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Abstract 
 
A methodology is proposed for calculating multidimensional free-energy landscapes of molecular 
systems, based on post-hoc analysis of multiple molecular dynamics trajectories wherein adaptive 
biases are used to enhance the sampling of different collective variables. In this approach, which 
we refer to as Weighted Force Analysis Method (WFAM), sampling and biasing forces from all 
trajectories are suitably re-weighted and combined so as to obtain unbiased estimates of the mean 
force across collective-variable space; multidimensional free-energy surfaces and minimum-
energy pathways are then derived from integration of the mean forces through kinetic Monte Carlo 
simulations. Numerical tests for trajectories of butyramide generated with standard and concurrent 
metadynamics, biased to sample one and two dihedral angles, respectively, demonstrate the 
correctness of the method and show that calculated mean forces and free energies converge rapidly. 
Analysis of bias-exchange metadynamics simulations of dialanine, trialanine and the SH2-SH3 
domain-tandem of the Abl kinase, using up to six collective-variables, further demonstrate this 
approach greatly facilitates calculating accurate multidimensional free-energy landscapes from 
different trajectories and time-dependent biases, outperforming other post-hoc unbiasing methods.           
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Introduction 
 
Molecular dynamics (MD) simulations are an increasingly powerful tool to investigate complex 
chemical and biological mechanisms, and a means to formulate atomically detailed and physically 
coherent interpretations of experimental measurements[1, 2]. Too often, however, simulation 
studies aspire to characterize slow processes using basic algorithms, typically resulting in largely 
anecdotal observations and dubious mechanistic inferences. Biased-sampling techniques, by 
contrast, can yield quantitative information even for slow processes, provided the calculations are 
designed thoughtfully and analyzed rigorously. This information is ideally in the form of a 
landscape mapping the free energy of the molecular system as a function of one or more structural 
descriptors of the process of interest, formulated ad-hoc, and often referred to as collective 
variables (CVs)[3-5]. The minima and barriers in this landscape intuitively represent the most 
probable states of the molecular system and the transition pathways that connect them, thus 
explaining the emergence of a mechanism [6, 7]. Among a variety of existing biased-sampling 
techniques, some of the most widely used are umbrella sampling (US) [8],  adaptive-biasing force 
(ABF) [9-11] and metadynamics[6, 7, 12]. These three methods are alike in that they influence the 
exploration of collective-variable space by introducing biasing forces in the calculation of atomic 
trajectories; however, while in US these forces depend solely on the instantaneous molecular 
configuration, in Metadynamics and ABF they change gradually over the course of a simulation 
as the target space is increasingly explored, i.e. these methods are adaptive. This adaptability is 
arguably advantageous, although it makes rigorous derivation of free-energies more complex, from 
a theoretical standpoint[7, 11]. An additional difficulty is that it is non-trivial to identify a priori 
what CVs might be the most suitable for the problem at hand; it is not uncommon for intuitive 
descriptors to be entirely ineffective as drivers of configurational sampling. This difficulty has led 
to the development of specialized techniques based on reaction coordinates optimization[13-17] 
or enhanced biasing protocols that allow using different possible CVs, through single [18, 19] or 
multiple biases[20] and simulation replicas[21, 22]. To be able to sample efficiently highly 
dimensional collective-variable spaces is particularly important in studies of proteins and nucleic 
acids, as one or two descriptors are often insufficient to adequately to characterize their complex 
conformational mechanisms [23, 24]. 

The challenge ahead is thus to formulate a unified approach to derive multidimensional 
free energy landscapes from an arbitrary number of MD trajectories computed with different 
adaptive-biasing schemes and defined for multiple CVs. In previous applications, we and others 
have tackled this problem using the Weighted Histogram Analysis Method (WHAM) [25],  an 
approach that has been extensively applied in the context of non-adaptive biased sampling.  The 
underlying concept is that the effect of the biasing potentials can be removed in post-processing 
by rebalancing the statistical weights assigned to each of the configurations sampled in the 
trajectories; the corrected unbiased sampling can be then combined to obtain the best estimate of 
the free energy. For adaptive biasing techniques such as metadynamics, however, the application 
of WHAM entails a somewhat arbitrary definition of an “effective” biasing potential”[26, 27], 
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which is evaluated in a different manner depending on the particular biasing scheme adopted. For 
example, in standard metadynamics this effective potential is considered to be the time-average of 
the biasing potential after a certain equilibration time[7, 26, 28], while in well-tempered 
metadynamics this effective potential is considered to be equal to the bias potential at the end of 
the simulation[7, 29, 30]. Although alternative formulations of WHAM that circumvent the 
definition of an effective bias are conceivable, they are likely to result in significant numerical 
errors (as they would require iterative determination of large number of shift constants). For similar 
reasons, it has been not straightforward so far to apply dynamic histogram[31, 32] or transition-
based reweighting analysis[33, 34] in the context of adaptive biases.  

Building upon the umbrella integration method[35] and variants thereof formulated for 
analysis of adaptively-biased simulations[36-38], we propose an alternative general approach for 
the calculation of multidimensional free energy landscapes, based on the calculation of the free 
energy gradient or mean force. This approach, which we refer to as Weighted Force Analysis 
Method, does not require that an effective potential be defined, and is numerically stable. To 
demonstrate the validity and performance of this methodology, we compare it with existing 
analysis methods for simulation data derived for multiple examples, ranging from single 
trajectories of simple molecular systems with enhanced-sampling of one, two or six CVs, to 
multiple exchanging replicas exploring a five-dimensional space for a multi-domain protein. 
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Theory 
 
Mean forces estimate from multiple time-dependent biased simulations 
 
To introduce the formulation, we assume to have a set CVs, 𝝃𝒇(𝑿) = &𝜉"

#(𝑿), 𝜉$
#(𝑿), … , 𝜉%

#(𝑿)*, 

that are functions of the molecular configurations, 𝑿. Let us define the free energy as a function of 
those CVs as: 

𝐹(𝝃) = −
1
𝛽 𝑙𝑛𝜌&

(𝝃) = −
1
𝛽 𝑙𝑛2𝑒𝑥𝑝	

{−𝛽𝑈(𝑿)}𝛿 &𝝃 − 𝝃𝒇(𝑿)*𝑑𝑿 + 𝐶 (1) 

where 𝜌&(𝝃) is the unbiased probability density as a function of the CVs, 𝑈(𝑿) is the simulation 
energy function and 𝐶 is a constant (and 𝛽 = 𝑘'𝑇, in which 𝑘' is the Boltzmann constant, 𝑇 the 
temperature). The mean force is the negative of the free energy gradient: 

𝑓(!(	𝝃) = −
𝜕𝐹(𝝃)
𝜕𝜉)

 (2). 

