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Abstract 

A thorough understanding of sex-independent and sex-specific neurobiological features 

that underlie cognitive abilities in healthy individuals is essential for the study of 

neurological illnesses in which males and females differentially experience and exhibit 

cognitive impairment.  Here, we evaluate sex-independent and sex-specific 

relationships between functional connectivity and individual cognitive abilities in 392 

healthy young adults (196 males) from the Human Connectome Project. First, we 

establish that sex-independent models comparably predict crystallised abilities in males 

and females, but more accurately predict fluid abilities in males. Second, we 

demonstrate sex-specific models comparably predict crystallised abilities within and 

between sexes, and generally fail to predict fluid abilities in either sex. Third, we reveal 

that largely overlapping connections between visual, dorsal attention, ventral attention, 

and temporal parietal networks are associated with better performance on crystallised 

and fluid cognitive tests in males and females, while connections within visual, 

somatomotor, and temporal parietal networks are associated with poorer performance. 

Together, our findings suggest that shared neurobiological features of the functional 

connectome underlie crystallised and fluid abilities across the sexes.  
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Introduction 

Sex differences in brain-behaviour relationships are widely studied and controversial in 

neuroscience. Studies often report contradictory findings, and many are not replicated 

(1-8). In recent years, sex differences in cognitive manifestations of various 

neurological, neurodevelopmental, and neuropsychiatric illnesses have become 

increasingly evident (9-12). Insight into sex-independent and sex-specific brain-

behaviour relationships in healthy young adults can enable better understanding of the 

neurobiological underpinnings of cognitive deficits within and across sexes, paving the 

way for the development and implementation of personalised treatment strategies. In 

this study, we aim to disentangle sex-specific and sex-independent brain-behaviour 

relationships between resting-state functional connectivity and cognitive abilities in 

healthy young adults.  

Resting-state functional connectivity is defined as the temporal dependence of the 

blood-oxygen-level dependent (BOLD) response in anatomically separate brain regions 

at rest (13-15). Many studies have linked functional connectivity to cognitive functioning 

(16-23) and many have predicted individual cognitive abilities from functional 

connectivity (24-28). Recent work in this area has shown global signal regression, or 

removal of trends in the fMRI signal, improves prediction accuracy (25), machine and 

deep learning models perform comparably (24), and shared network features predict 

scores from distinct cognitive domains (26, 28). These studies aim to capture brain-

behaviour relationships that exist between functional connectivity and cognitive abilities, 

but it remains unclear whether these relationships are consistent across the sexes.  
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Sex differences in functional connectivity have been observed across distinct 

populations (4, 6, 8, 29-33). Previous work in a developmental cohort has shown males 

exhibit stronger inter-network connectivity, while females exhibit stronger intra-network 

connectivity (4). Extant literature also suggests hormonal modulation of functional 

connectivity (8, 34-37). In terms of functional connectivity features that discriminate sex, 

two studies identified that connections within and between frontoparietal and default 

mode networks strongly contribute to the predictions (33, 38). Together, these studies 

suggest sex differences exist in functional organisation of the brain, but do not address 

whether these differences translate into sex differences in connectivity-cognition 

relationships.  

A recent study similar to this one investigated differences between males and females 

in predictability of individual intelligence quotient (IQ) and sub-domain cognitive scores 

using whole-brain functional connectivity (39). Their individualized prediction integrated 

feature selection and regression with a leave-one-out cross validation strategy, resulting 

in distinct functional connectivity features being selected for each interaction. They 

reported IQ and other cognitive scores are generally more predictable in females than 

they are in males, and the sex-specific models rely on distinct functional connections to 

make predictions. A second study from the same group used a similar approach to 

predict IQ in males and females using functional connectivity, cortical thickness, or both 

(40). The reported no differences in prediction accuracy between males and females but 

found that sex-specific models relied on distinct neurobiological correlates. While these 

findings suggest the presence of distinct brain-behaviour relationships across the sexes, 

their leave-one-out prediction approach, resulting in distinct features for every iteration, 
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limits the extent to which we can compare and generalise these results because the 

features used are dependent on which subject is left out in the cross validation. In this 

current study, we aim to address this concern and expand upon this work.   

