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Abstract

Deep Convolutional Neural Networks (DNNs) have achieved superhuman accuracy
on standard image classification benchmarks. Their success has reignited significant
interest in their use as models of the primate visual system, bolstered by claims of their
architectural and representational similarities. However, closer scrutiny of these models
suggests that they rely on various forms of shortcut learning to achieve their impressive
performance, such as using texture rather than shape information. Such superficial
solutions to image recognition have been shown to make DNNs brittle in the face of
more challenging tests such as noise-perturbed or out-of-domain images, casting doubt
on their similarity to their biological counterparts. In the present work, we demonstrate
that adding fixed biological filter banks, in particular banks of Gabor filters, helps
to constrain the networks to avoid reliance on shortcuts, making them develop more
structured internal representations and more tolerant to noise. Importantly, they also
gained around 20−30% improved accuracy when generalising to our novel out-of-domain
test image sets over standard end-to-end trained architectures. We take these findings to
suggest that these properties of the primate visual system should be incorporated into
DNNs to make them more able to cope with real-world vision and better capture some
of the more impressive aspects of human visual perception such as generalisation.

Keywords: Deep Learning; Convolutional Neural Network; Biological constraint; Gabor filter;

Noise tolerance; Generalisation

1 Introduction

The success enjoyed by deep convolutional neural networks (DNNs) in complex perceptual
tasks, notably image classification, has led many researchers to suggest that they accomplish
their objectives in a similar manner to humans. Architectural and representational similarities
further reinforce this view of DNNs, not just as engineering tools, but as good models5

of primate vision (Cadena et al., 2019; Guclu & van Gerven, 2015; Khaligh-Razavi &
Kriegeskorte, 2014; Kubilius et al., 2016; Kubilius et al., 2018; Schrimpf et al., 2018; Yamins
et al., 2014; Yamins & DiCarlo, 2016). However, in stark contrast to humans, one of the
most striking failures of these models is their lack of ability to generalise outside of their
training sets. This casts doubt on the claims that such models work in a fundamentally10

similar way to humans.
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In contradiction to earlier claims that DNNs learn about object shape as a representational
basis for their image classifications (Kriegeskorte, 2015; Kubilius et al., 2016; LeCun et al.,
2015), subsequent work has found a strong bias towards textures and similar spatially
high-frequency information (Baker et al., 2018; Geirhos et al., 2019). Likewise in our earlier15

work, we reported that in the extreme, standard DNNs would base their image classifications
on just a single pixel when correlated with image category, disregarding the richer shape
information (Malhotra et al., 2020).

The tendency of DNNs to solve tasks in unintended ways has been characterised as
“shortcut learning”, whereby decision rules are learnt which facilitate high performance on20

standard benchmarks but fail to generalise to more challenging test sets (Geirhos, Jacobsen
et al., 2020). In this vein, a range of weaknesses of DNNs have been identified, including
susceptibility to adversarial attacks (Szegedy et al., 2014), bias amplification (Bolukbasi
et al., n.d.) and intolerance to noise (Geirhos et al., 2018). Similarly, other authors have
characterised these shortcomings as the models learning to rely on “non-robust” features25

that are present in the training data (Ilyas et al., 2019). While these problems could be
regarded as properties of the dataset which fail to capture the richness of the visual world,
we argue that they stem from insufficient inductive biases constraining the model to find
more robust and general solutions. To frame it more positively, robust generalisation needs
good inductive biases (Feinman & Lake, 2018; Lake et al., 2017; Sinz et al., 2019).30

Inductive biases may be incorporated into the three core components of artificial neural
network design: the objective function, the learning rule and the architecture (Richards
et al., 2019), in addition to the training data (“environment”). In the present work, we
focus on architectural constraints in the form of prescribed kernels in the first convolutional
layer(s), taking inspiration from the receptive fields found in the early primate visual system.35

This particular form of inductive bias has received relatively little attention in the deep
learning community, with a strong preference to instead rely upon full end-to-end training
as a departure from the hand-tuned featuring-engineering approach of classical computer
vision research.

Although this approach has led to state-of-the-art scores on common benchmarks, end-to-40

end trained artificial neural networks (ANNs) have nonspecific (weak) biases and learn the
statistics of the training data which may not generalise to out-of-distribution (o.o.d.) data
(Sinz et al., 2019). Arguably, this has become to an example of Goodhart’s Law (Strathern,
1997), where DNNs further surpass human performance on common image recognition
benchmarks, yet no longer represent good measures as they fail to capture many interesting45

and elementary properties of visual perception.
While end-to-end training typically yields features resembling Gabor filters, an array of

other filters emerge which lack a clear correspondence to those observed in the early visual
system, further suggesting that DNNs are under-constrained (Krizhevsky et al., 2012, Fig. 3).
As expected from the “bias-variance tradeoff” in supervised learning, the approach of fixing50

early convolutional forms has not (yet) achieved such high performance scores on standard
benchmarks as with full end-to-end training. However, our previous results suggest that they
may encourage DNNs to develop more robust and generalisable representations (Malhotra
et al., 2020; Malhotra et al., 2019).

