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Abstract

The spatio-temporal distribution of individuals within a group (i.e its
internal structure) plays a defining role in how individuals interact with
their environment, make decisions, and transmit information via social
interactions. Group-living organisms across taxa, including many species of
fish, birds, ungulates, and insects, use vision as the predominant modality
to coordinate their collective behavior. Despite this importance, there have
been few quantitative studies examining visual detection capabilities of
individuals within groups. We investigate key principles underlying
individual, and collective, visual detection of stimuli (which could include
cryptic predators, potential food items, etc.) and how this relates to the
internal structure of groups. While the individual and collective detection
principles are generally applicable, we employ a model experimental system
of schooling golden shiner fish (Notemigonus crysoleucas) to relate theory
directly to empirical data, using computational reconstruction of the visual
fields of all individuals to do so. Our integrative approach allows us to
reveal how the external visual information available to each group member
depends on the number of individuals in the group, the position within the
group, and the location of the external visually-detectable stimulus. We
find that in small groups, individuals have detection capability in nearly all
directions, while in large groups, occlusion by neighbors causes detection
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capability to vary with position within the group. We then formulate a
simple, and generally applicable, model that captures how visual detection
properties emerge due to geometric scaling of the space occupied by the
group and occlusion caused by neighbors. We employ these insights to
discuss principles that extend beyond our specific system, such as how
collective detection depends on individual body shape, and the size and
structure of the group.

1 Introduction

Being part of a group is an effective strategy for avoiding predation threats [1–4]
and locating promising resources [5, 6]. Enhanced detection of external objects
(for example a predator, or a source of food) is a key aspect of being part of a
group, with the benefits referred to as the ‘many eyes’ effect [7,8]. The structure
within a group influences how individuals interact with one another and the
surrounding environment. For example, groups tend to have more individuals
and an increased density under heightened predation risk [9–15] (but
see [16,17]). An individual’s position within the group can determine both its
possible risk to predation [18], as well as the extent of its social
interactions [19,20]. Despite the importance of social grouping for gathering
information about the external environment [21,22], there has been little
quantification of how within-group structure and the size of the group influence
the group’s interactions with their environment.

Many species who form coordinated, mobile groups employ vision as a
primary modality for mediating social interactions [23–25]. Visual connectivity
among individuals can predict how a social contagion spreads through a group,
such as when ‘informed’ individuals detect and move towards a cue associated
with food, and are followed by other naive group members [19,26], or when a
startle response propagates across a group [14,20]. As groups get larger,
occlusion due to neighbors means that individuals differ in the visual
information they have available to them. The available visual information
determines whether individuals will respond to other group members [19,20], as
well as if the any individuals in the group will have the ability to detect cryptic
stimuli, such as a predator [7, 8].

Here we examine how the visual information available to individuals in a
group depends on both the number of group members and on how individuals
are positioned within the group (i.e. the group’s internal structure). We first
analyze, quantitatively via computational visual field reconstruction [14,19,20],
the visual information available to all individuals within groups of golden shiner
fish, whose social behavior is predominantly mediated by vision [20]. We
performed experiments with groups of different numbers of fish, ranging from 10
to 151 in number. We examine how the detection coverage, which is the angular
fraction of the external visual area that an individual can see, depends on the
number of group members and an individual’s position within the group. We
then formulate a simple model of external detection ability which demonstrates
a good match to the main features observed in the data. The model generalizes
to show how detection scales when a group contains more individuals and we use
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these results to discuss the implications and generalizations to other animal
groups.

2 Results

We filmed free-schooling groups of 10, 30, 70, and 151 golden shiner fish
(Notemigonus crysoleucas) in the laboratory and used a combination of
automated and manual tracking to extract positions and orientations while
maintaining individual identities over the course of each trial (see Methods).
Golden shiners are a widespread species of freshwater fish [27] that are surface
feeders and thus swim close to the surface of the water [28]. We estimated the
external visual detection capabilities of each individual using a procedure where
a neighboring individual can block the external vision of a focal individual in a
certain direction (Fig 1A-B; see Methods). Individuals tend to have a ‘blind
angle’ to the rear, which for this species has been determined to be 25
degrees [29], and we include this in the visual detection procedure (Fig 1C). In
addition, we note while individuals form a relatively planar group structure,
near the surface, the arrangement is not perfectly 2-dimensional; this means
that neighboring individuals do not always block an external view. Since our
tracking is only in 2D, we account for out-of-plane effects by considering
incomplete visual blockage, where each neighbor has a certain probability of
blocking external vision (Fig 1D). Applying the detection algorithm to each
individual in the school illustrates the overall external detection abilities of the
group (Fig 1E-F; [30]).