Here, we study sex-independent and sex-specific brain-behaviour relationships between 

functional connectivity and individual cognitive abilities in 392 healthy young adults (196 

male-female pairs matched for cognitive composite scores) from the Human 

Connectome Project (41). First, we quantify whether sex-independent models differ in 

how accurately they can predict distinct cognitive abilities from functional connectivity in 

males and females. Second, we quantify whether sex-specific models better predict 

individual cognitive abilities from functional connectivity within or between sexes. Third, 

we evaluate whether shared or sex-specific functional connectivity features map to 

cognitive abilities.    
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Methods 

The methods used here build upon our prior work (26) but the analyses presented are 

novel and aim to identify shared and sex-specific features that predict cognitive abilities. 

Our experimental workflow is shown in Figure 1. The data that support the findings of 

this study are openly available as part of the Human Connectome Project at 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-

data-release (41). Codes used to generate the results presented here are available on 

GitHub (https://github.com/elvisha/SexSpecificCognitivePredictions). 

Dataset: We used publicly-available high resolution, preprocessed MRI data from the 

Human Connectome Project (HCP) – Young Adult S1200 release (41). MRI data were 

acquired on a Siemens Skyra 3T scanner at Washington University in St. Louis. 

Acquisitions included T1-weighted and T2-weighted anatomical images (0.7mm 

isotropic), and functional MRI (2.0mm isotropic, TR/TE = 720/33.1ms, 8x multiband 

acceleration). Functional MRI were collected with both left-right and right-left phase 

encoding. We examined resting-state functional MRI (rfMRI) time series from 196 male-

female pairs (n=392) of unrelated healthy young adults with four complete rfMRI runs 

that were matched for their cognitive composite scores. Although the term gender is 

used in the HCP Data Dictionary, we use the term sex in this article because the 

database collected self-reported biological sex information as opposed to gender 

identification. We did not verify the self-reported biological sex using genetic 

information.  

Parcellation: We used a subject-specific CoCo439 parcellation that was developed in-

house by combining parts of several atlases. This parcellation includes 358 (of 360) 
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functionally derived cortical regions from HCP multi-modal parcellation (MMP) (42) (two 

hippocampal regions were excluded as they were included in other subcortical ROIs); 

12 anatomically defined subcortical regions derived from FreeSurfer’s aseg.mgz, 

adjusted by FSL’s FIRST tool (43); 12 anatomically defined subcortical nuclei from 

AAL3v1 (44); 30 anatomically defined subcortical nuclei from FreeSurfer 7 (45) (50 

nuclei were merged down to 30 to remove the smallest nuclei, as with AAL3v1); and 27 

anatomically defined cerebellar regions from the SUIT atlas (46). Additional details and 

corresponding files for this parcellation are available on GitHub 

(https://github.com/kjamison/nemo#parcellations).  

Functional Connectivity Extraction: Each subject underwent four gradient-echo EPI 

resting-state fMRI (rsfMRI) runs of ~15 min each over two sessions. There are 1200 

volumes per scan for a total of 4800 volumes for each subject over the four runs. The 

minimal preprocessing pipeline performed by the HCP consortium included motion and 

distortion correction, registration to subject anatomy and standard MNI space, and 

automated removal of noise artefacts by independent components analysis (47-49). We 

regressed the global signal and its temporal derivative from each rsfMRI time series and 

concatenated the four scans. We then computed the zero lag Pearson correlation 

between the concatenated time series from each pair of regions to derive the functional 

connectivity matrix, which we then Fisher’s z-transformed. We used the vectorised 

upper triangular of this functional connectivity matrix to predict cognition.   

