
On the sensitivity analysis of porous finite element models
for cerebral perfusion estimation
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Abstract

Computational physiological models are promising tools to enhance the design of clin-
ical trials and to assist in decision making. Organ-scale haemodynamic models are gaining
popularity to evaluate perfusion in a virtual environment both in healthy and diseased
patients. Recently, the principles of verification, validation, and uncertainty quantification
of such physiological models have been laid down to ensure safe applications of engineering
software in the medical device industry. The present study sets out to establish guidelines
for the usage of a three-dimensional steady state porous cerebral perfusion model of the
human brain following principles detailed in the verification and validation (V&V 40)
standard of the American Society of Mechanical Engineers. The model relies on the finite
element method and has been developed specifically to estimate how brain perfusion is
altered in ischaemic stroke patients before, during, and after treatments. Simulations are
compared with exact analytical solutions and a thorough sensitivity analysis is presented
covering every numerical and physiological model parameter.

The results suggest that such porous models can approximate blood pressure and
perfusion distributions reliably even on a coarse grid with first order elements. On the
other hand, higher order elements are essential to mitigate errors in volumetric blood
flow rate estimation through cortical surface regions. Matching the volumetric flow rate
corresponding to major cerebral arteries is identified as a validation milestone. It is found
that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet
boundary conditions are feasible alternatives. A one-dimensional model is presented which
can serve as a computationally inexpensive replacement of the three-dimensional brain
model to ease parameter optimisation, sensitivity analyses and uncertainty quantification.

The findings of the present study can be generalised to organ-scale porous perfusion
models. The results increase the applicability of computational tools regarding treatment
development for stroke and other cerebrovascular conditions.
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1 Introduction

Cerebrovascular diseases including stroke impose a heavy burden on society [1]. The majority
of stroke cases are caused by a thrombus blocking a major cerebral artery leading to severe
blood shortage in the brain (ischaemic stroke). In recent decades, ischaemic stroke treatment
has been revolutionised by thrombolysis (dissolving of blood clot with a thrombolytic agent) [2]
and thrombectomy (mechanical thrombus removal with a stent retriever) [3, 4]. Advancing the
related clinical procedures has great potential to benefit stroke patients but is tied entirely to
resource intensive animal experiments and clinical trials [3–7]. To ease this task, the In Silico
clinical trials for the treatment of acute Ischaemic STroke (INSIST) consortium aims to develop
computational models of stroke and its treatments [8]. Once reliable models are available, in
silico clinical trials could sharpen the focus of clinical trials and hence save time and money
[9–11].

Estimating brain perfusion in both healthy and occluded scenarios is an important ele-
ment of the INSIST pipeline and serves as a bridge between localised treatment effects and
patient outcome [8]. To this end, a multi-scale haemodynamic model is under development
which combines a one-dimensional (1D) network model of large arteries [12, 13] and a three-
dimensional (3D) porous perfusion model [14] to simulate blood flow in the entire vasculature.
The models will be coupled strongly through the cortical surface. The envisaged interface will
facilitate communication between the boundary conditions of the models, namely pressure and
volumetric flow rate values averaged over cortical territories [13]. Previously somewhat similar
weak-coupling schemes have been established between a lumped parameter model and a porous
continuum model to cover arteriole boundary conditions at the brain surface [15–19]. This ap-
proach preserves the two models as independent functional units and avoids the positioning
of volumetric sources required for volumetric coupling [20–22]. The anatomical connection be-
tween large arteries and the microcirculation is crucial in ischaemic stroke modelling because
it determines the location and extent of ischaemic regions. Another advantage of placing the
interface at the cortical surface is that anatomical connections are preserved at the cortical sur-
face so that subcortical vessels can be homogenised to lower computational costs. In the case
of volumetric coupling, subcortical arterioles must be added to the one-dimensional network
model to account for such connections which can drastically increase the number of discretised
branches.

Computational porous and poroelastic models have been applied over a number of decades
and have been proposed to describe aspects of cardiac [23–25] and cerebal biomechanics [15–19,
26]. Such organ-scale computational models have been applied to capture both healthy and
pathophysiological states, such as brain injury [27–29], oedema [30], conditions associated with
dementia [15, 18, 19], and ischaemic stroke [14]. The majority of these models utilise the Finite
Element (FE) method [14–19, 27–30] with relatively few exceptions [20–22]. The present study
focuses on a porous perfusion FE model developed specifically to capture blood flow changes
in ischaemic stroke [14] as part of the in silico trial pipeline of INSIST [8]. Even though organ-
scale porous and poroelastic brain models are becoming increasingly popular [14–19, 22, 26–32],
efforts regarding their verification, validation [15], comprehensive sensitivity analysis [22, 33],
and uncertainty quantification [31, 32] remain relatively rare and there is thus a need to fill
this gap before the models are applied for clinical trial design and decision making.

Recently, the American Society of Mechanical Engineers (ASME) has introduced the Ver-
ification and Validation (V&V) 40 standard (titled “Assessing Credibility of Computational
Modeling through Verification and Validation: Application to Medical Devices”) [34], which
details the requirements that a credible engineering software needs to satisfy to ensure safe
applicability in the medical device industry. The present study thus sets out to establish guide-
lines regarding the efficient usage of a porous cerebral perfusion Finite Element model [14]
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both in terms of accuracy and computational cost. To this end, simulations will be compared
to exact analytical solutions and a thorough sensitivity analysis will be carried out covering
every numerical and physiological model parameter. The results prepare the ground for uncer-
tainty quantification, virtual patient generation, and validation, which are essential to carry
out reliable in silico trials of ischaemic stroke treatments.

2 Methodology

Inspired by recent advances in the fields of heart [23–25] and brain [15–19] haemodynamic mod-
elling, a multi-compartment porous continuum framework is utilised to describe time-averaged
cerebral blood flow in the microcirculation embedded within brain tissue. The general partial
differential equation set describing a steady-state multi-compartment Darcy system [15–19, 23–
25] is written in a compact form1 as

∇ · (Ki∇pi) =
n∑
j=1

βi,j(pi − pj)− Si. (1)

Here, pi denotes the Darcy pressure in the ith compartment and Ki is the corresponding per-
mability symbolising flow conductance through pores with well-separated length scales. Con-
sidering n compartments, i = 1, 2, . . . n and βi,j is the intercompartment coupling coefficient
matrix with n×n elements representing conductance between compartments i and j. It follows
that βi,j = 0 if i = j. A volumetric source term in the ith compartment is defined by Si.