Furthermore, there is a strong motivation to fix the early convolutions from both the55

perspective of natural image statistics (Bell & Sejnowski, 1997; Olshausen & Field, 1996)
and a developmental biology perspective (Briggman et al., 2011). Useful motifs about stable
properties of the environment are most likely to pass through the “genomic bottleneck”
conferring an evolutionary advantage by alleviating the burden on the individual to learn
them (Zador, 2019), especially if they are “perceptual universals” of the world (Shepard,60

1994).
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Early work with DNNs showed how kernels strongly resembling Gabor filters naturally
arise through training on naturalistic images (along with more obscure filters) (Krizhevsky
et al., 2012) while recent computational modelling has even demonstrated how the particular
hierarchy of receptive fields may arise from the retinal bottleneck (Lindsey et al., 2019). If65

centre-surround and Gabor filters form a visual alphabet of the natural world then they should
be pre-wired (Gaier & Ha, 2019) or fixed rapidly due to evolution-optimised architectures
(Zador, 2019) and remain relatively stable throughout the lifetime of the individual (and
so also in models). In contrast to classical computer vision approaches, the features of the
early layers are not “hand -engineered”, but essentially “evolution-engineered”.70

Besides potential gains in “real-world” use (through increased resilience to noise and
better o.o.d. generalisation), constraining DNNs with biologically-inspired inductive biases
may also help to make them more interpretable by encouraging them to develop internal
representations which are better aligned with their biological counterparts. This would
potentially be a useful development for shining a light on otherwise obscure “black-box”75

models, allowing their decision processes to be better understood, refined, and overridden
when necessary. Accordingly, we examine the most activating features of the trained models
to visualise the differences in their internal representations.

Early work with Gabor kernels in convolutional neural networks focussed on the energy
efficiency gains and speed of training convergence afforded by having fewer modifiable80

parameters while maintaining a structure conducive to image classification (Alekseev &
Bobe, 2019; Meng et al., 2019; Sarwar et al., 2017). However, like other promising research
with biologically motivated front-ends, without further constraining the parameters of the
Gabor kernels, the models develop an over-reliance on the spatially high-frequency filters
and forfeit their robustness to noise (Wu et al., 2019).85

In our previous work with Gabor-kernel convolutions, the filters acted as a kind of
regulariser, steering the network away from relying upon non-robust (yet diagnostic) features
towards more robust representations (Malhotra et al., 2020; Malhotra et al., 2019). Sub-
sequent work using >20–40× more Gabor filters demonstrated more resilience to adversarial
attacks and noise perturbations over the corresponding end-to-end trained models (Dapello90

et al., 2020). Their study showed that the single biggest factor in attaining this improvement
was the inclusion of stochasticity (Gaussian noise), particularly during training. This further
suggests that the modifications worked to help the model develop more robust representations,
in a way accounted for in earlier work by training on similar noise to the test set (Geirhos,
Temme et al., 2020).95

In the work presented here, we specifically examined the form of fixed kernels in the early
convolutional layers of otherwise standard DNNs for their effects on internal representations,
robustness to noise, and generalisation beyond the training set. In particular, we investigated
a very human o.o.d. generalisation ability — to classify images based on simple line drawings
(Hochberg & Brooks, 1962), their global shape features or their bounding contours rather100

than local textures (Baker et al., 2018).
We hypothesised that biologically inspired filter banks would make the models (a) more

robust to noise perturbations applied to i.i.d. images, (b) better able to generalise to o.o.d.
images and (c) develop more interpretable internal representations. Our results support these
hypotheses for several types of common noise perturbations, reveal a 20− 30% improvement105

in accuracy on our novel generalisation test sets and demonstrate striking differences in the
internal representations.
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2 Methods

Standard deep convolutional neural networks were trained with full end-to-end learning to
obtain their baseline performance on image classification tasks. Each model architecture110

was then modified by configuring the first convolutional layer(s) to have fixed banks of
kernels for each of several forms described below. These modified models were then trained
on the same images as the standard models for 100 epochs to ensure that they reached
convergence. The models were then compared by their performance on noise-perturbed
test images, generalisation test images and their internal representations. The models were115

implemented with Keras and Tensorflow 2. All simulation and analysis code (written in
Python 3) is open-source and available at github.com/bdevans/BioNet.