Cognition: The NIH Toolbox Cognition Battery is an extensively validated battery of 

neuropsychological tasks (50-57) that assesses five cognitive domains: language, 

executive function, episodic memory, processing speed, and working memory through 
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seven individual test instruments (52). The specific tasks include Dimensional Change 

Card Sort Test, Flanker Inhibitory Control and Attention Test, Picture Sequence Memory 

Test, Picture Vocabulary Test, Oral Reading Recognition Test, List Sorting Working 

Memory Test, and Pattern Comparison Processing Speed (52). Three composite scores 

are derived from participants’ scores on the NIH Toolbox Cognitive Battery tasks: 

Crystallised Cognition Composite, Fluid Cognition Composite, and Total Cognition 

Composite (52). The Crystallised Cognition Composite comprises the Picture 

Vocabulary and Oral Reading Recognition tests and assesses language and verbal 

skills. The Fluid Cognition Composite comprises scores on the Dimensional Change 

Card Sort, Flanker Inhibitory Control and Attention, Picture Sequence Memory, List 

Sorting Working Memory, and Pattern Comparison Processing Speed tests. It is a 

composite that broadly assesses processing speed, memory, and executive functioning. 

The Total Cognition Composite combines the Crystallised and Fluid Cognition 

Composites. Composite scores tend to be more reliable/stable but do not capture 

variability in individual tasks (52). In this study, we investigated the Crystallised, Fluid, 

and Total Cognition Composites, along with the individual scores from the seven tasks 

comprising them. 

Prediction of Cognitive Performance: We used functional connectivity to predict ten 

distinct outputs (three composite scores and seven task scores). For each prediction, 

we trained three distinct models: one sex-independent (trained on both male and female 

subjects), and two sex-specific (one trained on males, and one trained on females). For 

each model, we randomly shuffled and split the data into 100 distinct training (80%) and 

testing (20%) splits. For the sex-independent models, the training sets included equal 
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numbers of males and females. We fit a linear ridge regression model on Scikit-learn 

(58) using the training subset and tuned the regularisation parameter with five iterations 

of nested cross validation with three-fold inner and outer loops. We optimised the 

regularisation parameter in the inner loop and validated it in the outer loop. We took the 

median optimised hyperparameters from the five iterations to generate a single final 

model. We trained this model on the entire training set, extracted feature weights, and 

evaluated the model’s prediction accuracy and explained variance on two distinct hold-

out test sets: one test set comprised of male subjects and the other comprised of female 

subjects. Male and female test sets consisted of equal numbers of subjects. We 

quantify prediction accuracy as the Pearson correlation between the true and predicted 

values (25). Across the 100 iterations of each model, we kept the distinct train/test splits 

consistent for males and females.  

Model Significance: For each predictive model, we generated a corresponding null 

distribution to assess model significance in the following way. We permuted the 

predicted variables (cognitive score) 25,000 times and then randomly split the data into 

train and test sets. For each of these 25,000 permutations, we trained and tested the 

model on the permuted data to obtain a null distribution of model performance. We 

assessed whether the original model’s performance was significantly non-zero by 

comparing the prediction accuracy from each of the original model’s 100 train/test splits 

to the median prediction accuracy from the null distribution. Specifically, the p-value for 

the model’s significance is the proportion of 100 original models that had prediction 

accuracies less than or equal to the median performance of the null model. We then 

corrected the p-values for multiple comparisons over all models (trained on both sexes, 
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trained on males only, and trained on females only to predict ten distinct cognitive 

scores) and both test subsets (males only and females only) using the Benjamini-

Hochberg False Discovery Rate (q=0.05) procedure (59).  

Model Comparisons: For each cognitive score, our workflow generated two distributions 

of 100 performance values: the first representing model performance when evaluated 

on only male individuals, and the second representing model performance when 

evaluated on only female individuals. For each cognitive score, we compared prediction 

performance across the male and female test sets using an exact test of differences 

(60).  

Feature Importance: We adjusted feature weights to increase their interpretability as 

described in (61). Briefly, for each iteration of a model, we used the feature weights, W, 

the covariance of the input variable (functional connectivity) in the training set, Σ�, and 

the covariance of the output variable (cognitive score) in the training set, Σ�, to extract 

the adjusted feature weights, A, as follows:  

� �  Σ��Σ�
�� 

We then averaged the adjusted feature weights over the 100 iterations of each model to 

obtain feature importance matrices. Pairwise regional feature importances were 

mapped to the network level (Figure S1) by assigning each cortical region from the 

CoCo439 atlas to one of 17 networks from the Yeo 17-network parcellation (62). 

