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 2 

SUMMARY 26 

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell 27 

type resolution. To profile the activity of human gene regulatory elements in diverse cell types and 28 

tissues in the human body, we applied single cell chromatin accessibility assays to 25 distinct 29 

human tissue types from multiple donors. The resulting chromatin maps comprising ~500,000 30 

nuclei revealed the status of open chromatin for over 750,000 candidate cis-regulatory elements 31 

(cCREs) in 54 distinct cell types. We further delineated cell type-specific and tissue-context 32 

dependent gene regulatory programs, and developmental stage specificity by comparing with a 33 

recent human fetal chromatin accessibility atlas. We finally used these chromatin maps to 34 

interpret the noncoding variants associated with complex human traits and diseases. This rich 35 

resource provides a foundation for the analysis of gene regulatory programs in human cell types 36 

across tissues and organ systems. 37 
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 3 

INTRODUCTION 42 

 43 

The human body is comprised of various organs, tissues and cell types, each with highly 44 

specialized functions. The genes expressed in each tissue and cell type – and in turn their 45 

physiologic roles in the body – are regulated by cis-regulatory elements such as enhancers and 46 

promoters (Carter and Zhao, 2020). These sequences dictate the expression patterns of target 47 

genes by recruiting sequence specific transcription factors (TFs) in a cell-type specific manner 48 

(Shlyueva et al., 2014). Upon binding of TFs, the regulatory elements frequently adopt 49 

conformational changes such that they are more accessible to endonucleases or transposases, 50 

enabling genome-wide discovery by combining with high throughput sequencing (Buenrostro et 51 

al., 2013; John et al., 2013; Klemm et al., 2019). However, conventional assays have, in large 52 

part, used heterogeneous tissues as input materials to produce population average 53 

measurements, and consequently, the current catalogs of candidate regulatory sequences in the 54 

human genome (Andersson et al., 2014; Meuleman et al., 2020; Moore et al., 2020; Roadmap 55 

Epigenomics et al., 2015; Shen et al., 2012)  lack the information about cell type-specific activities 56 

of each element. This limitation has hampered our ability to study gene regulatory programs in 57 

distinct human cell types and to interpret the noncoding DNA in the human genome.  58 

 59 

Genome wide association studies (GWAS) have identified hundreds of thousands of genetic 60 

variants associated with a broad spectrum of human traits and diseases. The large majority of 61 

these variants are non-coding (Claussnitzer et al., 2020). Observations that annotated cis-62 

regulatory elements in disease-relevant tissues and cell types are enriched for non-coding risk 63 

variants (Ernst et al., 2011; Maurano et al., 2012; Roadmap Epigenomics et al., 2015) led to the 64 

hypothesis that a major mechanism by which noncoding variants influence disease risk is by 65 

altering transcriptional regulatory elements in specific cell types. However, annotation of these 66 

non-coding risk variants has been hindered by a lack of cell type-resolved maps of regulatory 67 

elements in the human genome. Whereas innovative approaches to distinguish causal variants 68 

from local variants in linkage disequilibrium (LD) using fine mapping (Wakefield, 2009), and to link 69 

variants to target genes using co-accessibility of open chromatin regions in single cells (Pliner et 70 

al., 2018) or 3-dimensional chromosomal contact-based linkage scores (Nasser et al., 2020), 71 

have made important strides toward the prioritization of causal variants and the prediction of their 72 

target genes, the annotation of candidate cis-regulatory elements (cCREs) in discrete human cell 73 

types has posed a longstanding technical challenge.  74 

 75 
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Single cell omics technologies, enabled by droplet-based, combinatorial barcoding or other 76 

approaches, have now enabled the profiling of transcriptome, epigenome and chromatin 77 

organization from complex tissues at single cell resolution (Grosselin et al., 2019; Klein et al., 78 

2015; Lake et al., 2018; Luo et al., 2017a; Macosko et al., 2015; Preissl et al., 2018). In particular, 79 

combinatorial cellular barcoding-based assays such as single nucleus ATAC-seq (also known as 80 

sci-ATAC-seq (Cusanovich et al., 2015)) have permitted the identification of cCREs in single 81 

nuclei without the need for physical purification of individual cell types. The resulting data can be 82 

used to deconvolute cell types from mixed cell populations and to dissect cell type-specific 83 

transcriptomic and epigenomic states in primary tissues.  While these tools have been applied to 84 

mammalian tissues including murine biosamples (Cusanovich et al., 2018; Lareau et al., 2019; Li 85 

et al., 2020; Preissl et al., 2018; Sinnamon et al., 2019), human fetal tissues (Domcke et al., 86 

2020), and individual adult human organ systems (Chiou et al., 2019; Corces et al., 2020; Hocker 87 

et al., 2020; Wang et al., 2020), we still lack comprehensive maps of cCREs in the cell types 88 

comprising primary tissues of the adult human body.  89 

 90 

In the present study we used a modified single-cell combinatorial indexing ATAC-seq (sci-ATAC-91 

seq) protocol optimized for flash frozen primary tissues (Hocker et al., 2020; Preissl et al., 2018) 92 

to profile chromatin accessibility in 25 adult human tissue types from multiple donors. We profiled 93 

472,373 nuclei from these tissues, grouped them into 54 cell types based on similarity in 94 

chromatin landscapes, and identified a union of 756,414 open chromatin regions and candidate 95 

CREs (cCREs) from the resulting maps. We then delineated gene regulatory programs in different 96 

human cell types, decomposed previous bulk chromatin accessibility maps, and characterized 97 

adult specific elements in different tissues and organ systems. Finally, we used the new cCRE 98 

atlas to interpret noncoding variants associated with complex human traits and diseases, 99 

demonstrating its utility in improving our understanding of polygenic human traits and revealing 100 

clinically relevant therapeutic targets for complex diseases. We created an interactive web atlas 101 

to disseminate this resource [CATLAS, Cis-element ATLAS] http://catlas.org/humantissue.  102 
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 5 

RESULTS 103 

 104 

Single cell chromatin accessibility analysis of adult human primary tissues 105 

 106 

In order to generate a cell type-resolved atlas of cCREs in the adult human body, we performed 107 

sci-ATAC-seq (Cusanovich et al., 2015; Preissl et al., 2018) with 70 primary tissue samples 108 

collected from 25 distinct anatomic sites in four postmortem adult human donors (Figure 1A, Table 109 

S1). Tissue samples were chosen to survey a breadth of human organ systems, including nine 110 

tissue types from across the gastrointestinal tract, four tissue types from the heart and peripheral 111 

vasculature, four female reproductive tissue types, three different endocrine tissue types, two 112 

tissue types from the integumentary system, and single tissue types from the muscular, peripheral 113 

nervous, and respiratory systems. Isolation of intact nuclei from these diverse primary tissue 114 

types, which differed in their nuclear compositions and sensitivities to mechanical dissociation, 115 

presented a technical challenge. We thus optimized nuclear isolation methods and buffer 116 

conditions for each tissue type (Table S2, see Methods). Subsequently, we generated sci-ATAC-117 

seq datasets using a semi-automated workflow (Hocker et al., 2020; Li et al., 2020; Preissl et al., 118 

2018) and sequenced resulting libraries to 7,651 raw sequence reads per nucleus on average, 119 

with a median read duplication rate of 44% (Table S3). Open chromatin fragments from these 120 

libraries were computationally assigned to individual nuclei using nucleus-specific DNA barcodes. 121 

We next filtered the single nucleus profiles based on stringent quality control criteria including an 122 

enrichment of reads at transcription start sites (TSS enrichment; TSSe) greater than 7-fold, and 123 

a minimum of > 1,000 mapped chromatin fragments per nucleus. Nuclei were further filtered for 124 

potential doublets, instances of 2 or more nuclei sharing a common barcode, using a version of 125 

Scrublet (Wolock et al., 2019) modified for sci-ATAC-seq (see Methods). Ultimately, we obtained 126 

high quality open chromatin profiles for 472,373 nuclei, with a median of 3,071 unique open 127 

chromatin fragments per nucleus and an average TSSe of 13.6 ± 4.5 per nucleus (Figure 1B, 128 

Figure S1, Table S3). 129 

  130 

Analyzing large and sparse single cell chromatin accessibility datasets has been challenging. 131 

According to a recent assessment of 10 popular computational methods for analyzing single cell 132 

ATAC-seq data (Chen et al., 2019), SnapATAC was the only method able to cluster > 80,000 cells 133 

without sacrificing accuracy. In the latest development of SnapATAC, we utilized the Nyström 134 

method (Bouneffouf and Birol, 2016) to further improve the scalability of the algorithm to handle 135 

millions of cells, an indispensable feature for atlas-scale studies. When dealing with samples from 136 
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diverse biological backgrounds, individual and batch effects are inevitable and pose further 137 

challenges to integrative analysis. We built upon the Mutual Nearest Neighbor batch-effect-138 

correction method (Haghverdi et al., 2018) to develop a variant called Iterative Mutual Nearest 139 

Centroid algorithm to correct for donor or batch effects with added scalability and flexibility (Figure 140 

S2A-C, see Methods). After dimensionality reduction and batch correction, we applied the Leiden 141 

algorithm (Traag et al., 2019) to identify cell clusters. To determine the optimal number of cell 142 

types present in the dataset, we surveyed the stability of clustering results upon simulated 143 

perturbation under different parameters (Figure S2D, see Methods). This analysis yielded a total 144 

of 54 distinct clusters with high reproducibility and diversity (Figure 1B, Figure S2C-D, Table S4). 145 

 146 

Annotation of major and sub-classes of human cell types 147 

 148 

To annotate the resulting cell clusters, we first curated a set of marker genes from the PanglaoDB 149 

single cell RNA-seq marker gene database (Franzén et al., 2019) corresponding to expected 150 

human cell types. We utilized chromatin accessibility at the promoter, defined as ±1000 bp relative 151 

to transcription start sites (TSS), as a proxy for gene activity and computed cell-type enrichment 152 

scores for each of the 54 clusters, and created initial cell cluster annotations based on these cell-153 

type enrichment scores (Figure S3A, see Methods). We next manually reviewed these 154 

assignments and made adjustments based on focused consideration of marker gene accessibility. 155 

Reassuringly, enrichment of Gene Ontology (GO) terms for genes linked to restricted peaks in a 156 

given cluster was in agreement with presumed functions of assigned cell types (Figure S4). 157 

Finally, we compared our single-cell chromatin accessibility atlas with a recent single cell 158 

transcriptional atlas of adult human tissues (Han et al., 2020). Correlating promoter accessibility 159 

profiles from sci-ATAC-seq clusters with gene expression profiles from scRNA-seq clusters, we 160 

found that the cell types with the highest correlation across datasets were concordantly annotated 161 

in the majority of cases (Figure S3B). Altogether, we were able to annotate 53 of the 54 clusters 162 

(98%) with a cell type label (Table S5). For example, we annotated three macrophage clusters 163 

based on accessibility at marker genes including MS4A7 (Gingras et al., 2001), and one adipocyte 164 

cluster based on accessibility at ADIPOQ (Hu et al., 1996) (Figure 1C). Encouragingly, prevalent 165 

cell types detected in a majority of tissue samples including macrophages, lymphocytes, 166 

endothelial cells, and smooth muscle cells clustered based on cell type rather than tissue of origin 167 

or individual (Figure 1C, Table S4, Figure S5). 168 

 169 
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Most of these cell types were found to exhibit high tissue specificity. For example, some highly 170 

specialized cell types such as granulosa cells, follicular cells, parietal cells, chief cells, 171 

pneumocytes, keratinocytes, and hepatocytes were restricted to only one tissue type, reflecting 172 

their tissue-specific functions (Figure 1C, Table S4, Figure S5). We further annotated five clusters 173 

of lower gastrointestinal (GI) tract epithelial cells that could be classified as either enterocytes or 174 

goblet cells, but which were differentially clustered according to whether nuclei originated in the 175 

small intestine (Enc. 2, Gbl.2) or colon (Enc.1 & 3, Gbl.1; Figure 1C). On the other hand, tissue-176 

resident fibroblasts unbiasedly clustered into six subtypes with diverse tissues of origin for each 177 

(Fib.1-6; Figure 1C). Our analysis also revealed rare cell types with distinct chromatin accessibility 178 

profiles such as mesothelial cells (0.58% of total nuclei) and satellite cells or muscle stem cells 179 

