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Abstract: The computational role of the abundant feedback connections in the ventral vi-
sual stream (VVS) is unclear, enabling humans and non-human primates to effortlessly rec-
ognize objects across a multitude of viewing conditions. Prior studies have augmented feed-
forward convolutional neural networks (CNNs) with recurrent connections to study their role
in visual processing; however, often these recurrent networks are optimized directly on neural
data or the comparative metrics used are undefined for standard feedforward networks that lack
these connections. In this work, we develop task-optimized convolutional recurrent (ConvRNN)
network models that more correctly mimic the timing and gross neuroanatomy of the ventral
pathway. Properly chosen intermediate-depth ConvRNN circuit architectures, which incorpo-
rate mechanisms of feedforward bypassing and recurrent gating, can achieve high performance
on a core recognition task, comparable to that of much deeper feedforward networks. We then
develop methods that allow us to compare both CNNs and ConvRNNs to fine-grained mea-
surements of primate categorization behavior and neural response trajectories across thousands
of stimuli. We find that high performing ConvRNNs provide a better match to this data than
feedforward networks of any depth, predicting the precise timings at which each stimulus is
behaviorally decoded from neural activation patterns. Moreover, these ConvRNN circuits con-
sistently produce quantitatively accurate predictions of neural dynamics from V4 and IT across
the entire stimulus presentation. In fact, we find that the highest performing ConvRNNs, which
best match neural and behavioral data, also achieve a strong Pareto-tradeoff between task per-
formance and overall network size. Taken together, our results suggest the functional purpose
of recurrence in the ventral pathway is to fit a high performing network in cortex, attaining
computational power through temporal rather than spatial complexity.
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1 Introduction
The visual system of the brain must discover meaningful patterns in a complex physical world1.
Within 200ms, primates can quickly identify objects despite changes in position, pose, contrast,
background, foreground, and many other factors from one occasion to the next: a behavior
known as “core object recognition”2,3. It is known that the ventral visual stream (VVS) under-
lies this ability by transforming the retinal image of an object into a new internal representation,
in which high-level properties, such as object identity and category, are more explicit3.

Non-trivial dynamics result from a ubiquity of recurrent connections in the VVS, includ-
ing synapses that facilitate or depress, dense local recurrent connections within each cortical
region, and long-range connections between different regions, such as feedback from higher
to lower visual cortex4. Furthermore, the behavioral roles of recurrence and dynamics in the
visual system are not well understood. Several conjectures are that recurrence “fills in” missing
data,5,6,7,8 such as object parts occluded by other objects; that it “sharpens” representations by
top-down attentional feature refinement, allowing for easier decoding of certain stimulus prop-
erties or performance of certain tasks4,9,10,11,12; that it allows the brain to “predict” future stimuli
(such as the frames of a movie)13,14,15; or that recurrence “extends” a feedforward computation,
reflecting the fact that an unrolled recurrent network is equivalent to a deeper feedforward net-
work that conserves on neurons (and learnable parameters) by repeating transformations several
times16,17,18,7,19,20. Formal computational models are needed to test these hypotheses: if opti-
mizing a model for a certain task leads to accurate predictions of neural dynamics, then that
task may be a primary reason those dynamics occur in the brain.

We therefore broaden the method of goal-driven modeling from solving tasks with feedfor-
ward CNNs21 or RNNs22 to explain dynamics in the primate visual system, building convolu-
tional recurrent neural networks (ConvRNNs), depicted in Figure 1. There has been substantial
prior work in this domain16,10,17,19,23,20, which we go beyond in several important ways.

We show that with a novel choice of layer-local recurrent circuit and long-range feedback
connectivity pattern, ConvRNNs can match the performance of much deeper feedforward CNNs
on ImageNet but with far fewer units and parameters, as well as a more anatomically consistent
number of layers, by extending these computations through time. In fact, such ConvRNNs most
accurately explain neural dynamics from V4 and IT across the entirety of stimulus presentation
with a temporally-fixed linear mapping, compared to alternative recurrent circuits. Furthermore,
we find these suitably-chosen ConvRNN circuit architectures provide a better match to primate
behavior in the form of object solution times, compared to feedforward CNNs. We observe that
ConvRNNs that attain high task performance but have small overall network size, as measured
by number of units, are most consistent with this data – while even the highest-performing but
biologically-implausible deep feedforward models are overall a less consistent match. In fact,
we find a strong Pareto-tradeoff between network size and performance, with ConvRNNs of
biologically-plausible intermediate-depth occupying the sweet spot with high performance and
a (comparatively) small overall network size. Because we do not fit neural networks end-to-
end to neural data (c.f.23), but instead show that these outcomes emerge naturally from task
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performance, our approach enables a normative interpretation of the structural and functional
design principles of the model.

Our work is also the first to develop large-scale task-optimized ConvRNNs with biologically-
plausible temporal unrolling. Unlike most studies of combinations of convolutional and recur-
rent networks, which posit a recurrent subnetwork concatenated onto the end of a convolutional
backbone10, we model local recurrence implanted within ConvRNN layers, and allow long-
range feedback between layers. Moreover, we treat each connection in the network – whether
feedforward or feedback – as a real temporal object with a biophysical conduction delay (set at
∼10ms), rather than the typical procedure (e.g. as in10,17,19) in which the feedforward compo-
nent of the network (no matter now deep) operates in one timestep. As a result, our networks
can be directly compared with neural and behavioral trajectories at a fine-grained scale limited
only by the conduction delay itself.

This level of realism is especially important for establishing what we have found appears to
be the main real quantitative advantage of ConvRNNs as biological models, as compared to very
deep feedforward networks. In particular, we can define an improved metric for assessing the
correctness of the match between a ConvRNN network – thought of as a dynamical system – and
the actual trajectories of real neurons. By treating such feedforward networks as ConvRNNs
with recurrent connections set to 0, we can map these networks to temporal trajectories as
well. As a result, we can directly ask, how much of the neural-behavioral trajectory of real
brain data is explicable by very deep feedforward networks? This is an important question
because implausibly deep networks have been shown in the literature not only to achieve the
highest categorization performance24 but also achieve competitive results on matching static
(temporally-averaged) neural responses25. Due to non-biological temporal unrolling, previous
work with comparing such networks to temporal trajectories in neural data19 has been forced
to unfairly score feedforward networks as total failures, with temporal match score artificially
set at 0. With our improved realism, we find (see results section below) that deep feedforward
networks actually make quite nontrivial temporal predictions that do explain some of the reliable
temporal variability of real neurons. In this context, our finding that plausibly-deep ConvRNNs
in turn meaningfully outperform these deep feedforward networks on this more fair metric is a
strong and nontrivial signal of the actually-better biological match of ConvRNNs as compared
to deep feedforward networks.

2 Results

2.1 An evolutionary architecture search yields specific layer-local recur-
rent circuits and long-range feedback connectivity patterns that im-
prove task performance and maintain small network size.

We first tested whether augmenting CNNs with standard RNN circuits from the machine learn-
ing community, SimpleRNNs and LSTMs, could improve performance on ImageNet object
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Figure 1: ConvRNNs as models of the primate ventral visual stream. Performance-optimized re-
currence. Convolutional recurrent networks (ConvRNNs) have a combination of local recurrent circuits
(green) and long-range feedback connections (red) added on top of a feedforward CNN “BaseNet” back-
bone (blue). Feedforward CNNs are therefore a special case of ConvRNNs, and we consider a variety
of CNNs of varying depths, trained on the ImageNet categorization task. We also perform large-scale
evolutionary searches over the local and long-range feedback connections. In addition, we consider par-
ticular choices of “light-weight” (in terms of parameter count) decoding strategy that determines the
final object category of that image. In our implementation displayed on the top, propagation along each
arrow takes one time step (10ms) to mimic conduction delays between cortical layers. Measurements.
From each network class, we measure categorization performance and its size in terms of its parameter
and neuron count. Comparison to neural and behavioral data. Each stimulus was presented for 100ms,
followed by a mean gray stimulus interleaved between images, lasting a total of 260ms. All images were
presented to the models for 10 time steps (corresponding to 100ms), followed by a mean gray stimulus
for the remaining 15 time steps, to match the image presentation to the primates. We stipulated that units
from each multi-unit array must be fit by features from a single model layer, detailed in Section A.6.2.
Model features produce a temporally-varying output that can be compared to primate neural dynamics
in V4 and IT, as well as temporally-varying behaviors in the form of object solution times (OST).
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recognition (Figure 2a). We found that these recurrent circuits added a small amount of ac-
curacy when introduced into the convolutional layers of a shallow, 6-layer feedforward back-
bone (“FF” in Figure S1) based off of the AlexNet26 architecture, which we will refer to as a
“BaseNet” (see Section A.3 for architecture details). However, there were two problems with
these resultant recurrent architectures: first, these ConvRNNs did not perform substantially bet-
ter than parameter-matched, minimally unrolled controls – defined as the minimum number of
timesteps after the initial feedforward pass whereby all recurrence connections were engaged at
least once. This control comparison suggested that the observed performance gain was due to an
increase in the number of unique parameters added by the implanted ConvRNN circuits rather
than temporally-extended recurrent computation. Second, making the feedforward model wider
or deeper yielded an even larger performance gain than adding these standard RNN circuits, but
with fewer parameters. This suggested that standard RNN circuits, although well-suited for a
range of temporal tasks, are less well-suited for inclusion within deep CNNs to solve challeng-
ing object recognition tasks.

We speculated that this was because standard circuits lack a combination of two key proper-
ties, each of which on their own have been successful either purely for RNNs or for feedforward
CNNs: (1) Direct passthrough, where at the first timestep, a zero-initialized hidden state al-
lows feedforward input to pass on to the next layer as a single linear-nonlinear layer just as in
a standard feedforward CNN layer (Figure 2a; top left); and (2) Gating, in which the value of
a hidden state determines how much of the bottom-up input is passed through, retained, or dis-
carded at the next time step (Figure 2a; top right). For example, LSTMs employ gating, but not
direct passthrough, as their inputs must pass through several nonlinearities to reach their output;
whereas SimpleRNNs do passthrough a zero-initialized hidden state, but do not gate their input
(Figure 2a; see Section A.3 for cell equations). Additionally, each of these computations have
direct analogies to biological mechanisms – “direct passthrough” would correspond to feed-
forward processing in time, and “gating” would correspond to adaptation to stimulus statistics
across time27,28.

We thus implemented recurrent circuits with both features to determine whether they func-
tion better than standard circuits within CNNs. One example of such a structure is the “Recip-
rocal Gated Circuit” (RGC)29, which passes through its zero-initialized hidden state and incor-
porates gating (Figure 2a, bottom right; see Section A.3.7 for the circuit equations). Adding this
circuit to the 6-layer BaseNet (“FF”) increased accuracy from 0.51 and 0.53 (“RGC Minimal”,
the minimally unrolled, parameter-matched control version) to 0.6 (“RGC Extended”). More-
over, the RGC used substantially fewer parameters than the standard circuits to achieve greater
accuracy (Figure S1).

