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 28 

Abstract 29 

Back and forth transmission of SARS-CoV-2 between humans and animals may lead to  wild 30 
reservoirs of virus that can endanger efforts toward long-term control of COVID-19 in people, 31 
and protecting vulnerable animal populations that are particularly susceptible to lethal disease. 32 
Predicting high risk host species is key to targeting field surveillance and lab experiments that 33 
validate host zoonotic potential. A major bottleneck to predicting animal hosts is the small 34 
number of species with available molecular information about the structure of ACE2, a key 35 
cellular receptor required for viral cell entry. We overcome this bottleneck by combining species’ 36 
ecological and biological traits with 3D modeling of virus and host cell protein interactions using 37 
machine learning methods. This approach enables predictions about the zoonotic capacity of 38 
SARS-CoV-2 for over 5,000 mammals — an order of magnitude more species than previously 39 
possible. The high accuracy predictions achieved by this approach are strongly corroborated by 40 
in vivo empirical studies. We identify numerous common mammal species whose predicted 41 
zoonotic capacity and close proximity to humans may further enhance the risk of spillover and 42 
spillback transmission of SARS-CoV-2. Our results reveal high priority areas of geographic 43 
overlap between global COVID-19 hotspots and potential new mammal hosts of SARS-CoV-2. 44 
With molecular sequence data available for only a small fraction of potential host species, 45 
predictive modeling integrating data across multiple biological scales offers a conceptual 46 
advance that may expand our predictive capacity for zoonotic viruses with similarly unknown 47 
and potentially broad host ranges. 48 
 49 
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 50 
Introduction  51 

The ongoing COVID-19 pandemic has surpassed 3.9 million deaths globally as of 25 52 
June 2021 [1,2]. Like previous pandemics in recorded history, COVID-19 originated from the 53 
spillover of a zoonotic pathogen, SARS-CoV-2, a betacoronavirus originating from an unknown 54 
animal host [3–6]. The broad host range of SARS-CoV-2 is due in part to its use of a highly 55 
conserved cell surface receptor to enter host cells, the angiotensin-converting enzyme 2 56 
receptor (ACE2) [7] found in all major vertebrate groups [8].  57 

 58 
The ubiquity of ACE2 coupled with the high prevalence of SARS-CoV-2 in the global 59 

human population explains multiple observed spillback infections since the emergence of 60 
SARS-CoV-2 in 2019 (see natural infections listed in Table 1 with references). In spillback 61 
infection, human hosts transmit SARS-CoV-2 virus to cause infection in non-human animals. In 62 
addition to threatening wildlife and domestic animals, repeated spillback infections may lead to 63 
the establishment of new animal hosts from which SARS-CoV-2 can continue to pose a risk of 64 
secondary spillover infection to humans through bridge hosts (e.g., [9]) or newly established 65 
enzootic reservoirs. Indeed, this risk has already been realized in Denmark [10] and The 66 
Netherlands, where SARS-CoV-2 spilled back from humans to farmed mink (Neovison vison) 67 
with secondary spillover of a SARS-CoV-2 variant from mink back to humans [11]. A major 68 
concern in such secondary spillover events is the appearance of a mutant strain [11,12] 69 
affecting host range [13] or leading to increased transmissibility in humans [14,15] (but see 70 
[16,17]). Preliminary evidence shows that the mink-derived variant exhibits moderately reduced 71 
sensitivity to neutralizing antibodies [10], raising concerns that humans may eventually 72 
experience infections from spillback variants, and that vaccines may become less efficient at 73 
conferring immunity to these variants [18]. Conversely, human-derived variants pose spillback 74 
risks to animals. For example, in contrast to previous infection trials [19], two new human 75 
variants are now confirmed to have overcome the species barrier to infect lab mice (Mus 76 
musculus) [20].    77 

 78 
Spillback infections from humans to animals are already occurring worldwide. A variety 79 

of pets, domesticated animals, zoo animals, and wildlife have also been documented as new 80 
hosts of SARS-CoV-2 (Table 1). In addition to secondary spillover infections from mink farms, 81 
SARS-CoV-2 has been found for the first time in wild and escaped mink in multiple states in the 82 
United States, with viral sequences identical to SARS-CoV-2 in nearby farmed mink [21–23].  83 
The global scale of human infections and the increasing range of known hosts observed for 84 
SARS-CoV-2 demonstrate that SARS-CoV-2 has the capacity to establish novel enzootic 85 
infection cycles in animals. In response, recent computational studies make predictions about 86 
the susceptibility of particular animal species to SARS-CoV-2 [13,24–32]. These studies 87 
compare known sequences of ACE2 orthologs across species (sequence-based studies), or 88 
model the structure of the viral spike protein bound to ACE2 orthologs (structure-based studies). 89 
These studies yield a wide range of predictions with varying degrees of agreement with 90 
laboratory animal experiments (Figure 1).  91 

 92 
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 93 
Table 1. Species with confirmed suitability for SARS-CoV-2 infection from natural infections or in vivo 94 
experiments. Asterisks reference species with infection status from preprints (not yet peer-reviewed). 95 
Some species (e.g, dogs) with natural infection studies also have in vivo experimental studies. 96 

Species Susceptibility Study type Location References 

Cow  
(Bos taurus) Yes 

In vivo 
experiment Lab [33] 

Dog  
(Canis lupus familiaris) Yes Natural infection Multiple countries [34–38] 

African green monkey 
(Chlorocebus aethiops) Yes 

In vivo 
experiment Lab [39] 

Big brown bat  
(Eptesicus fuscus) No 

In vivo 
experiment Lab [40] 

Cat  
(Felis catus) Yes Natural infection Multiple countries [35,36,38,41] 