2.1 Models

Several standard DNN architectures were used including ALL-CNN (Springenberg et al., 2015)
VGG-16 and VGG-19 (Simonyan & Zisserman, 2015). For each model, either the original120

architecture was used (“Original”) for full “end-to-end” training or the first convolutional
layer was replaced with a bank of unmodifiable kernels. These fixed kernels took one of the
following specific forms: Gabor, Difference of Gaussians (DoG) or Low-pass filters (chosen as
a non-biologically motivated alternative way to smooth out noise). A “Combined” front-end
was also used, whereby the first convolutional layer of a standard DNN was replaced with two125

fixed convolutional layers consisting of a DoG layer followed by a Gabor layer, modelling the
receptive field organisation of the early visual stream. Each fixed kernel was set to 63× 63
pixels in order to allow the filters to be adequately expressed without significant truncation
at the edges, over a biologically relevant range of spatial scales. In the case of the Combined
front-end, the kernels were reduced to 31× 31 pixels due to computational constraints. The130

choice of (other) parameters for these convolutional kernels are given in Table 1.
In all cases, the input layer was modified to reflect the upscaled image size and conversion

to greyscale, leaving only one luminance channel (224× 224× 1) as described in Section 2.3.
Similarly, the output layer was reduced to classify each images into one of the 10 categories
of CIFAR-10.135

2.1.1 Fixed convolutional kernels

Low-Pass: Low-pass filters were implemented as a simple 2-dimensional Gaussian kernel
(Equation 1) which was convolved with the inputs, effectively blurring them by a degree
parameterised by σ, the standard deviation of the Gaussian.

lσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

In the models presented, four channels (corresponding to four values of sigma) were used140

for the low-pass front-end as detailed in Table 1.
Difference of Gaussian: The Difference of Gaussians kernel (Equation 2) is the result

of a surround Gaussian subtracted from a (typically smaller) centre Gaussian. The standard
deviation of the centre Gaussian is parameterised by σ and the standard deviation of the
surround Gaussian is parameterised by γ · σ where γ ≥ 1. In this work, the difference145

in Gaussians is multiplied by ρ ∈ {+1,−1} to model “on-” and “off-centre” ganglion cell
receptive fields respectively.

dσ,γ,ρ(x, y) = ρ

(
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
− 1

2πγ2σ2
exp

(
−x

2 + y2

2γ2σ2

))
(2)
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The Difference of Gaussians front-end had a total of 32 channels from combining values
for three parameters as described in Table 1.

Gabor: The Gabor function is an oriented sinusoidal grating convolved with a Gaussian150

envelope (Equations 3-4) where x and y specify the position of a light impulse in the visual
field (Petkov & Kruizinga, 1997).

gλ,θ,φ,σ,γ(x, y) = exp

(
−
x2θ + γ2y2θ

2σ2

)
exp

(
i

(
2πxθ
λ

+ φ

))
(3)

xθ = x cos θ + y sin θ yθ = −x sin θ + y cos θ (4)

Rather than specify the width of the Gaussian component in pixels, it is more natural
to set the bandwidth, b, which describes the number of cycles of the sinusoid within the
Gaussian envelope. The standard deviation of the Gaussian factor, σ, is therefore set155

indirectly through b, and λ:

σ =
λ

π

√
ln 2

2
· 2b + 1

2b − 1
(5)

The Gabor front-end used had a total of 24 channels from combinations of values across
its five parameters, chosen to span a range matched to primate primary visual cortex (Petkov
& Kruizinga, 1997), shown in Table 1.

Table 1: Parameters of the fixed convolutional kernels.

Low-pass Difference of Gaussians Gabor

σ = {1, 2, 4, 8} σ = {1, 2, 4, 8} σ = {8}
γ = {1.6, 1.8, 2.0, 2.2} γ = {0.5}
ρ = {+1,−1} b = {1, 1.8, 2.6}

θ = {0, π4 ,
2π
4 ,

3π
4 }

ψ = {π2 ,
3π
2 }

2.2 Training160

All models were trained with the modified (224 × 224 and greyscale) CIFAR-10 training
images (unperturbed and shuffled) to minimise categorical cross-entropy using Stochastic
Gradient Descent (SGD) with a batch size of 64, a learning rate of 10−4 and a decay of
10−6. Training proceeded for 100 epochs, reducing the learning rate on plateau (after 5
epochs) by a factor of 0.2. Each model architecture was trained for five different random165

seed initialisations (eliminating seeds which failed to train) on an NVIDIA Titan Xp GPU.

2.3 Stimuli

In all cases, the training images were based on the CIFAR-10 dataset (which contains
10 classes of 6, 000 images per class, with 1, 000 of each held out for validation, see
www.cs.toronto.edu/~kriz/cifar.html). For testing, three categories of images were170

used; CIFAR-10 test images, noise-perturbed CIFAR-10 test images or generalisation image
sets (described later).