Considering a domain of interest denoted by Ω with a boundary ∂Ω = Γ = ΓD,i∪ΓN,i, a set
of Dirichlet type boundary conditions (DBC) and Neumann type boundary conditions (NBC)
are formulated as

pi = ai on ΓD,i, and (2)

(Ki ·∇pi) · n = bi on ΓN,i. (3)

Here, n is the outward-pointing unit vector perpendicular to the boundary surface. Thereafter,
the weak form can be derived by multiplying every component of Eq. (1) with a non-zero test
function ti, integrating over Ω and applying the divergence theorem:∫

Ω

(Ki ·∇pi) · (∇ti) dΩ =

∫
Ω

SitidΩ +

∫
ΓN,i

bitidΓN,i

−
N∑
j=1

∫
Ω

βi,j(pi − pj)tidΩ. (4)

Eq. (4) is discretised by the continuous Bubnov-Galerkin method [35]. Numerical solutions
of pi are obtained with the open source FEniCS library [36–38] using first or second order
Lagrange elements denoted by P1 and P2, respectively. The permeability tensors Ki and the
coupling coefficients βi,j are captured by piecewise constant, zeroth order discontinuous elements
(dP0) unless stated otherwise. For simplicity, we restrict ourselves to a model with arteriole
(i = 1 = a), capillary (i = 2 = c), and venule (i = 3 = v) compartments, and then generalise
our findings whenever it is possible.

Numerical solutions of linear equation systems originating from the FE discretisation are
obtained iteratively based on the BiCojungate Gradient STABilised method (BiCGSTAB) [39].
Computations are accelerated with an Algebraic MultiGrid (AMG) preconditioner [40]. Simu-
lations were run on a desktop with an Intel Xeon E-2146G processor and 32 GB RAM unless

1Einstein summation convention is not utilised in this study.
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stated otherwise. In order to verify the resulting model and carry out a comprehensive sensi-
tivity analysis, three test cases are considered as detailed in the following subsections.

2.1 Three-dimensional synthetic data

To derive manufactured solutions [41], we assume solution functions of Eq. (1) of the form

pMS
1 = (16x2 − 32x3 + 16x4)(16y2 − 32y3 + 16y4)z2; (5a)

pMS
2 = (16x2 − 32x3 + 16x4)(16y2 − 32y3 + 16y4)(16z2 − 32z3 + 16z4); (5b)

pMS
3 = −(16x2 − 32x3 + 16x4)(16y2 − 32y3 + 16y4)z2. (5c)

Polynomial functions are chosen to ensure straightforward differentiation of the pressure terms
in Eq. (1). The permeability tensors are set to

K1 =

0 0 0
0 0 0
0 0 0.1(2− z)

 , K2 =

0.1 0 0
0 0.1 0
0 0 0.1

 , and K3 =

0 0 0
0 0 0
0 0 0.2(2− z)

 , (6)

whereas the non-zero elements of the coupling coefficient matrix are

β1,2 = β2,1 = 1.5 + 0.5 tanh(10z − 5), and (7a)

β2,3 = β3,2 = 3 + tanh(10z − 5). (7b)

The source terms S1, S2 and S3 satisfying Eq. (1) can be obtained simply by substituting Eqs.
(5c)-(7b) into Eq. (1). The source terms are set to zero in every other test case (details in
Sections 2.3 and 2.2). Ki and βi,j are approximated by fourth order polynomials for the finite
element computations.

The domain of interest chosen here is a unit cube Ω = [0, 1]× [0, 1]× [0, 1] with periodic
boundary conditions applied on four sides:

pi(0, y, z) = pi(1, y, z), and (8)

pi(x, 0, z) = pi(x, 1, z). (9)

Eqs. (8) and (9) define four DBCs in every compartment and another one is added in the
arteriole (i = 1) and the venule (i = 3) compartments based on the manufactured solutions
such that

pi(x, y, 1) = pMS
i (x, y, 1). (10)

Thereafter, the equation set is closed by prescribing homogeneous NBCs on the remaining
surfaces (in Eq. (3) bi = 0).

2.2 Three-dimensional human brain

Details of the baseline human brain simulation are provided in [14] and therefore only the most
important settings are covered here. The computational domain (Ω) is obtained by postpro-
cessing a tetrahedral patient-specific head model utilised in multiple recent studies [14, 42–44].
The geometry depicted in Fig. 1a is remeshed with tetrahedral elements using Tetgen [45].
The volumetric region of interest includes both grey matter (ΩG) and white matter (ΩW ) sub-
domains, so that Ω = ΩG ∪ ΩW as depicted in Fig. 1b. The bounding surface regions (∂Ω)
include a transverse cut-plane of the brainstem ΓBS, the ventricles ΓV and the pial surface ΓP
so that ∂Ω = ΓBS ∪ ΓV ∪ ΓP as depicted in Figs. 1a and c. The boundary region associated
with the pial surface (Fig. 1a) is subdivided into eight perfusion territories corresponding to
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major feeding arteries as shown in Figs. 1d-f. Perfusion territories have been identified using a
voxelised atlas created based on vessel-encoded arterial spin labelling (ASL) perfusion magnetic
resonance imaging (MRI) [46–50]. Then, the surface region that is perfused, for instance, by
the Right Middle Cerebral Artery (R-MCA) is denoted by ΓR-MCA. This approach ensures that
blood arrives to the domain through cortical surface regions mirroring anatomical connections
between large arteries and the microcirculation as shown in Figs. 1d-f.

(a) (b) (c)

(d) (e) (f)

1
Figure 1: Human brain model: (a) pial surface; (b) grey and white matter visualised along

coronal, sagittal and transverse planes; (c) ventricles (red) and cut-plane at brainstem
(green); transverse (d), sagittal (e), and coronal (f) views of superficial perfusion territories.

