEM. Sample sizes and details of 
the ANOVA models are provided in Supplementary Table 1. 
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