To simplify the filter banks, we converted all images to greyscale according to the ITU
BT.601 luma transform conversion formula (Y = 0.299·R+0.587·G+0.114·B), which models
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the trichromatic sensitivities of the human eye. Using a method similar to (Geirhos et al.,175

2018), the CIFAR-10 images were then upscaled from their original dimensions of 32× 32
pixels to 224×224 pixels using Lanczos resampling with luminosities clipped to [0, 255]. Each
image was further preprocessed before presentation to the network by rescaling the intensity
values from [0, 255] to [0, 1]. Under testing conditions where the images were perturbed,
noise was applied after this rescaling, then the values were clipped in the range [0, 1] before180

rescaling back to the range [0, 255], as expected by the standard DNN architectures.
The mean and standard deviation were calculated across the entire (modified) training

set and used for feature-wise centring and normalisation. Data augmentation was used
to randomly shift the images vertically and horizontally by up to 10% (24 pixels) and to
randomly apply a horizontal flip.185

2.3.1 Noise perturbations

Building on the work of (Geirhos, Temme et al., 2020) we explored the robustness of repres-
entations developed in DNNs with the range of different trainable and fixed convolutional
kernels described. The CIFAR-10 test images were perturbed with a battery of common
types of noise, systematically spanning a range of severity, before being presented to the190

networks. A summary of these noise perturbations is given in Table 2 with an illustration of
them applied to one of the test images in Figure 1.

Table 2: Image perturbation descriptions and severity.

Perturbation Description Levels

Uniform Pixel-wise additive uniform noise drawn from
[−w,+w] then clipped at [0, 1].

w ∈ {0, 0.1, ..., 0.9, 1.0}

Salt and Pepper Pixels are randomly set to either black or white
with probability, p.

p ∈ {0, 0.1, ..., 0.9, 1.0}

High-Pass High-pass filtering with standard deviation of
the Gaussian filter, σ.

σ ∈ 10{2,1.8,...,0.2,0}

Low-Pass Low-pass filtering with standard deviation of
the Gaussian filter, σ.

σ ∈ 10{0,0.2,...,1.8,2}

Contrast Contrast, c adjusted by setting each pixel in-
tensity, i, according to i′ = (1− c)/2 + i · c.

c ∈ {1, 0.9, ..., 0.1, 0}

Phase Scrambling Phases are randomly shifted (in the Fourier
domain) in the interval [−w,+w] degrees.

w ∈ {0, 18, ..., 162, 180}

Darken Each pixel intensity, i, is reduced by l. l ∈ {0, 0.1, ..., 0.9, 1}
Brighten Each pixel intensity, i, is increased by l. l ∈ {0, 0.1, ..., 0.9, 1}
Rotation Each image is rotated by θ degrees. θ ∈ {0, 90, 180, 270}
Inversion Pixel intensities are inverted. v ∈ {0, 1}

2.3.2 Generalisation Images

To test the networks’ abilities to classify images outside of the training set, we created a
novel set of stylised (monochrome) test images (CIFAR-10G) for each of the ten CIFAR-10195

categories. These images contain mainly shape information, with very limited or no texture
information at all, providing a means to assess a model’s ability to classify images without
relying on the usual shortcut of spatially high-frequency information. Crucially these images
are out-of-distribution (o.o.d.) in contrast to the reserved test images which are independent
and identically distributed (i.i.d.), as commonly used in machine learning research.200
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Figure 1: Noise perturbations at each level applied to an example CIFAR-10 image.
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The images constituted three independent generalisation test sets: line drawings, sil-
houettes and contours. Each set had ten examples for each of the ten CIFAR-10 categories.
The contour images were derived from the silhouettes by hollowing out the shaded regions
to leave only their outlines using the GNU Image Manipulation Program (GIMP). Finally,
three additional sets were created by inverting the initial three sets. They came from a205

variety of internet sources but were all designated as free to use for commercial or other
purposes. All six generalisation test sets are illustrated in Figure 2.

As a confirmation that these new generalisation image sets are truly o.o.d., the summary
statistics (mean and standard deviation) of each image are plotted, along with those of the
modified CIFAR-10 train and test sets, in Figure 3. Since the pixel intensities lie in the range210

[0, 255], the inverted images are reflected about the midpoint (x = 127.5) with respect to the
original images they were derived from. While the train and test sets lie on top of each other
in the central region of the space, due to their sparse, largely binarised pixel intensities, the
generalisation test sets lie on a manifold arcing around the edge of the space. This spatial
separation demonstrates that they constitute out-of-domain test sets with respect to the215

CIFAR-10 images.

3 Results

3.1 Effect of the base model

We first checked that each model has broadly similar accuracy on the (unperturbed) CIFAR-10
test set, and that the pattern of differences due to the different convolutional “front-ends”220

holds for different “back-end” architectures. In Figure 4 the mean accuracy for each model
(front-end / back-end combination) is plotted with the error bars representing the 95%
confidence intervals calculated from 5 different random seeds.