However, it has been shown that different RNN structures can succeed or fail to perform a
given task because of differences in trainability rather than differences in capacity30. Therefore,
we designed an evolutionary search to jointly optimize over both discrete choices of recurrent
connectivity patterns as well as continuous choices of learning hyperparameters and weight
initializations (search details in Section A.4). While a large-scale search over thousands of con-
volutional LSTM architectures did yield a better purely gated LSTM-based ConvRNN (“LSTM
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Figure 2: Suitably-chosen intermediate ConvRNN circuits can match the object recognition perfor-
mance of much deeper feedforward models. (a) Architectural differences between ConvRNN cir-
cuits. Standard ResNet blocks and SimpleRNN circuits have direct passthrough but not gating. Namely,
on the first timestep, the output of a given ConvRNN layer is directly a single linear-nonlinear function
of its input, equivalent to that of a feedforward CNN layer (namely, f(W ∗xt+b), where f is a nonlinear
function such as ELU/ReLU and xt is the input). The LSTM circuit has gating, denoted by T-junctions,
but not direct passthrough. The Reciprocal Gated Circuit has both. (b) ConvRNN circuit search. Each
blue dot represents a model, sampled from hyperparameter space, trained for five epochs. The orange
line is the average performance of the last 50 models up to that time. The red line denotes the top per-
forming model at that point in the search. Search space schematic: Question marks denote optional
connections, which may be conventional or depth-separable convolutions with a choice of kernel size.
(c) Performance of models fully trained on ImageNet. We compared the performance of an 11-layer
feedforward base model (“BaseNet”) modeled after ResNet-18, a control ConvRNN model with train-
able time constants (“Time Decay”), along with various other common RNN architectures implanted
into this BaseNet, as well as the median Reciprocal Gated Circuit (RGC) model from the search (“RGC
Median”) with or without global feedback connectivity, and its minimally-unrolled control (see the first
table in Section A.3 for the exact timestep values). The “RGC Random” model was selected randomly
from the initial, random phase of the model search. Parameter and unit counts (total number of neurons
in the output of each layer) in millions are shown on top of each bar.
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Opt”), it did not eclipse the performance of the smaller RGC ConvRNN. In fact, applying the
same hyperparameter optimization procedure to the RGC ConvRNNs equally increased that ar-
chitecture class’s performance and further reduced its parameter count (Figure S1, “RGC Opt”).

Therefore, given the promising results with shallower networks, we turned to embedding
recurrent circuit motifs into intermediate-depth feedforward networks at scale, whose number
of feedforward layers corresponds to the timing of the ventral stream3. We then performed an
evolutionary search over these resultant intermediate-depth recurrent architectures (Figure 2b).
If the primate visual system uses recurrence in lieu of greater network depth to perform ob-
ject recognition, then a shallower recurrent model with a suitable form of recurrence should
achieve recognition accuracy equal to a deeper feedforward model, albeit with temporally-fixed
parameters16. We therefore tested whether our search had identified such well-adapted recurrent
architectures by fully training a representative ConvRNN, the model with the median (across
7000 sampled models) validation accuracy after five epochs of ImageNet training. This me-
dian model (“RGC Median”) reached a final ImageNet top-1 validation accuracy nearly equal
to a ResNet-34 model with nearly twice as many layers, even though the ConvRNN used only
∼ 75% as many parameters. The fully unrolled model from the random phase of the search
(“RGC Random”) did not perform substantially better than the BaseNet, though the minimally
unrolled control did (Figure 2c). We suspect the improvement of the base intermediate feedfor-
ward model over using shallow networks (as in Figure S1) diminishes the difference between
the minimal and extended versions of the RGC compared to suitably chosen long-range feed-
back connections. However, compared to alternative choices of ConvRNN circuits, even the
minimally extended RGC significantly outperforms them with fewer parameters and units, in-
dicating the importance of this circuit motif for task performance. This observation suggests
that our evolutionary search strategy yielded effective recurrent architectures beyond the initial
random phase of the search.

We also considered a control model (“Time Decay”) that produces temporal dynamics by
learning time constants on the activations independently at each layer, rather than by learning
connectivity between units. In this ConvRNN, unit activations have exponential rather than
immediate falloff once feedforward drive ceases. These dynamics could arise, for instance,
from single-neuron biophysics (e.g. synaptic depression) rather than interneuronal connections.
However, this model did not perform any better than the feedforward BaseNet, implying that
ConvRNN performance is not a trivial result of outputting a dynamic time course of responses.
We further implanted other more sophisticated forms of ConvRNN circuits into the BaseNet,
and while this improved performance over the Time Decay model, it did not outperform the
RGC Median ConvRNN despite having many more parameters (Figure 2c). Together, these
results demonstrate that the RGC Median ConvRNN uses recurrent computations to subserve
object recognition behavior and that particular motifs in its recurrent architecture (Figure S2),
found through an evolutionary search, are required for its improved accuracy. Thus, given
suitable local recurrent circuits and patterns of long-range feedback connectivity, a physically
more compact, temporally-extended ConvRNN can do the same challenging object recognition
task as a deeper feedforward CNN.
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2.2 ConvRNNs better match temporal dynamics of primate behavior than
feedforward models.

To address whether recurrent processing is engaged during core object recognition behavior, we
turn to behavioral data collected from behaving primates. There is a growing body of evidence
that current feedforward models fail to accurately capture primate behavior31,12. We therefore
reasoned that if recurrence is critical to core object recognition behavior, then recurrent net-
works should be more consistent with suitable measures of primate behavior compared to the
feedforward model family. Since the identity of different objects is decoded from the IT popu-
lation at different times, we considered the first time at which the IT neural decoding accuracy
reaches the (pooled) primate behavioral accuracy of a given image, known as the “object solu-
tion time (OST)”12. Given that our ConvRNNs also have an output at each 10ms timebin, the
procedure for computing the OST for these models is computed from its “IT-preferred” layers,
and we report the “OST consistency”, which we define as the Spearman correlation between
the model OSTs and the IT population’s OSTs on the common set of images solved by the
given model and IT under the same stimulus presentation (see Sections A.6.1 and A.8 for more
details).

Unlike our ConvRNNs, which exhibit more biologically plausible temporal dynamics, eval-
uating the temporal dynamics in feedforward models poses an immediate problem. Given that
recurrent networks repeatedly apply nonlinear transformations across time, we can analogously
map the layers of a feedforward network to timepoints, observing that a network with k dis-
tinct layers can produce k distinct OSTs in this manner. Thus, the most direct definition of a
feedforward model’s OST is to uniformly distribute the timebins between 70-260ms across its k
layers. For very deep feedforward networks such as ResNet-101 and ResNet-152, this number
of distinct layers will be as fine-grained as the 10ms timebins of the IT responses; however,
for most other shallower feedforward networks this will be much coarser. Therefore to enable
these feedforward models to be maximally temporally expressive, we additionally randomly
sample units from consecutive feedforward layers to produce a more graded temporal mapping,
depicted in Figure 3a. This graded mapping is ultimately what we use for the feedforward mod-
els in Figure 3c, providing the highest OST consistency for that model classa. Note that for
ConvRNNs and very deep feedforward models (ResNet-101 and ResNet-152) whose number
of “IT-preferred” layers matches the number of timebins, then the uniform and graded map-
pings are equivalent, whereby the earliest (in the feedforward hierarchy) layer is matched to the
earliest 10ms timebin of 70ms, and so forth.

With model OST defined across both model families, we compared various ConvRNNs and
feedforward models to the IT population’s OST in Figure 3c. Among shallower and deeper
models, we found that ConvRNNs were generally able to better explain IT’s OST than their
feedforward counterparts. Specifically, we found that ConvRNN circuits without any multi-
unit interaction such as the Time Decay ConvRNN only marginally, and not always signifi-

aMean OST difference 0.0120 and s.e.m. 0.0045, Wilcoxon test on uniform vs. graded mapping OST consis-
tencies across feedforward models, p < 0.001; see also Figure S3.
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Figure 3: Intermediate ConvRNNs best explain the object solution times (OST) of IT across images.
(a) Comparing to primate OSTs. Mapping model layers to timepoints. In order to compare to primate
IT object solution times, namely the first time at which the neural decode accuracy for each image
reached the level of the (pooled) primate behavioral accuracy, we first need to define object solution
times for models. This procedure involves identification of the “IT-preferred” layer(s) via a standard
linear mapping to temporally averaged IT responses. Choosing a temporal mapping gradation. These
“IT-preferred” model layer(s) are then mapped to 10ms timebins from 70-260ms in either a uniform or
graded fashion, if the model is feedforward. For ConvRNNs, this temporal mapping is always one-to-one
with these 10ms timebins. (b) Defining model OSTs. Once the temporal mapping has been defined, we
train a linear SVM at each 10ms model timebin and compute the classifier’s d

′
(displayed in each of the

black dots for a given example image). The first timebin at which the model d
′

matches the primate’s
accuracy is defined as the “Model OST” for that image (obtained via linear interpolation), which is the
same procedure previously used12 to determine the ground truth IT OST (“Primate OST” vertical dotted
line). (c) Proper choices of recurrence best match IT OSTs. Mean and s.e.m. are computed across
train/test splits (N = 10) when that image (of 1320 images) was a test-set image, with the Spearman
correlation computed with the IT object solution times (analogously computed from the IT population
responses) across the imageset solved by both the given model and IT, constituting the “Fraction of IT
Solved Images” on the x-axis. We start with either a shallow base feedforward model consisting of 5
convolutional layers and 1 layer of readout (“BaseNet” in blue) as well as an intermediate-depth variant
with 10 feedforward layers and 1 layer of readout (“BaseNet” in purple), detailed in Section A.2.1. From
these base feedforward models, we embed recurrent circuits, resulting in either “Shallow ConvRNNs” or
“Intermediate ConvRNNs”, respectively.
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cantly, improved the OST consistency over its respective BaseNet modelb. On the other hand,
ConvRNNs with multi-unit interactions generally provided the greatest match to IT OSTs than
even the deepest feedforward modelsc, where the best feedforward model (ResNet-152) attains
a mean OST consistency of 0.173 and the best ConvRNN (UGRNN) attains an OST consistency
of 0.237.

Consistent with our observations in Figure 2 that different recurrent circuits with multi-unit
interactions were not all equally effective when embedded in CNNs (despite outperforming
the simple Time Decay model), we similarly found that this observation held for the case of
matching IT’s OST. Given recent observations32 that inactivating parts of macaque ventrolat-
eral PFC (vlPFC) results in behavioral deficits in IT for late-solved images, we reasoned that
additional decoding procedures employed at the categorization layer during task optimization
might meaningfully impact the model’s OST consistency, in addition to the choice of recur-
rent circuit used. We designed several decoding procedures (defined in Section A.5), motivated
by prior observations of accumulation of relevant sensory signals during decision making in
primates33. Overall, we found that ConvRNNs with different decoding procedures, but with
the same layer-local recurrent circuit (RGC Median) and long-range feedback connectivity pat-
terns, yielded significant differences in final consistency with the IT population OST (Figure S4;
Friedman test, p < 0.05). Moreover, the simplest decoding procedure of outputting a predic-
tion at the last timepoint, a strategy commonly employed by the computer vision community,
had a lower OST consistency than each of the more nuanced Max Confidenced and Thresh-
old decoding procedurese that we considered. Taken together, our results suggest that the type
of multi-unit layer-wise recurrence and downstream decoding strategy are important features
for OST consistency with IT, suggesting that specific, non-trivial connectivity patterns further
downstream of the ventral visual pathway may be important to core object recognition behavior
over timescales of a couple hundred milliseconds.