Gorilla  
(Gorilla gorilla) Yes Natural infection USA, Zoo [42] 

Crab-eating macaque 
(Macaca fascicularis) Yes 

In vivo 
experiment Lab [43] 

Rhesus macaque (Macaca 
mulatta) Yes 

In vivo 
experiment Lab [44] 

Golden hamster 
(Mesocricetus auratus) Yes 

In vivo 
experiment Lab [45] 

House mouse  
(Mus musculus) No 

In vivo 
experiment Lab  

[19] (but see 
[20]) 

Ferret   
(Mustela putorius furo) Yes 

In vivo 
experiment Lab [37] 

American mink  
(Neovison vison) Yes Natural infection Multiple countries [35,36,46] 

Raccoon dog  
(Nyctereutes procyonoides) Yes 

In vivo 
experiment Lab [47]  
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European rabbit  
(Oryctolagus cuniculus) Yes 

In vivo 
experiment Lab [48] 

Lion  
(Panthera leo) Yes Natural infection Multiple countries, Zoos [36,49] 

Tiger  
(Panthera tigris) Yes Natural infection USA and Sweden, Zoos [35,36,49,50] 

Deer mouse  
(Peromyscus maniculatus)* Yes 

In vivo 
experiment Lab [51,52]  

Cougar  
(Puma concolor) Yes Natural infection South Africa, Zoo [36] 

Egyptian fruit bat  
(Rousettus aegyptiacus) Yes 

In vivo 
experiment Lab [53] 

Pig  
(Sus scrofa) No 

In vivo 
experiment Lab [37,53] 

Northern treeshrew  
(Tupaia belangeri) Yes 

In vivo 
experiment Lab [54] 

Snow leopard  
(Uncia uncia) Yes Natural infection USA, Zoo [55] 

Bank vole  
(Clethrionomys glareolus) Yes 

In vivo 
experiment Lab [56] 

Asian small-clawed otter 
(Aonyx cinereus) Yes Natural infection USA, Zoo [36,57] 

White-tailed deer 
(Odocoileus virginianus) Yes 

In vivo 
experiment Lab [58] 

 97 
 98 

 99 
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 100 
Figure 1. A heatmap summarizing predicted susceptibility to SARS-CoV-2 for species with confirmed 101 
infection from in vivo experimental studies or from documented natural infections. Studies that make 102 
predictions about species susceptibility are shown on the x-axis, organized by method of prediction (those 103 
relying on ACE2 sequences, estimating binding strength using three dimensional structures, or laboratory 104 
experiments). Predictions about zoonotic capacity from this study are listed in the second to last column, 105 
with high and low categories determined by zoonotic capacity observed in Felis catus. Confirmed 106 
infections for species along the y-axis are summarized in [59] and are depicted as a series of filled or 107 
unfilled circles. Bolded species have been experimentally confirmed to transmit SARS-CoV-2 to naive 108 
conspecifics. Species predictions range from warmer colors (yellow: low susceptibility or zoonotic 109 
capacity for SARS-CoV-2) to cooler colors (purple: high susceptibility or zoonotic capacity). See 110 
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Supplementary Methods (https://doi.org/10.25390/caryinstitute.c.5293339) for detailed methods 111 
about study categorization.  112 

Sequence-based studies 113 

Sequence-based studies predict host susceptibility based on amino acid sequence 114 
similarity between human (hACE2) and non-human ACE2, and assume that a high degree of 115 
similarity correlates with stronger viral binding, especially at amino acid residues where hACE2 116 
interacts with the SARS-CoV-2 spike glycoprotein. For some species, such as rhesus 117 
macaques [60], these qualitative predictions are borne out by in vivo studies (Figure 1), but 118 
predictions from these methods do not consistently match real-world outcomes. For example, 119 
sequence similarity predicted weak viral binding for minks and ferrets, which have all been 120 
confirmed as highly susceptible, with minks capable of onward transmission [11,32,37] (Figure 121 
1). These mismatches to experimental or real-world outcomes may arise in part because protein 122 
three-dimensional structure, the main determinant of protein function, is incompletely 123 
represented by 1D amino acid sequences [61,62]. As such, details about the interaction 124 
between host ACE2 and the viral spike protein are not well captured by sequence-based 125 
studies. 126 

Structure-based studies 127 

Modeling the three-dimensional structure of protein-protein complexes addresses some 128 
of the limitations of sequence-based approaches, and has proven useful to predict how different 129 
ACE2 orthologs bind to the SARS-CoV-2 viral spike protein receptor-binding domain (RBD) 130 
[13,24]. These studies have also identified particular ACE2 amino acid residues essential for a 131 
productive interaction with the viral RBD, thus improving predictive models of susceptibility 132 
through structure-based inference [13]. These studies leverage known structures of the hACE2 133 
receptor bound to the SARS-CoV-2 RBD and use powerful simulation methods to predict how 134 
variation across different ACE2 orthologs affects binding with the viral RBD. While these 135 
approaches successfully predicted strong binding for species that have been infected (e.g. 136 
domestic cat, tiger, dog, and ferret) and weak binding for species in which experimental 137 
infections failed (e.g. chicken, duck [37], mouse [19]), the results are also not consistently 138 
supported by experiments. For instance, while guinea pig ACE2 scored favorably among 139 
susceptible species in one of the studies [13], this ortholog was shown experimentally not to 140 
bind to the SARS-CoV-2 RBD [63].  141 