For conventional molecular dynamics (MD) simulations, instead of a Dirac delta, free energies are 
typically calculated using a kernel density estimator, 𝐾* &𝝃 − 𝝃𝒇(𝑿)*, e.g. a Gaussian function or 

a simple binning, for evaluating 𝜌&(𝝃). The latter density estimator will also induce a smoothing 
of the mean forces, whose accuracy in capturing the correct value depends on the width and shape 
of the kernel. Namely, integrating over degrees of freedom orthogonal to the CVs and using 
convolution rules the mean force can be expressed as: 

𝑓(!(	𝝃) ≅ − 〈
𝜕𝐹E𝝃F G
𝜕𝜉F)

〉𝝃 = −
∫
𝜕𝐹E𝝃F G
𝜕𝜉)

𝜌&E𝝃F G𝐾*E𝝃 − 𝝃F G𝑑𝝃F

∫ 𝜌&E𝝃F G𝐾*E𝝃 − 𝝃F G𝑑𝝃F
= 〈

1
𝛽
𝜕𝑙𝑛𝐾*E𝝃 − 𝝃F G

𝜕𝜉)
〉𝝃 (3). 

In which the notation 〈… 〉𝝃 denotes a local average around 𝝃. For the particular case of a Gaussian 
density estimator, eq. 3 becomes equivalent to the typical estimate obtained through harmonically 
restrained simulations[39, 40], 𝑓(!(	𝝃) ≅ 𝑘(!〈𝜉)

#(𝑿) − 𝜉)〉𝝃, meaning that the restraint force is 
counterbalanced by the mean force, where 𝑘(! is the force constant on 𝜉) and 〈… 〉𝝃 denotes an 
average performed over the frames of the restrained simulation. However, for standard MD 
simulations, calculating mean forces through eq. 3 and integrating them (based on eq. 2), does not 
provide any practical advantage over evaluating directly the probability density in eq. 1. By 
contrast, mean forces evaluations are particularly convenient for obtaining free energies from 
multiple biased simulation, as we describe below.  
Let us consider the case of a set of trajectories, denoted with the index r, on which a time-dependent 
bias potential, 𝑉,(𝝃, 𝑡), is applied, which may entail a different biasing scheme (e.g. standard or 
well-tempered metadynamics[7, 41]) or act on different subsets of the CVs depending on the 
trajectory (as in bias exchange metaynamics[21]). Additionally, as expected for properly set 
metadynamics[6, 7, 12] or adaptive biasing force simulations[9-11], we assume a slow time 
variation of 𝑉,(𝝃, 𝑡) such that the simulations can be considered constantly at equilibrium.  
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In the WHAM[25] based approach that we used in our previous studies[26, 27, 30, 42, 43], the 
unbiased probability density, 𝜌&,(𝝃), for trajectory r, was obtained based on umbrella sampling re-
weighting[8, 25] according to an effective bias potential, 𝑉L,(𝝃), namely, by adjusting the statistical 
weight of each simulation frame, 𝑡́, as: 

𝜌&,(𝝃) ≅N 𝑒𝑥𝑝 O𝛽𝑉L, &𝝃E𝑿-.
,G* − 𝑓,P𝐾* &𝝃 − 𝝃𝒇E𝑿-.

,G*
-.

 (4). 

In which 𝑿-.
, is the molecular conformation of trajectory r at time 𝑡́, 𝑓,  are shift constants that are 

iteratively evaluated and 𝐾* &𝝃 − 𝝃𝒇E𝑿-.
,G* was typically selected as a simple binning 

(𝐾* &𝝃 − 𝝃𝒇E𝑿-.
,G* = 1 if 𝝃𝒇E𝑿-.

,G belongs to a bin centered in 𝝃 and is zero otherwise) . The final 
free energies are determined by combining the unbiased probabilities from each trajectory: 

𝐹(𝝃) ≅ −
1
𝛽 𝑙𝑛 QN 𝜋	,(𝝃)

,
𝜌&,(𝝃)S + 𝐶 (5), 

in which the terms 𝜋	,(𝝃) ensure a minimal error on the free energy (according to Poisson’s 
statistics). Despite WHAM provides a rigorous framework for combining the sampling of multiple 
trajectories, owing to the time-dependent nature of the bias, there is no uniform procedure for the 
definition of the effective potentials, 𝑉L,(𝝃), across multiple adaptive biasing schemes. For 
example, in standard metadynamics 𝑉L,(𝝃) = (𝑡-0- − 𝑡1)2" ∫ 𝑉,(𝝃, 𝑡)𝑑𝑡

-"#"
-$

[7, 26, 28] while in well-

tempered metadynamics 𝑉L,(𝝃) = 𝑉,(𝝃, 𝑡-0-)[7, 29, 30, 44], where 𝑡-0- is the total simulation time 
and 𝑡1 (filling time) is an equilibration time after which the bias potential can be considered 
approximately stationary. A strategy to avoid resorting to effective biasing potentials would be to 
use directly the instantaneous bias potential, 𝑉,(𝝃, 𝑡), and apply eq. 4 for small simulation 
intervals,∆𝑡, e.g. at any bias potential update. Nonetheless, this would imply a different additive 
constant, 𝑓,, for each bias potential update, thus leading to a large number of additive constants 
that must be iteratively determined.   
Hereafter, we derive an alternative general approach based on the evaluation of the mean force, 
that does not require the definition of an effective potential nor the iterative evaluation of additive 
constants. Let us apply eq. 1, through the density kernel 𝐾* &𝝃 − 𝝃𝒇(𝑿)*, on a time interval,	∆𝑡, of 
trajectory r, that is short enough so that the bias potential can be considered time independent but 
large enough that the trajectory is already equilibrated. Owing to the presence of 𝑉,(𝝃, 𝑡), this 
operation will generally produce a biased estimate of the free energy: 

𝐹3,(𝝃, 𝑡, ∆𝑡) = −
1
𝛽 𝑙𝑛N 𝐾* &𝝃 − 𝝃𝒇E𝑿-.