2.1 Individual detection coverage

We first examine individual detection coverage, which ranges from 0 to 1 and
represents the fraction of the external visual space that an individual can see,
and then following this, in Section 2.2, examine the total number of group
members with detection capability in a certain direction at a moment in time.
For small groups of 10, all individuals have a large detection coverage and can
see nearly the full range around the group, i.e. in directions to the front, back,
and side of the group, regardless of their position within the group. As the
number in the group increases, however, the average detection coverage
decreases due to occlusion caused by neighbors. Additionally, the variance of
individual external visual coverage in the group increases with the number of
individuals, reflecting an increased heterogeneity in visual access resulting from
individuals of the group having their visual field increasingly dominated by
others, thus occluding their view of areas external to the group (Fig 2).
Considering a blind angle decreases the instantaneous detection coverage, with
the largest effect for the group of 10. This is because in in small groups, the
rearward area, in the absence of a blind angle, would be visible, while in large
groups, it is likely that vision to the rear is already blocked by a neighbor.

In addition to instantaneous coverage, we consider that since individuals
move over time, small positional changes may increase the effective range of
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Figure 1: External visual detection. (A) A focal individual has external detection in a given direction if
neighbors do not block vision in that direction. (B-D) External visual detection coverage of a single individual
located at the center of a school of 70 fish. Shown is the detection coverage determined using different
parameters. Directions where the left eye has external detection capability are shown in blue, and that for the
right eye in red. (B) Full visual blockage and a full 360o field of view. (C) Including a blind angle where fish
cannot see behind themselves, with otherwise full blockage from neighbors. The blind angle area is highlighted
by the dotted lines, and detection directions omitted due to the blind angle are shown in gray. (D) Blind angle
and incomplete (probabilistic) blockage, using a blockage probability of 75%, where some neighbors do not
block the external view in a certain direction. Neighbors that are ignored are shown in gray, and additional
detection directions are shown in darker colors. (E-F) Illustration of the external visual field of the entire group
at a single frame. The heatmap shows detection capability obtained by summing the overlapping regions of the
external visual fields of all individuals, using results with incomplete blockage (75%)-blind angle. Results are
displayed by scaling to show either (E) Absolute detection capability in terms of the number of individuals
with detection capability, or (F) The fraction of the maximum possible total detection capability among group
members.
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Figure 2: Individual detection coverage. The detection coverage is the fraction of the external visual
field that an individual can see. (A) Example snapshot of the external detection coverage for groups with
different numbers of individuals. (B) Distributions of individual detection coverage for the different groups,
combining all individuals during a trial, calculated using different settings: full blockage-full field (dashed line),
full blockage-blind angle (dotted line), full blockage-blind angle with detection capability any time over a 1/3
second time window (dashed-dotted line), and incomplete blockage (75%)-blind angle. (C) Detection coverage,
comparing individual differences to the combined distribution. Results use incomplete blockage (75%)-blind
angle. The mean and standard deviation of the combined distribution from B is shown as the large point and
error bars for each group size. The mean individual detection coverages during a trial are the small points, and
individual standard deviations are the shaded bars. Note that 3 trials were performed for N = (10, 30, 70), while
only 1 trial was performed for N = 151. The individual points are spaced on the x-axis for display purposes.
The dashed line shows the contribution from “consistent individual differences” (the variance of individual
means) to the overall distribution, while the dotted line shows the contribution of “individuals differing during
a trial” (the mean of individual variances; see Methods, Eq. 7).
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visual information that is available during a certain time window. To represent
this, we say an individual has detection capability in a certain direction at time
t if there was visual access in that direction at any time within the previous T
seconds, i.e. within the time window of t− T to t. Using a time window
increases the average detection coverage, with the largest effect on the most
numerous group (N = 151). For all groups, the results using a blind angle and a
window time of T = 1/3 sec. yield average detection coverage values that are
near to or greater than that without using a blind angle. This demonstrates
that considering small positional changes over a short time can effectively
“mitigate” the decrease in detection coverage caused by having a blind angle.

As expected, considering incomplete blockage at an instant in time increases
an individual’s detection coverage, with the largest shift for the most numerous
group (N = 151). Fig 2 shows results with a blockage probability of 75%; using
other values causes the coverage to progressively increase as the probability of
individuals blocking one another decreases. Despite the shifts in distributions
when considering a blind angle and incomplete blockage, we see the same the
main trends: individual detection coverage decreases and the variance of the
distribution of individual detection coverage increases when there are more
individuals in the group (Fig 2). Because we know that out-of-plane effects lead
to incomplete blockage, and that individuals do have a blind angle, in the
following we focus in detail on the instantaneous detection results using a blind
angle and incomplete blockage. Although we don’t have an exact value of what
the effective blockage probability due to non-planar effects would be, we use the
intermediate value of 75% blocking probability as a reasonable value and
proceed by focusing on this case, noting that none of the general features of the
results are dependent on the exact value of the blocking probability.

The distributions in Fig 2B combine all individuals over each trial. Are there
consistent differences in detection coverage among particular individuals during
a trial? Fig 2C shows that while both individual differences and changes during
a trial contribute to detection coverage, consistent individual differences explain
a much smaller fraction of the overall variance, in comparison to individuals
changing their position in the group during a trial. Consistent individual
differences explain on average only 8% of the total variance.

