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Abstract 

Quantifying RNAs in their spatial context is crucial to understanding gene expression and 

regulation in complex tissues. In situ transcriptomic methods generate spatially resolved 

RNA profiles in intact tissues. However, there is a lack of a unified computational 

framework for integrative analysis of in situ transcriptomic data. Here, we present an 

unsupervised and annotation-free framework, termed ClusterMap, which incorporates 

physical proximity and gene identity of RNAs, formulates the task as a point pattern 

analysis problem, and thus defines biologically meaningful structures and groups. 

Specifically, ClusterMap precisely clusters RNAs into subcellular structures, cell bodies, 

and tissue regions in both two- and three-dimensional space, and consistently performs on 

diverse tissue types, including mouse brain, placenta, gut, and human cardiac organoids. 

We demonstrate ClusterMap to be broadly applicable to various in situ transcriptomic 

measurements  to uncover gene expression patterns, cell-cell interactions, and tissue 

organization principles from high-dimensional transcriptomic images.  
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Tissue functions arise from the orchestrated interactions of multiple cell types, which are shaped 

by differential gene expression in three-dimensional (3D) space. To chart the spatial 

heterogeneity of gene expression in cells and tissues, a myriad of image-based in situ 

transcriptomics methods (e.g., STARmap, FISSEQ, pciSeq, MERFISH, seqFISH, osmFISH, 

etc.) have been developed1-8, providing an atlas of subcellular RNA localization in intact tissues. 

However, it is challenging to directly extract low-dimensional representations of biological 

patterns from high-dimensional spatial transcriptomic data. 

One main challenge is to achieve accurate and automatic cell segmentation that accurately 

assigns RNAs into individual cells for single-cell analysis. The most common cell segmentation 

strategy is labeling cell nuclei or cell bodies by fluorescent staining9-11 (e.g., DAPI, Nissl, WGA, 

etc.) and then segmenting the continuous fluorescent signals by conventional or machine 

learning (ML)-based methods12. However, conventional methods, such as distance-transformed 

watershed13, require manual curation to achieve optimal segmentation. On the other hand, while 

ML-based methods14,15 can automatically detect the targets (cells) in fluorescent stainings, they 

still require manually annotated datasets for model training and have poor generalization ability 

to other datasets.  

In order to address these challenges, a fundamentally different approach that bypasses auxiliary 

cell staining, hyperparameter tuning, and manual labeling is warranted. Here, instead of using 

fluorescent staining, we directly utilized the patterns of spatially resolved RNAs that intrinsically 

encode high-dimensional gene expression information for subcellular and cellular segmentation, 

followed by cell-type spatial mapping. To leverage the spatial heterogeneity of RNA-defined cell 

types, we applied the same strategy to cluster discrete cells into tissue regions. Together, we 
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demonstrated that this computational framework (termed ClusterMap) can identify subcellular 

structures, cells, and tissue regions (Fig. 1). 

 

Results 

ClusterMap integrates spatial and gene expression analyses 

ClusterMap is based on two key biological phenomena. First, the density of RNA molecules is 

higher inside cells than outside cells; second, cellular RNAs encoded by different genes are 

enriched at different subcellular locations, cell types, and tissue regions16,17. Thus, we reasoned 

that we could identify biologically meaningful patterns and structures directly from in situ 

transcriptomic data by joint clustering the physical density and gene identity of RNAs. 

Subsequently, the spatial clusters were interpreted based on the gene identity and spatial scales to 

represent subcellular localization, cell segmentation, and region identification.  

ClusterMap started with pre-processed imaging-based in situ transcriptomic data (Methods), 

where raw fluorescent images were converted into discrete RNA spots with a physical 3D 

location and a gene identity (i.e. mRNA spot matrix, Fig. 1a). We reasoned that spatial clusters 

can be distinguished based on the gene expression in the local neighborhood of each RNA spot. 

To quantify this, we introduced multidimensional coordinates, termed neighborhood gene 

composition (NGC) coordinates, which were computed by considering gene expression profiles 

in a circular window over each RNA spot (Fig. 1b (I), Methods). ClusterMap is capable of 

analysis on different spatial resolutions by changing the size of the window. The size of the 

window is specifically chosen for the same dataset to match the average size of organelles or 

cells for subcellular or single-cell analysis, respectively (Methods). The NGC coordinates and 
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physical coordinates of each RNA spot are then computationally integrated into joint physical 

and NGC (P-NGC) coordinates over each spot.  

Next, we aimed to cluster the RNAs in the P-NGC coordinates for downstream segmentation. 

Out of numerous clustering algorithms, density peak clustering (DPC)18, a type of density-based 

clustering method, was chosen for its versatility in extracting biological features in data and its 

compatibility with clusters of various shapes and dimensionalities automatically. DPC identifies 

cluster centers with a higher density than the surrounding regions as well as a relatively large 

distance from points with higher densities. We applied DPC to compute two variables18: local 

density ρ and distance δ for each spot in the joint P-NGC space. For each spot, ρ value represents 

the density of its closely surrounded spots, and δ value represents the minimal distance to spots 

with higher ρ values. Spots with both high ρ and δ values are highly likely to be cluster centers. 