,G*
-4∆- $⁄

-.7-2∆- $⁄

≅ −
1
𝛽 𝑙𝑛2𝑒𝑥𝑝	 O−𝛽 &𝑈

(𝑿) + 𝑉,E𝝃𝒇(𝑿), 𝑡G*P 𝐾* &𝝃 − 𝝃𝒇(𝑿)* 𝑑𝑿

+ 𝐶 

(6). 

In which the right-hand side of eq. 6 arises from the equilibrium assumption[8, 35]. To relate eq. 
6 to the unbiased free energy is convenient to integrate over the degrees of freedom orthogonal to 
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the CVs:  𝐹3,(𝝃, 𝑡, ∆𝑡) ≅ − "
8
𝑙𝑛 ∫ 𝑒𝑥𝑝	 O−𝛽 &𝐹E𝝃F G + 𝑉,E𝝃F , 𝑡G*P𝐾*E𝝃 − 𝝃F G𝑑𝝃F . Taking the 

derivatives of latter expression (and using convolutions rules), we obtain that the unbiased mean 
force, 𝑓(!

,(𝝃𝒄, 𝑡, ∆𝑡), can be recovered from biased one by simply subtracting the local average of 
the forces arising from the bias potential: 
𝑓(!
,(𝝃, 𝑡, ∆𝑡)

≅

∑ V1𝛽
𝜕𝑙𝑛𝐾* &𝝃 − 𝝃𝒇E𝑿-.

,G*
𝜕𝜉)

+ Q
𝜕𝑉,E𝝃F , 𝑡́G
𝜕𝜉F)

S
𝝃.7𝝃𝒇:𝑿"&

'<
W𝐾* &𝝃 − 𝝃𝒇E𝑿-.

,G*-4∆- $⁄
-.7-2∆- $⁄

∑ 𝐾* &𝝃 − 𝝃𝒇E𝑿-.
,G*-4∆- $⁄

-.7-2∆- $⁄

 

(7) 

 
A general expression of the mean force can now be obtained as the weighted average[35] of all 
the unbiased estimates, 𝑓(!

,(𝝃𝒄, 𝑡, ∆𝑡), obtained for all time intervals and simulations trajectories, 

according to the weights, ∑ 𝐾* &𝝃 − 𝝃𝒇E𝑿-.
,G*-4∆- $⁄

-.7-2∆- $⁄ : 

  

𝑓(!(𝝃) ≅

∑ ∑ V1𝛽
𝜕𝑙𝑛𝐾* &𝝃 − 𝝃𝒇(𝑿-,)*

𝜕𝜉)
+ Q

𝜕𝑉,E𝝃F , 𝑡G
𝜕𝜉F)

S
𝝃.7𝝃𝒇:𝑿"&

'<
W𝐾* &𝝃 − 𝝃𝒇(𝑿-,)*-,

∑ ∑ 𝐾*E𝝃 − 𝝃𝒇(𝑿-,)G-,

= 〈
1
𝛽
𝜕𝑙𝑛𝐾* &𝝃 − 𝝃𝒇(𝑿-,)*

𝜕𝜉)
〉𝝃 + 〈Q

𝜕𝑉,E𝝃F , 𝑡G
𝜕𝜉F)

S
𝝃.7𝝃𝒇:𝑿"&

'<

〉𝝃 

(8) 

The general meaning of eq. 8 is that the mean force is the result of the biased force arising from 
the combined probability density of all simulation trajectories, corrected by subtracting the local 
average across all trajectories, 〈… 〉𝝃, of the instantaneous forces originating from the different 
biasing potentials applied. Note that in contrast to WHAM (eq. 4), eq. 8 does not entail effective 
biasing potentials nor additive constants that must be iteratively evaluated. Hence, it provides a 
more general formulation valid for any type and combination of adaptively-biased simulations, 
provided they fulfill the quasi-equilibrium assumption. For metadynamics and adaptive biasing 
force approaches, equilibrium conditions are more easily fulfilled after the simulation has explored 
the relevant regions of the CVs space, so that the forces of the bias potential oscillate around well-
defined values.  
As in eq. 3, the effect of the density kernel is to produce a smoothing of the mean forces, hence, a 
specific selection and tuning of the latter kernel may become particularly advantageous for 
accurate high dimensional analysis[23]. In all the applications presented in this work, mean forces 
were calculated according to a simple density kernel selected as a product of Gaussians (with 

standard deviations 𝜎(! = Y𝑘'𝑇 𝑘(!⁄ ), for which eq. 8 becomes: 
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𝑓(!(𝝃) ≅

∑ ∑ 𝑤-,(𝝃) \𝑘(!E𝜉)
#(𝑿𝒕𝒓) − 𝜉)G + Q

𝜕𝑉,E𝝃F , 𝑡G
𝜕𝜉F)

S
𝝃.7𝝃𝒇:𝑿"&

'<
]	

-,

∑ ∑ 𝑤-,(𝝃)	
-,

 
(9), 

 

where 𝑤-,(𝝃) = 𝑒𝑥𝑝 O−∑ 𝑘(! E𝜉)
#(𝑿𝒕𝒓) − 𝜉)G

$
2𝑘'𝑇_%

)7" P, in which the terms 𝑘(! can be considered 
as smoothing parameters that must be selected large enough so as to capture the relevant features 
of the underlying free energy. Note that for a single trajectory or type of bias potential, and 
assuming that within a small region around  𝝃, E𝜕𝑉,E𝝃F , 𝑡G 𝜕𝜉F)⁄ G

𝝃. 7𝝃𝒇(𝑿𝒕𝒓)
≈ E𝜕𝑉,E𝝃F , 𝑡G 𝜕𝜉F)⁄ G

𝝃.7𝝃
, eq. 