Subcortical regions in the CoCo439 atlas were assigned to a subcortical network, and 

cerebellar regions to a cerebellar network. The average of the positive and negative 

feature importances of region pairs within and between the 17 networks were calculated 

separately; the result is a set of positive and negative importance of connections 
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between and within the 17 networks. We evaluated the Pearson correlation between 

different models’ pairwise network-level feature importances, where positive and 

negative importances were considered together by concatenating them into a single 

vector.  
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Figure 1: Experimental workflow. a) First, we generated individual functional 
connectivity using Pearson correlation of regional global signal regressed resting-state 
functional MRI time series. b) Second, we compiled cognitive scores for all subjects. 
The NIH Toolbox Cognition Battery assesses five cognitive domains using seven tests. 
The Crystallised Cognition Composite (blue) reflects language (vocabulary, reading 
decoding). The Fluid Cognition Composite (green) reflects executive function (cognitive 
flexibility, inhibitory control and attention), episodic memory, working memory, and 
processing speed. The Total Cognition Composite (dotted) combines the Crystallised 
and Fluid Composite scores. c) Third, we predicted each cognitive score from functional 
connectivity using sex-independent and sex-specific linear ridge regression models. We 
randomly shuffled and split the male and female subjects into train (80%) and test 
(20%) groups. Male and female training subsets were concatenated for the sex-
independent models and kept separate for the sex-specific models. We performed five 
shuffled iterations of nested cross validation with three-fold inner and outer loops. The 
model hyperparameter was optimised in the inner loop and validated in the outer loop. 
The median optimised hyperparameter from five iterations of nested cross validation 
was used to train the final model on the entire (sex-independent or sex-specific) training 
set and evaluated on the (sex-independent or sex-specific) test hold-out set. This was 
repeated for 100 unique train/test splits.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.02.17.431670doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431670
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.02.17.431670doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431670
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

Results 

An overview of our experimental workflow is shown in Figure 1. Please refer to the 

Methods section for details.  

Sex-Independent Models: Sex-independent models significantly predict Total and 

Crystallised Composite scores for both sexes, and Fluid Composite scores in males 

only, (corrected p<0.05). Within the crystallised domain, we significantly predict Picture 

Vocabulary scores in both sexes (corrected p<0.05), but only significantly predict 

Reading scores in females (corrected p<0.05). Within the fluid domain, we significantly 

predict Dimensional Change Card Sort, Picture Sequence Memory, and Processing 

Speed scores in males (corrected p<0.05), while we fail to significantly predict Flanker 

and List Sorting scores in males or females. Prediction accuracy for sex-independent 

models is shown in Figure 2 and Table 1. Explained variance for sex-independent 

models is shown in Figure S2 and Table S1.  

Sex-Specific Models: Sex-specific male-trained and female-trained models significantly 

predict Total Composite scores in both sexes (corrected p<0.05). Using female-trained 

models, we significantly predict Crystallised Composite scores in both sexes (corrected 

p<0.05), but fail to significantly predict Fluid Composite scores in either sex. Using 

male-trained models, we significantly predict Crystallised Composite scores in females 

and Fluid Composite scores in males (corrected p<0.05). Within the crystallised domain, 

we significantly predict Picture Vocabulary scores in both sexes using both sex-specific 

models (corrected p<0.05), but only significantly predict Reading scores in the opposite 

sex (corrected p<0.05). Within the fluid domain, we significantly predict Dimensional 

Change Card Sort in males using male-trained models (corrected p<0.05), but fail to 
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significantly predict all Flanker, Picture Sequence Memory, List Sorting, and Processing 

Speed scores in either sex using either sex-specific model. Prediction accuracy for sex-

specific models is shown in Figure 3 and Table 2. Explained variance for sex-specific 

models is shown in Figure S3 and Table S2. 
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Figure 2: Violin plots of prediction accuracy (correlation between true and predicted 
cognitive scores) for sex-independent models predicting cognitive composite scores and 
individual task scores. Blue violins represent accuracy of models tested on male 
subjects and red represents of models tested on female subjects.  The shape of the 
violin plots indicates the entire distribution of values, dashed lines indicate the median, 
and dotted lines indicate the interquartile range. Solid colour violin plots represent 
models that performed above chance levels based on permutation tests. Vertical dotted 
lines separate individual tests according to cognitive domain: general, crystallised, and 
fluid.  
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Table 1: Prediction accuracy (correlation between true and predicted cognitive scores) 
for sex-independent models predicting cognitive composite scores and individual task 
scores. Median prediction accuracy (interquartile range) is shown. Bolded prediction 
accuracy values denote that the model performed better than chance after corrections 
for multiple comparisons.  
 