We then ranked the product of these two variables, γ, in decreasing order to find genuine clusters 

with orders of magnitude higher γ values (Methods). For example, in Fig. 1b, the two spots with 

the γ values that are orders of magnitude higher than other spots are chosen as cell centers 

(labeled by a red star and a cyan hexagon, Fig. 1b (II)). After selecting the two cluster centers, 

the remaining spots are assigned to one of the clusters respectively in a descending order of ρ 

value. Each is assigned to the same cluster as its nearest cluster-assigned neighbor14, and each 

cluster of spots is taken to represent an individual cell (Fig. 1b (III)). Outliers that were falsely 

assigned among cells can be filtered out using noise detection in DPC18 or cell stains. which can 

be analyzed downstream for purposes such as cell typing, etc. (Fig. 1b (IV)). To illustrate this 

framework, we applied ClusterMap to representative in situ transcriptomics data from mouse 

brain tissue collected by the STARmap method6 (Fig. 1c).  
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Next, we examined and validated the performance of ClusterMap in diverse biological samples 

at different spatial scales in both 2D and 3D (Fig. 1d). First, based on the assumption that cellular 

RNAs have a different distribution in the nucleus or cytoplasm19, we used ClusterMap to cluster 

mRNAs within one cell to define the nuclear boundary. Here, RNA spots with both highly 

correlated neighboring composition and close spatial distances were merged into a single 

signature (Supplementary Fig. 1a, Methods). Then, a convex hull was constructed from the 

nucleus spots, denoting the nuclear boundary. The patterns of ClusterMap-constructed nuclear 

boundaries were highly correlated with DAPI stains, confirming the power of ClusterMap for 

segmentation at the subcellular resolution (Fig. 1d (I)). Second, we compared cell segmentation 

results by ClusterMap with conventional watershed13 segmentation (Methods) on the same 

mouse cortex cells. Comparing with the conventional watershed method, ClusterMap accurately 

identified cells, more precisely outlined cell boundary and illustrated cell morphology (Fig. 1d 

(II)). Last, we extended ClusterMap to diverse tissue types at different scales in both 2D and 3D, 

where dense heterogeneous populations of cells with arbitrary shapes exist. Cell identification 

results for the mouse cerebellum, the ileum, and the cortex are shown in Fig. 1d (III)-(V).  

 

Spatial clustering analysis in mouse brain 

We first demonstrated ClusterMap on the mouse primary visual cortex from the STARmap 

mouse primary cortex (V1) 1020-gene dataset6 (Supplementary Table 1). When sequenced 

transcripts were more likely to populate the cytoplasm, sparsely sampled spots based on DAPI 

signals were combined with RNAs to compensate for the lack of signals in the centers of cells, 

and they were together processed with modified ClusterMap procedures (Fig. 2a, Methods). The 

results show clear cell segmentation even for strongly crowded mouse V1 cortex cells (Fig. 2b). 
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Additionally, we evaluated whether ClusterMap-identified cell center coordinates were within 

corresponding expert-labeled cell regions on eight STARmap mouse V1 datasets to validate its 

accuracy (Supplementary Fig. 1b, c). Notably, ClusterMap cell labeling reached accuracy levels 

of 80-90% (Methods). Furthermore, we integrated gene expression in either ClusterMap-

identified or expert-labeled cells with scRNA-seq data and compared their correlation20,21 

(Supplementary Fig. 2d, Methods). Again, ClusterMap exhibited a comparable performance with 

expert-annotated segmentation. In the mouse V1 cortex dataset, ClusterMap identified cell 

types22 that matched both expression signature and tissue localization of the segmentation based 

on the previous report8 (Supplementary Fig. 2a-c). Importantly, ClusterMap can consistently 

identify cell types and their localization across biological replicates and in the mouse brain 

regions (Supplementary Fig. 2e-h).   

The next challenge was to apply ClusterMap on the cell-typing map to identify tissue regions. In 

this case, ClusterMap further clustered cells based on their physical and cell-type identity, 

providing similar clustering analyses of physical and high-dimensional cell-type information. 

ClusterMap computed a neighborhood cell-type composition (NCC) coordinates of each cell23 

and then clustered joint physical and NCC coordinates of cells (Supplementary Fig. 1d, 

Methods). As a result, cells with both highly correlated neighboring cell-type composition and 

close spatial distances are clustered into a single tissue region signature. The results showed that 

ClusterMap accurately detected cortical layering, which allows for the quantification of cell-type 

composition of each cortical layer (Fig. 2b-e). The distinct region-specific distribution of 

excitatory neurons can be observed in the L2/3, L4, L5, and L6 canonical layers, while 

oligodendrocytes were significantly distributed within the corpus callosum layer. In summary, 
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ClusterMap can effectively, accurately, and automatically conduct cell segmentation, cell typing, 

and tissue region identification. 

 

ClusterMap enables spatial clustering and cell-cell interaction analyses in mouse placenta 

To further demonstrate the generality of ClusterMap, especially its applicability to tissues with 

high cell density and variable nuclear/cytosolic distribution of RNAs, we applied ClusterMap to 

the STARmap mouse placenta 903-gene dataset (Fig. 3a, b, Supplementary Table 1). With 

ClusterMap analyses described in Fig. 2a, up to 7,700 cells were identified (Supplementary Fig. 

3a) and then clustered into eleven cell types using Louvain clustering22, which is consistent with 

cell types defined from scRNA-seq (Fig. 3e, f, Supplementary Fig. 3b-d). ClusterMap identified 

seven tissue regions based on the cell-type map (Fig. 3g, h). Further analysis showed that 

Regions IV and VI consisted of similar cell-type compositions, while region I consisted mostly 

of maternal decidua (MD) -2 cells.  