(0.17% of total nuclei). During annotation, we noticed that some cell clusters appeared to contain 180 

multiple closely related but distinct cell types. For example, the neuroendocrine cell cluster 181 

consisted of cells from both stomach and pancreas, likely representing a mixture of pancreas- 182 

and stomach-specific hormone-producing cells. To further dissect the heterogeneity within our 183 

identified cell clusters, we performed another round of clustering on cell clusters that contained at 184 

least 1,000 nuclei and showed minimal batch effects (see Methods). We were able to identify 185 

more than one subcluster in 15 out of 27 major cell classes satisfying the above criteria (Figure 186 

S6A). In particular, the neuroendocrine cell cluster was further divided into three clusters that 187 

could be annotated as beta cells, alpha cells, and gastric neuroendocrine cells based on 188 

accessibility at maker genes including INS, GCG, and GHRL, respectively (Chiou et al., 2019; 189 

Kojima et al., 1999) (Figure S6). Moving forward, we focused our subsequent analyses on the 54 190 

cell clusters defined by our initial data-driven approach due to our high level of confidence in their 191 

stability, reproducibility, and cell type annotation. 192 

 193 

An atlas of cCREs in adult human cell types 194 

 195 

We annotated cCREs in each of the 54 primary cell types defined above. To do so, we aggregated 196 

chromatin accessibility profiles from all nuclei comprising each cell cluster and identified open 197 

chromatin regions using the MACS2 software package (Zhang et al., 2008) (Figure 2A). We then 198 

merged peaks from all cell clusters to form a union set of 756,414 open chromatin regions and 199 

termed these as cCREs (Figure 2A-C, Table S6, Supplementary file with accessibility for each 200 

cCRE downloadable from http://catlas.org/humantissue). These cCREs covered 11.4% of the 201 

human genome, and 92.7% of them overlapped with previously annotated cCREs based on bulk 202 

DNase-seq and ChIP-seq assays of human tissues, cell lines, and primary cell biosamples by the 203 
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ENCODE consortium (Meuleman et al., 2020; Moore et al., 2020) (Figure 2B). Genome-wide, 204 

cCREs located at transcription start sites or near promoter regions tended to have elevated 205 

chromatin accessibility, were less likely to vary between different cell types, and displayed higher 206 

levels of sequence conservation than gene-distal cCREs and genomic background (Figure 2D-207 

E). By contrast, gene-distal cCREs tended to be more variable chromatin accessibility (Figure 208 

2D), suggesting the presence of shared programs of highly accessible promoter-proximal cCREs 209 

alongside variable programs of gene-distal cCREs across human cell types.  210 

 211 

To assess the function of the above cCREs, we compared them with current catalogs of validated 212 

enhancers (Visel et al., 2007) and expression quantitative trait loci (eQTLs) - sequence variants 213 

that are statistically correlated with changes in gene expression in a tissue-specific fashion 214 

(Consortium, 2020). We first compared our cCREs with the VISTA database (Visel et al., 2007), 215 

and found that they were enriched for enhancers validated in transgenic mice in a cell type-216 

specific fashion (Figure 2F). We next asked whether our cCREs were enriched for eQTLs 217 

annotated by the GTEx Project in the 25 matching adult tissue types. We discovered cell type-218 

specific enrichments for 24 out of 25 sets of tissue eQTLs (Figure 2G). As expected, tissue eQTLs 219 

were most strongly enriched within cCREs when the corresponding cell type comprised a large 220 

proportion of nuclei identified in the tissue (Figure S7). For example, thyroid tissue eQTLs were 221 

strongly enriched within cCREs annotated in follicular cells (p = 0.0024), which made up 90.4% 222 

of total nuclei from thyroid tissue. On the other hand, tissue eQTLs from heterogenous tissue 223 

types such as transverse colon tended to display weaker overall enrichment in cell type cCREs, 224 

as well as a tendency to be enriched within cCREs of prevalent cell types that could be identified 225 

in most primary tissues, such as endothelial cells (Figure 2G, Figure S7). Taken together, these 226 

results suggest that bulk tissue eQTLs best represent sequence variants associated with gene 227 

expression for abundant cell types and homogenous tissues, and may be less representative for 228 

rarer cell types within homogenous tissues or for unique cell types from heterogenous tissues.  229 

 230 

Delineation of cell-type specificity of human cCREs  231 

 232 

Cell fate determination in part depends on the establishment of specific cis-regulatory programs 233 

modulating gene expression. To characterize the cell-type specificity of cCREs, we organized the 234 

756,414 cCREs into 51 cis-regulatory modules (CRMs), with elements in each CRM sharing 235 

similar chromatin accessibility patterns across all the cell types defined in the current study (Figure 236 

3A, see Methods). We further annotated candidate functions of CRMs based on GREAT biological 237 
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 9 

process ontology terms (McLean et al., 2010) (Figure 3B, Table S7). These analyses revealed 238 

that the majority of CRMs were limited either to single cell types or to groups of cell types that 239 

reflected cellular lineages. For example, one CRM related to the maintenance of gastrointestinal 240 

epithelium showed preferential accessibility in goblet cells (Module 8; Figure 3A-B), whereas two 241 

additional CRMs related to regulation of actin filament organization and glucose transport showed 242 

strong shared accessibility across all lower gastrointestinal epithelial cell types, including both 243 

goblet cells and enterocytes (Modules 9 and 10; Figure 3A-B). Broadly, CRM annotations 244 

reflected the physiologic functions of the cell types with which they were associated. For example, 245 

follicular cells were enriched for a CRM related to the regulation of iodide transport, hepatocytes 246 

for a CRM related to steroid metabolism, and skeletal myocytes for CRMs related to the regulation 247 

of muscle structure development (Modules 12, 14 and 34; Figure 3A-B). 248 

 249 

Cell type-specific cis-regulatory programs arise from combinatorial actions of sequence-specific 250 

TFs. To investigate the extent to which DNA sequence determined the cell type-specific 251 

accessibility patterns manifested in the 51 CRMs defined above, we trained a 51-class 252 

convolutional neural network using genomic sequence as the sole feature to predict module 253 

membership for each cCRE, and measured the area under the resulting ROC curve (AUROC) as 254 

a metric of classifier performance (Figure S8, see Methods). For 44 out of 51 modules, cCRE 255 

sequence alone could predict module membership with an AUROC > 0.80 (Figure 3C), 256 

suggesting that DNA sequence may play a pivotal role in forming diverse CRMs across cell types. 257 

To derive the sequence features that allowed our neural network to distinguish between cCRE 258 

modules, we applied the Transcription Factor Motif Discovery from Importance Scores (TF-259 

MoDISco) software package, which deciphers consolidated motifs learned by DNA sequence-260 

based neural networks (Shrikumar et al., 2018). Comparing these learned motifs with catalogued 261 

TF motifs (Weirauch et al., 2014) revealed module-specific TF motifs (Figure 3C). For example, 262 

sequence features matching the SP1 motif distinguished a module with strong accessibility in all 263 

identified cell types from other modules, consistent with the original description of SP1 as a 264 

regulator of ubiquitously-expressed housekeeping genes (Black et al., 2001) (Module 1; Figure 265 

3C). Similarly, sequence features matching the NKX2 motif distinguished a module unique to 266 

pneumocytes, in line with the role of NKX2 in regulating the production of pulmonary surfactant 267 

(Bingle, 1997; Bohinski et al., 1994) (Module 13; Figure 3C). In addition to previously-268 

characterized associations, we also report previously undefined TF associations with adult human 269 

cell types that are challenging to study in their in vivo tissue contexts: for example, the motif of 270 

the FOX TF family (Golson and Kaestner, 2016) differentiated modules accessible in gastric chief 271 
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 10 

cells and parietal cells (Module 17; Figure 3C), and the motif of the KLF family (McConnell and 272 

Yang, 2010) differentiated a module accessible in adrenal cortical cells (Module 43; Figure 3C). 273 

 274 

Decomposition of bulk chromatin accessibility data using single cell chromatin atlas  275 

 276 

Previous studies to assay chromatin accessibility have utilized biosamples including primary 277 

tissues, marker-isolated primary cells, cultured primary cells, in vitro differentiated cell lines, and 278 

immortalized cell lines (Kundaje et al., 2015; Meuleman et al., 2020; Moore et al., 2020; 279 

Stunnenberg et al., 2016). In order to quantify how closely these datasets from bulk assays 280 

resembled chromatin signatures from individual adult human cell types profiled in the current 281 

study, we compiled publicly available bulk ATAC-seq and DNase-seq datasets and measured 282 

their correlation with adult human cell type chromatin accessibility profiles from sci-ATAC-seq. 283 

Biosamples exhibited a wide range of correlation scores with human cell types. In aggregate 284 

however, primary cell type biosamples resembled adult cell types profiled in the current study 285 

more closely than did bulk tissue or cell line biosamples (Figure S9, Table S8).  286 

 287 

Analysis of chromatin accessibility in bulk primary human cancer biosamples from The Cancer 288 

Genome Atlas (TCGA) (Cancer Genome Atlas Research et al., 2013) has been shown to be a 289 

powerful tool for the characterization of abnormal gene regulatory elements in cancer and the 290 

classification of tumor subtypes with prognostic importance (Corces et al., 2018), but previous 291 

analyses were performed on bulk tumor samples and lacked information about the cell types 292 

responsible for signature chromatin accessibility patterns. We thus used our cell atlas to 293 

deconvolute bulk chromatin accessibility datasets from human primary tumor biosamples (Corces 294 

et al., 2018) into non-tumor cell classes based on chromatin accessibility features. We developed 295 

a support vector regression (SVR) based method for deconvolution. We showed that our method 296 

performed well on a variety of benchmarking datasets (median coefficient of determination = 297 

0.941, Figure S10A), and that the performance was robust against the choice of features, a wide 298 

range of sequence depths, and the introduction of artificial noise (Figure S10B-E, see Methods). 299 

We further benchmarked this approach by deconvoluting 21 bulk DNase-seq datasets from 300 

human stomach tissue, which revealed signatures of parietal cells across life stages but 301 

signatures of gastric chief cells only in child and adult timepoints, consistent with the histologic 302 

appearances of these cell types in the developing human stomach (Roy and Roy, 2016). We 303 

finally applied our deconvolution approach to 275 bulk ATAC-seq biosamples from 13 primary 304 

cancer types, and found that predicted cell type composition varied greatly between cancer types 305 
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(Figure S10G). For example, whereas primary thyroid carcinomas (THCA), adrenocortical 306 

carcinomas (ACC), and liver hepatocellular carcinomas (LIHC) contained biosamples with 307 

dominant chromatin signatures from follicular cells, adrenal cortical cells, and hepatocytes 308 

respectively, primary stomach adenocarcinomas (STAD) contained a mixture of biosamples with 309 

chromatin signatures from immune cells, goblet cells, enterocytes, and parietal cells. Primary 310 

breast invasive carcinomas (BRCA) in particular showed a marked variety of cell type signatures, 311 

containing biosamples with chromatin signatures from mammary luminal epithelial cells, general 312 

epithelial cells, basal cells, airway goblet cells, and adipocytes (Figure S10H). Based on these 313 

chromatin signatures, breast cancer biosamples could be further categorized into cellular 314 

subtypes that corresponded with bulk gene expression patterns as well as prognostic features 315 

(Figure S10I-K). 316 

 317 

Identification and characterization of adult-specific human cCREs  318 

 319 

We next compared adult cell type chromatin accessibility signatures with their corresponding fetal 320 

cell types in order to investigate life stage-specific chromatin signatures. Drawing from a recent 321 

cell atlas of chromatin accessibility in human fetal tissues (Domcke et al., 2020), we first selected 322 

fetal tissue types that matched those assayed in the current study and quantified correlations 323 

between fetal and adult cell types based on chromatin accessibility over a merged set of cCREs 324 

(see Methods). Out of 41 adult cell types from matching tissue types, 31 had chromatin signatures 325 

that were significantly correlated with at least one fetal cell type (Figure 4A). Interestingly, while 326 

some of these cell types such as cardiomyocytes, Schwann cells, and endothelial cells exhibited 327 

highly correlated chromatin signatures between fetal and adult stages (P < 0.01), other 328 

comparably specialized adult cell types, such as satellite cells and skeletal myocytes, were not 329 

significantly correlated with their fetal counterparts (Figure 4A). Comparing chromatin accessibility 330 

between fetal and adult stages genome-wide, we found a total of 208,024 adult-specific cCREs 331 