Reproduced with permission from Józsa et al. [14].

The imposed baseline boundary conditions prescribe zero flow through the transverse cut-
plane of the brainstem and the surface of the ventricles:

Ki∇pi · n = 0 on ΓBS and ΓV . (11)

Flow through the pial surface in the capillary compartment is zero:

Kc∇pc · n = 0 on ΓP . (12)

Because of the incompressible fluid flow model, the results depend solely on the cerebral per-
fusion pressure (CPP) defined as the arteriole-venule pressure difference at the pial surface:
CPP = pa − pv. Setting the zero level of the pressure at the outlet of the venous compartment
(pv) leads to

pa = CPP + pv on ΓP . (13)

Pressure values in the case of 3D brain simulations are presented relative to the venous out-
let pressure pv. To account for totally occluded scenarios, blood flow through the perfusion
territory of an occluded vessel is set to zero whereas surface pressure is assumed to remain
constant in other regions. Accordingly, a R-MCA occlusion is modelled with zero flux through
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the corresponding cortical territory (ΓR-MCA) so that the resulting mixed boundary conditions
become

∂pa
∂n

= 0 on ΓR-MCA, and (14a)

pa = CPP + pv on ΓP \ ΓR-MCA. (14b)

The model is parametrised based on several simplifications as discussed in [14]. Considering
that the arteriole-capillary (βG1,2 = βG2,1) and capillary-venule (βG2,3 = βG3,2) coupling coefficients
are known in the grey matter, it is assumed that the ratio of grey and white matter coupling co-
efficients (βG/βW ) is constant. It has been demonstrated based on microscale one-dimensional
haemodynamic network simulations that the capillary permeability tensor is isotropic and char-
acterised by a scalar k2 [51]. It is hypothesised that a reference coordinate system [ξ, η, ζ] can
be found at every point so that ζ is parallel to the local axis of the descending arterioles and
ascending venules. In this coordinate system, the anisotropic arteriole (Kref

1 ) and venule (Kref
3 )

permeability tensors are modelled as tensors with a single non-zero diagonal element (k1 and
k3) because they represent vessel bundles:

Kref
1 =

0 0 0
0 0 0
0 0 k1

 , and Kref
3 =

0 0 0
0 0 0
0 0 k3

 . (15)

The [ξ, η, ζ] coordinate system is determined assuming that penetrating vessels grow from the
pial surface to the ventricles following a vector field. This vector field is computed as a gradient
of a scalar field governed by a single diffusion equation [14]. It is worth noting that no other
methods have been proposed to obtain these anisotropic permeability fields even though they
play a crucial role in predicting perfusion response to vessel occlusion.

2.3 One-dimensional brain tissue column

Eq. (1) can be simplified so that a one-dimensional problem with homogeneous permeabilities
can be posed and defined by a set of ordinary differential equations in the form of

ki
d2pi
dx2

=
n∑
j=1

βi,j(pi − pj). (16)

Here, the permeability of each compartment (ki) is a scalar. Introducing the dimensionless
variables x∗ = x/ls and p∗ = p/ps based on a length scale (ls) and a pressure scale (ps) leads
to a dimensionless form of Eq. (16) as

d2p∗i
dx∗2

=
n∑
j=1

α∗i,j(p
∗
i − p∗j). (17)

The dimensionless matrix group α∗i,j = l2sβi,j/ki provides a similarity condition for Eq. (16).
Equation (17) describes n second order ordinary differential equations. This system can be

replaced by 2n first order ordinary differential equations once the pressure gradient q∗i = dp∗i /dx
∗

is introduced. Thereafter, the unknown vector

r∗ = [p∗; q∗] (18)

contains the pressure p∗i and pressure gradient q∗i functions for each compartment. Finally, a
matrix differential equation based on Equation (17) can be formulated as

r∗′ = Ar. (19)
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Here, the prime (′) denotes spatial differentiation and the A matrix is

A =

[
0 I
B 0

]
, (20)

where every submatrix has a dimension of n× n, and I is the identity matrix. The connection
between the coupling coefficient matrix α = αi,j and the submatrix B is given by

B = diag(αen)−α. (21)

Here, the n dimensional vector en is filled with ones, and the “diag” operator is used to turn a
column vector into a diagonal square matrix.

The solution of Equation (19) is

r = <
(

2n∑
j=1

Cjvje
λjx

)
. (22)

Here, λj and vj are the jth eigenvalue and eigenvector of A, respectively. < is used to take the
real part of the expression and to handle complex eigenvalue and eigenvector pairs.

The Cj coefficients are determined based on combinations of DBCs and NBCs at xb. A DBC
in compartment i reads as

p∗i (x
∗ = x∗b) = a∗i . (23)

Based on the unknown vector defined in Eq. (18) and the solution expression Eq. (22), a DBC
can be satisfied by imposing

r∗i (x
∗ = x∗b) = p∗i (x

∗ = x∗b) = <
(

2n∑
j=1

Cjv
i
je
λjxb

)
= a∗i . (24)

Here, ri = p∗i denotes the ith element of r and vij is the ith element of jth eigenvector. A NBC
in compartment i is defined as

dp∗i
dx∗

∣∣∣∣
x∗=xb

= b∗i , (25)

The second half of the unknown vector defined in Eq. (18) includes the pressure gradients.
Therefore, a NBC can be satisfied by imposing

r∗i+n(x∗ = x∗b) = q∗i (x
∗ = x∗b) = <

(
2n∑
j=1

Cjv
i+n
j eλjxb

)
= b∗i . (26)

Eqs. (24) and (26) provide a single equation for each boundary condition. Considering
n compartments, the 2n boundary conditions lead to 2n linear equations based on the 2n
coefficients of the solution expressions (Cj). The resulting linear equation system determines
uniquely the coefficients of the solution expressions (Cj). Using the DBC (23) and the NBC
(25), the procedure can be extended to handle multiple subdomains with different coupling
coefficients. In such cases, interface conditions have to be applied to ensures that the solution is
continuously differentiable. Therefore, this analytical method is suitable to obtain solutions for
a column of brain tissue stretching between the cortical and ventricular surfaces. The method
can handle a domain including grey and white matter with identical permeabilities but different
coupling coefficient matrices.
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3 Results and Discussion