The discovery of the interwovenness of different tissue regions in placenta samples suggests the 

rich patterns of cell-cell interactions. We further sought to use ClusterMap results to characterize 

the near-range cell interaction networks by generating a mesh graph via Delaunay triangulation 

of cells and modeling the cellular relationships based on the i-niche concept24. In this way, we 

identified the nearest neighbors of each cell which were directly contacting each other (Fig. 4a-c) 

and quantified the average number of cells per cell-type among the first-tier neighbors (Fig. 4e), 

which could reveal crucial information about the affinity and communication among different 

cell types. Through this methodology, we discovered cell-type-specific cellular interactions: 

MD-1, MD-2, trophoblast giant-1 (TG-1), and NK cells mainly self-aggregate; glandular 

trophoblast-2 (GT-2), TG-2, TG-3, and endothelial/stromal cells widely connect with four types 
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of cells; and Spongiotrophoblast -1 and Spongiotrophoblast -2 cells have a high affinity to each 

other. We envision that identifying cell-cell interaction facilitates future in-depth studies of the 

biological mechanisms and physiology of placenta and placenta-related diseases.  

 

ClusterMap is applicable across various in situ transcriptomic methods 

Beyond just STARmap6, we further applied ClusterMap to analyze mouse brain tissue from three 

other in situ transcriptomics methods. Analyses of the imaged transcripts in the hypothalamic 

preoptic region by MERFISH3, the isocortex region by pciSeq4, and the somatosensory cortex by 

osmFISH5 are shown respectively in Fig. 5 (Supplementary Table 1). We used RNA spot 

matrices from subsets of the published data and applied ClusterMap analysis described in Fig.1b. 

Despite the differences in experimental designs and the number of transcript copies, ClusterMap 

identifies cells successfully. The identified cell types and their spatial patterns from ClusterMap 

were consistent with published results from conventional segmentation methods and scRNA-seq 

(Supplementary Fig. 4). Notably, ClusterMap can provide more detailed cell morphology and 

increase the number of identified cells (from 1,420 to 3,113 for MERFISH, from 893 to 1,962 for 

osmFISH).  

In conclusion, we analyzed mouse brain data from four representative in situ transcriptomic 

methods and validated the utility and universality of ClusterMap under different experimental 

methods. ClusterMap successfully produced comparable results across different methods with 

negligible modification applied.  

 

3D ClusterMap analyses in thick tissue blocks 
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3D in situ transcriptomics data analysis is considered even more challenging because it is 

generally infeasible by manual labeling. However, 3D volumetric imaging and analysis are 

required to understand the structural and functional organization of complex organs. In this 

regard, exploring ClusterMap’s ability to analyze 3D in situ transcriptomics is particularly 

desired. We applied ClusterMap to two 3D thick-tissue samples: STARmap cardiac organoid 8-

gene dataset25 and STARmap mouse V1 28-gene dataset6 (Supplementary Table 1). We analyzed 

the 3D data following the sample protocol described in Fig. 1b. In the 3D cardiac organoid 

sample, hierarchical clustering26 separated cells into three categories with distinct molecular 

signatures (Fig. 6a-c): CD44 for mesenchymal stem cells (MSCs), Nanog for induced pluripotent 

stem cells (iPSCs) and four genes (TNNI1, MYH7, MYL7, ATP2A2) for cardiomyocytes 

(Supplementary Fig. 5a-c). The 100-μm-thick sample of mouse V1 includes all six cortical layers 

and the corpus callosum, in which up to 24,000 cells were identified and 3D clustered into eleven 

cell types (Fig. 6d, e, Supplementary Fig. 5d-g). Our results showed similar spatial distribution 

with previously published results, which used the conventional fluorescence image 

segmentation: excitatory neurons exhibited a gradient distribution, with the spatial density of 

each subtype gradually decaying to adjacent layers across the entire 3D space; inhibitory neurons 

showed a more dispersed distribution; and non-neuronal cells were largely located in the white 

matter and layer 1 (Fig. 6e). We can determine seven 3D tissue regions based on their 

corresponding cell-type compositions (Fig.6 f, g). We further characterized 3D cell-cell 

interactions in the mouse V1 and computed the average compositional neighboring cell types 

(Fig. 6h-k). In the minority inhibitory neurons, we observed a similar self-associative pattern as 

in previously published findings6: the nearest neighbor of any inhibitory neuron tends to be its 
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own subtype. Three examples of inhibitory neuronal types (Pv, Sst, Vip) interactions are 

presented in Fig. 6h-j, respectively.  

 

Discussion 

Spatial RNA localization intrinsically contains information related to biological structures and 

cell functions, which are yet to be effectively retrieved. ClusterMap exemplifies a computational 

framework that combines spatial and high-dimensional transcriptomic information from in situ 

single-cell transcriptomics to identify subcellular, cellular, and tissue structures in both 2D and 

3D space. It is widely applicable to various experimental methods including, but not limited to, 

STARmap6, MERFISH3, pciSeq4, and osmFISH5. As a result, ClusterMap accurately created 

RNA-annotated subcellular and cellular atlases from in situ transcriptomic data across diverse 

tissue samples with different cell density, morphologies and connections, markedly expanded our 

knowledge of cellular organization across all scales from subcellular organelles through cell-type 

maps to organs, and enabled further characterization of the local microenvironment for 

individual cells. Our initial successful demonstration suggests that in situ transcriptomic profiles 

contain unexplored biological and structural information that can be further extracted by new 

computational strategies.  