2.2 Group detection capability

Instead of examining detection coverage of individuals, we can instead ask about
the total number of group members with external detection capability in a
certain direction at a moment in time. This can depend on the group state and
group area, e.g. whether the group is swimming in a polarized, milling, swarm,
or other configuration (Fig 3A; [31]), as well as on the external direction with
respect to the group travel direction. We first examine the former. The total
number of possible external detections among all group members in any
direction increases with N , and only shows a small dependence on the group
state (Fig 3B). While the polarized state is the most common configuration -
the groups of 10 and 30 do not spend significant time in the milling or swarm
states - the groups of 70 and 151 do spend time in different states, and display
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Figure 3: Group detection and state dependence. (A) Example snapshots of a group of 70 in different
configurations: polarized, milling, and swarm states. (B) The total number of possible detections for all
individuals in the group, for groups with different values of N , showing results for all group states compared to
polarized, milling, swarm, and other states. Error bars show the standard deviation of the total number of
possible detections among all group members in a certain direction at an instant in time (Eq. 9). The color
saturation of the points is proportional to the amount of time a group of size N spends in a certain state, i.e.
states not used much are shown in gray. Groups of N = 10 and N = 30 do not spend significant time in the
milling or swarm states, and therefore these points shown in gray. (C) Distributions of the total spatial area
occupied by groups of different numbers of individuals. (D) The spatial area per individual, calculated using
Voronoi tesselation, for groups of different numbers of individuals. See Fig 6 for information on how the total
group area and the individual area are calculated. (E) The total instantaneous detection capability among all
group members, averaged over all possible directions over time, plotted as a function of the total area of the
group at that time. The line shows the mean and the shading shows the standard deviation of the number
of possible detections. The transparency of the lines is proportional to the probability that the group has a
certain area value (see distributions in C).

slightly higher external detection abilities in the polarized state compared to
milling or swarm states (Fig 3B).

In addition to swimming in different configurations, the density of the group
can differ, for example with a dense vs. tightly-packed group configuration.
Naturally, groups with more individuals occupy a larger spatial area. The
standard deviation of the spatial area occupied is also larger for groups with
more individuals (Fig 3C). The average spatial area per individual slightly
decreases for larger N , reflecting that although the distributions were
overlapping, individuals tend to pack slightly more tightly when more
individuals are in the group (Fig 3D). The number of possible external
detections among group members is higher when the group occupies a larger
area; this is because when individuals are spaced further apart, each neighbor
subtends a smaller angle on the visual field of others and therefore blocks less of
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the external view (Fig 3E).

2.3 Angular dependence of detection

The number of individuals with detection capability in a certain direction also
depends on the angle with respect to the group travel direction. Note that if the
group is not moving, then there is no ‘group travel direction’, and no front or
back of the group. However, if the group is moving cohesively in a polarized
configuration (see e.g. Fig 3A), then there is a clear travel direction and a
difference between individuals at the front versus the rear of the group. Because
of this, we consider only movement when in a polarized state to examine the
angular dependence of detection [31]. For fish, which like many animals have
elongated body shapes, detection capabilities are higher to the front of the
group than to the side of the group. Due to the blind angle, detection
capabilities are lowest to the rear of the group (Fig 4A; [30]).

We next examine how detection capability to the front or the side of the
group depends on an individual’s in-group position. In-group position is
represented by defining the ‘edge’ of the group as the individual furthest away
from the centroid in that direction, and then calculating an individual’s distance
from either the front or side edge of the group (Fig 4B). An individual located
at a certain edge always has detection capability in the corresponding direction,
and therefore average detection capability is 1 at a distance of zero from the
edge. Detection capability then decreases with distance from the edge. However,
the decrease in detection capability with distance from the edge depends on
both the angle with respect to the group travel direction and the number of
individuals in the group. In the smallest group (N = 10), nearly all individuals
have detection capabilities to the front of the group, and the detection capability
shows only a small decrease with distance from the front edge. The steepness of
decay of detection capability with distance from the front edge of the group
increases with the number of individuals in the group (Fig 4C).

In contrast, the detection capability with respect to the distance from the
side edge of the group shows a similar initial decay for all group sizes, but
extends ‘further’ for the larger groups because they take up a larger area (Fig
4D). This difference between front versus side detection is due to the elongated
body shapes of fish as well as the alignment of individuals when swimming as a
polarized group. While an individual’s vision to a region to the side of the group
may be completely blocked by a single nearby aligned neighbor, visual blockage
to a region to the front is more likely to depend on the positions and
orientations of several neighbors [30].