2.3 Neural dynamics differentiate ConvRNN circuits.
ConvRNNs naturally produce a dynamic time series of outputs given an unchanging input
stream, unlike feedforward networks. While these recurrent dynamics could be used for tasks

bPaired t-test with Bonferroni correction: shallow Time Decay vs. “BaseNet” in blue, mean OST difference
0.101 and s.e.m. 0.0313, t(9) ≈ 3.23, p < 0.025; intermediate Time Decay vs. “BaseNet” in purple, mean OST
difference 0.0148 and s.e.m. 0.00857, t(9) ≈ 1.73, p ≈ 0.11.

cPaired t-test with Bonferroni correction: shallow RGC vs. “BaseNet” in blue, mean OST difference 0.153
and s.e.m. 0.0252, t(9) ≈ 6.08, p < 0.001; intermediate UGRNN vs. ResNet-152, mean OST difference 0.0652
and s.e.m. 0.00863, t(9) ≈ 7.55, p < 0.001; intermediate GRU vs. ResNet-152, mean OST difference 0.0559 and
s.e.m. 0.00725, t(9) ≈ 7.71, p < 0.001; RGC Median vs. ResNet-152, mean OST difference 0.0218 and s.e.m.
0.00637, t(9) ≈ 3.44, p < 0.01.

dPaired t-test with Bonferroni correction, mean OST difference 0.0195 and s.e.m. 0.00432, t(9) ≈ −4.52, p <
0.01.

ePaired t-test with Bonferroni correction, mean OST difference 0.0279 and s.e.m. 0.00634, t(9) ≈ −4.41, p <
0.01.
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Figure 4: Suitably-chosen intermediate ConvRNN circuits provide consistent predictions of pri-
mate ventral stream neural dynamics. (a) The y-axis indicates the median across neurons of the
explained variance between predictions and ground-truth responses on held-out images divided by the
square root of the internal consistencies of the neurons, defined in Section A.6.3. Error bars indicates
the s.e.m across neurons (N = 88 for V4, N = 88 for pIT, N = 80 for cIT/aIT) averaged across 10ms
timebins (N = 4 each for the “Early” and “Late” designations). As can be seen, the intermediate-depth
feedforward BaseNet model (first bars) is a poor predictor of the subset of late responses that are beyond
the feedforward pass, but certain types of ConvRNN circuits (such as “RGC Median”, “UGRNN”, and
“GRU”) added to the BaseNet are overall best predictive across visual areas at late timepoints (Wilcoxon
test (with Bonferroni correction) with feedforward BaseNet, p < 0.001 for each visual area). See Fig-
ure S6 for the full timecourses at the resolution of 10ms bins. (b) For each ConvRNN circuit, we compare
the average neural predictivity (averaged per neuron across early and late timepoints) averaged across
areas, to the OST consistency. The ConvRNNs that have the best average neural predictivity also best
match the OST consistency (“RGC Median”, “UGRNN”, and “GRU”).
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involving time, here we optimized the ConvRNNs to perform the “static” task of object classi-
fication on ImageNet. It is possible that the primate visual system is optimized for such a task,
because even static images produce reliably dynamic neural response trajectories at temporal
resolutions of tens of milliseconds15. The object content of some images becomes decodable
from the neural population significantly later than the content of other images, even though an-
imals recognize both object sets equally well. Interestingly, late-decoding images are not well
characterized by feedforward CNNs, raising the possibility that they are encoded in animals
through recurrent computations12. If this were the case, we reason then that recurrent networks
trained to perform a difficult, but static object recognition task might explain neural dynamics
in the primate visual system, just as feedforward models explain time-averaged responses34,35.

Prior studies23 have directly fit recurrent parameters to neural data, as opposed to optimizing
them on a task. While it is natural to try to fit recurrent parameters to the temporally-varying
neural responses directly, this approach naturally has a loss of normative explanatory power. In
fact, we found that this approach suffers from a fundamental overfitting issue to the particular
image statistics of the neural data collected. Specifically, we directly fit these recurrent param-
eters (implanted into the task-optimized feedforward BaseNet) to the dynamic firing rates of
primate neurons recorded during encoding of visual stimuli. However, while these non-task
optimized dynamics generalized to held-out images and neurons (Figure S5a,b), they had no
longer retained performance to the original object recognition task that the primate itself is able
to perform (Figure S5c). Therefore, to avoid this issue, we instead asked whether fully task-
optimized ConvRNN models (including the ones introduced in Section 2.1) could predict these
dynamic firing rates from multi-electrode array recordings from the ventral visual pathway of
rhesus macaques36.

We began with the feedforward BaseNet and added a variety of ConvRNN circuits, in-
cluding the RGC Median ConvRNN and its counterpart generated at the random phase of the
evolutionary search (“RGC Random”). All of the ConvRNNs were presented with the same im-
ages shown to the primates, and we collected the time series of features from each model layer.
To decide which layer should be used to predict which neural responses, we fit linear models
from each feedforward layer’s features to the neural population and measured where explained
variance on held-out images peaked (see Section A.6 for more details). Units recorded from dis-
tinct arrays – placed in the successive V4, posterior IT (pIT), and central/anterior IT (cIT/aIT)
cortical areas of the macaque – were fit best by the successive layers of the feedforward model,
respectively. Finally, we measured how well ConvRNN features from these layers predicted the
dynamics of each unit. In contrast with feedforward models fit to temporally-averaged neural
responses, the linear mapping in the temporal setting must be fixed at all timepoints. The reason
for this choice is that the linear mapping yields “artificial units” whose activity can change over
time (just like the real target neurons), but the identity of these units should not change over
the course of 260ms, which would be the case if instead a separate linear mapping was fit at
each 10ms timebin. This choice of a temporally-fixed linear mapping therefore maintains the
physical relationship between real neurons and model neurons.

As can be seen from Figure 4a, with the exception of the RGC Random ConvRNN, the Con-

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.02.17.431717doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431717
http://creativecommons.org/licenses/by-nc/4.0/


vRNN feature dynamics fit the neural response trajectories as well as the feedforward baseline
features on early phase responses (Wilcoxon test p-values in Table 1) and better than the feed-
forward baseline features for late phase responses (Wilcoxon test with Bonferroni correction
p < 0.001), across V4, pIT, and cIT/aIT on held-out images. For the early phase responses,
the ConvRNNs that employ direct passthrough are elaborations of the baseline feedforward
network, although the ConvRNNs which only employ gating are still a nonlinear function of
their input, similar to a feedforward network. For the late phase responses, any feedforward
model exhibits similar “square wave” dynamics as its 100ms visual input, making it a poor pre-
dictor of the subset of late responses that are beyond the initial feedforward pass (Figure S6,
purple lines). In contrast, the activations of ConvRNN units have persistent dynamics, yielding
predictions of the entire neural response trajectories.

Crucially, these predictions result from the task-optimized nonlinear dynamics from Ima-
geNet, as both models are fit to neural data with the same form of temporally-fixed linear model
with the same number of parameters. Since the initial phase of neural dynamics was well-fit by
feedforward models, we asked whether the later phase could be fit by a much simpler model
than any of the ConvRNNs we considered, namely the Time Decay ConvRNN with ImageNet-
trained time constants at convolutional layers. If the Time Decay ConvRNN were to explain
neural data as well as the other ConvRNNs, it would imply that interneuronal recurrent con-
nections are not needed to account for the observed dynamics; however, this model did not fit
the late phase dynamics of intermediate areas (V4 and pIT) as well as the other ConvRNNsf .
The Time Decay model did match the other ConvRNNs for cIT/aIT, which may indicate some
functional differences in the temporal processing of this area versus V4 and pIT. Thus, the more
complex recurrence found in ConvRNNs is generally needed both to improve object recogni-
tion performance over feedforward models and to account for neural dynamics in the ventral
stream, even when animals are only required to fixate on visual stimuli. However, not all forms
of complex recurrence are equally predictive of temporal dynamics. As depicted in Figure 4b,
we found among these that the RGC Median, UGRNN, and GRU ConvRNNs attained the high-
est median neural predictivity for each visual area in both early and late phases, but in particular
significantly outperformed the SimpleRNN ConvRNN at the late phase dynamics of these ar-
easg, and these models in turn were among the best matches to IT object solution times (OST)
from Section 2.2.

A natural follow-up question to ask is whether a lack of recurrent processing is the reason
for the prior observation that there is a drop in explained variance for feedforward models from
early to late timebins12. In short, we find that this is not the case, and that this drop likely has
to do with task-orthogonal dynamics specific to individual primates, which we examine below.

It is well-known that recurrent neural networks can be viewed as very deep feedforward
networks with weight sharing across layers that would otherwise be recurrently connected16.

f Wilcoxon test with Bonferroni correction p < 0.001 for each ConvRNN vs. Time Decay, except for the
SimpleRNN p ≈ 0.46 for pIT.

gWilcoxon test with Bonferroni correction between each of these ConvRNNs vs. the SimpleRNN on late phase
dynamics, p < 0.001 per visual area.
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Thus, to address this question, we compare feedforward models of varying depths to Con-
vRNNs across the entire temporal trajectory under a varying linear mapping at each timebin, in
contrast to the above. This choice of linear mapping allows us to evaluate how well the model
features are at explaining early compared to late time dynamics without information from the
early dynamics influencing the later dynamics, and also more crucially, to allow the feedfor-
ward model features to be independently compared to the late dynamics. Specifically, as can
be seen in Figure S7a, we observe a drop in explained variance from early (130-140ms) to late
(200-210ms) timebins for the BaseNet and ResNet-18 models, across multiple neural datasets.
Models with increased feedforward depth (such as ResNet-101 or ResNet-152), along with our
performance-optimized RGC Median ConvRNN, exhibit a similar drop in median population
explained variance as the intermediate feedforward models. The benefit of model depth with
respect to increased explained variance of late IT responses might be only noticeable while com-
paring shallow models (< 7 nonlinear transforms) to much deeper (> 15 nonlinear transforms)
models12. Our results suggest that the amount of variance explained in the late IT responses is
not a monotonically increasing function of model depth.

As a result, an alternative hypothesis is that the drop in explained variance from early to
late timebins could instead be attributed to task-orthogonal dynamics specific to an individual
primate as opposed to iterated nonlinear transforms, resulting in variability unable to be cap-
tured by any task-optimized model (feedforward or recurrent). To explore this possibility, we
examined whether the model’s neural predictivity at these early and late timebins was rela-
tively similar in ratio to that of one primate’s IT neurons mapped to that of another primate (see
Section A.7 for more details, where we derive a novel measure of the the neural predictivity
between animals, known as the “inter-animal consistency”).