Furthermore, ClusterMap is easy to scale up to a large dataset covering large-volume and organ-

level imaging data. Beyond spatial transcriptomic data, ClusterMap can be generalized and 

applied to other 2D and 3D mapped high-dimensional discrete signals (e.g., proteins or signaling 

molecules imaging data)27. In the future, we envision that ClusterMap can also be extended by 

combining other types of biological features (e.g., subcellular organelles, cell shapes, etc.) to 
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uncover the basic principles of how gene expression shapes cellular architecture and tissue 

morphology28.  
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Methods 

Data pre-processing 

1. Thin-section STARmap Data Processing 

All image processing steps were implemented using MATLAB R2019b and related open-source 

packages in Python 3.6 according to Wang et al., 20186. 

Image Preprocessing 

For better unity of the illuminance and contrast level of the fluorescence raw image, a multi-

dimensional histogram matching was performed on each image, which used the image of the first 

color channel in the first sequencing round as a reference.  

Image Registration 

Global image registration for aligning spatial position of all amplicons in each round of 

STARmap imaging was accomplished using a three-dimensional Fast Fourier transform (FFT) to 

compute the cross-correlation between two image volumes at all translational offsets. The 

position of the maximal correlation coefficient was identified and used to transform image 

volumes to compensate for the offset.  

Spot Finding 

After registration, individual spots were identified separately in each color channel on the first 

round of sequencing. For this experiment, spots of approximately 6 voxels in diameter were 

identified by finding local maxima in 3D. After identifying each spot, the dominant color for that 

spot across all four channels was determined on each round in a 5*5*3 voxel volume 

surrounding the spot location. 

Spots and Barcode Filtering 
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Spots were first filtered based on fluorescence quality score. Fluorescence quality score is the 

ratio of targeted single-color channel to all color channels, which quantified the extent to which 

each spot on each sequencing round came from one color rather than a mixture of colors. Each 

spot is assigned with a barcode representing a specific kind of gene. The barcode codebook that 

contains all gene barcodes was converted into color space, based on the expected color sequence 

following 2-base encoding of the barcode DNA sequence6. Spot color sequences that passed the 

quality threshold and matched sequences in the codebook were kept and identified with the 

specific gene that that barcode represented; all other spots were rejected. The high-quality spots 

and associated gene identities in the codebook were then saved out for downstream analysis. 

2D Cell Segmentation 

Two different methods were used to identify cell boundaries. First, the manually labeled 

segmentation masks from the original reference (Wang et al. 20186) were obtained as baseline. 

Second, nuclei were automatically identified by the StarDist 2D machine learning model 

(Schmidt et al. 201815) from a maximum intensity projection of the DAPI channel following the 

final round of sequencing. Then cell locations were extracted from the segmented DAPI image. 

Cell bodies were represented by the overlay of DAPI staining and merged amplicon images. 

Finally, a marker-based watershed transform was then applied to segment the thresholded cell 

bodies based on the combined thresholded cell body map and identified locations of nuclei. For 

each segmented cell region, a convex hull was constructed. Points overlapping each convex hull 

in 2D were then assigned to that cell, to compute a per-cell gene expression matrix. 

2. Thick-tissue STARmap Data Processing 

3D Image Registration 
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The displacement field of each imaging round was first acquired by registering the DAPI channel 

of each round to first-round globally by 3D FFT. Each sequencing image was applied with the 

corresponding transform of its round. 

Spot Finding 

After registration, individual spots were identified separately in each color channel on each 

round of sequencing. The extended local maxima in 3D were treated as an amplicon location. 

After identifying each spot, the dominant color for that spot across all four channels was 

determined on each round in a 3*3*3 voxel volume surrounding the spot location.  

 

Computation of Neighborhood Gene Composition (NGC) 

To compute the neighborhood gene expression composition of each spot, we considered a 

spatially circular (2D) or spherical (3D) window over every spot (S) and counted the number of 

each gene-type among in the window. The raw count of each window was normalized to 

percentage for downstream analysis. The radius of the window R can be chosen either manually 

or by statistics to be close to the averaged size of organelles and cells for subcellular and single-

cell analysis, respectively.  

For a dataset with T kinds of sequenced gene, the definition of an NGC vector to the measured 

spot i is composed of the number of each gene-type windowed by radius R to the measured spot 

i. 

𝑁𝐺𝐶(𝑖) =	< 𝑁𝑢𝑚!"#"	%, 𝑁𝑢𝑚!"#"	&, … , 𝑁𝑢𝑚!"#"	' , … , 𝑁𝑢𝑚!"#"	( > 

𝑁𝑢𝑚!"#"	' = #{𝑆'%, 𝑆'&, … , 𝑆'
) , … , 𝑆'

*+,!"#"	%}, 𝑡 ∈ 𝑁( 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒;𝑆'
) , 𝑖< < 𝑅, 𝑡 ∈ 𝑁( , 𝑗 ∈ 𝑁*+,!"#"	% 
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Density peak clustering (DPC) 

Based on the original DPC algorithm18, we first computed the two quantities: local density ρ and 

distance δ of every spot. We estimated the density by a Gaussian kernel with variance 𝑑-. The 

variance 𝑑- is supposed to be close to the averaged radius R of cells for cellular segmentation. 

We can use R as 𝑑-. The definition of local density ρ and distance δ for spot i is: 

𝜌. =	A𝐼C𝑑.) − 𝑑,/0E ∗ 𝑒1(3&'/5)
(

)

 

𝛿. = 𝑚𝑖𝑛(𝑑.)), 𝑗: 𝜌) > 𝜌. 