(Figure 4B). 332 

 333 

To uncover the gene regulatory programs that may underlie developmental functions, we next 334 

determined adult and fetal-specific cCREs in cell types that showed pronounced differences in 335 

chromatin accessibility between life stages. Skeletal myocytes, for example, differentiate 336 

substantially during pre and post-natal development (Chal and Pourquié, 2017) and showed 337 

poorer correlation between life stages than other human cell types (Figure 4A). In total, we 338 

identified 23,841 differentially accessible (DA) cCREs between fetal and adult skeletal myocytes 339 
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(Figure 4C). DA cCREs in fetal myocytes were associated with biological processes such as 340 

muscle filament sliding and sarcomere organization, and were strongly enriched for motifs of 341 

myogenic regulatory TFs (MRFs) which orchestrate normal myogenesis (Mary Elizabeth Pownall 342 

et al., 2002), including myogenic factor 5 (Myf5), myogenin (MyoG), and myoblast determination 343 

factor (MyoD) (Figure 4C-D), highlighting the potential role of these elements in regulating 344 

myogenic processes and the expression of fetal-specific myosin isoforms. On the other hand, 345 

adult skeletal myocyte DA cCREs were associated with biological processes related to 346 

glucocorticoid response and regulation of muscle adaptation, and were enriched for the motifs of 347 

AP-1 complex members Fra2, Atf3, and BATF (Figure 4C-D), suggesting a potential role for these 348 

elements in regulating transcriptional responses to steroid hormones and adaptation to the 349 

differential contractile activity and loading conditions of adult skeletal muscle. In line with our 350 

ontology results and with established patterns of myosin isoform expression across the human 351 

lifespan (Schiaffino and Reggiani, 2011; Schiaffino et al., 2015; Stuart et al., 2016), we discovered 352 

DA cCREs at loci encoding marker genes of pre-natal myocytes including MYH3 and MYH8, the 353 

heavy chains of embryonic and neonatal myosin respectively, as well as markers of type I (slow) 354 

and type II (fast) twitch adult myocytes including MYH6 and MYH1/MYH2 respectively (Figure 355 

4E).  356 

 357 

Encouraged by these findings, we next examined differences in chromatin accessibility between 358 

fetal and adult satellite cells or muscle stem cells (Yin et al., 2013), which similarly to skeletal 359 

myocytes were not significantly correlated between life stages (Figure 4A). Fetal satellite cells are 360 

highly proliferative and play an important role in the rapid expansion of skeletal muscle mass in 361 

the pre-natal period, whereas adult satellite cells represent a small pool of quiescent myocyte 362 

precursors (Chal and Pourquié, 2017). Thus, knowledge of the regulatory elements that modulate 363 

these processes could yield important insights into the regulation of muscle regeneration. Our 364 

analysis revealed 22,082 differentially accessible (DA) cCREs between fetal and adult satellite 365 

cells (Figure 4F). The DA cCREs in fetal satellite cells were associated with biological processes 366 

such as DNA replication-dependent nucleosome assembly and triglyceride biosynthesis, and 367 

similarly to fetal skeletal myocytes were also enriched for the motifs of the MRFs Myf5 and MyoG. 368 

By contrast, adult satellite cell DA cCREs showed unexpected associations with biological 369 

processes related to regulation of hemopoiesis and immune responses, and were enriched for 370 

the binding sites of AP-1 complex members Atf3, Fos, and Fra1 (Figure 4F-G). Fetal satellite cells 371 

contained DA cCREs at genes including MYOG as well as CCND2 and RGCC, which encode 372 

proteins involved in the regulation of myogenesis and cell cycle progression respectively (Figure 373 
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4H). Adult satellite cells, in following with ontology results related to immune system processes, 374 

contained DA cCREs located at loci encoding genes involved in inflammatory responses such 375 

TLR4, as well as BMP4, a transforming growth factor-β superfamily member with roles in 376 

embryonic development (Wang et al., 2014) that inhibits myogenic differentiation in murine 377 

muscle-derived stem cells (Wright et al., 2002). We also detected adult satellite cell DA cCREs at 378 

the locus encoding CEBPB, a regulator of myeloid gene expression (Huber et al., 2012) whose 379 

deficiency results in impaired muscle fiber regeneration (Marchildon et al., 2016; Ruffell et al., 380 

2009) and whose expression in levels in peripheral blood samples correlate with muscle strength 381 

in human adults (Harries et al., 2012). Taken together, these findings reveal the regulatory 382 

elements that may underlie the proliferative capacity and quiescent nature of fetal and adult 383 

satellite cells respectively, and emphasize the value of this dataset alongside emerging human 384 

cell atlases collected at different timepoints along the lifespan for determining life stage-specific 385 

gene regulatory programs at cell type resolution.  386 

 387 

Chromatin features of fibroblasts in different tissue environments 388 

 389 

Fibroblasts are the most common cells in connective tissues, and they play a critical role in 390 

orchestrating the development and morphogenesis of tissues and organs. It has become 391 

increasingly recognized that fibroblasts at different locations in the human body display distinct 392 

functions and morphologies (Chang et al., 2002; Muhl et al., 2020). However, the chromatin 393 

accessibility landscape in different fibroblast subtypes remains poorly understood. This sci-ATAC-394 

seq dataset spanning human tissue types afforded us the opportunity to examine differences in 395 

chromatin accessibility between cellular subtypes distributed across organ systems. For example, 396 

our clustering analysis revealed six subtypes of tissue-resident fibroblasts comprised of nuclei 397 

from different tissue environments (Figure 5A). While all of these subtypes showed comparable 398 

chromatin accessibility at a set of core fibroblast cCREs, each also showed subtype-specific 399 

chromatin accessibility patterns, which were enriched for ontology terms that suggested potential 400 

subtype-specific functions (Figure 5A-B). For example, Fib.5, the fibroblast subtype derived in 401 

large proportion from sigmoid colon tissue (Figure 5A, Table S4), was enriched for biological 402 

processes related to gastrointestinal smooth muscle contraction. Fib.6, the fibroblast subtype 403 

derived mostly from hepatic and adrenal tissue – two highly-vascularized organ systems in the 404 

body, was enriched for biological processes related to positive regulation of angiogenesis (Figure 405 

5B).  406 

 407 
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We next examined TF motif enrichment within core and subtype-specific fibroblast cCREs. Core 408 

fibroblast cCREs were enriched for motifs of the bZIP family TF CEBPA and the bHLH family TF 409 

TWIST2 (Figure 5C). On the other hand, subtype-specific cCREs showed strong enrichments for 410 

diverse TF motifs. Encouraged by these findings, we further performed transcriptional network 411 

analysis using the PageRank algorithm (Zhang et al., 2019) to identify candidate driver TFs in 412 

each fibroblast subtype. For example, Fib.1, the fibroblast subtype derived broadly from skin, 413 

adipose, artery, skeletal muscle, and tibial nerve tissues, was enriched for the homeobox family 414 

TF GSC which is a conserved regulator of gastrulation and organogenesis in many species (Blum 415 

et al., 1992; Izpisúa-Belmonte et al., 1993; Niehrs et al., 1993) (Figure 5D). In humans, mutations 416 

in the gene encoding GSC can lead to a syndrome of short stature, auditory canal atresia, 417 

mandibular hypoplasia, and skeletal system abnormalities (Parry et al., 2013). Interestingly, Fib.3, 418 

the fibroblast subtype derived predominantly from cardiac tissue, was enriched for TFs GATA4 419 

and TBX20 which regulate cardiac organogenesis and adult cardiomyocyte function (Perrino and 420 

Rockman, 2006; Shen et al., 2011; Singh et al., 2005). Fib.3 also showed strong accessibility at 421 

the genes encoding these TFs, but did not show accessibility at other cardiomyocyte marker 422 

genes (Figure 5E). Together, these findings are in line with recent characterizations of unexpected 423 

cardiogenic gene programs in cardiac fibroblasts (Furtado et al., 2014). We finally compared 424 

subtype-specific cCREs with chromatin profiles from in vitro cultured fibroblast biosamples and 425 

cardiac fibroblasts from sci-ATAC-seq (Hocker et al., 2020). While all fibroblast subtypes from the 426 

current study showed similarity to in vitro fibroblasts based on core fibroblast cCRE signatures, 427 

only the fibroblast subtype Fib.3 matched previously reported cardiac fibroblasts based on 428 

subtype-specific fibroblast cCRE signatures (Figure 5F), suggesting that fibroblast subtype-429 

specific signatures are environment dependent and may be lost during in vitro culturing. Overall, 430 

these findings reveal a core regulatory program for adult tissue resident fibroblasts distributed 431 

across human organ systems, as well as the chromatin features and TFs that may regulate more 432 

specialized roles of tissue-resident fibroblast subtypes. 433 

 434 

Association of human cell types with risk variants for complex traits and diseases  435 

 436 

Genetic variants associated with complex diseases and traits from GWAS predominantly reside 437 

in non-coding regions of the genome (Claussnitzer et al., 2020) and are enriched in cCREs in a 438 

tissue and cell type-specific fashion (Corces et al., 2020; Cusanovich et al., 2018; Domcke et al., 439 

2020; Hocker et al., 2020; Maurano et al., 2012; Song et al., 2020; Song et al., 2019). To examine 440 

the genome-wide enrichment of disease and trait associated variants within cCREs annotated in 441 
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each of the 54 human cell types characterized in the current study, we performed cell type-442 

stratified linkage disequilibrium score regression (LDSC) analysis using GWAS summary 443 

statistics for 56 phenotypes including diseases and non-disease traits (Figure 6A-B, Table S9, 444 

See Methods). This analysis revealed a total of 163 significant associations between 38 cell types 445 

and 40 complex phenotypes (Figure 6A-B). These enrichments revealed expected cell type-446 

disease relationships - for example, multiple sclerosis variants were strongly enriched in cCREs 447 

detected in B cells and T cells (Consortium, 2019) (False Discovery Rate (FDR) < 0.001), type 2 448 

diabetes variants were strongly enriched in neuroendocrine cell cCREs, likely because of 449 

contributions from pancreatic beta cells (Figure S3) (Chiou et al., 2019) (FDR < 0.001), and 450 

Alzheimer’s disease variants were enriched in macrophage cCREs (FDR < 0.05) in line with their 451 

reported strong enrichment in microglial populations (Nott et al., 2019). Notably however, our 452 

analysis also revealed disease-cell type relationships for in vivo adult human cell types not 453 

presently annotated by bulk DNase-seq or ATAC-seq data. These included a strong enrichment 454 

of coronary artery disease variants in vascular smooth muscle cCREs (FDR < 0.01), a strong 455 

enrichment of HDL cholesterol level-associated variants in adipocyte cCREs (FDR < 0.01), and a 456 

nominal enrichment of ulcerative colitis variants in gastrointestinal goblet cell cCREs (P < 0.05) 457 

in addition to T lymphocyte cCREs (FDR < 0.01). Further, we detected differences in the 458 

enrichment of disease and trait variants in subtypes of tissue resident fibroblasts. While all 459 

fibroblast populations were enriched for variants associated with standing height to an equivalent 460 

degree (FDR < 0.001), only Fib.3, the fibroblast subtype derived mostly from heart atrial 461 

appendage and left ventricle, showed a significant enrichment for coronary artery disease variants 462 

(FDR < 0.05). Similarly, all three fibroblast subtypes with major contributions from gastrointestinal 463 

tissues including the esophagus (Fib.2), stomach and lower gastrointestinal tract (Fib.4), and 464 

sigmoid colon (Fib.5) were strongly enriched for diverticular disease-associated variants, whereas 465 

those derived mostly from cardiac tissue (Fib.3) and liver/adrenal tissue (Fib.6) were not. 466 

 467 

Systematic interpretation of molecular functions for non-coding risk variants  468 

 469 

Many non-coding disease-associated genetic variants are hypothesized to alter the expression of 470 

disease-associated genes by disrupting TF binding to cis-regulatory elements. However, without 471 

comprehensive annotations of cCREs at cell type resolution across the human body, the 472 

molecular functions of these variants have proven challenging to interpret (Claussnitzer et al., 473 

2020). We sought to apply our atlas of cCREs in adult human cell types to systematically interpret 474 

molecular mechanisms for genetic variants associated with complex traits and diseases.  475 
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 476 

First, we determined the probability that variants from 48 GWAS were causal for disease or trait 477 

association (Posterior probability of association, PPA) using Bayesian fine-mapping (Wakefield, 478 

2009). We defined likely causal variants as variants with a PPA > 0.1, and found that they were 479 

more likely to reside within cCREs than the rest of the variants (Figure S11A). Overall, we 480 

detected 2,730 likely causal variants residing within cCREs mapped in various human cell types 481 