As shown in Figure S7b, across various hyperparameters of the linear mapping, we observe
a ratio close to one between the neural predictivity (of the target primate neurons) of the feed-
forward BaseNet to that of the source primate mapped to the same target primate. Therefore, as
it stands, temporally-varying linear mappings to neural responses collected from an animal dur-
ing rapid visual stimulus presentation (RSVP) may not sufficiently separate feedforward mod-
els from recurrent models any better than one animal to another – though more investigation
is needed to ensure tight estimates of the inter-animal consistency measure we have introduced
here with neural data recorded from more primates. Nonetheless, this observation further mo-
tivates our earlier result of additionally turning to temporally-varying behavioral metrics (such
as the OST consistency), in order to be able to separate these model classes beyond what is
currently achievable by neural response predictions.

2.4 ConvRNNs mediate a tradeoff between task performance and net-
work size.

Why might a suitably shallower feedforward network with temporal dynamics be desirable for
the ventral visual stream? We reasoned that recurrence mediates a tradeoff between network
size and task performance; a tradeoff that the ventral stream also maintains. To examine this

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.02.17.431717doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431717
http://creativecommons.org/licenses/by-nc/4.0/


A B

Task Performance (Top1 ImageNet Accuracy)
Shallow 

ConvRNN
Intermediate
ConvRNN

Deep 
Feedforward

Intermediate
Feedforward

Shallow 
Feedforward

0.50 0.55 0.60 0.65 0.70 0.75 0.50 0.55 0.60 0.65 0.70 0.75
0.0

4

8

12

U
ni

t C
ou

nt
 (x

10
6 )

20

40

60

80

0.0

M
ean O

ST C
onsistency

0.045- 0.077
0.077- 0.11

0.11- 0.14
0.14-0.17

0.17-0.21
0.21-0.25

Pa
ra

m
et

er
 C

ou
nt

 (x
10

6 )

Figure 5: Intermediate ConvRNN circuits with highest OST consistency conserve on network size
while maintaining task performance. Across all models considered, the intermediate ConvRNNs
(denoted by “x”) that attain high categorization performance (x-axis) while maintaining a low unit count
(panel B) rather than parameter count (panel A) for their given performance level, achieve the highest
mean OST consistency (Spearman correlation with IT population OST, averaged across N = 10 train/test
splits). The colorbar indicates this mean OST consistency (monotonically increasing from purple to red),
binned into 6 equal ranges. Models with a larger network size at a fixed performance level are less
consistent with primate object recognition behavior (e.g. deep feedforward models, denoted by boxes),
with recurrence maintaining a fundamental tradeoff between network size and task performance.

possibility, in Figure 5, we compared each network’s task performance versus its size, mea-
sured either by parameter count or unit count. Across models, we found unit count (related
to the number of neurons) to be more consistent with task performance than parameter count
(related to the number of synapses). In fact, there are many models with a large parameter count
but not very good task performance, indicating that adding synapses is not necessarily as useful
for performance as adding neurons. For shallow recurrent networks, task performance seemed
to be more strongly associated with OST consistency than network size. This tradeoff became
more salient for deeper feedforward models and the intermediate ConvRNNs, as the very deep
ResNets (ResNet-34 and deeper) attained an overall lower OST consistency compared to the
intermediate ConvRNNs, using both much more units and parameters compared to small rela-
tive gains in task performance. Similarly, intermediate ConvRNNs with high task performance
and minimal unit count, such as the UGRNN, GRU, and RGCs attained both the highest OST
consistency overall (Figures 3 and 5) along with providing the best match to neural dynam-
ics among ConvRNN circuits across visual areas (Figure 4b). This observation indicates that
suitably-chosen recurrence can provide a means for maintaining this fundamental tradeoff.

Given our finding that specific forms of task-optimized recurrence are more consistent with
IT’s OST than iterated feedforward transformations (with unshared weights), we asked whether
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it was possible to approximate the effect of recurrence with a feedforward model. This approx-
imation would allow us to better describe the additional “action” that recurrence is providing
in its improved OST consistency. In fact, one difference between this metric and the explained
variance metric evaluated on neural responses in the prior section is that the latter uses a linear
transform from model features to neural responses, whereas the former operates directly on the
original model features. Therefore, a related question is whether the (now standard) use of a
linear transform for mapping from model units to neural responses can potentially mask the
behavioral improvement that suitable recurrent processing has over deep feedforward models
in their original feature space.

To address these questions, we trained a separate linear mapping (PLS regression) from each
model layer to the corresponding IT response at the given timepoint, on a set of images distinct
from those on which the OST consistency metric is evaluated on (see Section A.8.2 for more de-
tails). The outputs of this linear mapping were then used in place of the original model features
for both the uniform and graded mappings, constituting “PLS Uniform” and “PLS Graded”,
respectively. Overall, as depicted in Figure S3, we found that models with less temporal vari-
ation in their source features (namely, those under a uniform mapping with less “IT-preferred”
layers than the total number of timebins) had significantly improved OST consistency with their
linearly transformed features under PLS regression (Wilcoxon test, p < 0.001; mean OST
difference 0.0458 and s.e.m. 0.00399). On the other hand, the linearly transformed interme-
diate feedforward models were not significantly different from task-optimized ConvRNNs that
achieved high OST consistencyh, suggesting that the action of suitable task-optimized recur-
rence approximates that of a shallower feedforward model with linearly induced ground-truth
neural dynamics.

Discussion
The overall goal of this study is to determine what role recurrent circuits may have in the ex-
ecution of core object recognition behavior in the ventral stream. By broadening the method
of goal-driven modeling from solving tasks with feedforward CNNs to ConvRNNs that include
layer-local recurrence and feedback connections, we first demonstrate that appropriate choices
of these recurrent circuits which incorporate specific mechanisms of “direct passthrough” and
“gating” lead to matching the task performance of much deeper feedforward CNNs with fewer
units and parameters, even when minimally unrolled. This observation suggests that the recur-
rent circuit motif plays an important role even during the initial timepoints of visual processing.
Moreover, unlike very deep feedforward CNNs, the mapping from the early, intermediate, and

hPaired t-test with Bonferroni correction: RGC Median vs. PLS Uniform BaseNet, mean OST difference
−0.0052 and s.e.m. 0.0061, t(9) ≈ −0.86, p ≈ 0.41; RGC Median with Threshold Decoder vs. PLS Uni-
form ResNet-18, mean OST difference 0.00697 and s.e.m. 0.0085, t(9) ≈ 0.82, p ≈ 0.43; RGC Median
with Max Confidence Decoder vs. PLS Uniform ResNet-34, mean OST difference 0.0001 and s.e.m. 0.0079,
t(9) ≈ 0.02, p ≈ 0.99.
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higher layers of these ConvRNNs to corresponding cortical areas is neuroanatomically consis-
tent and reproduces prior quantitative properties of the ventral stream. In fact, ConvRNNs with
high task performance but small network size (as measured by number of neurons rather than
synapses) are most consistent with the temporal evolution of primate IT object identity solu-
tions. We further find that these task-optimized ConvRNNs can reliably produce quantitatively
accurate dynamic neural response trajectories at temporal resolutions of tens of milliseconds
throughout the ventral visual hierarchy.

Taken together, our results suggest that recurrence in the ventral stream extends feedforward
computations by mediating a tradeoff between task performance and neuron count during core
object recognition, suggesting that the computer vision community’s solution of stacking more
feedforward layers to solve challenging visual recognition problems approximates what is com-
pactly implemented in the primate visual system by leveraging additional nonlinear temporal
transformations to the initial feedforward IT response. This work therefore provides a quantita-
tive prescription for the next generation of dynamic ventral stream models, addressing the call
to action in a recent previous study12 for a change in architecture from feedforward models.

Many hypotheses about the role of recurrence in vision have been put forward, particu-
larly in regards to overcoming certain challenging image properties5,6,7,8,4,9,10,11,12,13,14,15. We
believe this is the first work to address the role of recurrence at scale by connecting novel
task-optimized recurrent models to temporal metrics defined on high-throughput neural and
behavioral data, to provide evidence for recurrent connections extending feedforward compu-
tations. Moreover, these metrics are well-defined for feedforward models (unlike prior work19)
and therefore meaningfully demonstrate a separation between the two model classes.

Though our results help to clarify the role of recurrence during core object recognition be-
havior, many major questions remain. Our work addresses why the visual system may leverage
recurrence to subserve visually challenging behaviors, replacing a physically implausible ar-
chitecture (deep feedforward CNNs) with one that is ubiquitously consistent with anatomical
observations (ConvRNNs). However, our work does not address gaps in understanding either
the loss function or the learning rule of the neural network. Specifically, we intentionally im-
plant layer-local recurrence and long-range feedback connections into feedforward networks
that have been useful for supervised learning via backpropagation on ImageNet. A natural next
step would be to connect these ConvRNNs with unsupervised objectives, as has been done for
feedforward models of the ventral stream in concurrent work37. The question of biologically
plausible learning targets is similarly linked to biologically plausible mechanisms for learning
such objective functions. Recurrence could play a separate role in implementing the propaga-
tion of error-driven learning, obviating the need for some of the issues with backpropagation
(such as weight transport), as has been recently demonstrated at scale38,39. Therefore, building
ConvRNNs with unsupervised objective functions optimized with biologically-plausible learn-
ing rules would be essential towards a more complete goal-driven theory of visual cortex.

Additionally, high-throughput experimental data will also be critical to further separate hy-
potheses about recurrence. While we see evidence of recurrence as mediating a tradeoff between
network size and task performance for core object recognition, it could be that recurrence plays
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a more task-specific role under more temporally dynamic behaviors. Not only would it be an
interesting direction to optimize ConvRNNs on more temporally dynamic visual tasks than Im-
ageNet, but to compare to neural and behavioral data collected from such stimuli, potentially
over longer timescales than 260ms. While the RGC motif of gating and direct passthrough gave
the highest task performance among ConvRNN circuits, the circuits that maintain a tradeoff be-
tween number of units and task performance (RGC Median, GRU, and UGRNN) had the best
match to the current set of neural and behavioral metrics, even if some of them do not employ
passthroughs. However, it could be the case that with the same metrics we develop here but used
in concert with such stimuli over potentially longer timescales, that we can better differentiate
these three ConvRNN circuits. Therefore, such models and experimental data would synergis-
tically provide great insight into how rich visual behaviors proceed, while also inspiring better
computer vision algorithms.
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A Methods

A.1 Model framework
A.1.1 Software package

To explore the architectural space of ConvRNNs and compare these models with the primate
visual system, we used the Tensorflow library40 to augment standard CNNs with both local
and long-range recurrence (Figure 1). Conduction from one area to another in visual cortex
takes approximately 10ms41, with signal from photoreceptors reaching IT cortex at the top of
the ventral stream by 70-100ms. Neural dynamics indicating potential recurrent connections
take place over the course of 100-260ms15. A single feedforward volley of responses thus
cannot be treated as if it were instantaneous relative to the timescale of recurrence and feedback.
Hence, rather than treating each entire feedforward pass from input to output as one integral time
step, as is normally done with RNNs5, each time step in our models corresponds to a single
feedforward layer processing its input and passing it to the next layer. This choice required
an unrolling scheme different from that used in the standard Tensorflow RNN library, the code
for which, including trained model weights, can be found on our Github repository: https:
//github.com/neuroailab/convrnns.