9 becomes equivalent to the expression derived by Marinova & Salvalaglio in the context of 
metaydnamics simulations[45]. The latter condition results in different smoothing for 
contributions arising from biased probability density and bias potential, and provides a reasonable 
alternative for analyzing metadynamics trajectories, as in the latter the biased probability density 
becomes gradually uniform. An advantage of eq. 8 or 9 is that they require only the instantaneous 
value of the biasing force, E𝜕𝑉,E𝝃F , 𝑡G 𝜕𝜉F)⁄ G

𝝃.7𝝃𝒇(𝑿𝒕𝒓)
, that can be easily calculated or made directly 

available by current enhanced sampling simulation programs[46-50].  
As the mean force given by eq. 8-9 arises from a local average, error estimates can be achieved 
through block averages or autocorrelation analysis[11]. Assuming the same autocorrelation time 
for all trajectories and time intervals, the statistical error would be proportional to 

QY∑ ∑ 𝐾*E𝝃 − 𝝃𝒇(𝑿-,)G	
-, S

2"

, where the sum of the weights is associated to the number of 

effective frames around 𝝃. 
It is worth pointing out that mean forces can be also evaluated directly as a local average, around 
𝝃, of the instantaneous forces arising from the simulation energy function, 𝑈(𝑿), and effectively 
projected along the CVs[9-11, 51-53]. Assuming equilibrium condition, such local average would 
not be affected by any bias potential that depends only on the CVs[49], hence providing an 
alternative strategy for evaluating mean forces in the context of multiple trajectories and biases. 
This notwithstanding, implementation difficulties and/or inapplicability in presence of constraints 
and multiple related CVs[11], has made this analysis unavailable for several types of CVs and 
simulation programs. Here, we use the latter mean force estimate in two simple mono and two-
dimensional examples (see applications to butyramide) as a comparison with the proposed 
approach.       
 
Multidimensional free energy landscapes from mean forces 
 
After evaluating the mean forces on a dense set of CVs configurations (𝜉"A , 𝜉$A , … , 𝜉%A), e.g. placed 
on a regular grid, the free energy can be calculated according to eq. 2 by mean forces 
integration[40]. To do this accurately and efficiently across multiple dimensions, we adopted a 
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kinetic Monte Carlo (KMC) approach. The KMC simulations are based on a transition rate 
between neighboring bins, 𝛼 and 𝛽, that satisfies the detailed balance[26]:  

𝑅A8 = E𝜏A8& G2"𝑒𝑥𝑝 d−𝛽
∆𝐹A8
2 e (10), 

in which the preexponential term was set as 𝜏A8& = ∑ &&𝜉)
8 − 𝜉)A* ∆𝜉)_ *

$
%
)7" , where  ∆𝜉) are the bin 

widths of the grid. The free energy difference between 𝛼 and 𝛽, ∆𝐹A8 = 𝐹E𝝃𝜷G − 𝐹(𝝃𝜶), is 
obtained from the mean forces using finite differences:  

∆𝐹A8 = −N
&𝑓(!(𝝃

𝜶)𝑤(𝝃𝜶) + 𝑓(!E𝝃
𝜷G𝑤E𝝃𝜷G*

𝑤(𝝃𝜶) + 𝑤(𝝃𝜷) &𝜉)
8 − 𝜉)A*

)
 (11), 

where 𝑤E𝝃𝜶 𝜷⁄ G = ∑ ∑ 𝑤-,E𝝃𝜶 𝜷⁄ G-,  are the total weights of each of the two bins (see eq. 9).  
Finally, free energies can be estimated as in eq. 1 using the bin probabilities calculated over a long 
KMC trajectory, 𝐹(𝝃𝜶) = −𝛽2"𝑙𝑛 fE𝑁ADEF ∑ 𝑅A88_ GE∑ 𝑁ADEF ∑ 𝑅A88_A G2"h, where 𝑁ADEF  is the 

number of times the KMC trajectory visits bin 𝛼. The KMC simulations have the advantage that 
automatically identify the interconnected regions of the CVs space and can be easily carried out 
for billions of steps and eventually at raised temperature to efficiently cross free energy barriers. 
 
Ensemble reweighting from free energy analysis 
 
The unbiased distribution from the sampling of all trajectories can be easily recovered considering 
that the biasing potentials depend only on the CVs, hence, within a small bin of the latter variables 
the sampling distribution remains unbiased. This implies that the statistical weight assigned to each 
configuration, Ω(𝑿𝒕𝒓), in order to obtain unbiased sampling, is only a function of the CVs; Ω(𝑿𝒕𝒓) =
Ω&𝜉"

#(𝑿𝒕𝒓), 𝜉$
#(𝑿𝒕𝒓), … , 𝜉%

#(𝑿𝒕𝒓)*.  An analytical expression for the weight can be derived by 

imposing that the reweighted ensemble conforms to the calculated free energy: 

Ω(𝝃𝜶) =
1
𝑁A

exp{−𝛽𝐹(𝝃𝜶)} (12). 

In which 𝑁A is the total number of frames from all trajectories in a bin, 𝛼, of the CVs. 
This reweighting scheme can be applied to the cumulative sampling of all trajectories to calculate 
unbiased ensemble averages or to estimate the free energy as a function of different reaction 
coordinates.    
 
Minimum free energy paths calculation across multidimensional landscapes  
 
The minimum free energy path between two configurations, 𝛼", 𝛼%, of the CVs space reflects the 
most probable pathway observed at vanishing temperature[54]. Assuming this pathway arises from 
a set of stochastic transitions between bins in the CVs space, the minimum free energy path is 
defined by the set of transitions that maximizes the time-independent probability of a stochastic 
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path connecting the two endpoints and evaluated at nearly zero temperature[54, 55]. The latter 
path probability is given by the product of the normalized pairwise transition probabilities between 
the associated bins, which can be derived according to the KMC rates reported in eq. 10[42, 55]: 

𝑃A*,A+
DEF = 𝑃A*,A,	

DEF 𝑃A,,A-
DEF … , 𝑃A+.*,A+

DEF  (13). 