(Figure 7A-B, Table S10). Second, we analyzed previously published promoter capture HiC data 482 

in similar tissues (Jung et al., 2019) and linked our cCREs to target genes via the Activity-by-483 

Contact (ABC) model (Fulco et al., 2019) (See Methods). This analysis revealed 3,926,564 unique 484 

distal cCRE-to-gene linkages across our 54 cell types, with a median of 760,954 total linkages 485 

and 15,680 cell type-specific linkages per cell type (Figure S11B-C; Supplementary files with 486 

distal cCRE to gene linkages downloadable from http://catlas.org/humantissue). Of the 2,730 487 

cCREs containing likely causal variants, we linked 1,843 to putative target genes (Figure 7A). 488 

Third, we applied our recently developed deltaSVM models for 94 TFs (Yan et al., 2021) to identify 489 

the variants potentially disrupting binding by these regulators. This analysis found 460 TF binding 490 

sites that could be significantly altered by the likely causal variants (Figure 7A). The intersection 491 

of these lists prioritized 302 likely causal GWAS variants that 1) resided within a human cell type 492 

cCRE, 2) significantly altered TF binding 3) and were linked to one or more target genes (Figure 493 

7A-B, Table S10). 494 

 495 

For example, one likely causal risk variant for ulcerative colitis (rs16940186) resided within an 496 

intergenic cCRE restricted to epithelial cells of the gastrointestinal tract including enterocytes, 497 

gastric parietal and chief cells, and goblet cells (Figure 7C). The cCRE containing rs16940186 498 

was predicted to contact the transcription start site of IRF8 (ABC score > 0.02), which encodes a 499 

TF involved in the regulation of immune cell maturation (Salem et al., 2020) and regulation of 500 

innate immunity in gastric epithelial cells (Yan et al., 2016). The rs16940186 risk allele is an eQTL 501 

associated with increased IRF8 expression in human colon tissue and, consistent with these 502 

findings, SNP-SELEX motif disruption analysis predicted this risk allele to create a binding site for 503 

the ETS family of activating TFs (Figure 7C), which are expressed in intestinal epithelia and have 504 

been suggested to regulate intestinal epithelial maturation (Jedlicka et al., 2009). One other 505 

prioritized likely causal risk variant for osteoarthritis (rs75621460) resided within a cCRE that was 506 

primarily accessible in immune cell types, was predicted to target the immunosuppressive 507 

cytokine gene TGFB1, and disrupted a binding site for the zinc-finger TF ERG1 (Figure 7D).   508 
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DISCUSSION 509 

 510 

Detailed knowledge of the regulatory programs that govern gene expression in the human body 511 

has key implications for understanding human development and disease pathogenesis. Here, we 512 

used a single cell ATAC-seq method to profile chromatin accessibility in 472,373 cells across 25 513 

adult human tissues representing a wide range of human organ systems, and to produce a cell-514 

type resolved human cCRE atlas. The resulting maps bridge a key gap in the annotation of 515 

candidate regulatory elements in the human genome by providing state of activities of each 516 

element across 54 major cell classes. We used this atlas to reveal cis-regulatory programs and 517 

transcriptional regulators of adult human cell types, and characterized regulatory programs that 518 

may govern the tissue and subtype-specific functions of widely distributed cell types such as 519 

fibroblasts. We further incorporated this dataset alongside single cell chromatin accessibility data 520 

from human fetal tissues (Domcke et al., 2020), to reveal the regulatory elements that may govern 521 

life stage-specific cellular roles. The atlas of chromatin accessibility reported here is thus highly 522 

complementary to emerging atlases of chromatin accessibility in human fetal tissues (Domcke et 523 

al., 2020) and in individual human organ systems (Chiou et al., 2019; Corces et al., 2020; Hocker 524 

et al., 2020; Wang et al., 2020). Integration of these datasets along with future human single cell 525 

datasets of increasing scale, breadth, and depth will enable a comprehensive understanding of 526 

gene regulatory features of human cell types throughout the lifespan. 527 

 528 

While genome-wide association studies (GWAS) have been broadly used to enhance our 529 

understanding of polygenic human traits and reveal clinically-relevant therapeutic targets for 530 

complex diseases, to date the discovery of new variants has far outpaced our ability to interpret 531 

their molecular functions (Claussnitzer et al., 2020). A central goal of the current study was thus 532 

to leverage novel maps of cCREs in adult human cell types to interpret the molecular functions of 533 

noncoding risk variants for complex disease. By applying our datasets alongside cutting-edge 534 

methods to prioritize likely causal variants in LD, link distal cCREs to target genes, and predict 535 

motifs altered by risk variants, we created a framework to systematically interpret noncoding risk 536 

variants and provided a resource of overlapping cCREs, associated cell types, potentially 537 

disrupted TFs, and putative gene targets for a host of fine mapped variants. For example, we 538 

highlight the likely causal ulcerative colitis-associated variant rs16940186. This risk variant may 539 

function to increase IRF8 expression in gastrointestinal epithelial cells by creating a binding site 540 

for ETS family TFs in a GI epithelial-specific enhancer, and thereby alter the transcriptional 541 

responses of intestinal epithelial cells to inflammatory cytokines. Pending functional validation 542 
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experiments, our results suggest that targeting IRF8 in GI epithelial cells could be a potential 543 

therapeutic target for ulcerative colitis. As future GWAS in large cohorts with detailed phenotyping, 544 

whole genome sequencing efforts, and novel association studies employing long read 545 

technologies to capture structural variants become available, we anticipate that this combined 546 

resource and framework will be of continued utility for the interpretation of molecular functions for 547 

noncoding genetic variants. 548 

 549 

The current study is still limited in several ways: firstly, we solely profiled the adult stage in an 550 

incomplete sampling of organ systems. While we utilized tissue from anatomic sites 551 

corresponding directly to existing biosamples in large-scale databases (Carithers et al., 2015; 552 

Stranger et al., 2017), the size and diversity of adult human organ systems make it difficult to 553 

representatively sample them in their entirety with current technologies. Additionally, our assay 554 

solely profiles chromatin accessibility in dissociated nuclei, and thus misses key orthogonal 555 

molecular and spatial information. Future assays that incorporate gene expression, chromatin 556 

accessibility, DNA methylation, chromosomal conformation, TF binding, and spatial information 557 

in the same single cell will greatly enhance our understanding of gene regulation in human cell 558 

types (Zhu et al., 2020). Notwithstanding these limitations, this atlas of >750,000 cCREs in almost 559 

half a million nuclei represents the largest cellular survey of cCREs across adult human organ 560 

systems to the best of our knowledge. This resource thus lays the foundation for the analysis of 561 

gene regulatory programs across human organ systems at cell type resolution, and accelerates 562 

the interpretation of noncoding sequence variants associated with complex human diseases and 563 

phenotypes. The datasets can be accessed and explored at http://catlas.org/humantissue.  564 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431699doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431699


 19 

ACKNOWLEDGEMENTS 565 

We thank the ENCODE consortium, in particular Mike Pazin (NHGRI) and Idan Gadbank 566 

(Stanford), Kristin Ardlie (Broad Institute) and Ellen Gelfand (Broad Institute), for providing the 567 

tissue samples for the present study. We thank B. Li for bioinformatics support. We thank S. Kuan 568 

for sequencing libraries on the HiSeq4000. We thank B. Chen for valuable discussions and 569 

feedback. We thank the QB3 Macrolab at UC Berkeley for purification of the Tn5 transposase. 570 

This work was supported by the Ludwig Institute for Cancer Research (B.R.), and Foundation for 571 

the National Institutes of Health (K.J.G). J.D.H. was supported in part by a Ruth L. Kirschstein 572 

Institutional National Research Service Award T32 GM008666 from the National Institute of 573 

General Medical Sciences. Work at the Center for Epigenomics was supported in part by the UC 574 

San Diego School of Medicine. 575 

 576 

AUTHOR CONTRIBUTIONS 577 

Study was conceived by: J.D.H., S.P., A.W., and B.R. Study supervision: B.R. Supervision of data 578 

generation: S.P., A.W. and B.R. Contribution to data generation: J.D.H., X.H., M.M. Contribution 579 

to data analysis: K.Z., J.D.H., J.C., O.P. Y.E.L., Y.Q. Contribution to web portal: Y.E.L., K.Z. 580 

Contribution to data interpretation: K.Z., J.D.H., S.P., A.W., K.J.G. Contribution to writing the 581 

manuscript: K.Z., J.D.H., B.R. All authors edited and approved the manuscript. 582 

 583 

DECLARATION OF INTERESTS 584 

B.R. is a shareholder and consultant of Arima Genomics, Inc., and a co-founder of Epigenome 585 

Technologies, Inc. K.J.G is a consultant of Genentech, and shareholder in Vertex 586 

Pharmaceuticals. These relationships have been disclosed to and approved by the UCSD 587 

Independent Review Committee.  588 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431699doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431699


 20 

FIGURES 589 

590 
Figure 1 | Single cell chromatin accessibility analysis of 25 adult human primary tissues. 591 
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A) Overview of the study design. A total of 70 biosamples, representing 25 tissue types and 592 

obtained from up to four donors (D1 to D4), were used for sci-ATAC-seq assays. The number of 593 

nuclei profiled in each tissue was denoted in the parenthesis, along with the donor labels.   B) 594 

Clustering of 472,373 nuclei identifying 54 distinct cell types. The visualization was generated 595 

using Uniform Manifold Approximation and Projection (UMAP) embedding. Clusters were 596 

annotated based on accessibility at promoters of marker genes as explained in the main text. 597 

Each dot in the scatter plot represents a nucleus. Nuclei are colored and labeled by cell type ID. 598 

The full names of the abbreviated cell type IDs are listed in panel C.  C) Distribution of cell types 599 

across human tissues. The dendrogram on the left was created by hierarchical clustering of cell 600 

clusters based on chromatin accessibility. The bar chart represents relative contributions of 601 

tissues to cell clusters. * indicates categories representing multiple samples originating from 602 

similar tissues. Genome browser tracks on the right show aggregate chromatin accessibility 603 

profiles for each cell cluster at selected marker gene loci which were used for annotation. 604 

  605 
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 606 
Figure 2 | An atlas of cCREs in adult human cell types. A) Genome browser tracks comparing 607 

sci-ATAC-seq with bulk DNase-seq data from the ENCODE consortium (Accession: 608 

ENCSR464TKV) for detecting accessible regions in body of pancreas as an example of a complex 609 

heterogeneous tissue containing multiple cell types. B) Intersection between three cCRE 610 

catalogues showing that the majority of identified cCREs in the present study are supported by 611 

previous functional annotations released by the ENCODE consortium. C) Distribution of 756,414 612 

cCREs across the human genome. Based on their distances to annotated gene transcription start 613 

sites, we classified cCREs into one of the three groups: promoter, promoter-proximal and distal. 614 
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D) Scatter plot showing the three groups of cCREs based on median and range (difference 615 

between maximum and minimum) of chromatin accessibility across cell clusters. Each dot 616 

represents a cCRE, colored by groups in C. E) Average phyloP (Pollard et al., 2010) scores of 617 

cCREs stratified by groups defined in c. Genomic background is indicated in gray. F) Boxplot 618 

comparing validated heart-specific in vivo enhancers from VISTA database against other 619 

enhancers from VISTA database based on their chromatin accessibility in cardiomyocytes. G) Z-620 

scores for enrichment of GTEX eQTLs from corresponding tissues in each cell cluster. *: p < 0.05, 621 

**: p < 0.01. 622 

  623 
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 624 
Figure 3 | Delineation of cell-type specificity of human cCREs. A) Heatmap representation of 625 

chromatin accessibility for 756,414 cCREs across 54 human cell types. Each row represents an 626 

individual cCRE, while each column represents a cell type. The cell type ID is the same as Figure 627 

1C. Color represents relative chromatin accessibility. cCREs were organized into 51 modules by 628 

clustering (see Methods). Color bars to the right depict the module ID. B) Top GREAT ontology 629 

enrichment (significance level: FDR < 0.01) for each cCRE module. C) Heatmap representation 630 

of area under the receiver operating characteristics (AUROC) across 51 cCRE modules. We 631 

trained a 51-class convolutional neural network to predict the module class for each cCRE using 632 

DNA sequences as the features (Figure S8). For each module the AUROC measures how well 633 

the classifier distinguishes cCREs belonging to the target module from the rest. On the right of 634 

the heatmap the top sequence motif features for the best performing modules are shown. Motifs 635 
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were extracted from the neural network model using the TF-MoDISco algorithm (Shrikumar et al., 636 