3.1 Spatial resolution

3.1.1 Manufactured solutions

The suitability of the finite element method is evaluated based on the manufactured solution
shown in Fig. 2. A uniform tetrahedral mesh is generated with two elements along each edge of
the cube and uniformly refined four times. Then, a grid convergence study is carried out using
first (P1) and second order (P2) elements as summarised in Table 1. The analytical solution and
the finite element approximation along the sampling line depicted in Fig. 2 are shown in Fig. 3a,
highlighting that a very good agreement is achievable. Fig. 3b presents the L2-norm defined over
the entire domain based on the difference between the analytical and the numerical solutions.
With increasing spatial resolution, the L2-norm decreases as expected. Superconvergence of the
solution with first order elements can be observed which is a well-known feature of this FE
approximation [52].

(a) (b) (c)

Figure 2: Manufactured solution in a unit cube visualised in the arteriole i = 1 (a), capillary
i = 2 (b), and venule i = 3 (c) compartments with a sampling line (0.5, 0.5 , z).

NGS nedge nvolume
Element

L2-norm
∂p1/∂z at

tinv [s]
order (0.5, 0.5, 1)

16 2 48 1 0.15174 1.273 0.0042
8 4 384 1 0.08714 1.800 0.0287
4 8 3072 1 0.02857 1.867 0.2278
2 16 24576 1 0.00771 1.927 1.8428
1 32 196608 1 0.00197 1.965 15.0789
16 2 48 2 0.06215 1.824 0.0161
8 4 384 2 0.01399 2.006 0.1403
4 8 3072 2 0.00266 2.008 1.4050
2 16 24576 2 0.00060 1.999 16.3241
1 32 196608 2 0.00014 1.998 162.1361

Table 1: Results corresponding to the grid convergence study using manufactured solutions.
Normalised Grid Spacing (NGS), number of elements along each edge of the unit cube (nedge);
total number of elements (nvolume); wall time required for the iterative solution of the linear

system (tinv).

According to Fig. 3b and Table 1, solutions achieved using a second order scheme on a given
mesh have about the same L2-norm as first order approximations after a single refinement.
However, it is important to emphasise that the convergence of pointwise variables does not
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necessarily follow the convergence trend of integral quantities. Fig. 3c suggests that the second
order FE scheme outperforms the first order scheme in terms of gradient estimation even if
computations with the latter are carried out with a threefold refined mesh. Beyond accuracy,
the computational cost of simulations as a function of the spatial resolution and the element
order can be examined in Fig. 3d. In general, computations with second order elements take
one order of magnitude longer and are comparable to the computational cost of simulations
with first order elements on a refined mesh (see also Table 1).
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Figure 3: Exact manufactured solutions and FE approximations with second order (ord.)
elements and normalised grid spacing (NGS) 2 along a line (a). Numerical error of the FE
approximation (b), FE approximation and exact value of the arteriole gradient at a single
point (c), and wall time of the linear system matrix inversion (tinv) (d) as functions of the

NGS and element order.

3.1.2 Whole brain model

Next, simulations are carried out with the whole brain model to investigate how uncertainty of
the gradient estimation near the boundaries impacts the results. Two scenarios are considered
using previously optimised settings [14] summarised in Table 2: baseline (healthy) and an
RMCA occlusion. The algorithm used for parameter optimisation is described in Appendix A.
In a porous framework, the pressure gradient is directly connected to the Darcy velocity vector
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which can be introduced in compartment i as

ui = −Ki∇pi. (27)

From here, the overall volumetric flow rate entering the arteriole compartment through the pial
surface ΓP is simply defined as

QΓ = −
∫

Γ

u1d(Γn) =

∫
Γ

K1∇p1d(Γn), (28)

The Γn product corresponds to an outward-pointing vector with magnitude equal to the area of
the Γ boundary surface. (The Darcy velocity has non-zero components perpendicularly to the
boundary surface only at ΓP and therefore in Eq. (28) the integration domain ΓP is replaced
with Γ for a more concise notation.)

Parameter Value Reference Unit Optimised

k1 1.234 4 [22]; 0.021± 0.019 [53] mm3 s kg−1 Yes

βGi,j/β
W
i,j 2.538 1.6 [22]; 1.0 [15, 16, 18] — Yes

k2 4.28 · 10−4 4.28 · 10−4 [51]; mm3 s kg−1 No

k3/k1 2 2 [22] mm3 s kg−1 No

βG1,2 1.326 · 10−6 1.5 · 10−19 [15, 18]; 1.5 · 10−7 [16] Pa−1s−1 No

5 · 10−6 [22]; (4.13± 5.49) · 10−5 [53]

βG2,3 4.641 · 10−6 1.5 · 10−19 [15, 18]; 1.5 · 10−7 [16] Pa−1s−1 No

5 · 10−6 [22]

CPP 75 78± 10 [54] mmHg —

βG1,2 + βG2,3 5.967 · 10−6 10−5 [22]; Pa−1s−1 —

Table 2: List of model parameters and some reference values (mean ± standard deviation
when available). The distribution of the parameters reported in [51] based on microscale

vessel network simulations is not normal. The last column indicates which parameters are
optimised as detailed in Appendix A.

Therefore, any uncertainty in the pressure gradient propagates directly to the volumetric
flow rate. Accurate flow rate computation is important for two reasons: (i) superficial arteriole
pressure and flow rates are cornerstones of a coupling scheme between the present continuum
model and a network model of large arteries as detailed in Section 1; (ii) surface fluxes associated
with major cerebral arteries can be directly compared with values obtained from phase-contrast
MRI [55] for validation purposes.