A.1.2 Defining ConvRNNs

Within each ConvRNN layer, feedback inputs from higher layers are resized to match the spatial
dimensions of the feedforward input to that layer. Both types of input are processed by standard
2D convolutions. If there is any local recurrence at that layer, the output is next passed to the
recurrent circuit as input. Feedforward and feedback inputs are combined within the recurrent
circuit by spatially resizing the feedback inputs (via bilinear interpolation) and concatenating
these with the feedforward input across the channel dimension. We let⊕ denote this concatena-
tion along the channel dimension with appropriate resizing to align spatial dimensions. Finally,
the output of the circuit is passed through any additional nonlinearities, such as max-pooling.
The generic update rule for the discrete-time trajectory of such a network is thus:

h`t = C`

(
F`

(⊕

j 6=`

rjt

)
, h`t−1

)

r`t = A`(h
`
t),

(1)

where r`t is the output of layer ` at time t, h`t−1 is the hidden state of the locally recurrent circuit
C` at time t−1, and A` is the activation function and any pooling post-memory operations. The
learned parameters of such a network consist of F`, comprising any feedforward and feedback
connections coming into layer ` = 1, . . . , L, and any of the learned parameters associated with
the local recurrent circuit C`.
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In this work, all forms of recurrence add parameters to the feedforward base model. Because
this could improve task performance for reasons unrelated to recurrent computation, we trained
two types of control model to compare to ConvRNNs:

1. Feedforward models with more convolution filters (“wider”) or more layers (“deeper”) to
approximately match the number of parameters in a recurrent model.

2. Replicas of each ConvRNN model unrolled for a minimal number of time steps, defined
as the number that allows all model parameters to be used at least once. A minimally un-
rolled model has exactly the same number of parameters as its fully unrolled counterpart,
so any increase in performance from unrolling longer can be attributed to recurrent com-
putation. Fully and minimally unrolled ConvRNNs were trained with identical learning
hyperparameters.

A.1.3 Training Procedure

All models (both feedforward and ConvRNN) used the standard ResNet preprocessing provided
by TensorFlow here: https://github.com/tensorflow/tpu/blob/master/models/
official/resnet/resnet_preprocessing.py. Furthermore, they were trained on
224 pixel ImageNet with stochastic gradient descent with momentum (SGDM)42, using a mo-
mentum value of 0.9.

We allowed the base learning rate, batch size, and L2 regularization strength to vary for each
model, depending on what was optimal in terms of top-1 validation accuracy for that model. All
models (except for AlexNet) used the ResNet training schedule24, whereby the base learning
rate is decayed by 90% at 30, 60, and 80 epochs, training for 90 epochs total. The AlexNet had
its base learning rate of 0.01 subsequently decayed to 0.005, 0.001, and 0.0005, at 30, 60, and
80 epochs, respectively. We list these values for each model in the table below:

Model Class Base Learning Rate Batch Size L2 Regularization
AlexNet 0.01 1024 5× 10−4

6-layer BaseNet 0.01 256 1× 10−4

Shallow ConvRNNs 0.01 256 1× 10−4

11-layer BaseNet 0.0025 64 1× 10−4

ResNets 0.025 64 1× 10−4

Intermediate ConvRNNs 0.0025 64 1× 10−4

The only exceptions to the above are the models that are the result of the large-scale hyper-
parameter searches, detailed in Section A.4. Here the learning rate and batch size are allowed
to vary, and the L2 regularization is not uniform across the model, but is also allowed to vary
for both the feedforward backbone and each layer’s ConvRNN circuit. We list the learning rates
and batch sizes for these models below:
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Model Base Learning Rate Batch Size
Shallow LSTM (“LSTM Opt” in Figure S1) 7.587× 10−3 64
RGC Random 5.184× 10−3 64
RGC Median 6.736× 10−3 64

Since these model hyperparameters are non-standard, we manually drop the learning rate
(using the same decay factor of 90%) once the top-1 validation accuracy saturates at that given
learning rate.

A.2 Feedforward model architectures
A.2.1 BaseNet architectures

Here we provide the architectures of the feedforward CNNs we developed in this paper, re-
ferred to as “BaseNet” when they are later implanted with ConvRNN circuits. For all of these
architectures, we use ELU nonlinearities43.

The 6-layer BaseNet (into which we implanted ConvRNN circuits to form the orange “Shal-
low ConvRNN” model class in Figure 3c), referenced as “FF” in Figure S1, referred to as
“BaseNet” among the blue “Shallow Feedforward” models in Figure 3c, and “Feedforward” in
Figure S5c, had the following architecture:

Layer Kernel Size Channels Stride Max Pooling
1 7× 7 64 2 2× 2
2 3× 3 128 1 2× 2
3 3× 3 256 1 2× 2
4 3× 3 256 1 2× 2
5 3× 3 512 1 2× 2
6 2× 2 1000 1 No

The 11-layer BaseNet used for the “Intermediate ConvRNNs” (red models in Figure 3c) and
modeled after ResNet-1824 (but using MaxPooling rather than stride-2 convolutions to perform
downsampling) is given below:

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.02.17.431717doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431717
http://creativecommons.org/licenses/by-nc/4.0/


Block Kernel Size Depth Stride Max Pooling Repeat
1 7× 7 64 2 2× 2 ×1
2 3× 3 64 1 None ×2
3 3× 3 64 1 None ×2
4 3× 3 128 1 2× 2 ×2
5 3× 3 128 1 None ×2
6 3× 3 256 1 2× 2 ×2
7 3× 3 256 1 2× 2 ×2
8 3× 3 512 1 None ×2
9 3× 3 512 1 None ×2
10 3× 3 512 1 2× 2 ×2
11 None (Avg. Pool FC) 1000 None None ×1

This is the BaseNet among the purple “Intermediate Feedforward” models in Figure 3c, and
used in Figures 4, S3, S6, and S7.

The variant of the above 6-layer feedforward CNN, referenced in Figure S1 as “FF Wider”
is given below:

Layer Kernel Size Channels Stride Max Pooling
1 7× 7 128 2 2× 2
2 3× 3 512 1 2× 2
3 3× 3 512 1 2× 2
4 3× 3 512 1 2× 2
5 3× 3 1024 1 2× 2
6 2× 2 1000 1 None

The “FF Deeper” model referenced in Figure S1 is given below:

Layer Kernel Size Depth Stride Max Pooling
1 7× 7 64 2 2× 2
2 3× 3 64 1 None
3 3× 3 64 1 None
4 3× 3 128 1 2× 2
5 3× 3 128 1 None
6 3× 3 256 1 2× 2
7 3× 3 256 1 2× 2
8 3× 3 512 1 None
9 3× 3 512 1 None
10 3× 3 512 1 2× 2
11 None (Avg. Pool FC) 1000 None None
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A.2.2 AlexNet

We use the standard AlexNet architecture, which uses local response normalization26. We note
that we are able to attain a higher than reported top-1 validation accuracy of 63.9% (compared
to 57% accuracy) by using the ResNet preprocessing mentioned in Section A.1.3.

A.2.3 ResNet Architectures

For the ResNet architectures, we used the original v1 versions24 for ResNet-18 and ResNet-
34. For deeper ResNets (ResNet-50, ResNet-101, and ResNet-152), we used the v2 variants
of ResNets, as this gave them a slightly higher increase in top-1 ImageNet validation accuracy.
Specifically, the v2 variants of ResNets use the pre-activation of the weight layers rather than
the post-activation used in the original versions. Furthermore, the v2 variants of ResNets apply
batch normalization44 and ReLU to the input prior to the convolution, whereas the original vari-
ants apply these operations after the convolution. We use the TensorFlow Slim implementations
for these two variants provided here: https://github.com/tensorflow/models/
tree/master/research/slim.

A.3 ConvRNN Circuit Equations
Here we provide the explicit update equations for each of the ConvRNN circuits referenced in
the barplot in Figure 2c (C` in (1)), where σ denotes the sigmoid function.

Throughout these sections, we let ◦ denote Hadamard (elementwise) product, let ∗ denote
convolution, let h`t denote the output of the circuit, let s`t denote the propagated memory of the
circuit (also known as the hidden state), and let x`t =

⊕
j 6=` r

j
t denote the input to the circuit

at layer ` (this is the concatenation of feedforward and feedback inputs to layer `, defined in
Section A.1.2).

In the following table, we provide the number of timesteps the ConvRNNs were unrolled for
during training (“Fully Unrolled”), what the corresponding minimally unrolled timesteps would
be to engage recurrent connections once for each model class, and the number of timesteps for
evaluation when comparing to neural and behavioral data:

Model Class Minimally Unrolled Fully Unrolled Evaluation
Shallow ConvRNNs 7 16 26
Intermediate ConvRNNs 12 17 26
RGC Random 12 26 26

We also list the timestep at which the image presentation was replaced by a mean gray stim-
ulus during model training and model evaluation:
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Model Class Training Evaluation
Shallow ConvRNNs 12 10
Intermediate ConvRNNs 12 10
RGC Random 10 10

The above training parameters were chosen based on what yielded high performance for that
model class and also what was able to feasibly fit into TPU memory for training (more unroll
timesteps requires more memory, but can also lead to instability during training, as is common
with training RNNs45).

For the “Shallow ConvRNNs”, ConvRNN circuits were implanted into convolutional layers
3, 4, and 5 of the 6-layer BaseNet. For the “Intermediate ConvRNNs”, ConvRNN circuits were
implanted into convolutional layers 4, 5, 6, 7, 8, 9, and 10 of the 11-layer BaseNet.

A.3.1 Time Decay

This is the simplest form of recurrence that we consider and has a discrete-time trajectory given
by

s`t = F`
(
x`t
)
+ τ`s

`
t−1

h`t = s`t,
(2)

where τ` is the learned time constant at a given layer `. This model is intended to be a control
for simplicity, where the time constants could model synaptic facilitation and depression in a
cortical layer.

For the TensorFlow implementation of this circuit, see the GenFuncCell() class in the
utils.cells.py file on our Github repository.

A.3.2 SimpleRNN

The update equations in this case are given by:

a`t = W `
s ∗ s`t−1 + b`s

i`t = W `
i ∗ x`t + b`i

s`t = elu(LN(i`t + a`t))

h`t = s`t,

(3)

where LN denotes the layer normalization operation46 with offset parameter β initialized to 0
and scale parameter γ initialized to 1. For the shallow SimpleRNN (among the orange “Shal-
low ConvRNN” models in Figure 3c), we use layer normalization but omit its usage in the
intermediate ConvRNN as it was not able to train with that operation.

For the TensorFlow implementation of this circuit, see the ConvNormBasicCell() class
in the utils.cells.py file on our Github repository.
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A.3.3 GRU

We adapt the standard GRU circuit47 to the convolutional setting:

r`t = σ(W `
r ∗ x`t + U `

r ∗ s`t−1 + b`r + 1)

u`t = σ(W `
u ∗ x`t + U `

u ∗ s`t−1 + b`u)

c`t = tanh(W `
c ∗ x`t + U `

c ∗ (r`t ◦ s`t−1) + b`c)

s`t = u`t ◦ s`t−1 + (1− u`t) ◦ c`t
h`t = s`t.

(4)

For the TensorFlow implementation of this circuit, see the ConvGRUCell() class in the
utils.cells.py file on our Github repository.