 142 
Although structural modeling has produced the most accurate results to date, all 143 

currently available approaches for predicting the host range of SARS-CoV-2 are fundamentally 144 
constrained by the availability and quality of ACE2 sequences across species. ACE2 is 145 
ubiquitous across chordates, likely because of its role in several highly conserved physiological 146 
pathways [64]. Because it is so highly conserved, the vast majority of mammal species (>6,000 147 
species) are likely to have ACE2 receptors, but there are many fewer sequences available from 148 
which to make predictions using existing modeling methods (~300 species). The functional 149 
importance of the ACE2 receptor suggests that it has evolved in association with other intrinsic 150 
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organismal traits that are more easily observed and for which data are available for many more 151 
species. These suites of correlated organismal traits may provide a robust statistical proxy that 152 
can be leveraged to predict suitable hosts for SARS-CoV-2. Previous trait-based analyses 153 
applied statistical (machine) learning techniques to accurately distinguish the zoonotic capacity 154 
of various organisms [65–67], and predict likely hosts for particular groups of related viruses 155 
[68,69], predictions which have subsequently been validated through independent laboratory 156 
and field investigations (e.g., [70,71]). 157 
 158 

Here, we combine molecular structural modeling of viral binding with machine learning of 159 
species-level ecological and biological traits to predict species’ zoonotic capacity for SARS-160 
CoV-2 virus across 5,400 mammal species, expanding our predictive capacity by an order of 161 
magnitude (Figure 2). Crucially, this integrated approach enables predictions for the vast 162 
majority of species whose ACE2 sequences are currently unavailable by leveraging information 163 
from viral binding dynamics and biological traits of potential hosts. In our workflow (Figure 2), we 164 
first carry out structural modeling to quantify the binding strength of SARS-CoV-2 RBD for 165 
vertebrate species using published ACE2 amino acid sequences [72]. We then collate species 166 
traits and train a machine learning model to predict the zoonotic capacity for 5,400 mammal 167 
species. Zoonotic capacity (host susceptibility and capacity for onward transmission) was 168 
approximated through a conservative threshold of binding strength applied to our structural 169 
modeling results and reported by in vivo studies.  170 

 171 
COVID-19 is, at this time, primarily a disease affecting humans, thus spillback infection 172 

of SARS-CoV-2 from humans to animals is the most likely mode by which new host species will 173 
become established. We therefore identify a subset of species for which the threat of spillback 174 
infection appears greatest due to geographic overlaps and opportunities for contact with 175 
humans in areas of high SARS-CoV-2 prevalence globally. Our predictions contribute to a 176 
critical interdisciplinary and iterative process between computational modeling, field 177 
surveillance, and laboratory experiments that is necessary for improving zoonotic risk 178 
quantification, and to better inform next steps toward the prevention of enzootic SARS-CoV-2 179 
transmission and spread. We demonstrate our approach using the SARS-CoV-2 sequence that 180 
initially emerged in humans. These methods can be readily expanded to enable host range 181 
predictions for new variants as their hACE2-RBD crystal structures become available.  182 
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 183 
Figure 2. A flowchart showing the progression of our workflow combining evidence from limited lab and 184 
field studies with additional data types to predict zoonotic capacity across mammals through multi-scale 185 
statistical modeling (gray boxes, steps 1-5). For all vertebrates with published ACE2 sequences, we 186 
modelled the interface of species' ACE2 bound to the viral receptor binding domain using HADDOCK. We 187 
then combined the HADDOCK scores, which approximate binding strength, with species’ trait data and 188 
trained machine learning models for both mammals and vertebrates (yellow boxes). Mammal species 189 
predicted to have high zoonotic capacity were then compared to results of in vivo experiments and in 190 
silico studies that applied various computational approaches. Based on predictions from our model, we 191 
identified a subset of species with particularly high risk of spillback and secondary spillover potential to 192 
prioritize additional lab validation and field surveillance (dashed line). 193 
 194 
 195 
Methods 196 

Protein sequence and alignment  197 

We assembled a dataset of ACE2 NCBI GenBank accessions that are known human 198 
ACE2 orthologs or have high similarity to known orthologs as determined using BLASTx [73]. 199 
Using the R package rentrez and the accession numbers, we downloaded ACE2 protein 200 
sequences [74]. We supplemented these sequences by manually downloading four additional 201 
sequences from the MEROPS database [75].  202 

Structural Modeling of ACE2 orthologs bound to SARS-CoV-2 spike 203 

The modeling of all 326 ACE2 orthologs bound to SARS-CoV-2 spike receptor binding 204 
domain was carried out as described previously [13], with a few differences. Sequences of 205 
ACE2 orthologs were aligned using MAFFT [76] and trimmed to the region resolved in the 206 
template crystal structure of hACE2 bound to the SARS-CoV-2 spike (PDB ID: 6m0j, [77]. 207 
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Ambiguous positions in each sequence, artifacts of the sequencing method, were replaced by 208 
Glycine to minimize assumptions about the nature of the amino acid side-chain but still allow for 209 
modeling. For each ortholog, we generated 10 homology models using MODELLER 9.24 210 
[78,79], with restricted optimization (fastest schedule) and refinement (very_fast schedule) 211 
settings, and selected a representative model based on the normalized DOPE score. These 212 
representative models were then manually inspected and 27 were removed from further 213 
analysis due to large insertions/deletions or to the presence of too many ambiguous amino 214 
acids at the interface with spike. Each validated model was submitted for refinement to the 215 
HADDOCK web server [80], which ran 50 independent short molecular dynamics simulations in 216 
explicit solvent to optimize the interface between the two proteins . For each one of the animal 217 
species in our study, we assigned an average and standard deviation of the scores of the 10 218 
best refined models, ranked by their HADDOCK score -- a combination of van der Waals, 219 
electrostatics, and desolvation energies. A lower (more negative) HADDOCK score predicts 220 
stronger binding between the two proteins. We hereafter refer to predicted binding strength, or 221 
simply binding strength, to indicate HADDOCK score. The HADDOCK server is freely available, 222 
and we provide code to reproduce analyses or to aid in the application of this modeling 223 
approach to other similar problems (https://zenodo.org/record/4517509).  224 