 Male-Tested Female-Tested 

Total Composite 0.53 (0.15) 0.38 (0.15) 

Crystallised Composite 0.42 (0.13) 0.45 (0.16) 

Picture Vocabulary 0.44 (0.12) 0.43 (0.15) 

Reading 0.30 (0.15) 0.35 (0.15) 

Fluid Composite 0.41 (0.19) 0.25 (0.17) 

Flanker 0.10 (0.17) 0.08 (0.16) 

Dimensional Change Card Sort 0.32 (0.21) 0.17 (0.18) 

Picture Sequence Memory 0.25 (0.18) 0.14 (0.20) 

List Sorting 0.14 (0.19) 0.05 (0.20) 

Processing Speed 0.28 (0.15) 0.13 (0.17) 
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Figure 3: Violin plots of prediction accuracy (correlation between true and predicted 
cognitive scores) for sex-specific models predicting cognitive composite scores and 
individual task scores. Purple indicates results from models trained and tested on 
males; blue indicates results from models trained on males and tested on females; 
green indicates results from models trained on females and tested on males; and 
orange indicates results from models trained and tested on females. The shape of the 
violin plots indicates the entire distribution of values, dashed lines indicate the median, 
and dotted lines indicate the interquartile range. Solid colour violin plots indicate those 
models that performed above chance levels based on permutation tests. Vertical dotted 
lines separate individual tests according to cognitive domain: general, crystallised, and 
fluid.  
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Table 2: Prediction accuracy (correlation between true and predicted cognitive scores) 
for sex-specific models predicting cognitive composite scores and individual task 
scores. Median prediction accuracy (interquartile range) is shown. Bolded prediction 
accuracy values denote that the model performed better than chance after corrections 
for multiple comparisons.  
 

 
Male-Trained Female-Trained 

Male- 
Tested 

Female- 
Tested 

Male- 
Tested 

Female- 
Tested 

Total Composite 0.48 (0.12)   0.36 (0.14) 0.46 (0.19) 0.24 (0.17) 

Crystallised Composite 0.29 (0.18)  0.39 (0.14) 0.38 (0.16) 0.32 (0.16) 

Picture Vocabulary 0.35 (0.15)  0.38 (0.16) 0.39 (0.11) 0.36 (0.13) 

Reading 0.17 (0.16) 0.28 (0.13) 0.30 (0.18) 0.21 (0.18) 

Fluid Composite 0.37 (0.17)  0.24 (0.16) 0.30 (0.18) 0.13 (0.19) 

Flanker -0.02 (0.22) 0.17 (0.17) 0.13 (0.17) -0.10 (0.17) 

Dimensional Change Card 
Sort 0.30 (0.22)  0.19 (0.18) 0.25 (0.22) 0.04 (0.19) 

Picture Sequence Memory 0.25 (0.18) 0.07 (0.19) 0.05 (0.19) 0.15 (0.17) 

List Sorting 0.09 (0.17)  0.15 (0.21) 0.15 (0.19) -0.10 (0.16) 

Processing Speed 0.24 (0.16) 0.19 (0.17) 0.26 (0.19) 0.01 (0.18) 
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Model Comparisons: Using an exact test of differences, we did not identify any 

significant differences in model performance between the sexes in the sex-independent 

models or the sex-specific models for any cognitive score.  