In which 𝑃A!,A/
DEF = 𝑅A!,A/ ∑ 𝑅A!,A/A/_   is the probability to observe a transition between 𝛼) and	𝛼H.  

In this case the rates of eq. 10, 𝑅A!,A/, are evaluated using a very low temperature, in which we 
consider that the approximation of a preexponential factor evaluated by a geometric term instead 
of a diffusion rate[26] is sufficient to identify a most likely pathway. The minimum free energy 
pathways reported in this work were obtained using first a global search with KMC trajectories 
and then a refinement step in which new pathways are generated by randomly selecting two 
intermediate configurations along the current pathway and running a KMC trajectory that connects 
them. The sampled pathways are accepted or rejected according to a Monte Carlo (MC) scheme 
that samples the distribution 𝑒𝑥𝑝n−𝑙𝑜𝑔E𝑃A*,A+

DEF G/𝑇EFr, in which 𝑇EF  represents a dimensionless 
temperature factor. Different MC runs are carried out by gradually reducing 𝑇EF  using a simulated 
annealing protocol in order to converge to the most probable pathway.  
 
Computational details 
 
Metadynamics simulations of solvated butyramide were carried out at 298 K and 1 bar with 
NAMD version 2.14[56] and colvars[49], using the CHARMM22 force field[57], a 1-fs time step 
and periodic boundary conditions. To permit the correct evaluation of instantaneous forces, no 
constraints were used on the atomic bonds of butyramide[11]. Short-range electrostatic and van 
der Waals interactions were calculated with Coulomb and Lennard-Jones potentials, respectively, 
cut off at 12 Å; long-range electrostatic interactions were calculated with the the particle-mesh 
Ewald (PME) method. The molecular system comprises butyramide in a cubic box with 1467 water 
molecules. The metadynamics bias potentials were constructed using Gaussian hills of height 
0.025 kcal mol and widths 5o and 10o for standard and concurrent metadynamics, respectively. 
Gaussians were added every 1 ps.  The bias-exchange metadynamics simulations[21] of alanine 
dipeptide and Ace-Ala3-Nme peptide were carried out at 298 K and 1 bar with GROMACS 
4.5.5/PLUMED[46, 48, 58],  Short-range electrostatic and van der Waals interactions were cut off 
at 9 Å; long-range electrostatic interactions were calculated with PME. In this case the 
metadynamics bias potential was constructed using Gaussians of height 0.024 kcal/mol and width 
5.7°, added every 2 ps. Exchanges between replicas were attempted every 2 ps. The alanine 
dipeptide simulation used the CHARMM22 force field[57], and includes 877 water molecules 
enclosed in a periodic cubic box. The simulations for the Ace-Ala3-Nme peptide used the 
AMBER03 force field[59] and include 1052 water molecules in a periodic cubic box. 
Computational details for the simulations of the SH3-SH2 tandem of the Abl kinase have been 
reported elsewhere[43]. 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.17.431654doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431654


 10 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.17.431654doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431654


 11 

Results and Discussion 
 
WFAM converges rapidly and accurately in one-dimensional test case  
 
To evaluate the accuracy and convergence rate of the proposed approach, we first considered as a 
‘gold standard’ a simple molecular process for which mean forces and free energies can be derived 
readily with existing methods, namely the isomerization of solvated butyramide. Ten independent 
metadynamics simulations[6, 7, 12] were calculated using the F dihedral angle as CV (Fig. 1). In 
this approach a time-dependent bias potential is constructed as a sum of Gaussians centered on the 
values of F visited during the trajectory. Over time, this bias potential results in uniform sampling 
of F by gradually compensating the underlying free energy. Thus, after an equilibration time the 
bias potential oscillates around the negative of the free energy profile along F [6, 7, 12]; this so-
called ‘filling time’ is ~6 ns in this case. For each trajectory, we calculated the mean forces as a 
function of the value of F (in increments of 1o) using either the WFAM method (Eq. 9) or by 
computing the local average of the instantaneous forces[10], which for dihedral angles can be 
evaluated analytically. (For consistency, the latter average, evaluated as in Eq. 3, was calculated 
using the same Gaussian density estimator adopted for estimates obtained through Eq. 9, with the 
Gaussian standard deviation set to 1o.) In addition, we calculated free energy and mean forces with 
an umbrella-sampling (US) simulation of 140 ns, using a static bias potential, 𝑉IJ(Φ) (derived 
from a 20-ns metadynamics simulation). In this case, the free energy was estimated using standard 
histogram reweighting[8]: 𝐹IJ(Φ) = − "

8
𝑙𝑛(𝜌IJ(Φ)𝑒𝑥𝑝{𝑉IJ(Φ)}), where 𝜌IJ(Φ) is the 

histogram along Φ  obtained from the US simulation (using a binning width of 1o). The associated 
mean forces were obtained by finite differences from 𝐹IJ(Φ).  

Fig. 1AB highlights how mean force and free energy profiles (obtained from mean forces 
integration) calculated from the combined sampling of all metadynamics trajectories (300 ns in 
Fig. 1AB) and estimated either with Eq. 9 (WFAM in Fig. 1) or from the instantaneous forces 
(MIF and MIF-I in Fig. 1), perfectly match the US results. For this simple system, estimates 
derived from the proposed approach converge after a few ns (Fig. 1), before the metadynamics 
bias potential reaches a stationary condition (filling time in Fig. 1D). Reasonable values are 
obtained after just a few hundred ps of simulation (Fig. 1AB). Importantly, the time dependence 
of the error (with respect to US estimates) on mean forces and free energy (Fig. 1CD) highlight 
how, for this example, the proposed approach achieves the same convergence rate and accuracy of 
estimates obtained thorough instantaneous forces. Conversely, the free energy profile directly 
inferred from the time average of the metadyamics bias potential after the filling time[26, 28] 
(purple line in Fig. 1D) is less accurate than mean forces-based estimates. The same accuracy of 
latter can be instead achieved by introducing US corrections to the mean bias potential 
estimate[26] (blue line in Fig. 1D), which nevertheless can be evaluated only after the filling time.       
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Once an accurate estimate of the free energy along Φ is obtained, an unbiased ensemble can be 
recovered using the reweighting scheme provided by Eq. 12. For example, this procedure can be 
used to calculate an unbiased histogram along the Y dihedral angle (Fig. 1), even though sampling 
of this angle was not directly enhanced. As shown in Fig. 2, this histogram perfectly matches the 
one resulting from a 400 ns MD simulation generated without any biases [60], demonstrating that 
this procedure is highly accurate. 
 