Trait data collection and cleaning 225 

We gathered ecological and life history trait data from AnAge [81], Amniote Life History 226 
Database [82], and EltonTraits [83], among other databases (Supplementary Table 1; for details 227 
on data processing, see Supplementary Methods with all supplementary data, figures, methods, 228 
and tables available at https://doi.org/10.25390/caryinstitute.c.5293339). Using these data, we 229 
also engineered additional traits that have shown importance in predicting host-pathogen 230 
associations in other contexts. For example, as a measure of habitat breadth [84], we computed 231 
for each species the percentage of ecoregions it occupies. To assess the influence of sampling 232 
bias across species, we used the wosr R package [85] to count the number of studies returned 233 
in a search in Web of Science for each species’ Latin binomial and included this as a proxy for 234 
sampling bias in our model.    235 

 236 
Following the results of initial structural modeling (described above), we observed that 237 

per-residue energy decomposition analysis of HADDOCK scores for 29 species indicated that 238 
all species with strong predicted binding had in common a salt bridge between SARS-CoV-2 239 
K417 and a negatively charged amino acid at position 30 in the ACE2 sequence [13]. Given the 240 
apparent effect of amino acid 30 on overall binding strength, we constructed an additional 241 
feature to denote whether amino acid 30 is negatively charged (and therefore more likely to 242 
support strong binding) and included this feature as an additional trait in our models. 243 

Modeling 244 

 245 
Quantifying a threshold for zoonotic capacity using HADDOCK.  While ACE2 binding is 246 

necessary for viral entry into host cells, it is not sufficient for SARS-CoV-2 transmission. Multiple 247 
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in vivo experiments suggest that not all species that are capable of binding SARS-CoV-2 are 248 
capable of transmitting active infection to other individuals (e.g., cattle, Bos taurus [33]; bank 249 
voles, Myodes glareolus [56]). Viral replication, and infectious viral shedding that enables 250 
onward transmission, are both required for a species to become a suitable bridge or reservoir 251 
species for SARS-CoV-2. In order to constrain our predictions to species with the greatest 252 
potential to perpetuate onward transmission, we trained our models on a conservative threshold 253 
of binding strength (HADDOCK score = -129). This value is between the scores for two species: 254 
the domestic cat (Felis catus), which is currently the species with weakest predicted binding with 255 
confirmed conspecific transmission [86], and the pig (Sus scrofa), which shows the strongest 256 
estimated binding for which experimental inoculation failed to cause detectable infection [37]. 257 
Binding strength was binarized according to this threshold, above which it is more likely that 258 
both infection and onward transmission will occur following the results of multiple empirical 259 
studies (Table 1).  We note that there are species confirmed to be susceptible whose predicted 260 
binding strength is weaker than cats, but conspecific transmission has not been confirmed in 261 
these species. While it is likely that intraspecific transmission will be reported for additional 262 
species as the pandemic continues, the binding strength selected for this analysis represents an 263 
appropriately conservative threshold based on currently available evidence. For additional 264 
modeling details, see Supplementary Methods. 265 

Trait-based modeling to predict zoonotic capacity 266 

We applied generalized boosted regression [87] to host trait data to predict species’ 267 
binding strength to SARS-CoV-2. We applied this approach initially to all of the vertebrate 268 
species for which we estimated HADDOCK scores, but these models did not perform well. This 269 
was likely due to extensive dissimilarities among traits describing different classes of organisms. 270 
For instance, traits that are commonly measured for reptiles are different from those of interest 271 
for birds or amphibians. Moreover, currently available ACE2 sequences are dominated by ray-272 
finned fishes and mammals.  273 
 274 

Given that only mammals have so far been confirmed as both susceptible and capable 275 
of onward transmission of SARS-CoV-2, we created a separate set of models to make zoonotic 276 
capacity predictions for mammals only. For this mammal-only dataset, we gathered additional 277 
species-level traits from PanTHERIA [88] and added a series of binary fields for taxonomic 278 
order (based on [89]; Supplementary Table 2). We then applied boosted regression (BRT; gbm 279 
package [90] in R version 4.0.0 [90,91]) to impute missing trait data for mammal species (e.g., [67]; 280 
see Supplementary Methods  for details on imputation methods and results).  281 
 282 

Many of the mammals for which we found the strongest evidence of zoonotic capacity 283 
are domesticated to some degree (pets, farmed or traded animals, lab models) [11,37,53]. 284 
Relative to their ancestors or wild conspecifics, domesticated animals often have distinctive 285 
traits [92] that are likely to influence the number of zoonoses found in these species [93]. To 286 
account for trait variation due to domestication in certain species, we modeled mammals in two 287 
ways. First, we incorporated a variable indicating whether the source populations from which 288 
trait data were collected are wild or non-wild (e.g., farmed, pets, laboratory animals; non-wild 289 
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status confirmed by the Mammal Diversity Database [94]). Trait data collected from both wild 290 
and non-wild individuals were considered to represent non-wild species for the purposes of this 291 
model. In a second approach, we used only the wild species for model training and evaluation. 292 
For both approaches, pre-imputation trait values were used for all non-wild mammals during 293 
model training, evaluation, and prediction. 294 
   295 