Feature Importance Comparisons: We correlated network-level feature importances 

between the sex-independent and sex-specific models (Figure 4). Features important in 

predicting the Total Composite, Crystallised Composite, and specific crystallised task 

scores from the sex-independent models are equally correlated to those from the male- 

and female- specific models. Features important in predicting the Fluid Composite and 

specific fluid scores are more strongly correlated to features important to predict those 

scores in males than in females. Features important in predicting each of the scores 

from the sex-specific models are generally more strongly correlated within sexes for 

different cognitive scores than across sexes for the same cognitive score; however, the 

correlations between models trained on different sexes is generally high. Features 

important in predicting the Total Composite score are correlated with features important 

to predict the Crystallised and Fluid composite scores and each of the individual task 

scores. Feature importance for predicting specific crystallised task scores are more 

strongly correlated with feature importance for predicting the Crystallised Composite 

score in females than they are in males. Features important for predicting specific fluid 

task scores are more strongly correlated to those important for predicting the Fluid 

Composite score in males than they are in females.   
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Figure 4: Pearson correlation of network-level feature importance for the sex-
independent and sex-specific models predicting each cognitive score. Positive and 
negative network-level feature importance were computed by taking the positive and 
negative sums of the regional feature importance. Correlations were evaluated between 
the concatenated positive and negative network-level feature importances.  
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Network-Level Feature Importance: Stronger functional connections between visual, 

dorsal attention, ventral attention, and temporal parietal networks are associated with 

higher crystallised abilities in males and females (Figure 5). Stronger functional 

connections within and between visual, dorsal attention, ventral attention, and temporal 

parietal networks, as well as within visual, dorsal attention, and default mode networks 

predict higher fluid abilities in females, while stronger functional connections between 

visual, ventral attention, and temporal parietal networks predict higher fluid abilities in 

males. Stronger functional connections within visual, somatomotor, and temporal 

parietal networks predict lower fluid and crystallized abilities in both sexes. Generally 

similar functional connections predict Picture Vocabulary and Reading scores in both 

sexes (Figure 6) as well as scores in individual fluid tasks, with the exception of List Sort 

and Picture Sequence scores (Figure S4). In females, stronger functional connections 

within visual, dorsal attention, control, and default mode networks predict higher List 

Sort scores, while stronger connections between those networks predict lower scores. 

In males, stronger connections between visual, dorsal attention, and ventral attention, 

as well as within dorsal attention, control, and default mode networks predict higher List 

Sort scores, while stronger connections within visual, somatomotor, and temporal 

parietal networks predict lower scores. Stronger functional connections within visual and 

temporal parietal networks predict higher Picture Sequence scores in females, while 

stronger connections within the default mode network, and between visual, dorsal 

attention, and ventral attention networks predict higher scores in males.  
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Figure 5: Network-level positive and negative feature importance for females (left two 
columns) and males (right two columns) to predict crystallised (top), fluid (middle), and 
total (bottom) cognition composites. Node radii and colour denote strength of intra-
network feature importance. Edge thickness and colour denote strength of inter-network 
feature importance. Warmer colours are used for positive feature importance, and 
cooler colours for negative feature importance. 
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Figure 6: Network-level positive and negative feature importance for females (left two 
columns) and males (right two columns) to predict individual crystallised cognition task 
scores: picture vocabulary (top) and reading (bottom). Node radii and colour denote 
strength of intra-network feature importance. Edge weight and colour denote strength of 
inter-network feature importance. Warmer colours are used for positive feature 
importance, and cooler colours for negative feature importance. 
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Discussion 

In this study, we quantified sex-independent and sex-specific relationships between 

functional connectivity and cognition. Using whole brain resting-state functional 

connectivity, we predicted individual crystallised and fluid abilities in 392 healthy young 

adults. First, we find sex-independent models predict with equivalent accuracy 

crystallised abilities in both sexes but predict fluid abilities more accurately in males. 

Second, we show sex-specific models perform comparably when predicting crystallised 

abilities within and between sexes, but generally fail to predict fluid abilities in either sex, 

except for the fluid composite and Dimensional Change Card Sort score in males. Third, 

we demonstrate that sex-specific models predicting crystallised and fluid abilities 

generally rely on shared functional connections within and between distinct cortical 

networks. Together, our findings largely suggest that shared neurobiological features 

predict general and specific crystallised abilities in both sexes.  