While the absolute levels of accuracy varied across the different architectures (with
the performance of ALL-CNN being relatively low), importantly the relative pattern across225

front-ends remained very similar. We note that, contrary to the trend of using deeper
networks, the accuracy was largely unchanged after increasing the depth of the model from
VGG-16 to VGG-19. We note also that even the best performing models attain only around
90% accuracy, making them fall short from state-of-the-art for image classification. However,
these figures serve as an adequate baseline for comparison to each model’s performance under230

more challenging and psychologically meaningful conditions.

3.2 Robustness to noise

After training to convergence on the modified (monochrome and upscaled) CIFAR-10 training
images, the networks were tested on the validation (test) set with various types and degrees
of common noise perturbation, as described in Table 2. While the original (unperturbed) test235

images are i.i.d. with the training set (as illustrated in Figure 3), the models were not trained
with any of the noise types, making this experiment a mild test of o.o.d. generalisation and
a good test of more “real-world” image classification conditions.

The perturbations used in this research are based upon previously published tests and
common image degradations (Geirhos, Temme et al., 2020). As such, the fixed convolutional240

kernels used are not expected to lead to robustness in all cases. Earlier work suggests
that resilience to uniform and salt-and-pepper noise should be improved (Malhotra et al.,
2020; Malhotra et al., 2019). Additionally, biologically inspired filters are expected to be
more resilient to brightened, darkened and reduced contrast images due to their regions of
opponency which make them sensitive to spatial contrasts rather than absolute luminance245
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(a) Line Drawings (original) (b) Line Drawings (inverted)

(c) Silhouettes (original) (d) Silhouettes (inverted)

(e) Contours (original) (f) Contours (inverted)

Figure 2: Generalisation test sets.
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Figure 3: Distributions of image statistics. The CIFAR-10 train and test images are highly
overlapping and occupy the central region of the space. Conversely, the generalisation images
lie on a manifold forming an arc around this region, constituting out-of-domain test sets.

Figure 4: Classification accuracy on the CIFAR-10 test set. The VGG models attained very
similar levels of performance across all convolutional front-ends (around 90% accuracy) while
ALL-CNN scored around 20% lower with more variability across front-ends. Grey dotted lines
indicate the mean accuracy across convolutions for each base model architecture.
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levels. Conversely, end-to-end trained models are likely to maintain higher performance for
high-pass filtered images owing to their preference for spatially high-frequency information
such as their texture bias (Geirhos et al., 2019). For other perturbations such as rotation,
we have no strong expectation of either an increase or decrease in robustness performance
relative to the standard model. Classification accuracy across the five runs of the VGG-16250

based models for each convolutional front-end under various levels of noise are given in
Figure 5 as an example. The performance curves for ALL-CNN and VGG-19 are given in
Figures 10 and 11 respectively.

In many cases, the biologically-inspired hard-coded convolutional front-ends (Gabor
filters, Difference of Gaussians and Combined) are more robust to these types of image255

corruptions than their end-to-end trained counterparts. In particular, the Gabor and
Combined models exhibited considerably more tolerance to Uniform and Salt and Pepper
noise (Figure 5A&B) partly due to their smoothing effect. However, this characteristic
alone can not entirely explain their large margin of improvement over other filters, due
to the relatively poor performance of Low-pass filtered models under the same conditions.260

Instead, the combination of smoothing within a spatially structured kernel (i.e. elongated
regions of opponency) appears to have helped reduce the effect of such unstructured noise
on classification of natural images which consist of such spatially-structured features such as
bars and edges (Bell & Sejnowski, 1997; Olshausen & Field, 1996).

Interestingly, the Gabor-filtered networks tend to perform worse than the others when265

classifying images processed with High Pass filtering, (Figure 5C), presumably due to their
bandwidth and spatial scale no longer being appropriate for the thinner edges and lines in
this condition.

For perturbations such as phase scrambling and rotations (Figure 5F&I) all types of filter
are quite similarly affected. Broadly comparable perturbation tolerance was also obtained270

for Contrast, Darken and Brighten (Figure 5E,G&H), with the exception of the Low-pass
front-end, which was found to smooth away the finer details of the images, further reducing
their contrast and reducing activation in subsequent layers.

To summarise the tolerance to these noise perturbations across the entire range of
severities, the area under the curve (AUC) was computed for each dataset. These AUCs275

were then grouped by perturbation type and base model architecture, in order to subtract
the Original model’s AUC and thereby show the effect of each convolutional front-end as a
change relative to this baseline. These differences in AUCs are displayed in Figure 6.