 
 

Figure 1. Benchmark test of the proposed approach on metadynamics simulations along the F dihedral angle of 
solvated butyramide. The latter molecule and its F and Y dihedral angles are illustrated in the figure. (A) Comparison 
between the mean forces calculated using eq. 9 (WFAM; shown for different time intervals), the mean instantaneous 
forces (MIF)[10] and finite differences from the free energy profile (green profile in panel B) obtained using 140 ns 
umbrella sampling (US) simulation[8]). (B) Comparison between the free energies obtained with 140 ns US and from 
numerical integration of the mean forces reported in panel A (WFAM and MIF-I; the notation -I denotes integration). 
(C) Time dependence of the error on the mean forces (for WFAM and MFI estimates). The error is calculated as the  
mean square deviation with respect to the US estimate over grid points of 𝛷,  𝜀0123	56781 =

$∑ &𝑓(𝛷9) − 𝑓:;(𝛷9)+
< 𝑁⁄=

9>?  (D) Time dependence of the error on the free energy for different types of free energy 
estimates. The error is calculated with respect to the US estimate as in 𝜀0123	56781. The purple line reflects the error 
on the free energy estimated as the time average of the bias potential after the filling time[7, 26, 28].The blue line 
entails US corrections on the previous estimate[26]. Lines and shaded regions in panels C and D reflect average error 
and standard deviations over 10 independent metadynamics trajectories respectively.  
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Figure 2. Unbiased probability density along the Y dihedral angle of butyramide obtained through 400 ns MD 
simulation (orange line) and ensemble reweighting using eq. 12. The reweighting was carried out on the combined 
sampling of 10 metadynamics simulations using the F dihedral angle as CV. The free energies used in eq. 12 were 
obtained from the integrated mean forces obtained from the metadynamics simulations using eq. 9.    

 
Two-dimensional free energy surfaces from concurrent one-dimensional biases  
 
To assess the proposed methodology in the context of multiple one-dimensional biases applied to 
the same trajectory, we generated 10 independent simulations (of 30 ns each) on solvated 
butyramide using concurrent metadynamics biases[22] to enhance sampling of both Φ	and Y (Fig. 
1). That is, two biasing potentials 𝑉"(Φ, 𝑡) and 𝑉$(Ψ, 𝑡) are applied independently, and so the 
overall bias potential is 𝑉(Φ,Ψ, 𝑡) = 𝑉"(Φ, 𝑡) + 𝑉$(Ψ, 𝑡). This type of biasing scheme produces a 
uniform distribution on Φ	and Y individually, but owing to the correlations between these two 
CVs the corresponding two-dimensional space is not explored uniformly (Fig. 3). This implies 
that the overall bias potential, 𝑉(Φ,Ψ, 𝑡), does not compensate the free energy surface along Φ	and 
Y, and hence, it is not a free energy estimator. Similarly, the biasing potentials 𝑉"(Φ, 𝑡) and 
𝑉$(Ψ, 𝑡) do not compensate the individual projections of this free energy surface along either Φ	or 
Y respectively. To verify whether the correct two-dimensional free energy can be nevertheless 
recovered with WFAM, we divided the space of Φ	and Y in a regular grid of spacing 2.5o in each 
direction and for each grid point we calculated the mean force using Eq. 9; as in the previous 
section, we also calcuated the mean instantaneous force for comparison[53]. The density estimator 
was in both cases the product of two Gaussians of standard deviation 2.5o. Free energies were 
obtained from mean forces integration using KMC. The accuracy of the resulting mean forces and 
free energy was again assessed against the corresponding estimates derived from an US simulation 
of 110 ns. This US simulation used a static bias potential on Φ	and Y deduced from a 
metadynamics simulation (of 75 ns) that applies an actual two-dimensional bias and that does 
explore uniformly the Φ, Y space. The two-dimensional free energy from US was estimated using 
standard histogram reweighting[8] from the US bias potential as detailed in the previous section 
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(and using 2.5o bin spacing in Φ	and Y). Owing to the low precision of finite differences, reference 
mean forces from US simulations were obtained from the local average of instantaneous forces.  
 

 
Figure 3. Logarithm of the probability density for concurrent metadynamics simulations along F and Y dihedral 
angles of solvated butyramide. The probability density reflects the cumulative sampling of 10 independent 
metadynamics simulations of 30 ns each. 