Note that 𝐼(𝑥) = 1	𝑖𝑓	𝑥 < 0, 𝑒𝑙𝑠𝑒	𝐼(𝑥) = 0, and 𝑑.) is the distance between spot i and j. The 

optional parameter	𝑑,/0 is a striction on the maximum radius of the cell. For the point with the 

highest density, based on principles of DPC18, we took its distance value to the highest δ value. 

Note that for large data sets, the analysis is insensitive to the choice of 𝑑- and results are robust 

and consistent. 

After computing these two quantities of every spot, we generated a multiplication decision graph 

by computing γ, the product of ρ and δ and plotting every spot’s γ value in decreasing order. 

Since the cell centers have both high local density and much higher distance at the same time, we 

chose the points with distinguishably higher γ values as cluster centers. We chose the ‘elbow 

point’ as the cutoff point in the multiplication decision graph where its γ value becomes no 

longer high and its change tends to be flat. T number of clusters N is equal to the number of 

points prior to the elbow point.  

Next, we assigned each remaining point to one of the N clusters respectively in a descending 

order of ρ value in a single step manner. Each remaining spot was assigned to the same cluster as 

its nearest cluster-assigned neighbor. Each cluster was regarded as one cell. Finally, we filtered 

cells by limiting the minimum number of spots and genes expressed in one cell. 
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Integration of the physical and NGC coordinate 

The physical coordinates denote the spatial location of spots and the NGC coordinates denote the 

gene location of spots in a high-dimensional NGC space. For spot i, its physical and NGC 

coordinate are: 

𝑃(𝑖) =< 𝑥. , 𝑦. , (𝑧.) > 

𝑁𝐺𝐶(𝑖) =	< 𝑁𝑢𝑚!"#"	%, 𝑁𝑢𝑚!"#"	&, … , 𝑁𝑢𝑚!"#"	' , … , 𝑁𝑢𝑚!"#"	( > 

We used inversed Spearman correlation coefficient to measure the distance between two NGCs. 

Integration of these two coordinates can be distance-level, clustering-level, and guided-

information based.  

Distance-level integration 

We computationally integrated the NGC and physical coordinates into the joint P-NGC 

coordinate over each spot. Specifically, we combined the physical and NGC distances 

information between i and its neighboring spots and used the joint distance as the metric to 

measure relationships between spots. Mathematically, the parameter 𝑑.) used in the calculation 

of ρ and δ in DPC is: 

𝑑.) =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒{𝑃(𝑖), 𝑃(𝑗)}

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛𝐶𝑜𝑟𝑟{𝑁𝐺𝐶(𝑖), 𝑁𝐺𝐶(𝑗)} 

Then we performed the DPC algorithm and found the cells. This integration method is universal 

to any datasets. We used distance-level integration for MERFISH mouse POA3, pciSeq mouse 

isocortex4, osmFISH mouse SSp5, STARmap cardiac organoid 8-gene and STARmap mouse V1 

28-gene dataset6. 

Clustering-level integration 

Since data points can be clustered by DPC using physical coordinates and NGC coordinates 

respectively, we can then do integration on the clustering level. To take these two variables into 
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consideration, joint clustering methods can be explored. To take the correlations between 

variables into account, we can also optimize a pre-specified objective function. Here we don’t 

apply clustering-level integration to datasets presented in the manuscript. 

Guided information-based integration 

We first separated spots into clusters with physical coordinates and then corrected the clustering 

with guided information extracted from the NGC coordinates. To extract the guided information, 

we identified the neighbors of spot i that were at the distance of R-2R to spot i in the physical 

space. Then we computed these spots’ NGC distances to spot i. If the maximum of the NGC 

distances from spot k was higher than a threshold, we evaluated if spot k and spot i belong to the 

same cluster. If so, as they were both distant from spot i in physical and NGC spaces, this 

indicated the cell which spot i belongs to may be under-clustered. We counted the overall 

probability of each cell being missed and re-clustered the potentially incorrect cells with more 

than 50% missing probability. This integration method is best performed with datasets with 

DAPI stains. We used guided-information based integration for STARmap mouse V1 1020-

gene6 and STARmap mouse placenta 903-gene dataset. 

 

Subcellular segmentation 

To perform subcellular segmentation and construct nuclear boundaries we first computed the 

quantity NGC over each spot in an individual cell. The difference between NGC for subcellular 

segmentation and that for cellular segmentation is the radius of the window R. R should be either 

chosen manually or by statistics to be close to the averaged size of organelles. In addition, when 

the number of sequenced genes is limited, we can compute the NGC using a mesh graph by 

Delaunay triangulation of spots that models the relationship between RNA spots in the cell. A 
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ring of spots that are neighbors of the central spot in the mesh graph is considered to locate most 

closely around the central cell. For a dataset with TR kinds of gene the definition of an NGC 

vector to the measured spot i is the composition of gene-types in its closest neighbors: 

𝑁𝐺𝐶(𝑖) =	< 𝑁𝑢𝑚!"#"	%, 𝑁𝑢𝑚!"#"	&, … , 𝑁𝑢𝑚!"#"	' , … , 𝑁𝑢𝑚!"#"	(5 > 

𝑁𝑢𝑚!"#"	' = #{𝑆'%, 𝑆'&, … , 𝑆'
) , … , 𝑆'

*+,!"#"	%}, 𝑡 ∈ 𝑁(5 

𝑆'
) 	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠	𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦	𝑤𝑖𝑡ℎ	𝑠𝑝𝑜𝑡	𝑖, ∀𝑗 ∈ 𝑁*+,!"#"	%},	 

Then, similar to distance-level integration, we generate a joint P-NGC coordinate from the 

normalized NGC and physical coordinates over each spot: 

𝑃 − 𝑁𝐺𝐶(𝑖) = [𝑁𝐺𝐶(𝑖), 𝜆 ∗ 𝑃(𝑖)] 

Here the optional parameter λ can control the influence of physical coordinates, depending on 

conditions. We then used K-means clustering to cluster spots into two regions with one for 

nucleus and one for cytoplasm. Finally, we constructed a convex hull based on the nucleus spots, 

denoting the nuclear boundary. 