While the Combined models exhibited similar patterns of tolerance to noise perturbation
as the Gabor models, the absolute accuracy was typically lower. This may be explained by280

the information lost due to the extra DoG layer, as they may only occur in the visual system
as a means of overcoming the retinal bottleneck (Lindsey et al., 2019). However, one notable
exception is in the case of image inversion (Figure 5J) where most models drop by around
30% accuracy, the Combined model is essentially unaffected. This is investigated further in
Section 3.3.285

3.3 Generalisation

As a strong test of o.o.d. generalisation, the models’ classification accuracy was assessed
on the novel, stylised image test sets collected for this study (as shown in Figure 7). In
almost all cases, networks with a Combined front-end scored highest, closely followed by
Gabor models. One exception is on the silhouette test sets (original and inverted) where the290

Gabor front-end models outperformed the Combined models since these images had only
edges (rather than other features such as lines) which the initial layer of DoG kernels are
less sensitive to compared to Gabor kernels. Following those models, either the Difference
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Figure 5: Classification accuracy of VGG-16 based models under each type and degree of
noise perturbation. The grey dashed lines represent chance level (10%). The Gabor and
Combined front-ends are particularly resilient to Uniform and Salt and Pepper noise, while
the Combined front-end is able to recognise inverted images.
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Figure 6: Area Under the Curve scores for the noise perturbation accuracies. The AUCs
plotted are deviations from the AUCs of the Original front-end models for each base
architecture and perturbation type. The Original models have an advantage for High Pass
noise (C) and Rotation (I), which may be to their higher initial performance. Gabor front-end
models consistently demonstrate improved robustness for Uniform (A), Salt and Pepper
noise (B) and to a lesser extent for Contrast (E), Phase Scrambling (F), Darken (G) and
Brighten (H) while the Combined front-end models show less improvements to Uniform (A)
and Salt and Pepper (B) noise but much greater robustness to image inversion (J).
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of Gaussian or the Low-pass front-ends tended to slightly outperform the baseline Original
models but were broadly comparable.295

The original end-to-end trained models trail those which include a bank of Gabor filters
(Gabor, Combined) by approximately 10% across generalisation test sets for ALL-CNN and
20 − 30% for VGG models. While there is clearly room for further improvement, these
data demonstrate that a substantial margin in performance is conferred on standard DNNs
in o.o.d. test images simply by fixing the form of the first layer of convolutions with300

biologically-plausible Gabor kernels.
Again the Combined front-end exhibits no performance drop associated with inverting

the images, (see Figure 7, left column versus right column) unlike small drops for most other
front-ends, especially the Low-pass models. Inspection of the activation patterns in the
early layers of the Combined models reveals that the initial DoG layer provides an effective305

remapping of the inputs. Since for each DoG filter spatial scale and centre-surround ratio
there is both an “on-” and “off-centre” receptive field, they can be matched to the inverted
or original images (respectively) to yield the same activation pattern for each. Subsequently,
the set of odd Gabor filters are then applied to these contrast-enhanced activation patterns
to extract the edges as a foundation for more complex representations in subsequent layers310

8. If the Gabor front-end were endowed with both odd (e.g. ψ ∈
[
π
2 ,

3π
2

]
radians) and

even filters (e.g. ψ ∈ [0, π] radians) then the even filters would lead to similar activation
maps between original and inverted images, (provided the spatial scales were appropriate)
however, the odd filters would create uncorrected phase offsets in the resultant activation
maps, thereby reducing the similarity. This can be seen in a selection of activation maps for315

an example image and its inversion in Figure 8.

3.4 Representations

In order to examine how the models’ internal representations are affected by the form of the
initial convolutional kernels, the most activating features were determined for a selection
of layers (Erhan et al., 2009). Initially, an image composed of random pixel intensities is320

presented to each model, which is then modified through gradient ascent for 1, 000 epochs
to find the most activating feature(s) for that particular channel (subject to the random
initialisation). Specifically, the pooling layers were chosen, as they would effectively tile the
preferred features of the preceding convolutional layer across the input canvas (although the
convolutional layers produced very similar results), and a random channel was selected from325

each. Representative examples of the most activating features for each of the VGG-16 based
models (for each front-end) are visualised in Figure 9.

There are clear differences in the most activating features across the different front-
ends, evident in the visualisations, particularly in the earlier layers. The end-to-end trained
(Original front-end) network prefers less structured and spatially very high-frequency patterns330

resembling noise. Conversely, the fixed kernel front-ends are all more activated by smoother
patterns, with Turing patterns and oriented gratings observed for Difference of Gaussians
and Gabor front-ends respectively. It is often claimed that end-to-end training produces
banks of Gabor-like units in DNNs that resemble simple cells of V1 (Krizhevsky et al.,
2012). However, not only do these models learn a wide range of units, many of which do335

not resemble the receptive fields of neurons in early visual cortex, but our findings also
highlight that hand-wiring the first convolutional layer(s) results in quite different learned
representations in higher levels as well.