Boosted regression (BRT) is an ensemble machine learning approach that 296 
accommodates non-random patterns of missing data, nonlinear relationships, and interacting 297 
effects among predictors. In a BRT model, a sequence of regression models are fit by recursive 298 
binary splits, with each additional regression modeling those instances that were poorly 299 
accounted for by the previous regression iterations in the tree [87]. We applied grid search to 300 
select optimal hyperparameters, and repeated model fitting 50 times using bootstrapped training 301 
sets of 80% of labeled data. We measured performance by the area under the receiver 302 
operating characteristic curve (AUC) for predictions made on the test dataset (remaining 20%), 303 
corrected by comparing with null models created by target shuffling, which employed similar 304 
bootstrapping (50 times). Detailed methods can be found in Supplementary Methods. We 305 
discuss herein the results of model predictions about zoonotic capacity made by applying this 306 
final model to all mammal species. We also report the mean and variation in predicted 307 
probabilities across all 50 bootstrapped models in Supplementary File 1. 308 

 309 
To visualize geographic patterns, we mapped the geographic ranges of mammal species 310 

predicted within the 90th percentile of zoonotic capacity for SARS-CoV-2 using International 311 
Union for the Conservation of Nature (IUCN) polygons of species distributions [95]. We subset 312 
to the species found in human-associated habitats (e.g., urban areas, crop lands, heavily 313 
degraded forests; based on IUCN 2020), and also masked their ranges to areas of high human 314 
case counts (using SARS-CoV-2 case data from the COVID-19 Data Repository at Johns 315 
Hopkins University [1]). 316 

 317 
Additional methods and results of other uninformative model variations are also 318 

described in Supplementary Methods and Supplementary Table 3 (e.g., a model in which 319 
binding strength is modeled as a continuous rather than a threshold measure, a model 320 
predicting the charge at amino acid 30, a model for all vertebrate species) 321 
(https://doi.org/10.25390/caryinstitute.c.5293339). We provide code and data files for carrying 322 
out boosted regression tree models 323 
(https://github.com/HanLabDiseaseEcology/zoonotic_capacity). Details about how the species 324 
susceptibility predictions from past studies were standardized into categories (low, medium, 325 
high; Figure 1) are also available in Supplementary Methods. 326 
 327 
 328 
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Results 329 

ACE2 host protein sequences and alignment 330 

The ACE2 protein sequence alignment of the orthologs from 326 species spans eight 331 
classes and 87 orders (https://zenodo.org/record/4517509). The majority of sequences 332 
belonged to the classes Actinopterygii (22.1%), Aves (23.3%), and Mammalia (46.6%). 333 
Sequence length ranged from 344 amino acids to 872 with a median length of 805.   334 

Structural modeling of viral binding strength  335 

We predicted binding strength for 299 vertebrates, including 142 mammals. These 336 
binding strength scores represented six classes and 80 orders and ranged between -167.816 337 
and -105.615. Across these six vertebrate classes, the strongest predicted binding between 338 
ACE2 and SARS-CoV-2 (corresponding to the lowest mean HADDOCK scores) were in ray-339 
finned fishes (Actinopterygii; mean = -137.945) and mammals (Mammalia; mean = -129.193) 340 
(Figure 3A). Four of these six classes included at least one species predicted to have stronger 341 
binding than Felis catus (Figure 3B). Among well-represented mammalian orders (those 342 
containing at least 10 species with binding strength predictions), Primates and Carnivora 343 
showed predicted mean binding strengths that were stronger than domestic cats (Figure 3C). 344 
 345 
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 346 
 347 

Figure 3. Plots showing results from modeling species’ ACE2 interaction with SARS-CoV-2 RBD using 348 
HADDOCK to predict binding strength (measured as arbitrary units). HADDOCK scores that predict 349 
stronger binding are more negative. The mean and standard deviation of the HADDOCK score for 350 
vertebrate species (A) for which ACE2 orthologs are available. Binding strengths vary across vertebrate 351 
classes (B) and across the five most speciose mammalian orders (C). The “Other” category contains 352 
species across multiple orders for which ACE2 sequences were available, each with fewer than 10 353 
representative species in the order. The shaded regions of all panels represent predicted binding that is 354 
as strong or stronger than (more negative values than) the domestic cat (Felis catus), which represents 355 
our conservative zoonotic capacity threshold based on currently available empirical evidence.  356 
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 357 

Species predictions of zoonotic capacity from trait-based machine learning models 358 

The best performing model was trained on a mammal-only dataset with trait imputation 359 
and showed corrected test AUC of 0.72 (for results of all other model variations, see 360 
Supplementary Table 3). We used this model to generate predictions of zoonotic capacity 361 
among mammal species. Citation count, as a proxy for study effort, had ~1% relative 362 
importance, suggesting that sampling bias across species had little influence on the model.   363 

This zoonotic capacity model identified 540 species (out of 5400 total mammal species) 364 
within the 90th percentile probability (0.826 or higher, compared to a total of 2,401 mammal 365 
species with prediction scores above 0.5; see Supplementary File 1 for predictions on all 5,400 366 
species, https://doi.org/10.25390/caryinstitute.c.5293339). The top 10% of species with the 367 
highest predicted probabilities includes representatives from 13 orders. Most primates were 368 
predicted to have high zoonotic capacity and collectively showed stronger viral binding 369 
compared to other mammal groups (Figure 4). Additional orders with numerous species 370 
predicted to have high zoonotic capacity (at least 75% of species above 0.5) include Hyracoidea 371 
(hyraxes), Perissodactyla (odd-toed ungulates), Scandentia (treeshrews), Pilosa (sloths and 372 
anteaters), Pholidota (pangolins), and non-cetacean Artiodactyla (even-toed ungulates) (Figure 373 
4).  374 