2018). 637 

  638 
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 639 
Figure 4 | Comparison of chromatin accessibility between fetal and adult stages. A) 640 

Heatmap showing similarity between fetal (column) and adult (row) cell types in matching tissues. 641 

Color represents Pearson correlation coefficient. *: p < 0.05, **: p < 0.01. B) Heatmap 642 

representation of 208,024 adult-specific cCREs. Color represents log-transformed normalized 643 

signal. C) Heatmap representation of 23,841 differentially accessible (DA) cCREs between fetal 644 

skeletal myocytes and adult skeletal myocytes along with the top three GREAT biological process 645 

ontology enrichments (McLean et al., 2010) for adult and fetal skeletal myocyte DA cCREs. Color 646 

represents log-transformed normalized signal. D) Top three known TF motifs enriched within fetal 647 
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and adult skeletal myocyte DA cCREs identified by HOMER (Heinz et al., 2010). E) Genome 648 

browser tracks showing chromatin accessibility for fetal and adult skeletal myocytes along with 649 

DA cCREs between the adult and fetal skeletal myocytes. Indicated genes are shown in black, 650 

other genes are shown in gray. Transcription start sites of the indicated genes are shaded in red 651 

and blue. F-H represent the same analyses performed in C-D for 22,082 DA cCREs between fetal 652 

satellite cells and adult satellite cells. 653 

  654 
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 655 
Figure 5 | Chromatin features of fibroblasts in different tissue environments. A) Heatmap 656 

representation of core fibroblast cCREs and fibroblast subtype-specific elements. Color 657 

represents log2(accessibility). Bar plot on the top indicates tissues of origin by percentage for each 658 

fibroblast subtype. B) Top GREAT ontology enrichments (McLean et al., 2010) for core fibroblast 659 

and fibroblast subtype-specific cCREs. C) De novo sequence motifs and their matched known TF 660 

motifs identified by HOMER (Heinz et al., 2010). D) Similarity indices between (top) core fibroblast 661 

cCREs and (bottom) subtype-specific cCREs with in vivo cardiac fibroblasts from sci-ATAC-seq 662 

(Hocker et al., 2020), in vitro cultured fibroblast DNase-seq datasets, and non-fibroblast DNase-663 

seq datasets. E) Heatmap representation showing key TFs (row) in each fibroblast subtype 664 

(column) revealed using transcription regulatory network analysis. Color represents standardized 665 

PageRank scores. F) Genome browser tracks for cardiomyocytes (Cam) and fibroblast subtypes 666 

(Fib.1-Fib.6) from sci-ATAC-seq at several cardiomyocyte marker genes. 667 
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 669 
Figure 6 | Association of human cell types with risk variants for complex traits and 670 

diseases. Heatmap showing enrichment of risk variants associated with disease (A) and non-671 

disease traits (B) from genome wide association studies in human cell type-resolved cCREs.  Cell 672 

type-stratified linkage disequilibrium score regression (LDSC) analysis was performed using 673 

GWAS summary statistics for 56 phenotypes. Total cCREs identified independently from each 674 

cell type were used as input for analysis. Z-scores for enrichment are displayed and were used 675 

to compute one-sided p-values for enrichments. P-values were corrected using the Benjamini 676 
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Hochberg procedure for multiple tests (*:  FDR < 0.1; **: FDR < 0.01; ***: FDR < 0.001; •: nominal 677 

p-value < 0.05). Bar plot on the bottom shows the tissue contributions for each cell cluster. * 678 

indicates categories representing multiple samples that originated from similar tissues. 679 
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 681 
Figure 7 | Systematic interpretation of molecular functions for non-coding risk variants. A) 682 

Schematic illustrating the workflow for annotating fine-mapped non-coding risk variants. We 683 

started with 10,974 likely causal fine-mapped variants (with a posterior probability of association 684 

– PPA – greater than 0.1) spanning 48 diseases or complex traits. 2,730 likely causal variants 685 

were found to overlap with human cell type cCREs defined in the present study. For each of these 686 

variants, we searched for target genes using promoter capture HiC data and identified disrupted 687 

TF motifs using 94 deltaSVM models trained using recent SNP-SELEX experiments (Yan et al., 688 

2021). Finally, 302 likely causal variants were annotated with a full complement of information 689 

(overlapping cell type cCRE, putative target gene, and altered TF motif). B) Table showing for 10 690 

examples out of 48 total fine-mapped diseases and traits: number of likely causal variants (PPA 691 

> 0.1), number of cCREs overlapping likely causal variants, number of cell types in which 692 

overlapping cCREs are accessible, top cell types variants are enriched in based on LD score 693 
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regression (Bulik-Sullivan et al., 2015), number of predicted target genes for likely causal variants, 694 

and significantly altered motifs predicted by deltaSVM model trained using SNP-SELEX data. 695 

Comprehensive data are provided in Table S10. C,D) Fine mapping and molecular 696 

characterization of an ulcerative colitis (UC) risk variant (C) in a gastrointestinal (GI) epithelial cell 697 

cCRE (Enc = enterocyte, Gcf = gastric chief cell, Prt = parietal cell, Gbl = goblet cell) and an 698 

osteoarthritis variant (D) in an immune cell cCRE (Mac = macrophage, Tly = T lymphocyte, Bly = 699 

B lymphocyte, Mst = Mast cell). Genome browser tracks (GRCh38) display histone modification 700 

ChIP-seq and DNase-seq from public human transverse colon datasets (C) and human primary 701 

T cell datasets (D) from ENCODE (see Methods) as well as chromatin accessibility profiles for 702 

human cell types from sci-ATAC-seq. Chromatin interaction tracks show linkages between the 703 

variant-containing cCREs and genes from promoter capture HiC data via Activity-by-Contact 704 

(ABC) (Fulco et al., 2019) analysis. All linkages shown have an ABC score > 0.02. PPA: Posterior 705 

probability of association. 706 
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SUPPLEMENTAL FIGURES 708 

 709 
Supplemental Figure 1 | Quality control for sci-ATAC-seq datasets. A) Upper bar plot shows 710 

the number of nuclei that passed quality control in each experiment. Nuclei were first filtered by 711 

stringent quality control criteria (TSS enrichment greater than 7 and number of mapped fragments 712 

greater than 1000 per nucleus) and then subjected to doublet removal. Lower bar plot bottom 713 

shows the percentage of doublets detected in each dataset. B) Upper violin plot shows the 714 

distribution of TSS enrichments for nuclei that passed quality control in each experiment. Lower 715 
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violin plot shows the distribution of number of fragments for nuclei that passed quality control in 716 

each dataset. 717 
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 719 
Supplemental Figure 2 | Computational framework for analyzing sci-ATAC-seq data. A) 720 

Schematic illustrating the workflow of the analysis pipeline. B) Scatter plots showing the UMAP 721 

embedding of nuclei before and after batch correction. Dots with the same color are coming from 722 

the same donor or batch. C) Line plot showing the median of cluster diversity as a function of 723 

number of identified clusters in the dataset stratified by batch correction operation. To compute 724 

the cluster diversity, we first grouped the cells based on their tissue of origin and then based on 725 

the experimental batch. We counted the cells for each combination and normalized by the total 726 
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number of cells of the corresponding sample. For each tissue, normalized entropy was computed 727 

across batches. The average entropy across all tissues in the cluster were taken as the cluster 728 

diversity. D) Line plot showing the stability of clustering results as a function of resolution 729 

parameter in the Leiden algorithm. To compute the stability under a particular resolution, five 730 

perturbations were conducted on the kNN graph. During each perturbation 2% of the edges were 731 

randomly selected and subject to removal. The clustering was performed on the perturbed graph 732 

and the average Adjusted Rand Index (ARI) between different runs were taken as the stability.  733 
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Supplemental Figure 3 | Evidence supporting the annotation of 54 cell clusters. A) Heatmap 736 

representation showing the marker gene enrichment of cell types. The marker genes were 737 

downloaded from the PanglaoDB (Franzén et al., 2019). B) Heatmap representation showing the 738 

pairwise similarity between 39 sci-ATAC-seq cell types (column) and corresponding scRNA-seq 739 

cell types (row). Color represents the Pearson correlation coefficient of expression level of 500 740 

most variable genes. Promoter accessibility was used to estimate the gene expression level in 741 

sci-ATAC-seq. 742 
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Supplemental Figure 4 | Characterization of cell-type-restricted cCREs in 53 out of 54 sci-745 

ATAC-seq cell types. A) Chromatin accessibility at cell type-specific cCREs. Color represents 746 

the average log2(accessibility) of the cell-type-restricted cCREs in a particular cell type. Each row 747 

represents the aggregated profile of cell-type-restricted cCREs. Bar plot on the right shows the 748 

number of cell type-specific cCREs for each cell type. B) Heatmap representation showing the 749 

gene ontology term (column) enrichment for each set of cell-type-restricted cCREs (row). The 750 

enrichment analysis was performed using GREAT (McLean et al., 2010) under default settings. 751 

Color represents the negative logarithm of P-value of enrichment. 752 
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Supplemental Figure 5 | Bar plots showing cell-type composition for 25 tissue types. 755 
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 757 
Supplemental Figure 6 | Focused clustering analysis reveals heterogeneity in primary cell 758 

clusters. A) UMAP embedding of cells from 15 primary cell clusters that contain more than one 759 

subcluster during focused clustering analysis. B) Cell type annotation of 44 subclusters based on 760 

chromatin accessibility at marker genes. C) Bar chart showing relative contributions of tissues to 761 

44 subclusters. 762 
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 764 
Supplemental Figure 7 | Scatter plot showing the maximum chromatin accessibility 765 

enrichment of GTEx tissue eQTLs as a function of cellular heterogeneity. The chromatin 766 

accessibility enrichment of GTEx tissue eQTLs in each tissue was computed as described in 767 

Method, and the maximum value across the 25 tissue types was used for the plot.  768 
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 770 
Supplemental Figure 8 | Convolutional neural network identifies sequence determinants of 771 

regulatory modules. A) Schematic illustrating the architecture of a 51-class neural network 772 

consisting of 5 dilated convolutional neural network layers. B) Heatmap representation of the 773 

confusion matrix. Each row of the matrix represents the instances in a predicted class while each 774 

column represents the instances in an actual class. Color represents the number of CREs. 775 
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 777 
Supplemental Figure 9 | Comparison of open chromatin landscapes in adult human cell 778 

types with previous DNase-seq data obtained from bulk biosamples. A) Distribution of 779 

similarity scores for 113 bulk DNase-seq samples stratified by sample classification. Similarity 780 

score is defined as the maximum of the standardized correlation scores of a bulk DNase-seq 781 

sample with 54 adult human cell types from sci-ATAC-seq. * indicates P value < 0.01. Green color 782 

denotes data from cell lines, blue color denotes data from primary cells, and orange color denotes 783 

data from bulk tissues.  B) Heatmap representation of chromatin accessibility at ductal cell-784 

specific cCREs identified by sci-ATAC-seq across ductal cell-related sci-ATAC-seq, primary cell, 785 

tissue, and immortal cell line biosamples. C) genome browser tracks showing chromatin 786 

accessibility profiles around ductal cell marker genes (PERP and KRT7) or tumor repressors 787 

(FABP3 and MGMT). D) Top similarity scores by rank shown for 100 bulk biosamples & 788 

corresponding best match cell types. Sample classification is indicated by color.   789 
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 791 
Supplemental Figure 10 | CRE cytometry reveals tissue heterogeneity of primary human 792 

cancer. A) Boxplot showing the performance of two deconvolution algorithms, namely non-793 

negative least squares regression (NNLS) and support vector regression (SVR). The performance 794 

is measured by coefficient of determination (𝑅!) between estimated cell-type composition and 795 

actual cell-type composition determined by sci-ATAC-seq experiments. In addition to the dataset 796 

generated in this study, referred to as “internal”, we performed benchmarking using independent 797 

sci-ATAC-seq datasets from 14 heart (Hocker et al., 2020). B) Boxplot showing the performance 798 
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of NNLS, measured by coefficient of determination, under different choices of signature CREs. 799 

For example, “100” indicates selecting top 100 most specific CREs from each cell types. C) 800 

Boxplot showing the performance of SVR under different rates of down sampling. D) Boxplot 801 

showing the performance of SVR under different noise levels. For example, “1X” indicates 802 

introducing 100% more noise to the data. E) Boxplot showing the performance of SVR when 803 

introducing noise to a random subset of the signature CREs. The noise level here is fixed to “10X”. 804 