 
In Fig. 4AB we report mean-force surfaces for each Φ	and Y component and the associated free 
energy landscape, obtained using Eq. 9 from the combined sampling of the metadynamics 
simulations. The mean-force surfaces are smooth and well-defined throughout, except near the 
central region ((Φ,Ψ)~(0,0) in Fig. 4A) which is poorly sampled (Fig. 3). Owing to the 
integration process, the effect of noisy forces is somewhat smoothed in the associated free energy 
landscape. Mean forces and free energies calculated from the metadynamics simulations generally 
feature excellent correlation with those obtained from US (Fig. 4CD), regardless of the type of 
estimate used (either form eq. 9 or from instantaneous forces). Finally, the time dependence of 
forces and free energy errors (respect to US values), outlines that estimates derived with the 
proposed approach (WFAM in Fig. 4EF) converge with similar rate of the corresponding values 
calculated with instantaneous forces (MIF and MIF-I in Fig. 4EF). The mean force component 
along Φ calculated with eq. 9 features overall smaller error than the MIF estimate (Fig. 4E, right 
panel), and consequently the proposed approach provides slightly better accuracy in calculating 
the free energy (Fig. 4F). Such improvement in accuracy is associated to under sampled regions 
of the Φ, Y space which in this example tend to converge better using eq. 9.    
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Figure 4. Assessment of convergence and accuracy of mean forces and free energy surfaces calculated with the 
proposed approach and mean instantaneous forces, from concurrent metadynamics (C-META) on the F and Y 
dihedral angles of butyramide. (A, B) Surfaces of mean forces components along F and Y (fF, fY) and free energy as 
function of those dihedrals, obtained from 10 metadynamics simulations of 30 ns each, using eq. 9 and KMC. Contour 
lines are drawn every 0.05 kcal/(mol deg) and 1 kcal/mol for mean foces and free energy surfaces respectively. (C,D) 
Correlation plot of mean forces and free energies calculated using eq. 9 (WFAM) and mean instantaneous forces(MIF 
and MIF-I)[53] in reference to US estimates. (E, F) Time dependence of the error on mean forces and free energies 
for estimates based on eq. 9 and mean instantaneous forces. The error was calculated with respect to US estimates as 
explained in the caption of Fig. 1. Lines and shaded regions reflect average error and standard deviations over 10 
independent metadynamics trajectories respectively  

Two-dimensional free-energy surfaces from coupled one-dimensional biases  
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A main goal of this work is to provide a robust methodology for computing multidimensional free 
energy landscapes from multiple simulations with adaptive biasing potentials applied to different 
CVs. For example, in bias-exchange (BE) metadynamics simulations[21], many metadynamics 
trajectories calculated in parallel, each applying biasing potentials on different CVs, are  coupled 
to each other through a replica-exchange scheme. Multidimensional free energies from this type 
of simulations have been typically derived using WHAM (eq. 4 and 5)[26], which is used in this 
case for comparative analysis. Here, we test the capability of the proposed approach to analyze BE 
simulations for the solvated alanine dipeptide. For this system, we performed BE simulations using 
two replicas; one biased on the Φ Ramachandran torsional angle and the other on Ψ (Fig. 5). To 
provide a performance assessment against different biasing schemes, we carried out two 
independent sets of BE simulations of 400 ns each (200 ns for each replica), using either standard 
(META) or well-tempered metadynamics (W-META; featuring a gradual reduction of the height 
of the added Gaussians)[6, 7, 41]. The results are compared with the free energy obtained from ~2 
µs MD simulation, which was calculated according to eq. 1 from the histogram along Φ	and Y 
(bin spacing of 2.5o in each direction). The two-dimensional free energy landscapes derived from 
MD and BE plus mean forces integration (from eq. 9 and KMC) are reported in Fig. 5A, 
highlighting the marked resemblance between the two maps. This figure also illustrates how, 
owing the presence of the biasing potentials, BE is significantly more efficient than MD in 
sampling high free energy regions and thus crossing free energy barriers. Nonetheless, due to the 
application of mono dimensional biasing potentials, BE does not achieve uniform sampling of the 
Φ, Y space. In this case, we also show an example of minimum free-energy path between aR and 
aL conformations (Fig. 5A) obtained by maximizing the path probability in eq. 13. Fig. 5B outlines 
how, regardless of the particular metadynamics variant used to perform the simulation, there is an 
excellent correlation between free energies calculated with MD and BE using mean forces 
integration, especially at low free energies where MD is accurate. WHAM also achieves overall a 
very good correlation with MD (right panel of Fig. 5B), nonetheless particularly for low free 
energy regions features larger discrepancies (regardless of the binning used) than mean forces 
integration (inset of Fig. 5B). The latter deviations are also apparent from the correlation plot. 
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Figure 5. Comparative analysis of two-dimensional free energy landscapes of alanine dipeptide derived from MD and 
BE using either mean forces integration or WHAM. (A) Free energy map as a function of the F and Y dihedral angles 
of alanine dipeptide calculated using BE plus mean forces integration (left panel; BE simulations are performed using 
standard metadynamics) and MD (right panel). Contour lines are drawn with 1 kcal/mol spacings. The minimum free 
energy path connecting aR and aL conformations is shown as a white dotted line. (B) Correlation plot between MD 
and BE free energies, in which the latter are derived either from mean forces integration (left panel) or from WHAM 
(right panel). Data referred to BE simulation carried out using either conventional metadynamics (META) or the well-
tempered variant (W-META) are shown as black and red circles respectively. The inset of panel B reports the absolute 
value of the difference between free energies calculated with MD and BE, using either mean forces (solid line) or 
WHAM(dashed line), as a function of the free energy from MD. Reported values correspond to a running average 
over intervals of 0.1 kcal/mol. Black and red lines refer to META and W-META simulations respectively.        
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High-dimensional free energy landscapes for both model and complex systems  
 
In the previous sections we demonstrated that the proposed methodology provides an accurate 
framework to derive free energy landscapes in one and two dimensions across different biasing 
schemes and model systems. However, for complex systems such as proteins it is rare that only 
one or two CVs define a mechanism or process, i.e. explain the so-called  committor probabilities 
between relevant free energy minima[61-63]. Unless the CVs have been specifically optimized, 
e.g. so that they correctly capture all the slow degrees of freedom[16], a low dimensional 
description might merge together distinct conformations separated by barriers and/or 
underestimate the free energy of the latter[6]. Provided there is sufficient statistical sampling[64], 
a practical strategy to alleviate these problems is to increase the number of CVs used to calculate 
the free energy landscape. Additionally, even using optimal CVs[13-17], a high dimensional 
analysis is in same case strictly required to properly characterize the system under study, as for 
example to describe complex protein conformational transitions[23, 24].  