 375 
 376 
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 377 
 378 
Figure 4. Ridgeline plots showing the distribution of predicted zoonotic capacity across mammals. 379 
Predicted probabilities for zoonotic capacity across the x-axis range from 0 (likely not susceptible) to 1 380 
(zoonotic capacity predicted to be the same or greater than Felis catus), with the vertical line representing 381 
0.5. The y-axis depicts all mammalian orders represented by our predictions. Density curves represent 382 
the distribution of the predictions, with those parts of the curve over 0.5 colored pink and lines 383 
representing distribution quartiles. The predicted values for each order are shown as points below the 384 
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density curves. Points that were used to train the model are colored: orange represents species with 385 
weaker predicted binding, blue represents species with stronger predicted binding. Selected family-level  386 
distributions are shown in the Supplemental Figures 5-6 387 
(https://doi.org/10.25390/caryinstitute.c.5293339). 388 
 389 
 390 

Comparison of species predictions  391 

Comparing species predictions across multiple computational approaches  392 
Our model combined species traits with estimates of viral binding strength to predict 393 

zoonotic capacity, which encompasses both susceptibility to SARS-CoV-2 and the probability of 394 
onward transmission. Zoonotic capacity was defined as a threshold value based on the results 395 
of experimental studies confirming intraspecific transmission among animals, and is therefore 396 
more conservative than thresholds adopted by other studies (e.g., those based only on 397 
estimates of viral binding strength, [30]). In addition, our modeling approach (machine learning) 398 
and prediction targets (zoonotic capacity) differed compared to existing computational 399 
approaches, which applied sequence-based or structure-based analyses constrained by the 400 
small number of published ACE2 sequences. Despite these differences, comparing the species 401 
predictions generated by multiple different approaches can be useful for gauging consensus, 402 
and for comparing how species predictions change from one method to another.  403 

 404 
Across approaches, there was general agreement in the predictions for primates as well 405 

as for a select group of artiodactyls and carnivores (Figure 5). Our model results also agreed 406 
with low susceptibility predictions made by several previous studies using sequence-based 407 
approaches (e.g., in certain bats and rodents). In general, we note that structure-based models 408 
predicted a smaller proportion of species to have low susceptibility compared to sequence-409 
based studies.  410 
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 411 
Figure 5. An alluvial plot comparing predictions of species susceptibility from multiple methods. Existing 412 
studies (listed in Supplementary Methods) are categorized as either sequence-based or structure-based. 413 
Predictions from our zoonotic capacity model result from combining structure-based modeling of viral 414 
binding with organismal traits using machine learning to distinguish species with zoonotic capacity above 415 
(1) or below (0) a conservative threshold value set by domestic cats (Felis catus). Colors represent 416 
unique mammalian orders, and the width of colored bands represent the relative number of species with 417 
that combination of predictions across methods. See Supplementary Methods 418 
(https://doi.org/10.25390/caryinstitute.c.5293339) for details on how species across multiple studies were 419 
assigned to categories (high, medium, low).  420 
 421 

Comparing model predictions to in vivo outcomes 422 
Our model predictions matched the results of several recently published in vivo studies 423 

on SARS-CoV-2 infection (Figure 1). For instance, experiments on deer mice (Peromyscus 424 
maniculatus; [51,52]) and raccoon dogs (Nyctereutes procyonoides; [47]) confirmed SARS-CoV-425 
2 infection and transmission to naive conspecifics. Our model also estimated a high probability 426 
of zoonotic capacity of American mink for SARS-CoV-2 (Neovison vison, probability=0.83, 90th 427 
percentile), in which farmed individuals present severe infection from human spillback, and 428 
demonstrate the capacity to transmit to conspecifics as well as to humans [11,46]. Our model 429 
also correctly predicted relatively low zoonotic capacity for big brown bats (Eptesicus fuscus; 430 
[40]).  431 
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 432 
There were notable differences between our model results and the outcomes of some 433 

experimental studies. For instance, our model estimated a moderately high probability of 434 
zoonotic capacity for pigs (Sus scrofa, probability = 0.72, ~80th percentile). Similarly, some 435 
computational and cell-based studies have also predicted strong viral binding in this species 436 
[26,96], but in vivo studies report no detectable infection or onward transmission of SARS-CoV-437 
2 [37,53]. Similarly for cattle (Bos taurus), our model estimated a moderately high probability for 438 
zoonotic capacity (0.72, ~80th percentile), and in a live animal experiment, cattle were 439 
confirmed to be susceptible to infection but no onward transmission was observed to virus-naive 440 
conspecifics [33].  441 

 442 
 443 
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 444 
Figure 6: Maps showing the global distribution of species with predicted capacity to transmit SARS-CoV-445 
2. (A) depicts global species richness of the top 10 percent of model-predicted zoonotic capacity. 446 
Geographic ranges of this subset of species were filtered to those associated with human-dominated or 447 
human-altered habitats (B), and further filtered to show the subset of species that overlaps with areas of 448 
high human SARS-CoV-2 positive case counts (over 100,000 cumulative cases as of 17 May 2021) (C). 449 
For a full list of model-predicted zoonotic capacity of species by country, see Supplementary File 2 450 
(https://doi.org/10.25390/caryinstitute.c.5293339).  451 
 452 
 453 
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Discussion 454 