Crystallised cognition primarily represents language (vocabulary and reading decoding) 

abilities, while fluid cognition represents a wider range of cognitive processes including 

executive function (cognitive flexibility and inhibitory control and attention), episodic 

memory, working memory, and processing speed. Prior work has shown Total and 

Crystallised Composite scores are more predictable than the Fluid Composite (26) but 

that work did not investigate whether the same is true for specific tasks within the 

cognitive domains or whether these results hold equally among males and females. In 

this current work, we replicate and expand upon those previous findings.  

Results from our sex-independent models suggest they might be capturing shared 

relationships between functional connectivity and crystallised abilities in males and 
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females, but male-specific relationships between functional connectivity and fluid 

abilities. This is supported by our observation that connectivity-cognition relationships 

for fluid abilities from the sex-independent models more closely resemble those from the 

male-specific models than the female-specific models. Results from our sex-specific 

models provide additional support for our findings from the sex-independent models, as 

we find that connectivity-cognition relationships for crystallised abilities and overall 

cognition are generally shared between the sexes. We also observe an even greater 

inability to predict fluid abilities with our sex-specific models compared to our sex-

independent models, which could be in part due to the decreased sample size in the 

sex-specific models. The general lack of predictability observed for fluid abilities in both 

types of models may be underscored by individual differences in the signal-to-noise 

ratio of the specific brain-behaviour relationships. Fluid abilities are more susceptible to 

factors including sleep, stress, and mood which directly influence executive functions 

and memory and less stable within an individual over time (63-65). Our inability to 

accurately predict most fluid abilities with our models provides support for the null 

hypothesis that fluid abilities/executive function are not strongly related to functional 

connectivity. Hence, we primarily focus our interpretation on results pertaining to the 

crystallised cognitive domain. 

Our understanding of cognitive sex differences and brain-behaviour relationships have 

widely shifted over the decades. While research has confirmed some differences, many 

others have been refuted (66, 67). Two similar studies to date investigating sex-specific 

brain-behaviour relationships have reported contradictory findings. Implementing a 

connectome-based prediction modelling approach, Jiang et al observed no differences 
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in prediction accuracy between males and females when predicting IQ using functional 

connectivity (40). In a second study from the group, they demonstrated IQ was more 

predictable in females than in males (39). In this current work, our sex-independent 

models comparably predict overall cognition and crystallised abilities in males and 

females, but better predict some fluid abilities in males compared to females while 

failing to predict other fluid tasks in either sex altogether. In this study, we implemented 

a nested cross validation approach with 100 different randomised splits of the data to 

generate a distribution of performance accuracy measures. Previous studies relied on 

integrating feature selection with a leave-one-out cross validation approach resulting in 

a single accuracy value for the model and distinct features being used to predict the 

output variable for each subject (39, 40). Due to these methodological differences, our 

prediction accuracy results cannot be directly compared to prior work. However, it is 

worth noting that our sex-specific models comparably predict overall and crystallised 

aspects of cognition in males and females, supporting one of the previous studies (40) 

but contradicting the other (39). 

In this study, we find connections within and between distinct cortical networks are 

crucial to predict cognition, and these features are shared between the sexes, 

contradicting extant literature implementing sex-specific models (39, 40). More 

specifically, we find stronger connections between the visual, dorsal attention, ventral 

attention, and temporal parietal networks predict higher crystallised and fluid ability 

scores in both sexes, while stronger connections within visual, somatomotor, and 

temporal parietal networks predict lower crystallised and fluid ability scores in both 

sexes. While some differences in male and female models’ feature importances exist, 
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their correlations are moderate to high (R = 0.6-0.9). One notable difference between 

the sexes is in the positive feature importance map for the fluid composite. However, 

the female model did not perform better than chance for fluid ability predictions while the 

male model did, limiting the relevance of this finding. We also demonstrate that feature 

importance correlations, within and between sexes, are stronger for tasks within the 

crystallised domain than tasks within the fluid domain or tasks between the two 

domains. This is likely related to the models’ overall lower accuracies in predicting fluid 

abilities; if the models are not reliably mapping functional connectivity to fluid abilities, 

there will be more noise in their feature importance, resulting in lower correlations 

across models. Our results contradict findings from prior work identifying distinct 

correlates of cognition in males and females. In one study, authors reported the top 100 

functional connections to predict IQ in males and females are distinct with only three 

overlapping features (39). In a second study, authors found male IQ was more strongly 

correlated with functional connectivity in left parahippocampus and default mode 

network, while female IQ was more strongly correlated with functional connectivity in 

putamen and cerebellar network (40). This discrepancy in findings could be due to 

model differences, particularly in the cross-validation, feature selection and inference 

choices, or the choice of cognitive score. 