To assess whether WFAM may be used to derive accurate free energy landscapes in 
multiple dimensions, we applied this methodology to study the isomerization of an Ace-Ala3-Nme 
peptide[26]. For this system we performed ~1.5 µs BE metaydnamics simulations using six 
replicas (260 ns x 6), each biased with one of the six backbone dihedral angles shown in Fig. 6A. 
We then used the proposed approach (eq. 9 and KMC) to analyze these simulations by calculating 
the six-dimensional free energy landscape as a function of all backbone dihedral angles. For 
comparison, the same landscape was also evaluated from ~6 µs MD simulation. To do so, we 
derived the six-dimensional probability density (see eq. 1) based on the same Gaussian density 
estimator used for computing mean forces. Despite the high dimensionality and the fine description 
adopted (Gaussian standard deviation and bins side of 12o), there is an excellent correlation 
between the two free energies (R=0.97), especially at low free energy values where MD is accurate 
(Fig. 6A). The average discrepancy between the two types of estimate is 0.35 kcal/mol (see inset 
of Fig. 6A). 

After corroborating the good performance of high-dimensional mean forces-based analysis 
on a model system, we illustrate its application to a realistic case. In particular, we re-analyzed 
previously published BE simulations on the SH3-SH2 tandem of Abl kinase[43] (Fig. 6B). The 
latter tandem has been shown to primarily adopt the inhibitory or “on” conformation when engaged 
with catalytic domain and other elements, whereas X-ray crystallography[65] and MD 
simulations[43] revealed that it can adopt an alternative non-inhibitory, “off”, conformation when 
isolated. These simulations comprise 32 simulations replicas (of 200 ns each) biased with different 
pair combinations of five total CVs. Two of these CVs monitor the relative position of protein (S1) 
or interdomain connector (S2) along a line connecting on and off conformations, while a third CV 
(S3) measures the distance from this line (in the case of S1). The other two CVs are pseudo 
dihedrals describing interdomain orientations. For this system we derived the free energy 
landscape as a function of all five CVs using mean forces integration (eq. 9 and KMC). To 
visualize this landscape, we constructed its projection along S1, S3 and S3 (by integrating the 
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probability density along the remaining CVs; Fig. 6B). Consistently with our previous analysis 
[43], this landscape is consistent with the notion that the isolated tandem adopts primarily the off 
conformation. The derived minimum free energy pathway between on and off conformations (Fig. 
6BC), confirms the presence of a barrier of ~4 kcal/mol (Fig. 6C), in agreement with the 
observation of spontaneous transitions between these two conformations during conventional MD 
simulations[43].   
 

 
 

Figure 6. Application of the mean forces-based analysis to high dimensional cases. (A) Illustration of the Ace-Ala3-
Nme peptide and backbone dihedral angles (on panel top). Correlation plot of six-dimensional free energies obtained 
with standard MD and BE plus mean forces integration. Mean forces were calculated (using eq. 9) on a regular grid 
of 12o spacing in each direction, leading to ~2.5 millions grid points. The free energy from MD was obtained 
constructing the six-dimensional probability density on the same bin points using a Gaussian density estimator (same 
used in eq. 9). The inset reports the histogram of the deviations between free energy estimates from MD and BE plus 
mean forces integration. (B) Free energy landscape of SH2-SH3 tandem of Abl kinase, as a function of S1, S2 and S3 
CVs (see main text). The landscape was obtained projecting the five-dimensional free energy on S1, S2 and S3. The 
minimum free energy pathway (see eq. 13) connecting on and off states is shown by a red line, while indicated 
reference configurations (purple cyrcles) are shown on the bottom of the panel in cartoon representation. The reference 
X-ray structures of on and off states are by the blue and red tubular representations respectively. (C) Minimum free 
energy pathways connecting on and off states of Abl kinase. The shaded area reflects the standard error obtained 
through blocks averages.     
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Conclusions 
 
In this work we have introduced a methodology for the calculation of multidimensional free energy 
landscapes for complex molecular systems, which we refer to as Weighted Force Analysis Method 
(WFAM). This approach builds on concepts outlined in previous studies, such as umbrella 
integration[35] and its variants[36-38], and entails a post-hoc derivation of unbiased estimates of 
free energy gradients or mean forces from simulation samples obtained with multiple adaptively-
biased MD simulations. Through a series of applications to both simple and complex systems we 
demonstrated that, unlike existing approaches, this methodology provides a unified, self-consistent 
framework to derive thermodynamic quantities from these kind of enhanced-sampling simulations. 
WFAM may be used with protocols based on either single or multiple trajectories, carried out 
independently or coupled through an exchange scheme, and implementing biases on the same or 
different collective variables (CVs). The methodology relies on local averages to calculate the 
mean forces; hence, its practical application is straightforward and requires only quantities that 
can be calculated readily or that are already made available by simulation programs. Correct 
application of this analysis method however requires that the simulation data be obtained with 
biases that do not change abruptly or too frequently so that the molecular system remains close to 
equilibrium. Here we illustrated the application of the proposed approach to up six-dimensions. 
Practical analysis with higher dimensions can be carried out provided that there is enough sampling 
to perform accurate local averages in connected regions of the CVs space. A significant 
improvement in this regard can be provided by using specifically tuned estimators of the 
probability density[23].      

For the systems analyzed in this work, the proposed approach showed similar accuracy and 
convergence rate of an alternative energetic analysis that relies on the calculation of instantaneous 
forces[9-11, 51-53], which, however, are not available for every type of CV and simulation setup. 
Furthermore, consistently with previous applications of mean forces-based approaches[35], we 
observed reduced statistical error compared to the weighted histogram analysis method 
(WHAM)[25, 26, 35]. A disadvantage compared to WHAM[26] is that the free energy can be 
directly derived only a as function of a set of CVs which encompasses the ones on which the 
biasing potentials are applied. This notwithstanding, owing to the effect of the bias potential, the 
sampling along those CVs is significantly improved compared to any other direction, hence, 
evaluated mean forces and free energies are expected to be more accurate along the latter variables. 
We showed that the free energy as a function of any other set of CVs or unbiased ensemble 
averages can be inferred from post hoc ensemble reweighting based on the free energy calculated 
along the initial set of CVs.  

In conclusion, we anticipate that WFAM will greatly facilitate quantitative mechanistic 
analysis of complex processes in chemical and biological systems. The overall methodology, 
including the kinetic Monte Carlo scheme used to obtain free energies from the mean forces and 
to calculate minimum-energy paths, are implemented in python programs that will become freely 
available through GitHub.  
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