2.4 Model of external detection

To better understand how detection capability changes with the number of
individuals in the group, and to seek general principles, we formulate a simple
model of external visual detection capability of a group of individuals. In the
model, a group of N individuals occupies a circular area with radius R, within
which there is a constant visual blockage probability of λ. At a distance r from
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Figure 4: Detection relative to group heading direction. (A) The number of possible detections in the
group at different angles with respect to the group heading direction. Results are calculated using instances
when the group is moving aligned in a polarized state. (B) Illustration of front and side detection using a
snapshot of a group of 70, showing where individuals have open lines of sight to either a location to the front
(brown lines) or to the side (gray lines) of the group. The front and side edges of the group are defined by the
furthest individual in these respective directions. (C) Average individual detection capability in a direction
to the front of the group, plotted as a function of individual distance from the front edge of the group. (D)
Analogous results to (C), but for average individual detection capability in a direction to the side of the group,
plotted as a function of individual distance from the corresponding side edge of the group. For (C,D), the
transparency of the points is proportional to the number of observations of individuals at that distance from
the front or side.
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Figure 5: Model of external visual detection coverage. (A) Illustration of the quantities in the model.
(B) Individual detection coverage in the model compared to the data. The baseline blockage probability λ0 and
the scaling exponent q are fit to the average detection coverage in the data, yielding λ0 = 0.129 and = 0.58.
The error bars show the standard deviations of the distributions from the data, and the gray shaded area shows
the standard deviation for the model. (C) Total number of group detections in the model compared to the data.
The parameter σ, which represents the standard deviation of the radius of the group in the model, is fit to the
standard deviation of the number of possible detections in the data (error bars), leading to σ = 0.263. The gray
shaded area shows the standard deviation of group detection in the model. (D-E) Average detection capability
for different model parameters and number of individuals in a group. In each, the points show the values
from the data, the solid lines are obtained numerically from the model, and the dashed lines are the series
approximation in Eq. 2. The solid brown line shows the best fit from model, which is obtained using numerical
evaluation. (D) Average detection capability for different values of the scaling exponent q, with λ0 set to the
best fit value. (E) Average detection capability for different values of the baseline blocking probability λ0, with
q set to the best fit value. See Methods for model details and fit procedure.

the center, the probability of having detection capability at an angle of θ is
proportional to the blockage probability multiplied by g(r, θ), which is the
distance to the edge of the group in that direction (Fig 5A; see Methods). For a
group with N individuals, we specify that the visual blocking probability scales
according to

λ = λ0N
q, (1)

where λ0 is a baseline blocking probability and q is a scaling exponent. We fit
the values of λ0 and q by comparing individual mean detection probabilities
from the model to the data (Fig 5B).

We furthermore include the effect that a group may change the spatial area it
occupies by using a parameter σ for the standard deviation of the radius of
group. Since a given group occupying a larger area has a higher average number
of possible detections (Fig 3E), spatial area changes increase the standard
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deviation of the total number of possible detections of group members in a given
configuration. We therefore fit the parameter σ to the standard deviation of the
number of possible detections for the different group sizes (Fig 5C).

An approximate solution for the average detection coverage is obtained using
a series expansion (see Methods), yielding

v̄ ≈ e−λ
(

1 +

kmax∑
k=1

ckλ
k

)
. (2)

where v̄ is the average detection coverage, λ is specified in Eq. 1, and the
numerical values of the coefficients ci are listed in Methods from an expansion
to 6th order terms. Eq. 2 shows that to leading order, average detection decays
exponentially in λ. From this, we clearly see that increases in both the scaling
exponent (q) or the baseline blocking probability (λ0) both decrease the average
detection capability. However, these two parameters affect the shape of the
decrease differently, with q having more of an effect on the shape of the
exponential decay with increasing N (Fig 5D-E).

By using different parameters, the model can generalize to describe the
detection coverage of individuals at different densities, of different sizes, or with
different scaling properties with N . A higher value of the baseline blocking
probability λ0 could represent larger individuals, or a higher average density for
a given value of N . The parameter σ represents the standard deviation of the
spatial area that the group occupies about the average; since density affects
detection coverage, a higher value of σ means a higher variance in the number of
possible group detections. The parameter q represents how individual detection
coverage changes with the number of individuals in the group (N); in particular,
a higher value of q could represent groups that show a sharper decrease in the
area per individual with N than we observed experimentally.

Overall, by assuming a simple shape of the group and a constant blockage
probability, the model demonstrates that our experimental findings for detection
results can be explained by the geometry of how neighboring individuals occlude
an external view. In particular, the model can replicate the experimental
observations that average individual detection decreases with N (due to an
increased probability of occlusion from neighbors), and that the variance of the
number of possible detections in the group increases with N (due to the
variance in the spatial area occupied by the group).

3 Discussion

In general, in small groups individuals have detection capability in nearly any
direction, while in large groups individuals can differ substantially from one
another in their visual information due to occlusion from neighbors. For our
study system (golden shiner fish), we thus find that meaningful distinctions in
available visual information emerge when groups contain between 30-70 fish; at
these sizes and larger, some individuals may detect an object while others do
not. While previous work has used position-based metrics to define, for example,
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“peripheral” versus “central” locations within a group (e.g. [18, 22, 32]), we note
that these distinctions are only meaningful with respect to detection for groups
with sufficiently many individuals.