 

Cell type classification 

A two-level clustering strategy was applied to identify both major and sub-level cell types in the 

dataset. Processing steps in this section were implemented using Scanpy v1.6.0 and other 

customized scripts in Python 3.6 and applied according to Wang et al., 20186. After filtration, 

normalization, and scaling, principal-components analysis (PCA) was applied to reduce the 

dimensionality of the cellular expression matrix. Based on the explained variance ratio, the top 

PCs were used to compute the neighborhood graph of observations. Then the Louvain 

algorithm22 was used to identify well-connected cells as clusters in a low dimensional 

representation of the transcriptomics profile. Clusters enriched for the excitatory neuron marker 
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Slc17a7 (vesicular glutamate transporter), inhibitory neuron marker Gad1, were manually 

merged to form two neuronal cell clusters, and then other cells represented non-neuronal cell 

populations. The cells were displayed using the uniform manifold approximation and projection 

(UMAP) and color-coded according to their cell types. The cells for each top-level cluster were 

then sub clustered using PCA decomposition followed by Louvain clustering22 to determine sub-

level cell types. 

 

Construct tissue regions 

1. Neighborhood Cell-type Composition (NCC) 

To construct tissue regions, we computed a global quantity: Neighborhood Cell-type 

Composition (NCC) over each cell (C). We considered a spatially circular (2D) or spherical (3D) 

window over every cell and estimated the composition of cell-types in the window. The radius of 

the window RC was chosen manually or by statistics of distances between cells to be as 

reasonable as possible.  

For a dataset with TC kinds of gene, the definition of an NCC vector of the measured cell i was 

the composition of cell-types in the defined window that had radius RC to the measured cell i. 

𝑁𝐶𝐶(𝑖) =	< 𝑁𝑢𝑚7"88	'9:"	%, 𝑁𝑢𝑚7"88	'9:"	&, … , 𝑁𝑢𝑚7"88	'9:"	' , … , 𝑁𝑢𝑚7"88	'9:"	(7 > 

𝑁𝑢𝑚7"88	'9:"	' = #{𝐶'%, 𝐶'&, … , 𝐶'
) , … , 𝐶'

*+,)"**	%+,"	%}, 𝑡 ∈ 𝑁(7  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒;𝐶'
) , 𝑖< < 𝑅𝐶, 𝑡 ∈ 𝑁(7 , 𝑗 ∈ 𝑁*+,)"**	%+,"	% 

2. K-means clustering 

Tissue region signatures were identified using information from both NCC and physical 

locations of cells. Then we generated a joint P-NCC coordinate from normalized NCC and 

physical coordinates over each cell: 
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𝑃 − 𝑁𝐶𝐶(𝑖) = [𝑁𝐶𝐶(𝑖), 𝜆 ∗ 𝑃(𝑖)] 

Here the optional parameter λ can control the influence of physical coordinates based on 

conditions. We then used K-means clustering on these high dimensional P-NCC coordinates to 

cluster cells into a pre-defined number of regions. Finally, we projected spatially back onto the 

cell-type map.  

 

Compare with expert-annotated labels 

We evaluated the accuracy of cell identification by ClusterMap with corresponding eight expert 

annotated STARmap6 datasets (Supplementary Fig. 1c). Cells defined by ClusterMap consist of 

spots with physical locations while labels in the expert annotated STARmap datasets are 

connected components. We defined the accuracy as the percentage of ClusterMap-identified cells 

of which the center coordinates are correctly located within the labeled cells connected 

components. In other words, for each labeled connected component, we checked if there was 

only one cell center (cluster peak defined in DPC18) within the region.  More than one cell 

centers were counted as over-clustering and no cell centers as under-clustering. The percentage 

was calculated by dividing the number of all incorrect cells (including over-clustered and under-

clustered ones) by the total number of cells identified by ClusterMap. 

 

Integration with scRNA-seq  

The cell identification performance was validated by performing a leave-one-out benchmark. 

Before integration20,21, the scRNA-seq and in situ sequencing data were preprocessed using the 

Seurat package. 
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1. Log-normalization: Divide the gene counts for each cell by the total counts for that cell and 

multiply by the scale. Factor = 10,000. Then perform natural-log transformation using log1p.  

2. Scaling the data: Subtract the average expression for each gene and divide the centered gene 

expression profiles by their standard deviation. 

For a shared gene list of scRNA-seq and in situ sequencing data with n genes, one non-repeating 

gene was left out in each round, and the rest n-1 genes were used for integration with scRNA-seq 

data and then the prediction of the left-out gene's expression profile. The integration and 

prediction steps were performed using FindTransferAnchors and TransferData functions in 

Seurat, which identified anchors between the reference (scRNA-seq) and query (in situ 

sequencing) dataset in reduced dimensions (reduction = 'cca') using mutual nearest neighbors and 

used these anchors to predict the left-out gene expression. 