The multi-compartment formulation offers an alternative method to compute volumetric
flow rate through the brain. Introducing perfusion F = β1,2(p1 − p2), and integrating it over
the brain volume Ω leads to

QΩ =

∫
Ω

β1,2(p1 − p2)dΩ =

∫
Ω

FdΩ. (29)

According to mass conservation QΩ = QΓ so the imbalance between the two formulations is
present because the FE method is not conservative by default, unlike the finite volume method
[56]. Two strategies are employed to mitigate the associated error: (i) grid refinement; and (ii)
increasing FE orders of both the pressure and the velocity. For P1 and P2 pressure elements, the
natural velocity pair is dP0 and dP1 but higher order velocity approximations can be obtained
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by projection. The results in Table 3 summarise the tested cases and show that the volumetric
flow rate from Eq. (29) depends on the grid size and the element order only negligibly. The
error in QΩ should be relatively low in the investigated cases because the computed values
overlap independently from the spatial resolution. For this reason, and because of the mass
conservation principle, the relative difference,

∆rQ
Γ =

QΓ −Qref

Qref
· 100% =

QΓ −QΩ

QΩ
· 100%, (30)

is used for error measurement.
Figs. 4a and b show the imbalance between QΩ and QΓ highlighting that without improved

ui approximation the surface flux is always underestimated by QΓ. Both refinement and in-
creased FE order can mitigate the error of QΓ. However, higher order pressure and velocity
approximations are required to keep |∆rQ

Γ| < 5%. Fig. 4c displays the wall time of the simula-
tions emphasising the increased computational cost required for more accurate flux estimations.
In summary, second order velocity and pressure elements on a relatively coarse mesh (about 106

elements) can provide a reasonable compromise between accuracy and performance if computing
QΓ is important. Otherwise, perfusion and pressure distributions can be estimated reasonably
well on coarse meshes with about 1 million elements.
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Figure 4: Relative error of the superficial volumetric flow rate estimation as functions of the
spatial resolution and the FE order in the case of the baseline (a) and RMCA occlusion (b)

scenarios. Computational time averaged between the healthy and the occluded cases (c). The
“loc. ref.” and “unif. ref.” abbreviations correspond to locally and uniformly refined meshes,

respectively (see Tab. 3 for further details).

Once it is established under what conditions the present 3D model can provide accurate
estimation of volumetric flow rate through cortical surface regions, it is possible to compute
volumetric flow rate of the major cerebral arteries. Simulation results are compared with values
from a clinical study in Tab. 4. Whereas the model is optimised for overall brain perfusion,
blood flow rate through these major arteries provide a chance for independent validation. It
is promising that volumetric flow rate in both the ACA and the MCA is predicted within one
standard deviation of the experimental values. Volumetric flow rate in the PCA is somewhat
overestimated. This simple comparison is an important milestone in the quantitative validation
of the 3D brain model and provides guidance about development directions for the future.

The results emphasise the importance of accurate mapping between voxelised vascular at-
lases and the triangulated brain surface and draw attention to geometrical flaws. The brain
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model does not capture the lateral sulcus and the insula. Because of these neglected regions,
the brain surface is underestimated whereas the brain volume is overestimated (see Tab. 4).
It is anticipated that the 3D porous model will provide more reliable volumetric flow rate es-
timations once these geometrical issues are overcome. However, obtaining accurate discretised
brain geometries suitable for FE computations remains a challenging task, partially because of
labelling the boundary regions, and therefore such efforts are left to a future study.

healthy RMCA occl.

Mesh nvol pi FE vi FE QΩ QΓ QΩ QΓ

baseline 1,042,301

P1 dP0 604 464 493 380

P1 P1 604 497 493 406

P ?
2 P ?

1 600? 559? 478? 447?

P2 P2 600 578 478 460

loc. ref. 3,400,570

P1 dP0 603 539 489 433

P1 P1 603 546 489 439

P2 P1 600 582 476 461

P2 P2 600 597 476 471

unif. ref. 8,338,408
P1 dP0 602 511 486 411

P1 P1 602 527 486 425

Table 3: Results corresponding to the grid sensitivity analysis of the brain simulations. Due to
the computational cost associated with the locally refined (loc. ref.) and the uniformly refined

(unif. ref.) meshes, these simulations are run using 12 threads of an Intel Xeon E5-2640
processor and 128 GB RAM. Computations on the unif. ref. mesh with P2 elements require

more than 128 GB RAM and therefore they are omitted. ? highlights the case used to
evaluate the impact of pressure and velocity inlet BCs, whereas the bold text indicates the

case with the smallest difference between QΓ and QΩ.

3.2 Boundary conditions

Results from the previous section draw attention to issues related to flux computation in a
porous FE framework. Instead of constant pressure, uniform velocity has been used as an inlet
BC [15–19], where the velocity is calculated as the ratio of a given volumetric flow rate and the
inlet surface area. This NBC at the inlet might distort the results because of errors related to
gradient estimation so we next investigate the difference between pressure and velocity inlets
using the present model. To this end, a single simulation with constant inlet velocity is run
with the same settings as the case in Tab. 3 marked with ?.

The overall volumetric flow rate QΩ = 600 [ml/min], and hence brain perfusion, is insensi-
tive to the inlet boundary conditions. QΓ is impacted only slightly: pressure inlet leads to 559
[ml/min] whereas velocity inlet results in 572 [ml/min] (both values should be 600 [ml/min]
based on mass conservation). The effects of the inlet boundary condition on other statistics
regarding the pressure and the perfusion fields are shown in Fig. 5. Most of the volume aver-
aged pressure (〈pi〉) and perfusion (〈pi〉) values are altered only slightly by the inlet boundary
conditions. However, extrema of both the pressure and the perfusion fields change substantially
when the inlet velocity BC is used. Minimum values are underestimated so that the relative
difference of the minimum arteriole pressure and perfusion values are approximately −100%
because min p1 and min F ) are close to zero when uniform inlet velocity BCs are used. By
comparison, the inlet velocity BCs lead to overshot maximum values nearly by a factor of 10
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compared to the case with inlet pressure BCs (see max p1 and max F in Fig. 5).
In Figs. 6a-d, and b-e, the pressure and perfusion fields corresponding to inlet pressure and

velocity BCs, respectively, emphasise further the difference between the two solutions. The ar-
teriole velocity magnitude displayed over the cortical surface (Fig. 6c) shows that in the case
of pressure inlet BC the velocity is strongly inhomogeneous. It is a remarkable feature of this
scenario that high velocity values are predicted along the major cerebral arteries branching
from the circle of Willis because the whole brain model does not include any information about
the location of these vessels. The solution obtained with constant pressure BC suggests that
descending arterioles branching from the major cerebral arteries play a key role in providing
well-balanced grey and white matter perfusion. The velocity distribution over the cortical sur-
face is not known a priori and therefore it is challenging to impose feasible velocity distributions
with velocity inlet BC.