The density of a group affects visual detection abilities (Fig 3E). What
functional aspects may lead a group to adopt a certain density? Previous work
has suggested that up to a certain point, higher group density is associated with
an increased ability to spread information among group members; or in other
words, denser groups tend to be more ‘tightly connected’ [19,20]. The reason for
this, as has been found for animals from fish [20] to humans [33–35], is that the
spreading of social behavior is best described by a fractional contagion process,
whereby an individual’s probability of response depends on the fraction of their
neighbors that have responded [36]. In denser groups, each individual has fewer
neighbors —and thus a contagion is more likely to spread [19,20]. This is
further supported by what happens when fish are exposed to Schreckstoff, a
chemical that is typically released to signal that a predator is nearby. In this
case, individuals move closer together, which facilitates an increase in their
ability to spread behavioral change, and thus exhibit a greater responsiveness to
external threats [14]. While transmission of behavioral change among group
members may be enhanced at higher density, our results show that external
detection is enhanced at lower density (Fig 3E). This is because at lower density,
neighbors subtend a smaller angle in the visual field of others. In the model, an
overall lowering of the density of the group can be represented by a lower value
of λ0. The ‘trade-off’ between external detection and internal communication
may be a driver of the optimal group density, and can explain why the overall
spatial area of the group does not predict how quickly a group will respond [37].
At an individual level, a low external detection capability to the side of the
group tends to be compensated by stronger visual connectivity to neighbors [30].

With more individuals, the overall detection capability of the group increases
(Fig 3B), due to both having a full coverage of the surrounding area as well as
having multiple overlapping visual areas for detection redundancy. However,
blockage effects cause this trend to be sub-linear with respect to the number of
individuals in the group (Fig 5C). This demonstrates that one of the benefits of
being part of a group - the “many eyes” effect [7, 8] - has a decreasing marginal
utility as group size continues to increase. To explore possible functional
consequences of this, consider that individuals in a group need to not only
detect an object, but also respond to the detection. While a predator may elicit
a sudden startle response [20], movement towards a potential food source is
more likely to be gradual. Previous work has shown that only a small fraction of
‘informed’ group members (e.g. group members that can detect the food source)
are needed in order to successfully guide the group towards the target [19,26,38].
Here, we note that although the fraction of informed individuals needed to lead
the group decreases with N , the average detection capability of each individual
also decreases with N . Therefore, we can not generalize to say whether small or
large groups are expected to have a better ability to both detect and move
towards a promising food source, since the scaling of detection capability with N
depends on the characteristics of individuals and the configuration of the group.
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In our calculations, we considered that an individual can detect an outside
point in a given direction if they have a clear view in that direction. However,
this does not take into account differences in detection capability for near versus
far away objects that arise due to visual projection and contrast effects. Real
objects have a finite size and thus the total angle subtended by the object
decreases with distance. An object located close to the group thus projects onto
a larger range of angular directions compared to the same object located farther
away. This naturally results in a lower overall detection capability if an object is
located farther away. In addition, the contrast an object appears at with respect
to the background decreases with distance due to the effects of light scattering
and absorption. This can have a significant effect in attenuating media such as
water, and can be particularly strong in conditions of poor visibility (e.g. in
turbid, or ‘cloudy’, water - see [39,40]). A decrease in contrast with distance
could have two effects on group detection ability. First, it would lower the
effective detection capability for each individual in the group. In the model, this
is represented by increasing the effective baseline visual blocking probability λ0
(Fig 5E). Second, because visual detection only occurs if an object appears
above a certain contrast threshold [40], individuals may be able to detect an
object if they are close to it (i.e. located on the side of the group where the
object is located), but individuals on the other side of the group may not have
sufficient contrast to detect the object. Since such mechanisms represent
individuals as ‘imperfect sensors’, they affect the ‘many eyes’ abilities of the
group: while a group with a small number of individuals could be certain to
detect an object in a condition of clear visibility, the same group may not have
any individuals that detect the object in conditions of poor visibility. In a group
with a larger number of individuals, the pure increase in numbers makes it is
more likely at least some individuals are able to detect an object even in
conditions of poor visibility. This is similar to the ‘pool-of-competence’ effect,
whereby larger groups effectively act as better problem solvers because it is
more likely they contain an individual that has the knowledge needed to solve
the problem [41,42]. Applying this to the case of visual detection, a larger group
is more likely to contain an individual that can detect the object.