Next, the Pearson correlation of measured and predicted profile was calculated as the benchmark 

metrics. Finally, we compared the correlation between ClusterMap or manual annotation with 

scRNA-seq and gave quantitative analyses using violin plot, which showed the distribution of 

correlation for different annotation methods, and scatter plot, which represented the correlation 

values of these two methods for each gene. 

 

Label transfer  

Cell type labels from scRNA-Seq dataset were projected onto spatially resolved cells from 

STARmap dataset by using the Seurat v3 integration method according to Stuart et al. 201920. 

First, both datasets were preprocessed (normalization & scaling) and a subset of features (e.g., 

genes) exhibiting high variability was extracted. For STARmap dataset, all genes profiled were 

used whereas in scRNA-Seq dataset, the top 2,000 most variable genes identified by 
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“FindVariableFeatures” function were used in downstream integration. Then 

“FindTransferAnchors” (reduction = “cca”) and Transfer Data functions were used to map the 

labels onto spatially resolved cells from the STARmap dataset. After label transferring, 6,672 out 

of 7,224 cells were observed with high-confidence cell type predictions (prediction score > 0.5), 

8 out of 10 cell types labels were resolved.  

 

Data availability 

The STARmap mouse V1 1020-gene and 160-gene sets6, MERFISH mouse POA set3, pciSeq 

mouse isocortex set4, osmFISH mouse SSp set5, and STARmap mouse V1 28-gene set6 are 

available as supplementary information file of the orginal manuscript. The data that support the 

findings of this study are available from the corresponding author upon reasonable request.  
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Figure Legends 

Fig. 1: ClusterMap: multi-scale spatial clustering analysis of in situ transcriptomic data 

from subcellular to tissue scales.  

a, Overview of ClusterMap method. The input is a matrix that contains both spatial and 

transcript information of mRNA molecules sequenced by in situ transcriptomic methods1-8. 

ClusterMap clusters mRNA spots, identifies cells, and profiles them into different cell types as 

output. 

b, Workflow of ClusterMap method. I, The physical and neighborhood gene composition (NGC) 

coordinates of mRNA spots are extracted for each spot (e.g., S1, S2, and S3), and projected to 

physical and NGC spaces respectively, which are then computationally integrated. II, Density 

peak clustering (DPC) algorithm18 is used to cluster mRNA in the P-NGC space. III, Each spot 

is assigned to one cluster, representing one cell. IV, Cell types are identified by the gene 

expression profiles in each cell. 

c, Representative ClusterMap analysis on STARmap mouse V1 1020-gene dataset6 corresponds 

to (I)-(IV) in (b). 

d, Representative ClusterMap cell segmentation analysis on different samples. I, HeLa cell in 

2D. The white dashed lines highlight the nuclear boundary identified by the subcellular mRNA 

distribution from ClusterMap (upper) and DAPI staining (bottom) from the same cell. II. 

Comparison of ClusterMap (upper) and marker-seeded watershed (bottom) segmentation in 

mouse visual cortex cells. III, Mouse cerebellum in 2D, 4,050 cells. IV, Mouse ileum in 2D, 

5,550 cells. V, Mouse visual cortex in 3D, 2,251 cells. Width: 309 µm, height: 582 µm, depth: 

100 µm.  
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Fig. 2: ClusterMap generates cell-type and tissue-region maps in mouse primary cortex 

(V1). 

a, Workflow of ClusterMap method that integrates DAPI signals for spatial clustering. 

b-d, ClusterMap generates cell (segmentation) map (b), cell-type map (c), and tissue region map 

(d) of the STARmap mouse V1 1020-gene dataset6, which includes 1,447 identified cells. b, 

mRNA molecules are color-coded by their cell attributes. c, The cell type names and colorings 

are from Ref (6). The number of cells in each cell type is as follows: eL2/3-A, 208; eL2/3-B, 42; 

eL4, 149; eL5, 118; eL6, 155; Pv, 37; Vip, 27; Sst, 40; Others-In, 18; Astro, 121; Endo, 134; 

SMC, 62; Micro, 150; Oligo-A, 164; Oligo-B, 12. Bottom panels in (b, c) show the zoomed-in 

views from the rectangular highlighted regions in upper panels. d, The tissue regions are 

segmented and cells in the same layer are shown in the same color. From top to bottom, the 

tissue region map shows: L1 to L6, the six neocortical layers; cc, corpus callosum; HPC, 

hippocampus.  

e, Bar plots of composition of 16 cell types across 7 layers. Values are normalized in each row. 

The colors correspond to the cell type legend in (c).  
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Fig. 3: ClusterMap generates cell-type and tissue-region maps in mouse placenta. 

a, Raw fluorescent signals for a part in the STARmap mouse placenta 903-gene dataset6. Four-

channel images in the first sequencing round are overlapped in grayscale to show the mRNA 

distribution. 

b, Composite image by overlapping (a) in red and DAPI signals in blue shows the distribution of 

mRNA relative to cell nuclei. A majority of mRNA molecules distributed outside the cell 

nucleus, resulting in holes in the cell center. 

c, d, ClusterMap generates cell map (c) and cell-type map (d) of (a). Panels (a-d) show the 

zoomed-in view from the highlighted rectangle in (f), the original dataset. 

e, Uniform manifold approximation plot (UMAP) shows clustering of 11 groups across 7,224 

cells in the original placental dataset. 

f, Spatial organization of the cell types in the placental tissue section. The number of cells in 

each type is as follows: 0: Trophoblast Giant-1 (TG-1), 947; 1: Endothelial/Stromal (E/S), 924; 

2: Trophoblast Giant-2 (TG-2), 921; 3: Maternal Decidua-1 (MD-1), 851; 4: Glandular 

Trophoblast-1 (GT-1), 706; 5: Spongiotrophoblast-1 (ST-1), 696; 6: Spongiotrophoblast-2 (ST-

2), 680; 7: Trophoblast Giant-3 (TG-3), 550; 8: Glandular Trophoblast-2 (GT-2), 420; 9: NK, 

392; 10: Maternal Decidua-2 (MD-2), 137. 

g, The spatial tissue region map of (f).  

h, Bar plots of composition of 11 cell types across 7 regions. Values are normalized in each row. 