〈p1〉ΓP 〈p1〉 〈p2〉 〈p3〉 min p1 max p1 〈F 〉G 〈F 〉W min F max F
0.1

1

10

100

1000

|∆
r
{◦
}|

[%
]

overestimated underestimated

Figure 5: Absolute value of the relative difference between some statistics extracted from
simulations carried out with inlet pressure and velocity BCs. Average arteriole pressure over
the pial surface 〈p1〉ΓP ; average pressure in the arteriole (〈p1〉), capillary (〈p2〉), and venule
(〈p3〉) compertments over the entire brain; minimum (min) and maximum (max) arteriole

pressure (p1) and perfusion (F ); average perfusion in grey (〈F 〉G) and white (〈F 〉W ) matter.
The colour and pattern of each bar indicates whether results with the inlet velocity BCs
overshoot or underestimate the reference values corresponding to the pressure inlet BCs.

Simulation Reference

Q ACA/MCA/PCA [ml/min] 66 / 126 / 67 75± 15 / 131± 23 / 51± 10 [55]

Q total [ml/min] 600 657± 94 [55]; 484± 88 [57]

Acortical [cm2] 1005 1770 [58]

Vb [ml] 1390 869± 99 [59]

Table 4: Comparison of some model parameters and results with literature data: volumetric
flow rates of the anterior (ACA), middle (MCA) and posterior (PCA) cerebral arteries
obtained by surface integration of the velocity vector over perfusion territories; cortical

surface area (Acortical) and brain volume (Vb).

The volumetric flow rates corresponing to boundary regions of the major cerebral arteries
are summarised in Tab. 4. Based on previous clinical investigations [55, 57], it is clear that each
major cerebral artery contributes differently to volumetric blood flow rate to the brain. Even
if we assume that superficial perfusion territories of cerebral arteries are proportional to the
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associated blood flow rate, it is important to recognise that the volumetric flow rate should be
heterogeneous as dictated by underlying grey and white matter volumes. Although the valid-
ity of homogeneous inlet velocity is physiologically questionable, prescribing constant pressure
inlets in healthy scenarios is supported indirectly by clinical data. Based on ASL MRI [47],
cerebral perfusion regions have been found to be well-separated indicating that the pressure
gradient between these territories is small. Furthermore, dynamic computed tomography an-
giograms indicate that flow through leptomeningeal collaterals is activated as a result of cerebral
artery occlusion [60]. We hypothesise that in healthy cases, leptomeningeal collaterals [2, 50,
60–63] as well as pial arterioles [64–66] act to equalise blood pressure in descending arterioles
near the cortical surface. This hypothesis could be tested once the present perfusion model and
the 1D model incorporating the larger arteries [13] are coupled, and it is supported by pressure
data obtained in rodents which suggest small pressure drop in large arteries compared to the
microcirculation [67–69].

(a) (b) (c)

(d) (e) (f)

1
Figure 6: Pressure pa (a-d) and perfusion F (b-e) distributions along a coronal plane, and

velocity magnitude (c-f) along the cortical surface. Constant pressure inlet (a-c) and constant
velocity inlet (d-f). In (f), the non-uniform velocity magnitude is associated with numerical
errors. Results correspond to the mesh with local grid refinement at the boundaries and P2

pressure and velocity elements (details in Table 3).

3.3 Sensitivity analysis

Determining the actual values of parameters in physiological models is a challenging task be-
cause of limited experimental data, high patient-specific variability, and the typically high di-
mensionality of the parameter spaces. Considering porous cerebral haemodynamics, this issue
is far from being settled as indicated by the broad range of reported parameters summarised
in Tab. 2. With increasing computational costs, mapping a high dimensional parameter space
quickly becomes unfeasible. Beyond parameter optimisation, sensitivity analysis and the as-
sociated uncertainty quantification are other tasks which require large batches of simulations.
Here we aim to utilise the one-dimensional model described in Section 2.3 in order to ease these
tasks.
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3.3.1 One-dimensional brain tissue column

The one-dimensional multi-compartment porous model enables the investigation of tissue columns
including both grey and white matters so that the corresponding model parameters are identical
with the ones used for the three-dimensional brain model (Tab. 2). In the 1D case, x = 0 and
x = l correspond to the pial and the ventricualar surfaces, respectively. Therefore, the same
boundary conditions can be imposed in the 1D tissue column and the 3D brain. (Similarly to
the 3D brain, pressure values in the 1D case are presented relative to the venous outlet pressure
pv.) Thereafter, the one-dimensional model has only two free parameters: the lengths of the grey
(lG) and the white (lW ) matter domains defined so that l = lG + lW . The equivalent lG = 13.55
and lW = 7.99 [mm] is uniquely determined by the human brain model used here and can be
obtained by optimisation. The corresponding cost function is zero if the one-dimensional model
returns 〈F 〉 = 43, 〈F 〉G = 56, and 〈F 〉W = 21 [ml/min/100ml] which overlap exactly with
volume-averaged perfusion values of the three-dimensional brain model.

Fig. 7 displays the analytical pressure distributions in the arteriole, capillary and venule
compartments. A one-dimensional FE approximation with 100 P1 elements is also shown which
is in excellent agreement with the analytical results. The average pressure values provided by the
1D model are within ±4% of those computed using the 3D brain in every case. One-dimensional
simulations are approximately 3000 times faster compared to their 3D counterparts.
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Figure 7: Analytical and numerical solutions of the one-dimensional problem representing a
brain tissue column perpendicular to the cortical surface: arteriole (a), capillary (b) and
venule (c) compartments. Results in both grey (G) and white (W) matter are displayed.