While we obtained data from freely-moving groups of fish, we note that the
effective transition point from homogeneous to heterogeneous visual information
available among individuals will be different for groups of different animals.
Based on our results, we would expect differences due to the shape of the
animal, the spacing between individuals in the group, and the overall space that
the group occupies. For example, while we studied fish moving in a planar
configuration in shallow water, and approximated out-of-plane effects using
probabilistic visual blockage, we expect that fish moving in a fully
three-dimensional (non-planar) shape would have overall a smaller fraction of
their vision blocked by neighbors, for a group containing the same number of
individuals. However, experiments also show that fish schools in open water
often adopt planar structures, in particular in response to a nearby predator [43],
and that using two-dimensional motion coordinates yields the same results for
leader-follower dynamics as considering full 3-dimensional motion [44]. Other
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animals that form non-planar groups [45], such as midges or birds, can differ in
the effective visual blockage due to neighbors. In a midge swarm, where the
inter-individual spacing relative to body size is larger than that for fish [46], we
would expect relatively low visual blockage. Different from fish, we would also
expect minimal directional dependence, due to the body shape of midges. In
contrast to midges, birds have elongated body shapes, and therefore we could
expect similar direction-dependent detection trends for birds as we found for the
fish schools studied here; in addition, although birds move in 3D, data from
starlings has shown that flocks are generally thinnest in the direction of gravity
and therefore also have planar characteristics [47]. Ungulates moving in a herd,
such as zebra, gazelles, caribou, or wildebeest (e.g. [48, 49]), have both elongated
body shapes and move on a two-dimensional surface, and thus may have directly
comparable trends for visual detection as fish moving in shallow water.

In summary, we used fish as a model system to examine the visual
information available to individuals in the group, and formulated a simple model
to understand how visual information changes with number of individuals in the
group. In future work it will be valuable to compare results to other animal
groups that vary in their individual properties and group dynamics, and to test
the expected changes in detection ability with respect to individual placement
and group motion direction.
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4 Methods

4.1 Experiments

Golden shiners (Notemigonus crysoleucas) are a small minnow native to the
northeastern U.S. and Canada [27]. Juvenile shiners approximately 5 cm in
length were purchased from Anderson Farms (www.andersonminnows.com) and
were allowed to acclimate to the lab for two months prior to experiments. Fish
were stored in seven 20-gallon tanks at a density of approximately 150 fish per
tank. Tank water was conditioned, de-chlorinated, oxygenated, and filtered
continuously. Fifty percent of tank water was exchanged twice per week.
Nitrates, nitrites, pH, saline and ammonia levels were tested weekly. The room
temperature was controlled at 16 ◦C, with 12 hr of light and 12 hr of dark, using
dawn-dusk simulating lights. Fish were fed three times daily with crushed flake
food and experiments were conducted 2-4 hr after feeding. These methodologies
are identical to those used in [50].

Trials with groups of 10, 30, and 70 shiners (3 trials each) and with 151
shiners (1 trial) were allowed to swim freely in a 2.1 x 1.2m experimental tank.
Water depth was 4.5 - 5 cm. Fish were filmed for 2 hr from a Sony EX-1 camera
place 2m above the tank, filming at 30 frames per second.

The arena was acoustically and visually isolated from external stimuli: two
layers of sound insulation were placed under the tank, and the tank was enclosed
in a tent of featureless white sheets. Trials took place in a quiet laboratory with
no people present during filming. All experimental procedures were approved by
the Princeton University Institutional Animal Care and Use Committee.

4.2 Tracking and group area

We focused analysis on a 13 minute segment for each trial. We chose a time 1 hr
after the onset of the trial to minimize stress on the fish from handling. Fish
positions, orientations, and body postures were extracted from videos via the
SchoolTracker algorithm used in [20]. Briefly, SchoolTracker works by detecting
fish in each frame, then creating tracks by linking detected fish across frames.
We then performed manual data correction to ensure accuracy in the tracks.

We used a convex hull and Voronoi tessalation to quantify the overall spatial
area occupied by the group as well as the spatial area per individual (Fig 6).

4.3 External detection

To examine external detection, we represent individuals as simplified 4-sided
polygons defined by their head, eyes, and tail (Figs 1A and 7A). To examine
detection, we consider 200 points located in a circular arrangement at a distance
of 1200 pixels (∼ 135 cm, or ∼ 30 body lengths) from the group centroid. This
distance is sufficiently far from the edges of the group that the exact value does
not significantly affect results. An individual has direction capability in a
certain direction if there is a clear visual line in that direction, without blockage
from neighbors.
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Figure 6: Group and individual area calculations. (A) The area of the group is calculated by a convex
hull that contains the head positions of all group members (gray shading). Individual area is calculated using a
Voronoi tesselation, keeping only Voronoi polygons that are enclosed in the overall group boundaries (colored
areas).

Figure 7: Polygon representation of fish and detection analysis quantities. (A) Example zoomed-in
video frame from a group of 10 fish with the 4-sided fish polygon model shown as the red overlay. (B) By
setting the origin at the group centroid and the group travel direction along the x-axis, we define the (ξ, ν)
coordinate system. The front-back coordinate is ξ, and the side-side coordinate is ν. The front, back, left side,
and right side of the group (ξF , ξB, νL, and νR, respectively) are defined as the head position of the individual
farthest away from the group centroid in that direction. The orange arrow denotes the group direction of travel
(along the x-axis) (C) To examine the angular dependence of detection, we consider 200 ‘points’ placed at a
distance of 1200 pixels (∼ 135 cm, or ∼ 30 body lengths) from the group centroid. This distance is larger that
the space occupied by the largest group. The angle θk defines the angular location of an external point with
respect to the group travel direction.
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To determine external detection coverage, at each time step we first shift
coordinates such that the group centroid is at the origin, and follow this by a
rotation that sets the direction of travel of the group centroid to be along the
x-axis. In this coordinate system, each individual’s location is defined by a
front-back distance ξi(t) along the x-axis, and a side-side distance νi(t) along
the y-axis (Fig 7A). The edge of the group in each direction is defined as the
individual furthest away in that direction; we denote these values as ξF (t), ξB(t),
νL(t), and νR(t) for the front, back, left, and right edges, respectively (Fig 7A).
In the (ξ, ν) coordinate system we expect side-to-side symmetry for reflections
about the ξ-axis. However, due to both eye positions being located at the head,
and a “blind angle” where individuals cannot see behind themselves, there is no
front-back symmetry. We used a blind angle value of 25o, which was obtained
from a visual study of our study species [29].