Cell types in (f, h) are color-coded as in (e).  
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Fig. 4: ClusterMap reveals cell-cell interactions in the placenta. 

a, Mesh graph generated by Delaunay triangulation24 of cells shown in the STARmap mouse 

placenta 903-gene reveals cell-cell interactions. Each cell is represented by a spot in the color of 

its corresponding cell type. Physically neighboring cells are connected via edges. 

b-d, A zoomed-in view of the top, middle, and bottom square in (a). The intercellular connection 

is centered on three MD-1 type (C1, C2, C3), GT-2 type (C4, C5, C6), and ST-2 (C7, C8, C9) 

type cells, respectively, with their first tier of neighboring cells highlighted. Left: schematic; 

right: cell map. 

e, Bar plots of the average number of cells per cell type among the first-tier neighbors, revealing 

clear patterns of cell-type specific cell-cell communication. Cells in Interaction Type I, II and III 

show selective association with cell types highlighted in the corresponding bounding box. The 

cell types on the axes are denoted by initialisms. 

 

Fig. 5: ClusterMap across various protocols. 

a, Raw spatial transcriptomics data from the MERFISH dataset3 (zoomed-in view corresponding 

to the highlighted rectangle in (b)). Different colors represent different gene types. Scale bar: 10 

µm. 

b, ClusterMap generates the cell map of a selected area in MERFISH mouse POA dataset3, 

including 3,113 cells. Scale bar: 100 µm. Lower left: zoomed-in view of the highlighted square, 

the cell map of (a). Scale bar: 10 µm. White convex hulls are based on previous cell 

segmentation3. 

c, The spatial organization of cell types in (b). Scale bar: 100 µm. Upper right: zoomed in view 

of the highlighted rectangle, the cell type map of (a). Scale bar: 10 µm.  
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d, Raw spatial transcriptomics data from the pciSeq mouse isocortex dataset4. 

e, ClusterMap generates the cell map of (d). Red points: the density peak of cells. Scale bar for 

(d,e): 5 µm. 

f, The cell type map in (e). Left: scale bar: 5 µm. Right: the spatial cell type map of the selected 

area in the pciSeq mouse isocortex dataset4. Scale bar: 100µm.  

g, The cell map of a part of the osmFISH mouse SSp dataset5, including 1,962 cells. Scale bar: 

100µm. Left: zoomed-in view of the highlighted rectangle. White convex hulls are based on 

previously reported cell segmentation5. Scale bar: 10µm. 

h, The spatial organization of cell types in (g). Seven main types including I: Excitatory neurons; 

II: Inhibitory neurons; III: Ventricle; IV: Astro.; V: Oligodendrocytes; VI: Immune; VII: 

Vasculature5.  
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Fig. 6: ClusterMap enables 3D in situ transcriptomics analysis. 

a, Raw fluorescent signals of 3D STARmap cardiac organoid 8-gene dataset. Width: 465 µm, 

height: 465 µm, depth: 97 µm. 

b, c, ClusterMap generates 3D cell map (b) and cell-type map (c) of (a), which includes 1,519 

cells. Insets in (a-c) show zoomed-in views of the highlighted regions. 

d, ClusterMap generates a volumetric cell map of 3D STARmap mouse V1 28-gene dataset6, 

showing 24,590 cells. Width: 1545 µm, height: 1545 µm, depth: 100 µm. 

e, The 3D cell type maps of (d) show the spatial cell type distribution.  

f, The 3D tissue region map of (e). SC, subcortical. 

g, Bar plots of composition of 11 cell types across 7 tissue regions (layers). 

h-j, Example of cellular communication at a Pv, Sst, or Vip neuron, respectively. Left: 

schematics of 3D Delaunay triangulation of the Pv, Sst, or Vip neuron (highlighted in a white 

circle) and its first tier of neighboring cells. Middle: 3D spatial cell distribution of the first panel 

with the first tier of neighboring cells colored in white. Right: 3D spatial cell distribution of the 

first panel. Width 184 µm, height 194 µm, depth 100 µm. 

k, Bar plots of average composition of cell types around each cell type. Patterns of self-

association in the minority inhibitory neurons are highlighted in the bounding box. Cell types in 

(g-k) are color-coded as in (e). 
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Fig. 1: ClusterMap: multi-scale spatial clustering analysis of in situ transcriptomic data 

from subcellular to tissue scales.   
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Fig. 2: ClusterMap generates cell-type and tissue-region maps in mouse primary cortex 

(V1).  
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Fig. 3: ClusterMap generates cell-type and tissue-region maps in mouse placenta.  
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Fig. 4: ClusterMap reveals cell-cell interactions in the placenta.  
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Fig. 5: ClusterMap across various protocols.  
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Fig. 6: ClusterMap enables 3D in situ transcriptomics analysis. 
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