A.3.4 LSTM

We adapt the standard LSTM circuit48 to the convolutional setting, with some slight modifica-
tions such as added layer normalization for stability in training.

We first make the gates convolutional as follows:

i`t = LN(W `
i ∗ x`t + U `

i ∗ h`t−1 + b`i)

j`t = LN(W `
j ∗ x`t + U `

j ∗ h`t−1 + b`j)

f `t = LN(W `
f ∗ x`t + U `

f ∗ h`t−1 + b`f )

o`t = LN(W `
o ∗ x`t + U `

o ∗ h`t−1 + b`o),

(5)

where LN denotes the layer normalization operation46 with offset parameter β initialized to 0
and scale parameter γ initialized to 1.

Next, the LSTM update equations are as follows:

s`t = LN(s`t−1 ◦ σ(f `t + f `b ) + σ(i`t) ◦ tanh(j`t ))
h`t = tanh(s`t) ◦ σ(o`t),

(6)

where f `b is the forget gate bias, typically set to 1, as recommended by others49. When peephole
connections50 are allowed, these update equations are augmented to become:

s`t = LN(s`t−1 ◦ σ(f `t + f `b + V `
f ◦ s`t−1) + σ(i`t + V `

i ◦ s`t−1) ◦ tanh(j`t ))
h`t = tanh(s`t) ◦ σ(o`t + V `

o ◦ s`t−1).
(7)

In the shallow LSTM (among the orange “Shallow ConvRNN” models in Figure 3c), we use
peepholes and layer normalization, as that was found in the LSTM search for shallow models
(described in Section A.4.1) to be useful for performance. We found, however, that neither of
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these augmentations are needed in the deeper variant (among the red “Intermediate ConvRNNs”
in Figure 3c) in order to achieve high top-1 validation accuracy on ImageNet.

For the TensorFlow implementation of this circuit, see the ConvLSTMCell() class in the
utils.cells.py file on our Github repository.

A.3.5 UGRNN

We adapt the UGRNN30 to the convolutional setting. The update equations are as follows:

c`t = tanh(W `
c ∗ x`t + U `

c ∗ s`t−1 + b`c)

g`t = σ(W `
g ∗ x`t + U `

g ∗ s`t−1 + b`g + 1)

s`t = g`t ◦ s`t−1 + (1− g`t) ◦ c`t
h`t = s`t.

(8)

For the TensorFlow implementation of this circuit, see the ConvUGRNNCell() class in
the utils.cells.py file on our Github repository.

A.3.6 IntersectionRNN

We adapt the IntersectionRNN30 to the convolutional setting. The update equations are as
follows:

m`
t = tanh(W `

m ∗ x`t + U `
m ∗ s`t−1 + b`m)

n`t = relu(W `
n ∗ x`t + U `

n ∗ s`t−1 + b`n)

p`t = σ(W `
p ∗ x`t + U `

p ∗ s`t−1 + b`p + 1)

y`t = σ(W `
y ∗ x`t + U `

y ∗ s`t−1 + b`y + 1)

s`t = p`t ◦ s`t−1 + (1− p`t) ◦m`
t

h`t = y`t ◦ x`t + (1− y`t) ◦ n`t.

(9)

For the TensorFlow implementation of this circuit, see the ConvIntersectionRNNCell()
class in the utils.cells.py file on our Github repository.

A.3.7 Reciprocal Gated Circuit (RGC)

Here we provide the explicit update equations for the Reciprocal Gated Circuit29, diagrammed
in Figure 2a (bottom right). The update equation for the output of the circuit, h`t , is given by a
gating of both the input x`t and prior output h`t−1:

a`t = (1− σ(W `
sh ∗ s`t−1)) ◦ x`t + (1− σ(W `

hh ∗ h`t−1)) ◦ h`t−1
h`t = elu

(
a`t
)
.

(10)
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The update equation for the memory s`t is given by a gating of the input x`t and the prior
state s`t−1:

s̃`t = (1− σ(W `
hs ∗ h`t−1)) ◦ x`t + (1− σ(W `

ss ∗ s`t−1)) ◦ s`t−1
s`t = elu(s̃`t).

(11)

For the TensorFlow implementation of this circuit, see the ReciprocalGateCell()
class in the utils.cells.py file on our Github repository.

A.4 ConvRNN Searches
We employed a form of Bayesian optimization, a Tree-structured Parzen Estimator (TPE),
to search the space of continuous and categorical hyperparameters51. This algorithm con-
structs a generative model of P [score | configuration] by updating a prior from a maintained
history H of hyperparameter configuration-loss pairs. The fitness function that is optimized
over models is the expected improvement, where a given configuration c is meant to optimize
EI(c) =

∫
x<t

P [x | c,H]. This choice of Bayesian optimization algorithm models P [c | x] via
a Gaussian mixture, and restricts us to tree-structured configuration spaces.

Models were trained synchronously 100 models at a time using the HyperOpt package52,
which implements the above Bayesian optimization. Each model was trained on its own Tensor
Processing Unit (TPUv2), and during the search, ConvRNN models were trained by stochastic
gradient descent on 128 pixel ImageNet for efficiency. The top performing ConvRNN models
were then fully trained out on 224 pixel ImageNet.

A.4.1 LSTM search

The search for better LSTM architectures involved searching over training hyperparameters
and common structural variants of the LSTM to better adapt this local structure to deep con-
volutional networks, using hundreds of second generation Google Tensor Processing Units
(TPUv2s). We searched over learning hyperparameters (e.g. gradient clip values, learning rate)
as well as structural hyperparameters (e.g. gate convolution filter sizes, channel depth, whether
or not to use peephole connections, etc.).

Specifically, we implanted LSTMs into convolutional layers 3, 4, and 5, of the 6-layer
BaseNet described in Section A.2. At each of these layers, the parameters of the LSTM cir-
cuit (defined in Section A.3.4) were allowed to vary per layer, as follows:

• The discrete number of convolutional channels was chosen from {64, 128, 256}.

• The discrete choice of convolutional filter sizes were chosen from {1, 4}.

• The binary choice of whether or not to use layer normalization.
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• The strength of the L2 regularization of all LSTM parameters in that layer ∈ [10−7, 10−3],
sampled log-uniformly.

• The scale of the He-style initialization53 of the convolutional filter weights ∈ [0.25, 2],
sampled uniformly.

• The value of the constant initialization of the biases ∈ [−2, 2], sampled uniformly.

• The forget gate bias f `b ∈ [0, 6], sampled uniformly (defined in (6)).

• The binary choice of whether or not to use peephole connections (as defined in (7)).

Outside of the LSTM circuit at each layer, we additionally searched over the following
parameters as well:

• The number of discrete timesteps the model is unrolled ∈ [12, 26], sampled uniformly in
consecutive groups of size 2.

• The timestep at each the image presentation is “turned off” and replaced with a mean
gray stimulus ∈ [8, 12], sampled uniformly in consecutive groups of 2.

• The discrete choice of batch size used for the training the entire model ∈ {64, 128, 256}.

• The learning rate for training the entire model ∈ [10−3, 10−1], sampled log-uniformly.

• The binary choice of whether or not to use Nesterov momentum54.

• The gradient clipping value ∈ [0.3, 3], sampled log-uniformly.

• The scale of the He-style initialization53 of the convolutional filter weights of the feed-
forward base model ∈ [0.25, 2], sampled uniformly.

• The strength of the L2 regularization of the feedforward base model parameters∈ [10−7, 10−3],
sampled log-uniformly.

Each search point is a sampled value from the above described search space and trained for 1
epoch on ImageNet, in order to sample as many models as much as possible with the compu-
tational resources available. More than 1600 models were sampled in total, and we trained out
the top ones and the median performing one after 1 epoch were trained out fully on 224 pixel
ImageNet. The median model from this search attained the best top-1 validation accuracy on
ImageNet, which is the resultant “LSTM Opt” model in Figure S1 and otherwise referred to as
“Shallow LSTM”. The configuration of chosen hyperparameters for this model can be found in
the configs.lstm shallow.npz file on our Github repository.
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A.4.2 Reciprocal Gated Circuit (RGC) search

From the Reciprocal Gated Circuit equations in (10) and (11), there are a variety of possibilities
for how h`t−1, x

`
t, s

`
t , and h`t can be connected to one another (schematized in Figure 2b).

Mathematically, the search in Figure 2b can be formalized in terms of the following update
equations. First, we define our input sets and building block functions:

minin = {h`−1t−1, x
`
t, s

`
t−1, h

`
t−1}

minina = minin ∪ {s`t}
mininb = minin ∪ {h`t}
Sa ⊆ minina

Sb ⊆ mininb

Affine(x) ∈ {+, 1× 1 conv, K ×K conv, K ×K depth-separable conv}
K ∈ {3, . . . , 7}

With those in hand, we have the following update equations:

τa = vτ1 + vτ2σ(Affine(Sa))
τb = vτ1 + vτ2σ(Affine(Sb))
gatea = vg1 + vg2σ(Affine(Sa))
gateb = vg1 + vg2σ(Affine(Sb))

a`t = {gatea} · in`t + {τa} · h`t−1
h`t = f(a`t)

b`t = {gateb} · in`t + {τb} · s`t−1
s`t = f(b`t)

f ∈ {elu, tanh, σ}.

For clarity, the following matrix summarizes the connectivity possibilities (with ? denoting the
possibility of a connection), schematized in Figure 2b:




h`−1
t−1 x`t s`t−1 s`t h`t−1 h`t

h`−1
t−1 0 1 0 ? 0 ?
x`t 0 0 0 ? 0 ?
s`t−1 0 0 0 ? 0 ?
s`t 0 0 0 0 0 ?
h`t−1 0 0 0 ? 0 ?
h`t 0 0 0 ? 0 0
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Each search point is a sampled value from the above described search space and trained
for five epochs on ImageNet, in order to sample as many models as much as possible with the
computational resources available. Around 6000 models were sampled in total over the course
of the search. The top and median models from this search were then fully trained out on
224 pixel ImageNet with a batch size of 64 (which was maximum that we could fit into TPU
memory). Moreover, as explicated in the table in Section A.1.3, the ResNet models were also
trained using this same batch size, with the standard ResNet learning rate of 0.1 for a batch
size of 256 linearly rescaled to accomodate, to ensure fair comparison between these two model
classes. The median model from this search attained the best top-1 validation accuracy on
ImageNet of all models selected to be trained out fully on ImageNet from the search, producing
the resultant “RGC Median” model in Figure 2c (note that this designation also includes the
long-range feedback connections). The configuration of chosen hyperparameters for this model
can be found in the configs.median rgcell cfg.py file on our Github repository. The
“RGC Random” model is from the random phase of this search (400th sampled model, since
models sampled earlier than that failed to train out fully on ImageNet).

A.5 Decoders
In addition to choice of ConvRNN circuit, we consider particular choices of “light-weight” (in
terms of parameter count) decoding strategy that determines the final object category of that
image. By construction, the model will output category logit probabilities at each timestep,

given by the softmax function softmax(z; β) =
eβzi∑C
j=1 e

βzj
, where C = 1000 is the number of

ImageNet categories. This will then be passed to a decoding function which can take one of
several forms:

1. Default: Use the logits at the last timestep and discard the remaining, with β = 1.

2. Threshold Decoder: Select the logits from the first timepoint at which the maximum
logit value at that timepoint crosses a fixed threshold (set to 0.9), with β = 1.