Fig 7B shows both a small and large group with the ‘circle’ of points
surrounding it. Each point has an angular location θk relative to the direction of
travel of the group centroid, where k = 1..200. Individual i has both left and
right eyes located to the sides of its body, the positions of which where
estimated from the tracking software. We say that individual i has detection
capability at relative angle θk at time t if there is no visual blockage between
either its left eye or its right eye and the point at θk. This defines the function

h
(N)
tik =

{
1, at time t, individual i can detect the point at θk

0, otherwise
, (3)

which is calculated for each group containing a different number (N) of
individuals.

For probabilistic detection, which we use to approximate out-of-plane effects,
we use an analogous calculation to that described above, but instead define a
probability that the presence of a neighbor in a certain direction blocks external
vision in that direction. This is done with consistent random draws that affect
the left eye and right eye together. Detection is defined if an external vision
path exists from either the left eye or the right eye. To consider the blind angle
to the rear of of an individual, we simply exclude directions within the blind
angle and mark them as not detected. Although other than the blind angle we
did not place an explicit limit on the range of the left eye versus the right eye in
the detection calculations, an individual’s own body blocks vision to their the
opposite side, so that the left eye does not have a clear visual path to the right
side, and vice versa.

We use Eq. 3 to calculate the distributions of individual detection coverage
and the number of group detections. Using 〈·〉 to represent an average over the
specified indices, first we define the following notation to simplify the
calculations of individual detection:

h
(N)
ti =

〈
h
(N)
tik

〉
k
, (4)

which is the individual detection at an instant in time, calculated by averaging
over all possible detection directions k. The average individual detection
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coverage is

H
(N)
indiv =

〈
h
(N)
tik

〉
t,i,k

=
〈
h
(N)
ti

〉
t,i
. (5)

The variance of individual detection coverage is(
∆H

(N)
indiv

)2
=

〈(
h
(N)
ti −H

(N)
indiv

)2〉
t,i

(6)

=

〈(
h
(N)
ti −

〈
h
(N)
ti

〉
t

)2〉
t,i︸ ︷︷ ︸

mean of individual variances

+

〈(〈
h
(N)
ti

〉
t
−H(N)

indiv

)2〉
i︸ ︷︷ ︸

variance of individual means

, (7)

where the second line follows because the individual and temporal differences
are symmetric about the mean. The first term in Eq. 7 is the mean of the
individual variances, which is associated with individuals having different values
of detection coverage during the course of a trial. The second term in Eq. 7 is
the variance of the individual means, which is associated with consistent
individual differences. Applying this to the data with results from incomplete
blockage (75%) and blind angle, we obtain that the variance of the individual
means explains (8.2%, 7.7%, 6.4%, 9.0%) of the total variance for the group
sizes of N = (10, 30, 70, 151), respectively, with the remaining fraction of the
variance accounted for by the mean of the individual variances.

The average number of group detections is

H(N)
group =

〈
N∑
i=1

h
(N)
tik

〉
t,k

= N
〈
h
(N)
tik

〉
t,i,k

. (8)

Note that while the averages in Eqs. 5 and 8 are related by the simple formula

H
(N)
group = NH

(N)
indiv, the distributions of individual and group detections do not

have such a simple relation to each other. The standard deviation of the number
of group detections is

∆H(N)
group =

√√√√√〈( N∑
i=1

h
(N)
tik −H

(N)
group

)2〉
t,k

, (9)

which is shown in Figs 3B and 5C.
To compute detection with respect to the group direction of travel in Fig 4,

we use only polarized group states where the direction of travel is well-defined.
To categorize when the group is in a polarized state or the other states shown in
Fig 3, we use the same definitions as in [31].

4.4 Model

We formulate a simple model to describe the external visual detection coverage
of individuals in a group. In this model, the group occupies a circular area with
radius R, within which there is a constant visual blockage probability. Using
symmetry, an individual’s field of view depends solely on its distance r from the
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center of group, where 0 ≤ r ≤ R. Whether or not an individual located at r
can see outside the group in a direction θ depends on the distance g(r, θ) from
the individual to the edge of the group in that direction (Fig 5A). Using the law
of cosines, this distance is

g(r, θ) = r cos θ +
√
R2 − r2 sin2 θ. (10)

We say that the probability of being able to see outside the group in a given
direction is the product of the blockage probability λ times the distance to the
edge in that direction. Assuming that blocking events are randomly distributed
and occur with a uniform probability through the group, we use the Poisson
distribution to represent the probability of external detection:

Pext(r, θ) = e−λg(r,θ).