F) Boxplot showing estimated cell-type composition of 21 human stomach tissue stratified by life 805 

stage. The deconvolution was performed on bulk DNase-seq data using the SVR algorithm. G) 806 

Heatmap representation of cell-type composition of 275 cancer samples from TCGA. Color 807 

represents cell-type fraction. Color bars to the left depict the cancer type (BRCA = Breast invasive 808 

carcinoma, LUSC = Lung squamous cell carcinoma, SKCM = Skin cutaneous melanoma, UCEC 809 

= Uterine corpus endometrial carcinoma, THCA = Thyroid carcinoma, MESO = Mesothelioma, 810 

STAD = Stomach adenocarcinoma, LIHC = Liver hepatocellular carcinoma, ACC = Adrenocortical 811 

carcinoma, LUAD = Lung adenocarcinoma, COAD = Colon adenocarcinoma, ESCA = 812 

Esophageal carcinoma, HNSC = Head and neck squamous cell carcinoma). The deconvolution 813 

was performed on bulk ATAC-seq data using the SVR algorithm. H) Heatmap representation of 814 

cell-type composition of 75 breast cancer samples. Color represents cell-type fraction. The 815 

dendrogram was generated by hierarchical clustering. Published PAM50 classification scheme 816 

(Berger et al., 2018) is shown on the left. I) Boxplot showing the AQP5 gene expression level in 817 

breast cancer samples stratified by the presence of airway goblet cell signature. J) Boxplot 818 

showing the ADIPOQ gene expression level in breast cancer samples stratified by the existence 819 

of adipocyte signature. K) Kaplan-Meier analysis of overall survival of breast cancer sample 820 

donors in four subtype groups: LumA (N=512), AQP5 overexpressed (N=55), ADIPOQ 821 

overexpressed (N=55) and Her2 (N=46). 822 
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 824 
Supplemental Figure 11 | Characterization of fine mapped risk variant. A) Bar graph showing 825 

the percentage of likely causal (Posterior Probability of Association; PPA > 0.1) fine mapped 826 

GWAS variants from 48 traits and diseases that overlap the union set of cCREs in adult cell types 827 

in the present study. Fisher's exact test was used to compute statistical significance. B) Histogram 828 

showing the multiplicities of cCRE-gene linkage (number of cell types having the linkage). C) 829 

Histogram showing distances in kilobase pairs (kbp) for distal cCRE-to-gene linkages from Activity 830 

by Contact (ABC) analysis (Fulco et al., 2019) (ABC score > 0.02). 831 
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SUPPLEMENTARY TABLES 833 
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Table S10: PPAs, overlapping cCREs, corresponding cell types, motifs altered, and candidate 843 

target genes for likely causal GWAS variants. 844 
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METHODS 847 

 848 

Human Tissues 849 

Adult human tissue samples were acquired by the ENTEx collaborative project (Stranger et al., 850 

2017) via the GTEx collection pipeline (Carithers et al., 2015). All human donors were deceased, 851 

and informed consent was obtained via next-of-kin consent for the collection and banking of 852 

deidentified tissue samples for scientific research. Donor eligibility requirements were as 853 

described previously (Carithers et al., 2015), and excluded individuals with metastatic cancer and 854 

individuals who had received chemotherapy for cancer within the prior two years. 855 

 856 

Tissue feasibility testing for sci-ATAC-seq 857 

Frozen tissue samples were sectioned on dry ice into two aliquots of equivalent mass. For nuclear 858 

isolation, one aliquot was subjected to manual pulverization via mortar and pestle while 859 

submerged in liquid nitrogen, and the other aliquot was homogenized in a gentleMACS M-tube 860 

(Miltenyi) on a gentleMACS Octo Dissociator (Miltenyi) using the “Protein_01_01” protocol in 861 

MACS buffer (5 mM CaCl2, 2 mM EDTA, 1X protease inhibitor (Roche, 05-892-970-001), 300 862 

mM MgAc, 10 mM Tris-HCL pH 8, 0.6 mM DTT) and pelleted with a swinging bucket centrifuge 863 

(500 x g, 5 min, 4°C; 5920R, Eppendorf). Pulverized frozen tissue and pelleted nuclei from 864 

gentleMACS M-tubes were each split into two further aliquots. One aliquot from each of the two 865 

nuclear isolation conditions was then resuspended in 1 mL Nuclear Permeabilization Buffer (1X 866 

PBS, 5% Bovine Serum Albumin, 0.2% IGEPAL CA-630 (Sigma), 1 mM DTT, 1X Protease 867 

inhibitor), and the other aliquot from the same nuclear isolation condition was resuspended in 1 868 

mL OMNI Buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM MgCl2, 0.1% Tween-20 (Sigma), 869 

0.1% IGEPAL-CA630 (Sigma) and 0.01% Digitonin (Promega) in water), yielding a total of four 870 

nuclear isolation/nuclear permeabilization buffer conditions tested for each tissue type. Nuclei 871 

were rotated at 4 ˚C for 5 minutes before being pelleted again with a swinging bucket centrifuge 872 

(500 x g, 5 min, 4°C; 5920R, Eppendorf). After centrifugation, permeabilized nuclei were 873 

resuspended in 500 μL high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM 874 

potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a hemocytometer. 875 

Concentration was adjusted to 2,000 nuclei/9 μl, and 2,000 nuclei were dispensed 12 wells of a 876 

96-well plate per nuclear isolation/permeabilization condition (samples were processed in batches 877 

of 4 nuclear isolation/permeabilization conditions per 2 different tissue samples). For 878 

tagmentation, 1 μL barcoded Tn5 transposomes (Table S11) were added using a BenchSmart™ 879 

96 (Mettler Toledo), mixed five times, and incubated for 60 min at 37 °C with shaking (500 rpm). 880 
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To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA (final 20mM) were added to each well with a 881 

BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min with shaking 882 

(500 rpm). Next, 20 µL of 2x sort buffer (2 % BSA, 2 mM EDTA in PBS) were added using a 883 

BenchSmart™ 96 (Mettler Toledo). All 12 wells from each nuclear isolation/permeabilization 884 

condition were combined into a separate FACS tube, and stained with Draq7 at 1:150 dilution 885 

(Cell Signaling). For each nuclear isolation/permeabilization condition, we used a SH800 (Sony) 886 

to sort four wells containing 0 nuclei per well and four wells containing 80 nuclei per well into one 887 

96-well plate (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 200 888 

ng BSA (Sigma)). After addition of 1 µL 0.2% SDS using a BenchSmart™ 96 (Mettler Toledo), 889 

the 96 well plate was incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 12.5% Triton-X 890 

was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× PCR Master 891 

Mix (NEB) were added to each well and samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, 892 

(98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were assayed 893 

for DNA library concentration using the PerfeCTa NGS Quantification RT-qPCR Kit (Quanta 894 

Biosciecnces) according to manufacturer’s protocols, and subsequently returned to the thermal 895 

cycler for a second round of PCR amplification (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 896 

72°C 60 s) × 4 cycles, held at 12 °C). After the second PCR amplification, for each nuclear 897 

isolation/permeabilization condition, wells containing 0 nuclei were combined and wells containing 898 

80 nuclei were combined. The resulting DNA libraries were purified according to the MinElute 899 

PCR Purification Kit manual (Qiagen) and size selection was performed with SPRISelect reagent 900 

(Beckmann Coulter, 0.55x and 1.5x). Final libraries were quantified using a Qubit fluorimeter (Life 901 

technologies) and a nucleosomal pattern of fragment size distribution was verified using a 902 

Tapestation (High Sensitivity D1000, Agilent). We calculated a signal to noise ratio for final 903 

feasibility test libraries using LightCycler® 480 SYBR Green I Master Mix (Roche) along with 904 

custom primers for the promoter of human GAPDH and a heterochromatic gene desert region 905 

(Table S12). For each tissue type, the nuclear isolation/permeabilization condition that resulted in 906 

optimized nuclear yield (nuclei/mg tissue), library concentrations > 50 pM per 80 sorted nuclei, 907 

nucleosomal distribution pattern of fragments, and a log2(signal to noise ratio) > 3.3 was selected 908 

for combinatorial indexing-assisted single nucleus ATAC-seq (Table S2). 909 

 910 

Combinatorial indexing-assisted single nucleus ATAC-seq 911 

Combinatorial indexing-assisted single nucleus ATAC-seq was performed as described 912 

previously (Preissl et al., 2018) with slight modifications (Hocker et al., 2020). Nuclei were isolated 913 

and permeabilized according to the optimized conditions from feasibility testing (Table S2). After 914 
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resuspension in permeabilization buffer, nuclei were rotated at 4 ˚C for 5 minutes before being 915 

pelleted again with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). After 916 

centrifugation, permeabilized nuclei were resuspended in 500 μL high salt tagmentation buffer 917 

(36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) 918 

and counted using a hemocytometer. Concentration was adjusted to 2,000 nuclei/9 μl, and 2,000 919 

nuclei were dispensed into each well of a 96-well plate per sample (96 tagmentation wells/sample, 920 

samples were processed in batches of 2-4 samples). For tagmentation, 1 μL barcoded Tn5 921 

transposomes (Table S11) were added using a BenchSmart™ 96 (Mettler Toledo), mixed five 922 

times, and incubated for 60 min at 37 °C with shaking (500 rpm). To inhibit the Tn5 reaction, 10 923 

µL of 40 mM EDTA (final 20mM) were added to each well with a BenchSmart™ 96 (Mettler 924 

Toledo) and the plate was incubated at 37 °C for 15 min with shaking (500 rpm). Next, 20 µL of 925 

2x sort buffer (2 % BSA, 2 mM EDTA in PBS) were added using a BenchSmart™ 96 (Mettler 926 

Toledo). All wells were combined into a separate FACS tube for each sample, and stained with 927 

Draq7 at 1:150 dilution (Cell Signaling). Using a SH800 (Sony), 20 nuclei per sample were sorted 928 

per well into eight 96-well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 929 

pmol primer i5, 200 ng BSA (Sigma)). Preparation of sort plates and all downstream pipetting 930 

steps were performed on a Biomek i7 Automated Workstation (Beckman Coulter). After addition 931 

of 1 µL 0.2% SDS, samples were incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 12.5% 932 

Triton-X was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× 933 

PCR Master Mix (NEB) were added and samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, 934 

(98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. 935 

Libraries were purified according to the MinElute PCR Purification Kit manual (Qiagen) using a 936 

vacuum manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRISelect 937 

reagent (Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with 938 

SPRISelect reagent (Beckman Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter 939 

(Life technologies) and a nucleosomal pattern of fragment size distribution was verified using a 940 

Tapestation (High Sensitivity D1000, Agilent). Libraries were sequenced on a NextSeq500 or 941 

HiSeq4000 sequencer (Illumina) using custom sequencing primers with following read lengths: 942 

50 + 10 + 12 + 50 (Read1 + Index1 + Index2 + Read2). Primer and index sequences are listed in 943 

Table S11. 944 

 945 

Demultiplexing of single nucleus ATAC-seq sequencing reads 946 

For each sequenced single nucleus ATAC-Seq library, we obtained four FASTQ files, two for 947 

paired end DNA reads and two for the combinatorial indexes for i5 and T7 (768 and 364 indices, 948 
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respectively). We selected all reads with up to 2 mismatches per i5 and T7 index (Hamming 949 

distance between each pair of indices is 4) and integrated the concatenated barcode at the 950 

beginning of the read name in the demultiplexed FASTQ files. The customized scripts can be 951 

found at: https://gitlab.com/Grouumf/ATACdemultiplex/. 952 

 953 

Quality control metrics: TSS enrichment and unique fragments 954 

TSS positions were obtained from the GENCODE database v31 (Frankish et al., 2019). Tn5 955 

corrected insertions were aggregated ±2000 bp relative (TSS strand-corrected) to each unique 956 

TSS genome wide. Then this profile was normalized to the mean accessibility ± (1900 to 2000) 957 

bp from the TSS and smoothed every 11 bp. The max of the smoothed profile was taken as the 958 