3.3.2 Mapping the parameter space

The 1D model is a good candidate for parameter space mapping because of its low computa-
tional cost. A disadvantage of the analytical formulation is that with the parameters presented
in Tab. 2, the linear equation system governing the boundary conditions is very stiff probably
because of the parameters with different . The condition number depends nonlinearly on the
reference length scale used for the nondimensionalisation. To avoid the issue of suitable ref-
erence length scale selection, we will use the 1D finite element model verified in Fig. 7 for a
detailed sensitivity analysis.

Next, each parameter is perturbed independently from others. The one-at-a-time approach
is applicable and the corresponding sensitivity analysis is representative of the system behaviour
becayse the governing equation set (1) is linear [33]. The parameter range is [10%;1000%] com-
pared to the values in Tab. 2 with 101 samples along each dimension. In addition, a geometrical

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431511
http://creativecommons.org/licenses/by/4.0/


scaling factor is introduced based on the ratio of the original and the perturbed volume of the
computational domain. In order to evaluate whether the 1D model can capture the system
behaviour, 11 samples along each dimension of the parameter space are tested with the 3D
brain model using P1 pressure elements.

CPP/CPP ref [%]

20

40

60

80

100

120

140

160

180

F
b
/F

re
f

b
[%

]

(a)

1.000
0.000

Fb/F
ref
b healthy 3D

Fb/F
ref
b occluded 3D

Fb/F
ref
b healthy 1D

IV/Vb

k1/k
ref
1 [%]

(b)

0.058
−0.020

k2/k
ref
2 [%]

(c)

10−6

3.6 · 10−5

6

8

10

12

14

16

18

20

22

I
V
/V

b
[%

]

k3/k
ref
3 [%]

20

40

60

80

100

120

140

160

180

F
b
/F

re
f

b
[%

]

(d)

0.029
3.69 · 10−4

βG1,2/β
G,ref
1,2 [%]

(e)

0.679
0.015

6

8

10

12

14

16

18

20

22

I
V
/V

b
[%

]

10 100 1000

βG2,3/β
G,ref
2,3 [%]

20

40

60

80

100

120

140

160

180

F
b
/F

re
f

b
[%

]

(f)

0.196
0.004

10 100 1000
{βG/βW }/{βG/βW }ref [%]

(g)

−0.146
−0.004

10 100 1000
Geometry scaling factor [%]

(h)

−0.057
0.013

6

8

10

12

14

16

18

20

22

I
V
/V

b
[%

]

Figure 8: Sensitivity analyses of the 1D and 3D models. Brain perfusion (left axes) and
infarcted volume fraction (right axes) as functions of change in the following parameters:
cerebral perfusion pressure (a); arteriole (b), capillary (c), and venule (d) permeabilities;

arteriole-capillary (e) and capillary-venule (f) coupling coefficients in the grey matter; ratio of
grey and white matter coupling coefficients (g); geometry scaling factor (h). The top (black)

and bottom (red) numbers on each subplot stand for the sensitivity of healthy brain perfusion
and infarcted volume fraction, respectively. Reference values of the parameters are listed in

Tab. 2.

Results are summarised in Fig. 8 showing brain perfusion as a function of the model parame-
ters in the healthy scenario. Based on the 3D simulations, RMCA occlusion is also considered so
that the perfusion in the occluded scenario and infarcted volume change are also displayed. In-
farcted volume is estimated solely based on the perfusion distribution. A region with more than
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70% perfusion drop compared to the baseline scenario is identified as an infarcted zone inspired
by perfusion imaging-based methods [70, 71]. The obtained value estimating infarcted volume
is used here solely as an indicator of perfusion drop severity because this method overestimates
the ischaemic region compared to diffusion-weighted magnetic resonance imaging [72].

According to Figs. 8a-h, the 1D solutions follow the trend of the 3D simulations in a wide
parameter range in every case except the geometrical scaling factor. Considering that the present
1D model does not account for curvature effects, the results could potentially be improved
with a cylindrical or spherical formulation. The sensitivity of each parameter is estimated
as the normalised partial derivative of brain perfusion and infarcted volume at 100% of the
abscissa (around baseline values presented in Tab. 2). The derivatives computed based on the
3D simulations in Fig. 8a-h are listed above the abscissa and indicate the percentage change
of brain perfusion and infarcted volume as a response to unit percentage change in model
parameters.

In terms of haemodynamics, it should be noted that the present model captures solely
the resistive part of the microcirculation and neglects conductance and inductance associated
with vessel wall stiffness and pulsatility. The linear relationship between brain perfusion and
perfusion pressure is a direct manifestation of the “hydraulic Ohm’s law” (Fig. 8a). As other
parameters are increased, brain perfusion tends to exhibit a saturating behaviour even if it is
not obvious within the displayed parameter range (Fig. 8b-g) Considering the infarcted volume
fraction, the insensitivity to CPP change originates from its definition restricted to relative
perfusion change (as CPP is increased perfusion in the healthy and the occluded cases increases
by the same amount).

Perturbations in the capillary and venous permeabilities have a relatively weak impact on
both Fb and IV . In terms of the capillaries, this is a misleading behaviour which is a direct
consequence of the structure of the brain model. Fluid flow within the capillary compartment is
relatively small. This result can be interpreted as flow “avoiding” the capillaries because of their
high resistance. Considering an indefinite domain with solely grey or white matter and constant
but different arteriole and venous pressures, blood flow is non-zero between the compartments
but it is zero inside each compartment. In the microcirculation, capillaries cannot be bypassed
so it is important to recognise that the coupling coefficients must account not only for pre- and
post-capillaries but also for the smallest capillary vessels. Therefore, the results show strong
sensitivity to changes in coupling coefficients, which are responsible for the majority of the
system resistance and consequently most of the pressure drop.

The geometry scaling factor has a strong influence on the infarcted volume fraction. If
one of the major feeding arteries is occluded, it seems logical that for a given purely resistive
vasculature a larger brain suffers more compared to a smaller brain. Such effects might be
observable in clinical data but they are unlikely to be statistically significant compared to
other factors, such as the extent of collateralisation. Nevertheless, the results suggest that a
representative brain geometry is essential to keep the numerical uncertainty of the simulations
low. In addition, the data presented in Fig. 8, and the one-dimensional model particularly, can
help to accelerate virtual patient generation, where parameter sets must be found so that the
resulting perfusion distribution is representative of a patient cohort.