For the individual at position r, the total external detection capability is an
average, calculated by the integral over all possible angles:

v(r) =
1

2π

∫ π

−π
e−λg(r,θ)dθ. (11)

To perform calculations, we set R = 1, which is done without loss of generality
because detection in Eq. 11 depends on the product in the exponent.

Thus far we have the assumed that the group occupies a fixed area defined
by the radius R. However, in the data we observe that groups change the area
they occupy over the course of a trial (Fig 3C). To represent a distribution of
the area occupied, consider a group at two different sizes: R (the average
radius), and R1 (the ‘current’ radius). Defining the ratio α = R/R1, the
distance to the edge of the group scales as g1(r1, θ) = g(r, θ)/α. For the
blockage probability we expect this to scale with the density within the group,
and thus have λ1 = λα2. For a current state of the group defined by the size
ratio α, the external visual detection coverage of an individual is calculated by
using Eq. 11 in the current state:

v(r, α) =
1

2π

∫ π

−π
e−λ1g1(r1,θ)dθ =

1

2π

∫ π

−π
e−λg(r,θ)αdθ. (12)

For simplicity, we represent different group areas by using a Gaussian with a
mean of α = 1 to represent different possible values of the group radius,

P (α) =
1

M
exp

(
−(α− 1)2

2σ2

)
, (13)

where σ represents the magnitude of changes in the group radius, and M is a
normalization factor. Because the radius must be positive, we restrict to values
α > 0.

To compute the probability distribution of external detection, we evaluate Eq.
12 on a discrete set of radii, calculating the number of individuals in a shell
around a given value of r as proportional to

n(r, α) = π
(
(r + δ)2 − r2

)
P (α), (14)
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where δ is the width of the shell. We then use binning to calculate the
probability distribution of detection coverage, using Eq. 13 to represent the
probability of different group areas. To apply the model to the groups with
different numbers of individuals, we specify that λ varies to a power of the
number of individuals (N) in the group (main text Eq. 1, repeated here):

λ(N) = λ0N
q.

The model results for all values of N are defined by the three parameters λ0,
q, and σ. Because the average detection coverage depends only very weakly on
the value of σ, we use a two-step procedure to fit these parameters to the data,
fitting λ0 and q to the average detection coverage, and then subsequently fitting
σ to the standard deviation of the number of group detections.

Note that individuals maintaining constant density with an increase in N can
be approximated with q = 0.5 (this represents a linear increase in area with N).
However, even if individuals did maintain constant density, this scaling would
only be strictly true for point particles. To see why, consider the case where
individuals are zero-dimensional ‘points’; then, the visual blockage probability
would only depend on the density of points, and would be constant with
distance for uniformly distributed points. However, since instead a group
member has a 2-dimensional projection represented in our calculations by a
polygon, the visual blockage probability depends both on the density of
neighbors and the distance from each observer. Because of this, we fit both the
values of λ0 and q. The fitting procedure for these parameters minimizes the
mean square error of the model result for mean external detection capability
compared to the data for each value of N , where values from the data are used
from the incomplete blocking detection procedure (Fig 5B).

Following this, we fit σ by minimizing the mean square error of the model
result for the standard deviation of the number of group detections compared to
the data (Fig 5C). Note that in the model, a single “snapshot” of the group is
defined by a particular value of the group area.

4.4.1 Analytical approximation for average detection capability

To obtain an analytical approximation, consider Eq. 11, which is the detection
capability of an individual located at position r. Using a single value for the
group area, the average visual degree is an integral over the unit sphere of Eq.
11 times the probability that an individual is located at r:

v̄ =
1

π

∫ π

−π

∫ 1

0
e
−λ

(
r cos θ+

√
1−r2 sin2 θ

)
rdθdr (15)

Although this cannot be evaluated in closed form, we can obtain an
approximation by considering the series expansion in powers of r:

v̄ =
1

π

∫ π

−π

∫ 1

0
e−λ

(
r − λ cos θr2 +

1

2
λ
(
λ cos2 θ + sin2 θ

)
r3 + ...

)
dθdr. (16)

20/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431380doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431380
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluating the integral for the individual terms yields an expression in the form
of an exponential times a series expansion in powers of λ (main text Eq. 2,
repeated here):

v̄ ≈ e−λ
1 +

jmax∑
j=1

cjλ
j

 .

Keeping terms to 6th order in r has jmax = 6 and the following coefficient values:
c1 = 0.1455, c2 = 0.1455, c3 = 1.302× 10−2, c4 = 6.185× 10−3,
c5 = 3.255× 10−4, c6 = 1.085× 10−4. We use the above expression (Eq. 2) with
these coefficient values to plot the series approximation in Fig 5D-E.
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