We combined structure-based models of viral binding with species-level data on 455 
biological and ecological traits to make predictions about the capacity of animal species to 456 
become zoonotic hosts of SARS-CoV-2 (zoonotic capacity). This combined modeling approach 457 
predicted zoonotic capacity with 72% accuracy, extending our predictive capacity beyond the 458 
limited number of species for which ACE2 sequences are currently available. We identified 459 
numerous mammal species whose predicted zoonotic capacity meets or exceeds the viral 460 
susceptibility and transmissibility observed in experimental infections with SARS-CoV-2. In 461 
addition to wide agreement with in vivo study results produced to date (Table 1), these model 462 
predictions corroborate the predictions of previous studies generated using the limited number 463 
of available ACE2 sequences (Figure 1). Below we discuss predictions of zoonotic capacity for 464 
a number of ecologically and epidemiologically relevant categories of mammalian hosts. 465 
 466 
Captive, farmed, or domesticated species.  Given that the type and frequency of contact with 467 
humans fundamentally underlies transmission risk, it is notable that our model predicted high 468 
zoonotic capacity for multiple captive species that have also been confirmed as susceptible to 469 
SARS-CoV-2 via experiments or natural infections. These include numerous carnivore species, 470 
such as large cats from multiple zoos and pet dogs and cats. Our model also predicted high 471 
SARS-CoV-2 zoonotic capacity for many farmed, domesticated, and live traded species. The 472 
water buffalo (Bubalus bubalis), widely bred for dairy production and farming, had the highest 473 
probability of zoonotic capacity among livestock (0.91). Model predictions in the 90th percentile 474 
also included American mink (Neovison vison), red fox (Vulpes vulpes), sika deer (Cervus 475 
nippon), white-lipped peccary (Tayassu pecari), nilgai (Boselaphus tragocamelus), and raccoon 476 
dogs (Nyctereutes procyonoides), all of which are farmed, with the latter two considered 477 
invasive species in some areas [97,98]. In addition to the risks of secondary spillover to humans 478 
and the potential for large economic losses from culling infected animals [99], the escape of 479 
farmed individuals into wild populations has implications for the spread and enzootic 480 
establishment of SARS-CoV-2 [21]. These findings also have implications for vaccination 481 
strategies, for instance, prioritizing people in regular contact with potential bridge species (e.g., 482 
veterinarians, abattoir-workers, farmers, etc).  483 
 484 
Live traded or hunted wildlife species.  The majority of the legally traded live mammals are 485 
primates and carnivores [100], and model predictions included several species from these 486 
groups. Our model predicted high zoonotic capacity in 20 out of 21 species in the primate genus 487 
Macaca, which comprise the majority of all live-traded primates. Several live-traded carnivores 488 
and pangolins were also assigned high zoonotic capacity, including the Asiatic black bear 489 
(Ursus thibetanus), grey wolf (Canis lupus), and jaguar (Panthera onca), the Philippine pangolin 490 
(Manis culionensis) and Sunda pangolin (M. javanica). Pangolins are notable because one of 491 
the betacoronaviruses with the highest sequence similarity to SARS-CoV-2 was isolated from 492 
Sunda pangolins [101,102]. Pangolin burrows are also known to be occupied by multiple other 493 
animal species, including numerous bats [103].  494 
 495 
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Commonly hunted species in the top 10% of predictions include duiker (Cephalophus 496 
zebra, West Africa), warty pig (Sus celebes, Southeast Asia), and two species of deer 497 
(Odocoileus hemionus and O. virginianus) that are widespread across the Americas. The white-498 
tailed deer (O. virginianus) was recently confirmed to be capable of transmitting SARS-CoV-2 to 499 
conspecifics via indirect contact (aerosolized virus particles) [58].   500 

 501 
Bats.  Similarly, bats are of special interest because of the high diversity of betacoronaviruses 502 
found in Rhinolophus spp. and other bat species [104–107]. Our model identified 35 bat species 503 
within the 90th percentile of zoonotic capacity for SARS-CoV-2. Within the genus Rhinolophus, 504 
our model identified the large rufous horseshoe bat (Rhinolophus rufus), a known natural host 505 
for bat betacoronaviruses [104] and a congener to three other horseshoe bats harboring 506 
betacoronaviruses with high nucleotide sequence similarity to SARS-CoV-2 (~92-96%) 507 
[6,108,109]. For these three species, our model assigned a range of probabilities for SARS-508 
CoV-2 zoonotic capacity (Rhinolophus affinis (0.58), R. malayanus (0.70), and R. shameli 509 
(0.71)) and also predicted relatively high probabilities for two congeners, Rhinolophus 510 
acuminatus (0.84) and R. macrotis (0.70). These predictions are in agreement with recent 511 
experiments demonstrating efficient viral binding of SARS-CoV-2 RBD for R. macrotis [110] and 512 
confirmation of SARS-CoV-2-neutralizing antibodies in field-caught R. acuminatus harboring a 513 
closely related betacoronavirus [111].  514 

 515 
Our model also identified 17 species in the genus Pteropus (flying foxes) with high 516 

probabilities of zoonotic capacity for SARS-CoV-2. Some of these species are confirmed 517 
reservoirs of other zoonotic viruses in Southeast Asia (e.g., henipaviruses in P. lylei, P. 518 
vampyrus, P. conspicillatus, and P. alecto). While contact patterns between bats and humans 519 
may be somewhat less direct compared with captive or farmed species, annual outbreaks 520 
attributed to viral spillover transmission from bats illustrate a persistent epizootic risk to humans 521 
[112–114] and confirm that gaps in systematic surveillance of zoonotic viruses, including 522 
betacoronaviruses, remain an urgent priority (e.g., [115]). 523 
 524 
Rodents.  Our model identified 76 rodent species with high zoonotic capacity for SARS-CoV-2, 525 
some of which thrive in human-altered settings. Among these, the deer mouse (Peromyscus 526 
maniculatus) and the white-footed mouse (P. leucopus) showed high probabilities. These are 527 
among the most well-studied mammals in North America, in part due to their status as zoonotic 528 
reservoirs for multiple zoonotic pathogens and parasites [116–118]. Experimental infection, viral 529 
shedding, and sustained intraspecific transmission of SARS-CoV-2 were recently confirmed for 530 
P. maniculatus [51,52], but similar studies have not been conducted for P. leucopus, which is 531 
widely distributed across the eastern United States and Mexico.  532 
 533 