Limitations:  

In this study, we trained and tested sex-independent and sex-specific models on 196 

male and 196 female subjects, all unrelated. Over each of the 100 outer loop 

permutations, we ensured the same set of male/female subjects were in the training and 

testing subsets for the sex-independent and the male/female-specific models. 
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Maintaining this consistency of subjects allowed us to maintain the variance within the 

subjects, but also resulted in our sex-independent models being trained and tested on 

twice as many subjects as our sex-specific models. Prior work has demonstrated that 

fluid abilities are more difficult to predict than crystallised abilities (26). In this study, we 

found sex-independent models were able to predict some fluid abilities above chance 

levels in males, but sex-specific models generally did not perform above chance levels 

for either sex. The inherent difficulty in predicting fluid abilities, combined with the lower 

number of subjects for the sex-specific models, may explain why many of our sex-

specific models performed poorly. In this study, our main goal was to evaluate whether 

the models differed in their predictions of cognitive abilities between males and females 

rather than between the models themselves. However, future work in this area should 

explore whether sex-independent and sex-specific models differ from one another when 

training sample sizes are consistent.  

Many researchers studying cognitive differences between males and females compare 

group averages between the sexes. While this approach can yield insightful results 

pertaining to general sex differences, their relevance to individual cognitive abilities in 

males and females is limited. Genetic, hormonal, cultural, and psychosocial factors can 

influence sex-related and sex-independent individual differences in functional 

connectivity and cognition (66, 68). Here, we sought to uncover whether relationships 

between functional connectivity and cognition are shared between the sexes or are 

distinct. Our results largely suggest shared network connectivity features equally predict 

cognitive abilities in males and females. However, we must acknowledge that here, due 

to the limitations of the data set, we can only consider individuals’ sex but not their 
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gender identity or fluidity. Our society projects distinct gender roles onto males and 

females paving the way for a lifetime of gender-differentiated experiences (69). These 

distinct social factors may drive gender differences in brain-behaviour relationships, 

even in the absence of sex differences, that our study is not designed to capture. Future 

work in this area should aim to collect and integrate data about gender identity and 

fluidity so we can better understand how relationships between connectivity and 

cognition may or may not vary with gender.  

Many machine learning models based on neuroimaging data struggle with 

generalisability due to differences in study sites, scanner types, and scan parameters. 

The models we have designed in this study were only trained, validated, and tested on 

data from the Human Connectome Project. Although we implement a nested cross 

validation approach and evaluate our models with 100 distinct train/test splits, the 

results we report may not be entirely comparable or generalisable to other datasets. 

Future studies should aim to integrate data from multiple sites to address this limitation.  
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Conclusion 

A comprehensive understanding of neurobiological markers that underlie cognitive 

abilities within and across sexes is necessary if we are to understand sex-specific 

effects of aging and illness on cognition. Here, we implement predictive modelling 

approaches to explore sex-independent and sex-specific relationships between 

functional connectivity and cognitive abilities. We report three main findings. We 

demonstrate that sex-independent models comparably capture relationships between 

connectivity and crystallised abilities in males and females, but only successfully 

capture relationships between connectivity and fluid abilities in males. We find sex-

specific models comparably predict crystallised abilities within and between sexes, but 

fail to predict fluid abilities in either sex. Finally, we find that stronger connections 

between visual, dorsal attention, ventral attention, and temporal parietal networks 

predict higher crystallised and fluid ability scores, and stronger connections within 

visual, somatomotor, and temporal parietal networks predict lower crystallised and fluid 

ability scores in both sexes. Taken together, this suggests that brain-behaviour 

relationships are shared between the sexes and rely on overlapping network 

connectivity within and between cortical structures.   
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