The learned features in the higher layers of the different models appear to be more similar
than in early layers, in this case, appearing to converge to small blobs with antagonistic340

surrounds. Here it is hard to make any comparisons between the learned feature detectors
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Figure 7: Classification accuracy for generalisation test sets. In classifying out-of-domain
images, the Original (end-to-end) trained models typically score lowest. Classification
accuracy with the Low-pass front end is slightly higher on average but less consistent across
the test sets. The biologically-inspired convolutional front-ends have comparable performance
(DoG front-ends) or substantially exceed the accuracy of the Original models (Gabor and
Combined front-ends). Generally, all models score highest on the line drawings, with contours
and silhouettes presenting the biggest challenges. The grey dashed lines represent chance
level (10%).
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(a) Original (b) Low-pass

(c) Difference of Gaussians (d) Gabor

(e) Combined (DoG) (f) Combined (Gabor)

Figure 8: Activation maps generated from an example image and its inversion in the first
four channels of the first convolutional layer(s). While the activations for the original and
inverted images in the Gabor convolutions (d) appear similar to those in the Gabor layer
of the Combined model (f), they are shifted with respect to one another. Conversely the
preprocessing of the Combined front-end’s DoG layer (e) compensates for this phase-shift.
The cosine similarities are shown pairs of activations (original and inverted images).
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Figure 9: Most activating features for a selection of layers in VGG-16 with different initial
convolutional layers.
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in models and the brain because we have only a limited understanding of the features
that drive single neurons in the higher levels of the visual system. Furthermore, any
comparison between artificial and biological neural networks is further complicated by the
fact that different methods of generating maximally activating images for single-units in345

ANNs can produce quite different outcomes, varying from unstructured noise to highly
regular patterns, or even interpretable images (Nguyen et al., 2017). Similarly, different
measures of single-unit selectivity provide very different estimates of selectivity (Gale et al.,
2020). Importantly though, imposing fixed convolutional kernels in the early layers produces
a major restructuring of the learned internal representations in otherwise standard DNNs,350

differences which extend throughout the networks which are also found to have improved
robustness and generalisation.

4 Discussion

The impressive performance of deep convolutional neural networks on various image classific-
ation benchmarks has led to a great deal of interest amongst the neuroscience community,355

where researchers are now exploring the similarity of human and DNN vision (Schrimpf et al.,
2018). Indeed, optimising DNNs for image classification has been demonstrated to provide
the best fit to observed neural activity in the primate visual system (Yamins et al., 2014)
and yield similar patterns of representations across categories of objects as measured by
Representational Similarity Analysis (Kriegeskorte, 2015). On this view, end-to-end training360

is the best approach to date for both image classification benchmarks and modelling human
vision, so few inductive biases beyond convolution need to be incorporated.

However, here we show that hard-coding a filter-bank in standard DNNs that approximates
the organisation of the early visual system improves the performance on noise-perturbed
or out-of-domain images, compared to their standard (unconstrained) counterparts trained365

end-to-end. For example, the biologically constrained models were much better able to
classify line drawings, mimicking humans infants, who can readily identify them without
any explicit training (Hochberg & Brooks, 1962). Typical measures of model performance
overlook many of these more interesting and elusive properties of biological visual perception,
notably their ability to generalise, potentially driving research towards more narrowly defined370

goals and away from being more faithful models of vision.
It is also important to acknowledge that our biologically-inspired networks showed limited

improvements compared to standard DNNs, and in a few conditions performed more poorly
than their end-to-end trained counterparts. Clearly adding a fixed convolutional front-end
is far from sufficient to overcome the serious limitations of current DNNs as models of375

human vision. This is perhaps not surprising, considering how different typical artificial and
biological visual systems are, for instance the paradigm of rate-coding rather than temporal
(spike) coding (Rullen & Thorpe, 2001), and the form of inputs they receive, such as static
versus dynamic images. However, we argue that adding a biologically inspired front-end to
standard DNNs represents a promising direction for advancement.380

Which features of biological vision are functional and which are epiphenomena is still an
open question. For example, the on- and off-centre receptive fields of retinal ganglion cells
may simply be a means to compress the information from the photoreceptors through the
retinal bottleneck in such a way as to be most faithfully reconstructed and expanded in the
cortex, without providing any additional benefit over Gabor-like receptive fields. This may385

explain the slightly mixed results with Gabor (only) versus Combined front-ends, such as
their slightly weaker ability to classify silhouettes (compared to the Gabor front-end). If
Gabor filters do indeed constitute an optimal “visual alphabet” as first step in decomposing
a natural visual scene when the information bottleneck is removed, then any additional layer
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only serves to reduce the information content reaching them. It may be, however, that in390

order to cope with image inversions, additional pooling between Gabor filters of opposite
phase is required — potentially a principle underpinning the finely structured organisation
of the visual cortex.