TSS enrichment. We then filtered out all single cells that had fewer than 1,000 unique fragments 959 

and/or a TSS enrichment of less than 7 for all data sets. 960 

 961 

Overall clustering strategy 962 

We utilized two rounds of clustering analysis to identify cell clusters. The first round of clustering 963 

analysis was performed on individual samples. We divided the genome into 5kb consecutive 964 

windows and then scored each cell for any insertions in these windows, generating a window by 965 

cell binary matrix for each sample. We filtered out those windows that are generally accessible in 966 

all cells for each sample using z-score threshold 1.65. Based on the filtered matrix, we then carried 967 

out dimension reduction followed by graph-based clustering to identify cell clusters. We called 968 

peaks for each cluster using the aggregated profile of accessibility and then merged the peaks 969 

from all clusters to generate a union peak list. Based on the peak list, we generated a cell-by-970 

peak count matrix and used Scrublet (Wolock et al., 2019) to remove potential doublets. Next, to 971 

carry out the second round of clustering analysis, we merged peaks called from all samples to 972 

form a reference peak list. We then generated a single binary cell-by-peak matrix using cells from 973 

all samples and again performed the dimension reduction followed by graph-based clustering to 974 

obtain the final cell clusters across the entire dataset. 975 

 976 

Doublet removal 977 

We applied Scrublet to the cell-by-peak count matrix with default parameters. Doublet scores 978 

returned by Scrublet were then used to fit a two-component Gaussian mixture model using the 979 

“BayesianGaussianMixture” function from the python package “scikit-learn”. The component with 980 

larger mean doublet score is presumably formed by doublets and cells belonging to it were 981 

removed from downstream analysis. 982 
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 983 

Dimension reduction 984 

To find the low-dimensional manifold of the single cell data, we adapted our previously published 985 

method, SnapATAC (Fang et al., 2020), to reduce the dimensionality of the peak by cell count 986 

matrix. The previous iteration of SnapATAC utilized spectral embedding for dimension reduction. 987 

To further increase the performance and scalability of spectral embedding, we applied the 988 

Nyström method (Bouneffouf and Birol, 2016) for handling large datasets. Specifically, we first 989 

randomly sampled 35,000 cells as the training data. We then computed the Jaccard index 990 

between each pair of cells in the training set and constructed the similarity matrix 𝑆. We computed 991 

the matrix 𝑃 = 𝐷"#𝑆 , where 𝐷  is the diagonal matrix such that 𝐷$$ = ∑ 𝑆$%% . The 992 

eigendecomposition was performed on 𝑃 and the eigenvector with eigenvalue 1 was discarded. 993 

From the rest of the eigenvectors, we took the first 30 of them corresponding to the largest 994 

eigenvalues as the spectral embedding of the training data. We utilized the Nyström method to 995 

extend the embedding to the data outside the training set. Given a set of unseen samples, we 996 

computed the similarity matrix 𝑆′ between the new samples and the training set. The embedding 997 

of the new samples is given by 𝑈′ = 𝑆′𝑈𝛬"#, where 𝑈 and 𝛬 are the eigenvectors and eigenvalues 998 

of 𝑃 obtained in the previous step. 999 

 1000 

Correction of Batch Effects 1001 

Inspired by the mutual nearest neighbor batch-effect-correction method (Haghverdi et al., 2018), 1002 

we developed a variant using mutual nearest centroids to iteratively correct for batch effects in 1003 

multiple donor samples. Specifically, after dimension reduction we performed k-means clustering 1004 

on individual replicate or donor sample with k equal to 20. We choose this number because the 1005 

number of major clusters in a given tissue sample is typically less than 20. We then computed the 1006 

centroid for each cluster and identified pairs of mutual nearest centroids across different batches. 1007 

These mutual nearest centroids were used as the anchors to match the cells between different 1008 

batches and correct for batch effects as described previously (Haghverdi et al., 2018). We found 1009 

that the result can be further improved by performing above steps iteratively. However, too many 1010 

iterations may lead to over-correction. We therefore used two iterations in this study.  1011 

 1012 

Graph-based clustering algorithm 1013 

We constructed the k-nearest neighbor graph (k-NNG) using low-dimensional embedding of the 1014 

cells with k equal to 50. We then applied the Leiden algorithm (Traag et al., 2019) to find 1015 

communities in the k-NNG corresponding to cell clusters. The Leiden algorithm can be configured 1016 
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to use different quality functions. The modularity model is a popular choice but it suffers from the 1017 

issue of resolution-limit, particularly when the network is large (Traag et al., 2011). Therefore, we 1018 

used the modularity model only in the first round of clustering analysis to identify initial clusters. 1019 

In the final round of clustering, we chose the constant Potts model as the quality function since it 1020 

is resolution-limit-free and is better suited for identifying rare populations in a large dataset (Traag 1021 

et al., 2011). To determine the optimal number of clusters, we varied the resolution parameter in 1022 

the Leiden algorithm and computed the clustering stability and diversity under each resolution. 1023 

Cluster stability was defined as the consistency, measured by the average adjusted rand index, 1024 

of results from five independent clustering analyses on perturbed inputs. The perturbation was 1025 

introduced in a way that 2% of the edges were randomly selected and subjected to removal. To 1026 

compute the cluster diversity, i.e., the extent to which different replicates are uniformly 1027 

represented, we first grouped the cells based on their tissue of origin and then based on the 1028 

experimental batch. We counted the cells for each combination and normalized by the total 1029 

number of cells in the corresponding sample. For each tissue, normalized entropy was computed 1030 

across batches. The average entropy across all tissues in the cluster were taken as the cluster 1031 

diversity. Finally, we selected the highest resolution that had stability >0.9 and diversity >0.9. 1032 

 1033 

Iterative clustering analysis of major cell clusters 1034 

To further investigate the heterogeneity of identified cell clusters, we performed another round of 1035 

clustering on 27 out of 54 cell clusters that had enough cells (> 1000) and minimal batch effects 1036 

(diversity > 0.9), i.e., replicates are almost equally represented. For each of these cell clusters, 1037 

we performed dimension reduction, batch correction and graph-based clustering as above. To 1038 

avoid over-clustering, we selected the resolution parameter that lead to stable clustering results 1039 

(stability > 0.9). 15 out of 27 cell clusters under investigation were found to contain more than one 1040 

subcluster. 1041 

 1042 

Generating the union peak set 1043 

For each cluster, peak calling was performed on Tn5-corrected single-base insertions (each end 1044 

of the Tn5-corrected fragments) using the MACS2 (Zhang et al., 2008) callpeak command with 1045 

parameters “–shift -100 –extsize 200 –nomodel –call-summits –nolambda –keep-dup all -q 0.01”, 1046 

filtered by the hg38 blacklist version 2 (downloaded from https://github.com/Boyle-1047 

Lab/Blacklist/tree/master/lists). To compile a union peak set, we combined peaks from all clusters 1048 

and extended the peak summits by 250 bp on either side. Overlapping peaks were then handled 1049 

using an iterative removal procedure. First, the most significant peak, i.e., the peak with the 1050 
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smallest p-value, was kept and any peak that directly overlapped with it was removed. Then, this 1051 

process was iterated to the next most significant peak and so on until all peaks were either kept 1052 

or removed due to direct overlap with a more significant peak.  1053 

 1054 

Computing relative accessibility scores 1055 

We define an accessible locus as the minimal genomic region that can be bound and cut by the 1056 

Tn5 enzyme. We use 𝐿 ⊂ 𝑁 to represent the set of all accessible loci. We further define a pseudo-1057 

locus as the set of accessible loci that relates to each other in certain meaningful way (for 1058 

example, nearby loci, loci from different alleles). In this example, pseudo-loci correspond to peaks. 1059 

We use {𝑑$ ∣ 𝑑$ ⊂ 𝐿}  to represent the set of all pseudo-loci. Let 𝑎&  be the accessibility of 1060 

accessible locus 𝑙, where 𝑙 ∈ 𝐿. We define the accessibility of pseudo-locus 𝑑$ as 𝐴$ = ∑ 𝑎''∈)! , 1061 

i.e., the sum of accessibility of accessible loci associated with di. Let 𝐶% be the library complexity 1062 

(the number of distinct molecules in the library) of cell 𝑗. Assuming unbiased PCR amplification, 1063 

then the probability of being sequenced for any fragment in the library is: 𝑠% = 1 − (1 − #
*"
)𝑘% , 1064 

where 𝑘% is the total number of reads for cell 𝑗. If we assume that the probability of a fragment 1065 

present in the library is proportional to its accessibility and the complexity of the library, then we 1066 

can deduce that the probability of a given locus 𝑙 in cell 𝑗 being sequenced is: 𝑝&% ∝ 𝑎&𝐶%𝑠%. For 1067 

any pseudo-locus 𝑑$, the number of reads in 𝑑$ for cell 𝑗 follows a Poisson binomial distribution, 1068 

and its mean is 𝑚$% = ∑ 𝑝'%'∈)! ∝ 𝐶%𝑠% ∑ 𝑎''∈)! = 𝐶%𝑠%𝐴$. Given a pseudo-locus (or peak) by cell 1069 

count matrix 𝑂, we have: ∑ 𝑂$%% = ∑ 𝑚$%% . Therefore, 𝐴$ = 𝑍
∑ ,!""
∑ *"-""

, where 𝑍 is a normalization 1070 

constant. When comparing across different samples the relative accessibility may be desirable 1071 

as they sum up to a constant, i.e., ∑ 𝐴$$ = 1 × 10.. In this case, we can derive 𝐴$ =
∑ ,!""
∑ ,!"!"

∗ 10.. 1072 

 1073 

Assigning cell types to cell clusters 1074 

To annotate the cell clusters, we first curated a set of marker genes from the PanglaoDB (Franzén 1075 

et al., 2019) corresponding to expected cell types. We aggregated open chromatin fragments 1076 

from each cluster and utilized the promoter accessibility, defined as RPM of +/- 1kb around TSS, 1077 

as the proxy for gene activity. We then computed the raw cell type enrichment score as the 1078 

logarithm of the geometric mean of marker genes’ activity. The final enrichment scores were 1079 

obtained by applying two rounds of z-score transformation, first across cell types and then across 1080 

cell clusters, on raw enrichment scores. For each cluster, we picked the cell type that showed 1081 

strongest enrichment to make initial assignments. Finally, we manually reviewed these 1082 
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assignments and made adjustments based on focused consideration of marker gene accessibility 1083 

in conjunction with information about tissue(s) of origin. 1084 

 1085 

Identification of cell type-restricted peaks 1086 

We used a Shannon entropy-based method (Schug et al., 2005) to identify cell type-specific 1087 

peaks. Given the relative accessibility scores of a peak across clusters, we first converted the 1088 

scores to probabilities: 𝑝$ = 𝑞$/∑ 𝑞$$ . The entropy was then calculated by: 𝐻/ = −∑ 𝑝00 log!(𝑝0). 1089 

The specificity score is 𝑄/|0 = 𝐻/ − log!(𝑝0). To estimate the statistical significance of specificity 1090 

scores, we assumed that under the null hypothesis each peak has an average accessibility level 1091 

across all cell types and that the log base 2 of the cell-type-dependent fold changes from the 1092 

average level follow a normal distribution with mean equal to zero and standard deviation 𝑠. The 1093 

value of 𝑠 was estimated using the top 50% least variable peaks, and 500,000 samples were then 1094 

drawn to form the empirical distribution of 𝑄/ that are used to determine the p-values of specificity 1095 

scores. The cell-type-restricted peaks were then identified using a FDR cutoff of 0.1%. 1096 

 1097 

Cell-type enrichment analysis of fine-mapped GTEx eQTLs 1098 

The fine-mapped eQTLs (GTEx Analysis V8) in each of the 25 tissues were downloaded from the 1099 

GTEx portal (https://gtexportal.org). For each tissue, we first identified the overlapping cCREs 1100 

with its eQTLs. We then calculated the average of log-transformed accessibility scores of these 1101 

peaks in each of the 54 cell types. This yielded a tissue by cell-type table containing raw cell-type 1102 

enrichment scores of eQTLs from each tissue. The raw enrichment scores were then normalized 1103 

row-wise using z-score transformation. For each tissue, we defined the maximum cell-type 1104 

enrichment as the largest value of z-scores across 54 cell types. In general, we found that 1105 

homogenous tissues tend to have higher maximum cell-type enrichment than tissues that are 1106 

more heterogenous. 1107 

 1108 

Differential peak analysis 1109 

To carry out differential peak analysis between foreground set and background set, we first 1110 

removed all peaks with fold changes of relative accessibility less than 2. For each peak, we then 1111 

built a full model and a reduced model. 1112 

log
𝑃23&&

1 − 𝑃23&&
= 𝛽4 + 𝛽#𝑟 + 𝛽!𝑐 1113 

log
𝑃56)376)