3.4 Limitations

This subsection summarises some of the most important overlooked factors in the present study.
Investigations are limited thus far to a single patient-specific brain geometry because of chal-
lenges associated with mesh generation. The porous model relies on multiple scale separation
even though the vessel diameter in the vasculature changes continuously [20]. The present
study demonstrated promising quantitative validation based on blood flow rate in major cere-
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bral arteries but a more comprehensive validation is essential to ensure wider, multi-purpose
applicability of the model.

The study is restricted to a porous model with three compartments (arteriole, capillary,
venule) which are connected by homogeneous coupling coefficients both in grey and white
matter. The model cannot represent arterioles which branch relatively far away from the cortical
surface and hence feed deeper tissue regions. For this reason, low perfusion regions caused by
occluded cerebral arteries are always connected to the brain surface so that isolated white
matter infarction near the ventricles cannot be captured. On the one hand, such effects could
be resolved by model expansion, for instance, by introducing two arteriole compartments which
perfuse grey and white matter separately and rely on different boundary conditions. On the
other hand, models with a single or two [22] compartments might be found more suitable in
certain cases. Considering that the present study focuses on the sensitivity analysis of a three-
compartment brain model for acute ischaemic stroke, exploring alternative porous frameworks
for other specific (patho)physiological problems is left to future investigations.

From the haemodynamics point of view, the present model is purely resistive and aims
to capture statistically steady state (time-averaged) brain perfusion. Therefore, the following
physiological phenomena have been neglected: vessel wall stiffness (conductance), unsteady
flow phenomena (inductance) [73], and cerebral autoregulation [74]. The associated processes
and mechanisms are strongly time-dependent and often rely on nonlinear processes leading to
significant complexity which is beyond the limits of the present study. Nevertheless, the authors
hope that the present work will contribute to the creation of a comprehensive cerebral blood
flow model which can incorporate these effects, in addition to pathophysiological processes,
such as cerebral oedema [30], emboli advection and blockage of the microcirculation [53, 75,
76], and spreading of ischaemic tissue damage [77–79].

4 Conclusions

The present study set out to explore the sensitivity of a porous brain perfusion model and to
prepare the ground for validation and uncertainty quantification. To this end, simulations were
carried out using the finite element method and three test cases: a unit cube with manufactured
solutions, a human brain geometry, and a one-dimensional brain tissue column. For the unit
cube and the brain tissue column, analytical solutions were presented and used for verification.
This approach allowed direct comparison between analytical and numerical results and enabled
the identification of certain settings which were found crucial to minimise numerical errors.

The key findings of the study can be itemised as

• Blood pressure and perfusion can be estimated reasonably well on a relatively coarse grid
and first order pressure elements.

• In order to approximate volumetric flow rate through superficial territories accurately
with minimal computational effort, higher order finite elements are essential. Volumetric
flow rate estimation can be further improved with local grid refinement in the vicinity of
the superficial territories.

• Porous models can provide a good estimation of blood flow rate through major cerebral
arteries when higher order elements and constant inlet pressure boundary conditions are
used.

• Using uniform velocity inlet boundary conditions does not have solid physiological foun-
dations because blood flow is likely not distributed proportionally to the cortical surface
area. However, when considering healthy scenarios, constant pressure inlets can be pre-
scribed with higher confidence.
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• A multi-compartmental porous system can be solved analytically in one-dimensional cases.
After determining the equivalent thickness of the subdomains, the one-dimensional sys-
tem behaviour is representative of the three-dimensional organ-scale model. The one-
dimensional case is suitable for parameter mapping and sensitivity analysis at a compu-
tational cost three orders of magnitude smaller compared to three-dimensional models.

The results lay down the foundations for validation, uncertainty quantification, and for the
development of a multiscale model which incorporates large arteries as well as the microcircula-
tion. The present work contributes to the creation of a reliable computational model which can
assist in the design of clinical trials and in clinical decision making related to cerebrovascular
diseases.
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Appendix A Whole brain model parametrisation

The baseline model parameters listed in Tab. 2 are determined using the method established
in [14] as summarised below.

1. The capillary permeability k2 and the venule-arteriole permeability ratio k3/k1 are as-
sumed to be given based on previous studies [22, 51];

2. The ratio of the grey matter coupling coefficients (βG1,2 and βG2,3) can be calculated based
on the spatially averaged pressure values in the grey matter (〈pi〉G) using [14]

βG1,2
βG2,3

=
〈p2〉G − 〈p3〉G
〈p1〉G − 〈p2〉G

. (31)

The ratio of the pressure drops is inferred from rodent experiments [67, 68]. Thereafter,
both βG1,2 and βG2,3 can be calculated once the cerebral perfusion pressure is estimated [54]
and grey matter perfusion 〈F 〉G = βG1,2(〈p1〉G−〈p2〉G) = 56 [ml/min/(100 ml)] is selected.

3. The remaining two parameters, namely k1 and βGi,j/β
W
i,j , are obtained using optimisation

[80, 81] relying on the minimalisation of the

J = (〈F 〉G − 〈F 〉Gtarget)
2 + (〈F 〉W − 〈F 〉Wtarget)

2 + Jpenalty (32)
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cost function. The target perfuions in grey and white matter are set to physiologicall
realistic values [82]: FG

target = 56 and FW
target = 21 [(ml blood)/min/(100 ml tissue)]. Fur-

thermore, a penalty term (Jpenalty) is applied to restrict the minimum and maximum
perfusion values:

Jpenalty =H(Fmin,target − Fmin) · (Fmin − Fmin,target)
2+

H(Fmax − Fmax,target) · (Fmax − Fmax,target)
2. (33)

Here, H is the Heaviside function resulting in a non-zero Jpenalty only if the extrema are
out of the Fmin,target = 10 and the Fmax,target = 80 [(ml blood)/min/(100 ml tissue)] range.
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