The huge leap in performance and subsequent resurgence of interest in neural networks
(then known as connectionist models) was brought about by the extraordinary increase in395

computational power through harnessing GPUs, allowing much larger networks to be trained
on vast training sets (Krizhevsky et al., 2012). This trajectory still guides much of the com-
munity’s thinking on the best approach, typically eschewing such innate neurophysiological
details and remaining largely empiricist in preferring end-to-end training. Despite a growing
list of failures of such DNNs in classifying images under more challenging conditions (Geirhos400

et al., 2018; Geirhos, Temme et al., 2020), and demonstrations of striking differences between
human and DNN vision (Dujmović et al., 2020; Malhotra et al., 2020), there is still the wide-
spread view that many of these failures can be addressed by further improving the datasets
that the models are trained on (Mehrer et al., 2017), or modifying the objective functions,
including more emphasis on self-supervision (Chen et al., 2020) rather then constraining the405

models themselves.
However, from examining the most activating features which are learnt throughout the

networks, it is clear that constraining only the form of the initial convolutions has far-reaching
effects for higher level representations that may impact the model’s ability to generalise.
It is clear from this perspective, that even if benchmark-based summaries of the model’s410

performance are highly similar to those of their biological counterparts, it is unlikely that
they are achieved in the same way, or that the same hierarchical organisation has necessarily
developed (Thompson et al., 2021). It is only when testing models on more challenging
datasets, that humans can readily identify, for example the distorted i.d.d. images or o.d.d.
images of the present work, that these differences are manifest. The challenge in developing415

biological models of vision is to build models that explain or at least recapitulate core human
visual capacities, such as scale and translation invariance (Han et al., 2020), the capacity to
identify objects in novel orientations in 3D space (Erdogan & Jacobs, 2017) and tolerance
to occlusion (Tromans et al., 2012), amongst many other human visual (limitations and)
capacities.420

Even when a bottleneck and other architectural constraints are added to networks to
encourage the formation of (more) Gabor filters (Lindsey et al., 2019), there is still no
hyper-column organisation of the filters or other potentially important details, and crucially,
models still learn a wide range of other (spatially high-frequency) filters (Krizhevsky et al.,
2012, Fig. 3), many of which do not occur in V1 or elsewhere as far as we know. This may425

help explain the brittleness of current DNNs with these extra kernels over-fitting to specific
training sets, making the models less robust to distortions of i.i.d. images and considerably
less able to recognise o.o.d. images. Ultimately, whether the V1 hyper-column structure
is innately specified, or develops through (genetically guided) assimilation of early visual
experience, current unconstrained DNNs trained end-to-end fail to capture the human ability430

to identify degraded images or generalise to out-of-distribution datasets.

4.1 Future work

To further enhance robustness and generalisation, it is likely that other modifications to the
core components of ANNs are necessary, for example the addition of recurrent connections
(Kietzmann, McClure et al., 2019; Kietzmann, Spoerer et al., 2019) or feedback connections435

(Kreiman & Serre, 2020). Also, in line with more standard approaches, it is undoubtedly
important to also improve the training datasets and learning objectives in order to make
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models more similar to Infero-Temporal Cortex (IT), for example “soft” training labels
(Peterson et al., 2019). In the current simulations we used supervised learning to train our
models on CIFAR-10, and it would be interesting to see the impact of adopting different440

training objectives on larger datasets. For instance, there is some recent evidence that
self-supervision on ImageNet can use to to networks classify images more on the basis of
shape compared to texture, consistent with the shape bias observed in humans (Geirhos,
Narayanappa et al., 2020). In future work it will be important to understand how combining
more inductive biases with better training regimes impacts on network performance.445

4.2 Conclusions

In the presented work we have shown that adding biological filter banks to constrain standard
DNN architectures reduces their capacity to find superficial solutions by “shortcut learning”
(Geirhos, Jacobsen et al., 2020). In particular, our Gabor and Combined (DoG+Gabor)
front-end models learned more structured internal representations, were more robust to a450

number of common noise perturbations, and most importantly, showed better generalisation
to our novel o.o.d. test sets. We take these findings as evidence that researchers should
incorporate more biological constraints in DNNs to better mimic human performance, and
indeed, it may be an important step in developing machine learning systems that generalise
better. More generally, we also advocate a wider perspective on model evaluation than a455

narrow focus on common benchmark scores, as this is likely to lead to models which miss
many of the more interesting and useful properties of human vision.
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Appendix660

Figure 10: Classification accuracy under different types and degrees of noise perturbation
for ALL-CNN based models. The grey dashed lines represent chance level (10%).
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Figure 11: Classification accuracy under different types and degrees of noise perturbation
for VGG-19 based models. The grey dashed lines represent chance level (10%).
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