3. Max Confidence Decoder: For the most confident category, find the timepoint at which
that confidence peaks, and return the logits at that timepoint, where β is a trainable scalar
parameter initialized to 1.

“RGC Median” therefore refers to the model trained using the default decoder, but when using
the other two decoders with the “RGC Median” model, we append it to the name (as is done in
Figures S3, S4, and S7a). The TensorFlow implementations of these decoders can be found in
the utils.decoders.py file on our Github repository.
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A.6 Model prediction of neural responses
A.6.1 Neural data

Neural responses came from three multi-unit arrays per primate (rhesus macques): one im-
planted in V4, one in posterior IT (pIT), and one in central and anterior IT (cIT/aIT)36. Each
image was presented approximately 50 times, using rapid visual stimulus presentation (RSVP).
Each stimulus was presented for 100ms, followed by a mean gray stimulus interleaved between
images. Each trial lasted 260ms. The image set consisted of 5120 images based on 64 ob-
ject categories. These objects belonged to 8 high-level categories (tables, planes, fruits, faces,
chairs, cars, boats, animals), each of which consisted of 8 unique objects. Each image consisted
of a 2D projection of a 3D model added to a random background. The pose, size, and x- and
y-position of the object was varied across the image set, whereby 2 levels of variation were
used (corresponding to medium and high variation36). Multi-unit responses to these images
were binned in 10ms windows, averaged across trials of the same image, and normalized to
the average response to a blank image. This produced a set of 5120 images × 256 units × 25
timebins responses, which were the targets for our model features to predict. There were 88
units from V4, 88 units from pIT, and 80 units from cIT/aIT.

A.6.2 Fitting procedure

Generating train/test split. The 5120 images were split 75%-25% within each object category
into a training set and a held-out testing set. All images were presented to the models for 10
time steps (corresponding to 100ms), followed by a mean gray stimulus for the remaining 15
time steps, to match the image presentation to the primates. The images are matched to the
procedure when used to validate the models on ImageNet, namely they are bilinearly resized to
224× 224 and normalized by the ImageNet mean ([0.485, 0.456, 0.406]) and standard deviation
([0.229, 0.224, 0.225]), applied per channel.

Model layer determination. We stipulated that units from each multi-unit array must be
fit by features from a single model layer. To determine which one, we fit the features from
the relevant feedforward BaseNet (either the 6-layer BaseNet or 11-layer BaseNet) to unit’s
time-averaged response, and counted how many units had minimal loss for a given model layer,
schematized in Step 2 of Figure 1. This yielded a mapping from the V4 array to model layer 3
of the 6-layer BaseNet and model layers 5 & 6 of the 11-layer BaseNet, pIT mapping to model
layer 4 of the 6-layer BaseNet and model layers 7 & 8 of the 11-layer BaseNet, and cIT/aIT
mapping to layer 5 of the 6-layer BaseNet and model layers 9 & 10 of the 11-layer BaseNet.

Mapping transform from models to neural responses. Model features from each image
(i.e. the activations of units in a given model layer) were linearly fit to the neural responses
by stochastic gradient descent with a standard L2 loss using a spatially factored mapping55,
where each of the 256 units was fit independently. This spatially factored mapping is defined as
follows: Given a model feature f ` ∈ Rx,y,c from layer `, where x and y are the number of units
in the spatial extent and c is the number of channels, we fit a spatial mask wspace ∈ Rx,y and
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a channel mask wchannels ∈ Rc for each neuron n to predict the ground-truth neuron’s response
ri,n,t at image i and timebin t. The predicted response can be written as:

r̂i,n,t;w =
x∑

i=1

y∑

j=1

c∑

k=1

wspace[i, j]wchannels[k]f
`[i, j, k]. (12)

This mapping is implemented in the factored fc() function of the utils.cell utils.py
file on our Github repository.

Loss function. After these layers were determined, model features were then fit to the entire
set of 25 timebins for each unit using a shared linear model: that is, a single set of regression
coefficients was used for all timebins, as schematized in Step 3 of Figure 1. The loss for this
fitting was the average L2 loss across training images and 25 timebins for each unit, given by

L(r̂i,n,t;w, ri,n,t) =
1

|B|
25∑

t=6

∑

i∈B

256∑

n=1

(r̂i,n,t;w − ri,n,t)2 . (13)

Note that t indexes model timesteps, which correspond to 10ms timebins, so t = 6 refers to the
60-70ms timebin, t = 7 refers to the 70-80ms timebin, and so forth.

We trained the temporally-fixed parameters w = [wspace;wchannels] of the mapping using the
Adam optimizer56 with a learning rate of 1 × 10−4 and a training batch size |B| = 64 images.
Additionally, we used a dropout57 level of 0.5 on the model features, prior to the mapping, as
further regularization.

A.6.3 Metrics

To estimate a noise ceiling for each neuron’s response at each timebin, we computed the
Spearman-Brown corrected split-half reliability ρn of neuron n, averaged across 900 bootstrap
iterations of split-half trials.

Let “Neural Predictivity” (used in Figure S5) refer to

Corr(r̂test, rtest
n ), (14)

namely the Pearson correlation across test set images of the model’s response r̂test to the of any
neuron n’s response rtest

n at a given timebin (or time-averaged).
The “Neural Predictivity (Noise Corrected)” (used in Figure 4 and Figure S7) for neuron n

is given by
Corr(r̂test, rtest

n )√
ρn

. (15)
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A.7 Inter-animal consistency
We provide the definition and justification of the inter-animal consistency metric mentioned in
Figure S7b. Suppose we have neural responses from two primates A and B. Let tpi be the vector
of true responses (either at a given timebin or averaged across a set of timebins) of primate
p ∈ {A,B} on stimulus set i ∈ {train, test}. Of course, we only receive noisy observations of
tpi , so let spj,i be the j-th set of n trials of tpi . Finally, let M(x)i be the predictions of a mapping
M (e.g. PLS) when trained on input x and tested on stimulus set i. For example, M (tptrain)test
is the prediction of the mapping M on the test stimulus trained on the true neural responses
from primate p on the train stimulus, and correspondingly, M

(
sp1,train

)
test

is the prediction of the
mapping M on the test stimulus trained on the (trial-average) of noisy sample 1 on the train
stimulus from primate p.

With these definitions in hand, the inter-animal mapping consistency from one primate A to
another primate B corresponds to the following true quantity to be estimated:

Corr
(
M
(
tAtrain

)
test , t

B
test

)
, (16)

where Corr is the Pearson correlation across test stimuli. In what follows, we argue that this
true quantity can be approximated with the following ratio of measurable quantities where we
divide the noisy trial observations into two sets of equal samples:

Corr
(
M
(
tAtrain

)
test , t

B
test

)
∼

Corr
(
M
(
sA1,train

)
test
, sB2,test

)

√
Corr

(
M
(
sA1,train

)
test
,M

(
sA2,train

)
test

)
× Corr

(
sB1,test, s

B
2,test

) .

(17)
In words, the inter-animal consistency corresponds to the predictivity of the mapping on the test
set stimuli from primate A to B on two different (averaged) halves of noisy trials, corrected by
the square root of the mapping reliability on primate A’s test stimuli responses on two different
halves of noisy trials and the internal consistency of primate B.

We justify the approximation in (17) by gradually eliminating the true quantities by their
measurable estimates, starting from the original quantity in (16). First, we make the approxi-
mation that

Corr
(
M
(
tAtrain

)
test , s

B
2,test

)
∼ Corr

(
M
(
tAtrain

)
test , t

B
test

)
× Corr

(
tBtest, s

B
2,test

)
. (18)

by transitivity of positive correlations (which is reasonable assumption when the number of
stimuli is large). Next, by normality assumptions in the structure of the noisy estimates and
since the number of trials (n) between the two sets is the same, we have that

Corr
(
sB1,test, s

B
2,test

)
∼ Corr

(
tBtest, s

B
2,test

)2
. (19)

Namely, the correlation between the average of two sets of noisy observations of n trials each
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is approximately the square of the correlation between the true value and average of one set of
n noisy trials. Therefore, from (18) and (19) it follows that

Corr
(
M
(
tAtrain

)
test , t

B
test

)
∼

Corr
(
M
(
tAtrain

)
test , s

B
2,test

)
√

Corr
(
sB1,test, s

B
2,test

) . (20)

We have gotten rid of tBtest, but we still need to get rid of the M
(
tAtrain

)
test term. We apply the

same two steps by analogy though these approximations may not always be true (though are
true for additive Gaussian noise):

Corr
(
M
(
sA1,train

)
test
, sB2,test

)
∼ Corr

(
sB2,test,M

(
tAtrain

)
test

)
× Corr

(
M
(
tAtrain

)
test ,M

(
sA1,train

)
test

)

Corr
(
M
(
sA1,train

)
test
,M

(
sA2,train

)
test

)
∼ Corr

(
M
(
sA1,train

)
test
,M

(
tAtrain

)
test

)2
,

which taken together implies

Corr
(
M
(
tAtrain

)
test , s

B
2,test

)
∼

Corr
(
M
(
sA1,train

)
test
, sB2,test

)

√
Corr

(
M
(
sA1,train

)
test
,M

(
sA2,train

)
test

) . (21)

Equations (20) and (21) together imply the final estimated quantity given in (17).

A.8 Object solution times (OSTs)
A.8.1 Generating model OSTs

Here we describe how we defined object solution times from both feedforward models and
ConvRNNs. As depicted in Figure 3a, this is a multi-stage process that involves first identifying
the most “IT-preferred” layers of each model.

Determining “IT-preferred” model layers. These are identified by a standard34,12 linear
mapping using 25 component partial least squares regression (PLS), from model layer units
to time-averaged IT (namely, pIT/cIT/aIT) responses from the neural data described in Sec-
tion A.6.1, and corroborates the results obtained by the same procedure described in Sec-
tion A.6.2. We use this neural data as it has both V4 and IT responses, and demonstrates a
disjoint set of layers between the preferred V4 model layers and preferred IT layers.

Mapping model timepoints to IT timepoints. Once these “IT-preferred” model layers are
identified, we then map these model timepoints to 10ms timebins as in the IT data. For Con-
vRNNs with intrinsic temporal dynamics, this mapping is one-to-one, we simply concatenate
the model layers at each timepoint to construct an entire IT pseudopopulation, and each time-
point of the ConvRNN corresponds to a 10ms timebin between 70-260ms. For feedforward
models, we map each “IT-preferred” layer to a 10ms timebin between 70-260ms. If the number
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of “IT-preferred” layers for a feedforward model matches the total number of timebins (19),
then there is only one admissible mapping, corresponding to the “uniform” mapping, whereby
the earliest (in the feedforward hierarchy) layer is matched to the earliest 10ms timebin of 70ms,
and so forth. On the other hand, if the number of “IT-preferred” layers is strictly less than the
total number of timebins, then we additionally consider a “graded” mapping that picks a ran-
dom sample of units from one layer to the next so that the number of feedforward layers exactly
matches the total number of timebins.