1 − 𝑃56)376)
= 𝛽4 + 𝛽#𝑟 1114 
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𝑃56)376)  and 𝑃23&& represent the likelihood of the reduced model and full model respectively. 𝑟 1115 

contains the logarithm of the number of fragments. 𝑐 is a categorical variable indicating if the cell 1116 

comes from the foreground or the background. We then used a likelihood ratio test framework to 1117 

determine whether the full model provided a significantly better fit of the data than the reduced 1118 

model. We selected the sites using a 5% FDR threshold (Benjamini-Hochberg method). 1119 

 1120 

Identification of fibroblast core signature and subtype-specific signatures 1121 

We first performed pairwise differential peak analysis for the six fibroblast subtypes. We then 1122 

defined fibroblast core signature as peaks that are shared by all subtypes and were not called as 1123 

differentially accessible in any of the pairwise comparison. Likewise, we defined the specific 1124 

signature for a subtype as peaks that are differentially more accessible in the given subtype for 1125 

every pairwise comparison. 1126 

 1127 

Measuring the similarity of chromatin accessibility profiles between cell types identified 1128 

by sci-ATAC-seq and bulk biosamples 1129 

We downloaded bulk DNase-seq data from the ENCODE portal. We excluded samples collected 1130 

at embryonic stage or originated from kidney, bladder or brain tissues, as we did not perform 1131 

experiments on those tissues. As a result, 638 datasets were kept for downstream analysis. For 1132 

each of the DNase-seq datasets, we calculated its Pearson correlation coefficient with 54 1133 

identified cell types based on RPKM values at identified cCREs. These correlation scores were 1134 

then scaled using z-score transformation across 54 cell types. We used the maximum of scaled 1135 

correlation scores to represent each biosample’s overall similarity with sci-ATAC-seq cell types. 1136 

 1137 

Identification of cCRE modules 1138 

A cCRE module is defined as co-accessible regions or regions that share similar accessibility 1139 

pattern across cell types. We set a large k equal to 150 in k-mean clustering in order to capture 1140 

complex patterning of 756,414 cCREs across 54 cell types. While the large number of clusters 1141 

can better represent the complexity of the data, it also raises challenges for interpretability and 1142 

downstream analysis. To address this, we further aggregated the 150 clusters into 51 super-1143 

clusters or CRE modules using hierarchical clustering. These 51 CRE modules were then retained 1144 

for functional analysis and sequence motif analysis. 1145 

 1146 

Explaining cell-type specificity of CRE modules by deep learning 1147 
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We used machine learning to investigate the extent to which the nucleotide sequences contribute 1148 

to the cell type-specific chromatin accessibility pattern represented by the 51 cCRE modules. 1149 

Specifically, we designed a sequence-to-module convolutional neural network (CNN) that uses 1150 

one-hot-encoded DNA sequence (𝐴 = [1,0,0,0], 𝐶 = [0,1,0,0], 𝐺 = [0,0,1,0], 𝑇 = [0,0,0,1]) as input 1151 

to predict the module class for every cCRE. The architecture of CNN consists of a sequence of 1152 

convolutional layers. Each convolutional layer has 64 filters with varying width. The first 1153 

convolutional layer uses a filter width of 25 bp to scan the 500 bp region for relevant sequence 1154 

motifs. This layer is then followed by 5 dilated convolutional layers (filter width 3) where the dilation 1155 

rate doubles at every layer. A fully connected softmax layer is used after the convolutional layers 1156 

to get module classes as the output. To ensure each module is uniformly represented in the 1157 

training and testing datasets, we randomly selected 100 cCREs from each module to form the 1158 

testing dataset. From the remaining cCREs, we then used oversampling to randomly sample 1159 

20,000 cCREs from each module to form the training dataset. We applied the Adam optimization 1160 

algorithm to train the model until the validation accuracy stopped improving. To help interpret the 1161 

model, we used the TF-MoDISco algorithm (Shrikumar et al., 2018) to extract the sequence motif 1162 

features from the model and used TOMTOM (Gupta et al., 2007) to identify matched known TF 1163 

motifs from a public database (Weirauch et al., 2014). 1164 

 1165 

Identification of candidate driver TFs 1166 

We used the Taiji pipeline (Zhang et al., 2019) to identify candidate driver TFs in each cell cluster. 1167 

Briefly, for each cell type cluster, we constructed the TF regulatory network by scanning TF motifs 1168 

at the accessible chromatin regions and linking them to the nearest genes. The network is directed 1169 

with edges from TFs to target genes. The genes’ weights in the network were determined based 1170 

on the relative accessibility of their promoters. The weights of the edges were calculated by the 1171 

relative accessibility of the promoters of the source TFs. We then used the personalized 1172 

PageRank algorithm to rank the TFs in the network. 1173 

 1174 

Comparing chromatin accessibility landscapes between adult and fetal cell types 1175 

To compare our dataset with the recent cell atlas of fetal chromatin accessibility (Domcke et al., 1176 

2020), we downloaded the bigwig files for different cell types in fetal tissues and converted the 1177 

genomic coordinates from GRC37 (hg19) to GRCh38. In order to make a comparison, we focused 1178 

on cell types present in eight organs that are profiled in both studies, including heart, intestine, 1179 

muscle, adrenal gland, pancreas, lung, stomach, and liver. For each cell type, we then calculated 1180 

the signal enrichment in the union peak list obtained by merging peaks from adult and fetal cell 1181 
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types. We applied quantile normalization to the resulting signal enrichment scores in order to 1182 

mitigate technical or batch effects between the two datasets. We then compared the enrichment 1183 

scores between adult and fetal cell types using Pearson correlation. To remove noise from the 1184 

correlation calculation, for each pair of cell types we excluded regions that had enrichment scores 1185 

less than 1 in both cell types from the calculation. To estimate the significance level of correlation 1186 

scores, we used correlation scores from unmatched cell types to build a null model. We observed 1187 

that these scores were roughly Gaussian distributed, and we used the sample mean and variance 1188 

to parameterize a Gaussian model for computing p-values of correlation scores. To identify adult-1189 

specific peaks, for each peak we obtained the maximum value of enrichment scores across cell 1190 

types in adult and fetal cell types respectively. We then log-transformed the maximum scores and 1191 

computed the fold change between adult and fetus. We retained peaks with a fold change greater 1192 

than 1.5 as adult-specific peaks. We used a similar strategy with some modifications when 1193 

comparing the peaks in the same cell types from adult and fetus. Instead of taking the maximum, 1194 

we compared average enrichment scores and used a more stringent cutoff of 2 for fold change 1195 

thresholding. 1196 

 1197 

Generation of bigwig tracks 1198 

Each Tn5-corrected insertion was extended in both directions by 100 bp to form a 200-bp 1199 

fragment. We then counted the number of fragments overlapping with each base on the genome 1200 

and generated a bedgraph file. The bedgraph file was converted to bigwig file using the 1201 

“bedGraphToBigWig” tool. 1202 

 1203 

Linking cCREs to target genes 1204 

We downloaded the chromosome interactions called from published promoter capture Hi-C data 1205 

in 14 human tissues (Jung et al., 2019). In each tissue, we first filtered the chromosome 1206 

interactions using a lenient p-value cutoff of 0.1. We then created the chromosome interaction 1207 

matrix using the normalized interaction frequency. The interaction matrices from 14 tissues were 1208 

then averaged to get the final interaction matrix. We applied the Activity-by-Contact (ABC) Model 1209 

(Fulco et al., 2019) to compute the ABC Score for each cCRE-gene pair as the product of Activity 1210 

(chromatin accessibility) and Contact (interaction frequency), normalized by the product of Activity 1211 

and Contact for all other cCREs. We retained all distal cCRE-gene connections with an ABC score 1212 

greater than 0.02. 1213 

 1214 
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Estimating cell-type composition for tissues by deconvolution of bulk chromatin 1215 

accessibility profiles 1216 

We selected 500 cCREs that were most specifically accessible in each of the 54 cell types 1217 

according to the specificity scores defined above. These cCREs were used to create a signature 1218 

cCRE matrix, which contained accessibility scores of 19,591 distinct cCREs across 54 cell types. 1219 

To estimate the fractions of 54 cell types from chromatin accessibility profiles of bulk tissue 1220 

samples, we solve the linear equation: 𝑆𝑏 = 𝑣, where 𝑆 is the cell-type by cCRE signature matrix, 1221 

𝑏 is a column vector containing fractions of 54 cell-types, and 𝑣 is the bulk chromatin accessibility 1222 

scores of 19,591 signature cCREs. We applied two different algorithms, non-negative least 1223 

squares (NNLS) and support vector regression (SVR), for solving the equations. We found that 1224 

the two algorithms show comparable performance while SVR performs a little better than NNLS. 1225 

 1226 

GWAS variant enrichment 1227 

We used linkage disequilibrium (LD) score regression (Bulik-Sullivan et al., 2015) v1.0.1 to 1228 

estimate genome-wide GWAS enrichment for disease and non-disease phenotypes within cell 1229 

type resolved cCREs (peaks called on each cell cluster via MACS2 (Zhang et al., 2008) using the 1230 

above parameters). We compiled published GWAS summary statistics for complex diseases 1231 

(Bentham et al., 2015; Bronson et al., 2016; Consortium, 2019; Cordell et al., 2015; Jansen et al., 1232 

2019; Ji et al., 2017; Jin et al., 2016; Luo et al., 2017b; Mahajan et al., 2018; Malik et al., 2018; 1233 

Michailidou et al., 2017; Nielsen et al., 2018; Nikpay et al., 2015; Okada et al., 2014; Paternoster 1234 

et al., 2015; Pividori et al., 2019; Sakornsakolpat et al., 2019; Schafmayer et al., 2019; Shadrina 1235 

et al., 2019; Tachmazidou et al., 2019; Tin et al., 2019; Watanabe et al., 2019; Wiberg et al., 2019; 1236 

Wuttke et al., 2019) and endophenotypes (Astle et al., 2016; Hoffmann et al., 2018; Kemp et al., 1237 

2017; Kilpeläinen et al., 2016; Manning et al., 2012; Saxena et al., 2010; Shrine et al., 2019; 1238 

Strawbridge et al., 2011; Teumer et al., 2018; Warrington et al., 2019) within European 1239 

populations. Using cell type resolved cCREs as a binary annotation, we created custom 1240 

partitioned LD score files by following the steps outlined in the LD score estimation tutorial. As 1241 

background annotations, we included all baseline annotations in the baseline-LD model v2.2 as 1242 

well as partitioned LD scores created from all merged cCREs. For each trait, we used LD score 1243 

regression to then estimate coefficient z-scores for each cell type relative to the background 1244 

annotations. We used the coefficient z-scores to compute one-sided p-values and used the 1245 

Benjamini-Hochberg procedure to correct for multiple tests. 1246 

 1247 

Fine mapping 1248 
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We performed genetic fine mapping for GWAS of diseases and endophenotypes that had 1249 

sufficient coverage (i.e., were at least imputed into 1000 Genomes). For GWAS with available 1250 

fine mapping data, we took 99% credible sets directly from the supplemental tables. For GWAS 1251 

without available fine mapping data, we calculated approximate Bayes factors (Wakefield, 2009) 1252 

(ABF) for each variant assuming prior variance ω = 0.04. For every trait, we obtained index 1253 

variants for each locus from the supplemental tables of the respective study. We extracted all 1254 

variants in at least low linkage disequilibrium (r2 > 0.1 using the European subset of 1000 1255 

Genomes Phase 3 (Auton et al., 2015)) in a large window (±2.5 Mb) around each index variant. 1256 

We calculated posterior probabilities of association (PPA) for each variant by dividing its ABF by 1257 

the cumulative ABF for all variants within the locus. We then defined 99% credible sets for each 1258 

locus by sorting variants by descending PPA and keeping variants adding up to a cumulative PPA 1259 

of 0.99. 1260 

 1261 

Predicting the effects of non-coding variants on TF binding 1262 

To identify SNPs that affect TF binding, we employed deltaSVM models as described previously 1263 

(Yan et al., 2021). Briefly, 40 bp sequences centered on each SNP were used as input to 94 1264 

previously trained and validated TF models. For each SNP, we predicted the binding scores for 1265 

both alleles by running "gkmpredict". A SNP is considered to be bound if the binding score passes 1266 

the pre-defined threshold for either allele. Among those SNPs, deltaSVM scores were calculated 1267 

using the "deltasvm.pl" script and SNPs with deltaSVM scores passing the threshold for the 1268 

corresponding model are predicted to affect TF binding. 1269 

 1270 

DATA AND SOFTWARE AVAILABILITY 1271 

The GEO accession number for the sequencing data and processed data files in this paper is 1272 

GSE165659. 1273 

  1274 
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