Obtaining model d
′

values. Once a timepoint mapping is selected, we compute the model
object solution time (OST) in the same manner as the OST is computed for IT12. Specifically,
we train an SVM (C = 5×104) separately for each model timepoint after it has been dimension
reduced through PCA (with 1000 components) to solve the ten-way categorization task for each
image. The ten categories are apple, bear, bird, car, chair, dog, elephant, person, plane, and
zebra. 1000 images constitute the training set of the SVM (100 images per category) and 320
images are randomly chosen to be in the test set. We perform 20 trials each of 10 train/test
splits to get errorbars, where each image is in the test set at least once. The model d′ for that
image is computed in the same manner as previously done for the ground truth IT response d′

(see Kar et al. 201912 for details), only being computed from the SVM when it has been in the
test set and is bounded between -5 and 5. Since this dataset consists of 1320 grayscale images
presented centrally to behaving primates for 100ms, there are therefore 1320 d′ values (one for
each image) for any given model, constituting its “I1” vector31.

Correlating model OST with IT OST. The OST of the model therefore is the first model
timepoint in which the d′ reaches the recorded primate d′ for that image, as was previously done
to compute the ground truth IT OST12. Using the Levenberg–Marquardt algorithm, we further
linearly interpolate between 10ms bins to determine the precise millisecond that the response
surpassed the primate’s behavioral output for that image (as was done analogously with the
IT population’s OST). Finally, we compare the model OST to the IT OST via a Spearman
correlation across the common set of images solved by both the model and IT.

A.8.2 Relating the linear mapping to neural responses with the OST behavioral metric

The IT population OST was computed from primarily anterior IT (aIT) responses12. Therefore,
to isolate the interaction a linear mapping of model features to neural responses (as we do in
neural response prediction described in Section A.6) might have compared to directly comput-
ing the OST from the original model features, we turned to neural data collected from 486 aIT
units on 1100 greyscale images.

For each model, we train a linear mapping on this dataset, with 550 images used for training
the mapping and 550 images are held-out for the test set. We observe similar conclusions as with
the original neural data in Section A.6 for both the temporally-fixed linear mapping in Figure S6
(in the “aIT” panel), and with a temporally-varying PLS mapping in Figure S7 (“aIT” in panel
(a) as well as the data used in panel (b)), all from layer 10 of the 11-layer BaseNet/ConvRNNs.

With these observations, we then proceeded to evaluate the effect of the linear mapping

41

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.02.17.431717doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431717
http://creativecommons.org/licenses/by-nc/4.0/


on OST correlations in Figure S3. Crucially, in this setting, we train a 100 component PLS
mapping on the 526 images for which an IT d′ is not defined, in order to ensure that the images
from Section A.8.1 that the OST correlation is evaluated on are not the same images the PLS
mapping was trained with.

Extended Data

Model Visual Area Wilcoxon test p-value
Time Decay V4 < 0.001
IntersectionRNN V4 < 0.001
LSTM V4 < 0.001
UGRNN V4 < 0.001
GRU V4 < 0.001
SimpleRNN V4 < 0.001
RGC Random V4 < 0.001
RGC Median V4 < 0.01

Time Decay pIT 0.022
IntersectionRNN pIT < 0.001
LSTM pIT < 0.001
UGRNN pIT < 0.001
GRU pIT < 0.001
SimpleRNN pIT < 0.001
RGC Random pIT 0.31
RGC Median pIT < 0.001

Time Decay aIT < 0.001
IntersectionRNN aIT < 0.001
LSTM aIT 0.47
UGRNN aIT 0.09
GRU aIT 0.16
SimpleRNN aIT < 0.001
RGC Random aIT < 0.001
RGC Median aIT < 0.01

Table 1: Wilcoxon test (with Bonferroni correction) p-values for comparing each intermediate-depth
ConvRNN’s neural predictivity at the “early” timepoints (Figure 4) to the (11-layer) BaseNet.

Supplementary Figures
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Figure S1: Performance of shallow ConvRNN and feedforward models as a function of number
of parameters. Colored points incorporate the respective ConvRNN circuit into the shallow, 6-layer
feedforward BaseNet architecture (“FF”). “Minimal” is defined as the minimum number of timesteps
(7) after the initial feedforward pass whereby all recurrence connections were engaged at least once,
which the model was trained with. “Extended” is a greater number of timesteps (16) that the model
was trained for given optimization and memory constraints. Hyperparameter-optimized versions of the
LSTM (“LSTM Opt”) and Reciprocal Gated Circuit ConvRNNs (“RGC Opt”) are connected to their
non-optimized versions by black lines. Note that the feedforward (FF) models are already optimized
for the relevant hyperparameters of batch size, learning rate, and L2 regularization. The SimpleRNN is
also hyperparameter optimized since unlike the more sophisticated ConvRNN circuit architectures of the
LSTM and RGC, it is unable to train otherwise – with layer normalization being an important factor (see
Section A.3.2 for more details).
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Figure S2: Optimal local recurrent circuit motif and global feedback connectivity. (a) RNN circuit
structure from the top-performing search model. Red lines indicate that this hyperparameter choice
(connection and filter size) was chosen in each of the top unique models from the search. K×K denotes a
convolution and dsK×K denotes a depth-separable convolution with filter size K×K. (b) Long-range
feedback connections from the search. (Top) Each trace shows the proportion of models in a 100-
sample window that have a particular feedback connection. (Bottom) Each bar indicates the difference
between the median performance of models with a given feedback and the median performance of models
without that feedback. Colors correspond to the same feedback connectivity as above.
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Figure S3: Behaviorally harmful effect of dimensionality reduction due to linear transform. Mean
and s.e.m. are computed across train/test splits (N = 10) when that image (of 1320 images) was a
test-set image, with the Spearman correlation computed with the IT solution times across the imageset
mutually solved by the given model and IT. As can be seen, a temporally-graded mapping directly from
the model features of feedforward models always attains OST consistency at least that of the uniform
one (“Graded” vs. “Uniform” comparison). We additionally train a 100 component PLS regression to IT
responses at each defined model timepoint, where the responses are to a different set of images than used
to evaluate the OST metric. This procedure, detailed in Section A.8.2, results in an image-computable
model on which the OST metric is evaluated on and corresponds to “PLS” prepended to the name of
each point on this plot, for any given model and associated temporal mapping. As can be seen, “PLS
Uniform” for the BaseNet and ResNet-34 match the OST consistency of the RGC Median ConvRNNs
from their original model features. However, “PLS Uniform” for the ConvRNNs and ResNet-101 and
ResNet-152 have a significant decrease in OST consistency compared to when evaluated on their original
model features, indicating the behaviorally harmful effect of dimensionality reduction due to PLS.
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Figure S4: Decoding strategy can impact IT OST. Same as Figure 3d, but we additionally embed
decoders to the Reciprocal Gated Circuits (RGC), see definitions in Section A.5. Mean and s.e.m. are
computed across train/test splits (N = 10) when that image (of 1320 images) was a test-set image,
with the Spearman correlation computed with the IT object solution times (analogously computed from
the IT population responses) across the imageset solved by both the given model and IT, constituting
the “Fraction of IT Solved Images” on the x-axis. We start with either a shallow base feedforward
model consisting of 5 convolutional layers and 1 layer of readout (“BaseNet” in blue) as well as an
intermediate-depth variant with 10 feedforward layers and 1 layer of readout (“BaseNet” in green), de-
tailed in Section A.2.1. From these base feedforward models, we embed recurrent circuits, resulting in
either “Shallow ConvRNNs” or “Intermediate ConvRNNs”, respectively.
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Figure S5: (a) Both local recurrence and global feedback are needed to best fit neural data. Among
a wide range of architectures with different local recurrent motifs and global feedback patterns, the best
architecture was one with both gated local recurrence and a global feedback. Local recurrent circuits
were particularly useful for improving fits to IT neurons (N = 168), whereas both local recurrence and
global feedback were critical for improving fits to V4 neurons (N = 88). Except for “temporally-varying
mapping”, fixed model-unit-to-neuron linear mappings were fixed across all time bins, constraining tra-
jectories to be produced by actual dynamics of the network. In contrast, “temporally-varying mapping”
indicates an independent PLS regression for each time bin. The fact that models with local recurrence
and global feedback are better than “temporally-varying mapping” suggests that some nonlinear dynam-
ics at earlier layers contributed meaningfully to network fits. S.e.m. across four splits of held-out test
images. (b) Held-out neural predictivity. At both 100ms and 200ms, this direct fitting procedure to the
dynamics generalizes to neurons held-out (right bars) in the fitting procedure, a stronger test of general-
ization than held-out images depicted in the left bars. (c) Underfitting to the task. However, a subtle
overfitting to the neural image distribution occurs, whereby the task-optimized network whose dynamics
are trained on the V4 and IT neural dynamics no longer transfers to ImageNet.
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Figure S6: Intermediate ConvRNN circuits are differentiated by primate ventral stream neural dy-
namics. Fitting model features of ConvRNNs with a temporally-fixed linear mapping to neural dynamics
approaches the noise ceiling of these responses in most cases. The y-axis indicates the median across
neurons of the explained variance between predictions and ground-truth responses on held-out images.
Error bars indicates the s.e.m across neurons (N = 88 for V4, N = 88 for pIT, N = 80 for cIT/aIT,
and N = 486 for aIT). Note that “aIT” refers to a separate neural dataset from primarily anterior IT neu-
rons, detailed in Section A.8.2. The onset time of the response is the first timepoint the area-preferred
model layer (see Section A.6.2 for details) of the base feedforward model (“BaseNet”), which all these
circuits share, receives its input. As can be seen, the feedforward BaseNet model (purple) is incapable of
generating a response beyond the feedforward pass, and certain types of ConvRNN circuits added to the
feedforward model are less predictive than others.
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Figure S7: (a) Increasing feedforward depth does not account for drop in median explained vari-
ance from early to late timepoints. We observe a similar drop in median explained variance from
130-140ms to 200-210ms, between the intermediate-depth ConvRNN and deeper feedforward mod-
els, where we fix each model’s training image size and batch size to be able compare across depths.
To compare these two models, we subselect for high reliability neurons (above 0.3 split-half consis-
tency) and use a temporally-varying mapping (PLS 25 components). Note that the temporally-varying
mapping implies providing the feedforward models with a constant input stream (unlike the primates
and ConvRNNs, which are given a 100ms presentation) in order for them to produce a (constant) re-
sponse at every timepoints. We plot the median and s.e.m. predictivity in both panels per timebin
(N = 108, 113, 117, 123, 118, 118, 116, 115, 108, 99, 86 neurons for each timebin in the “pIT/cIT/aIT”
panel, and N = 247, 313, 378, 441, 437, 411, 397, 391, 392, 384, 380 neurons for each timebin in the
“aIT” panel). (b) Drop in explained variance may be exhibited in inter-animal consistency. Using
the neural data described in Section A.8.2, we see a similar inter-animal consistency (metric detailed
in Section A.7) at 130-140ms and 200-210ms, as we do with the 11-layer BaseNet. Median and s.e.m.
across aIT neurons (N = 441 at 130-140ms and N = 380 at 200-210ms) from the dataset described in
Section A.8.2. 49
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