Our model predicted low zoonotic capacity for Mus musculus (0.11), corresponding with 534 
in vivo experiments suggesting this species is not susceptible to infection by the initial human 535 
variant of SARS-CoV-2[19], although notably, more recent experiments have confirmed the 536 
susceptibility of M. musculus to two newer human-derived variants [20]. Also in the top 10% 537 
were two rodent species considered to be human commensals whose geographic ranges are 538 
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expanding due to human activities: Rattus argentiventer (0.84) and R. tiomanicus (0.79) 539 
(Supplementary File 1) [119–121]. Additional common rodent species with relatively high 540 
probabilities of zoonotic capacity include domesticated guinea pigs (Cavia porcellus), gerbils 541 
(Gerbillus gerbillus, Meriones tristrami), and several common mouse species (Apodemus 542 
peninsulae, A. flavicollis, and A. sylvaticus), all of which are known reservoirs for other zoonotic 543 
diseases [122–124]. It is notable that many of these rodent species are regularly preyed upon 544 
by carnivore species, such as the red fox (Vulpes vulpes) or domestic cats (Felis catus) who 545 
themselves were predicted to have high zoonotic capacity for SARS-CoV-2 by our model.  546 
 547 
Species with large geographic ranges.  With sufficient opportunity for infectious contact, the risk 548 
of zoonotic spillback transmission increases with SARS-CoV-2 prevalence in human 549 
populations. Among species with high model-predicted zoonotic capacity, there were several 550 
relatively common species with very large geographic ranges or synanthropic tendencies that 551 
overlap with global hotspots of COVID-19 in people (Figure 6, Supplementary File 2). Notable 552 
species that are widely distributed across much of the northern hemisphere include the red fox 553 
(Vulpes vulpes, ~50 countries), the European polecat (Mustela putorius), the raccoon dog 554 
(Nyctereutes procyonoides), stoat (Mustela erminea) and wolf (Canis lupus). White-tailed deer 555 
(Odocoileus virginianus) are among the most geographically widespread species across Latin 556 
American countries with high SARS-CoV-2 prevalence. Globally, South and Southeast Asia had 557 
the highest diversity of mammal species with high predicted zoonotic capacity for SARS-CoV-2 558 
(~90 species). Notable examples in this region include both rodents and bats. For example, 559 
Finlayson’s squirrel (Callosciurus finlaysonii) is native to Mainland Southeast Asia, but 560 
introductions via the pet trade in Europe have led to invasive populations in multiple countries 561 
[125]. Hunting has been documented for numerous bat species with geographic ranges across 562 
Southeast Asia (e.g., Cheiromeles torquatus, Cynopterus brachyotis, Rousettus 563 
amplexicaudatus, Macroglossus minimus) [126,127], and there were multiple additional bat 564 
species in the 90th percentile from Asia and Africa where bats are subject to hunting pressure 565 
and from which other betacoronaviruses have been identified [107,128]. There were also 566 
several wide-ranging species whose contact with humans are limited to specialized settings. For 567 
instance, biologists and wildlife managers handle live individuals for research purposes, 568 
including grizzly bear (Ursus arctos), polar bear (Ursus maritimus), and wolf (Canis lupus), all of 569 
which are in the 89th percentile or above for predicted zoonotic capacity to SARS-CoV-2.  570 
 571 
Other high priority mammal species.  Species with more equivocal predictions about zoonotic 572 
capacity that are in frequent contact with humans warrant further investigation. For instance, 573 
while species such as horses (Equus caballus), goats (Capra hircus), and guinea pigs (Cavia 574 
porcellus) are not in the top 10% of predicted zoonotic capacity, due to the nature of their 575 
contact with humans they may experience greater risks of spillback infection, or pose a greater 576 
risk to humans for secondary spillover infection compared to many wild species. Conversely, 577 
while certain endangered or nearly extinct species are predicted to have relatively high zoonotic 578 
capacity, they may have fewer opportunities for human contact. For species of conservation 579 
concern, spillback transmission of SARS-CoV-2 from humans presents an important source of 580 
risk [28,129], particularly for populations that are under active management, including ex situ 581 
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management such as captive breeding. These species include the scimitar-horned oryx (Oryx 582 
dammah), addax (Addax nasomaculatus), some Antarctic fauna, and mountain gorillas (Gorilla 583 
beringei) in which SARS-CoV-2 spillback infection may occur through close-proximity eco-584 
tourism activities [130,131]. Indeed, spillback transmission of SARS-CoV-2 has already been 585 
confirmed in a closely related species, the Western lowland gorilla (Gorilla gorilla) in captivity 586 
[132], leading to the vaccination of bonobos and orangutans with an experimental COVID-19 587 
vaccine [133]. These species may benefit from focused risk mitigation efforts, such as those 588 
enacted recently to protect endangered black-footed ferrets (Mustela nigripes) from potential 589 
SARS-CoV-2 spillback [134]. 590 
 591 

All fifteen species of Tupaia treeshrews were predicted by our model to have medium to 592 
high probability (ranging from 0.62 to 0.87). One species, T. belangeri, has been explored as a 593 
potential lab model for several human infectious diseases including SARS-CoV-2 [135] but 594 
relative to other treeshrews, our model assigned only medium probability for SARS-CoV-2 595 
zoonotic capacity in this species (0.67). This result matches lab studies reporting asymptomatic 596 
infection and low viral shedding in T. belangeri [54]. In contrast, the common treeshrew (T. glis) 597 
was in the 94th percentile of zoonotic capacity (0.87 probability). These two species are 598 
sympatric in parts of their range, exist in close proximity to humans, and also overlap 599 
geographically with COVID-19 hotspots in Southeast Asia, suggesting the possibility of spillover 600 
transmission among congeners if spillback transmission occurs from humans to these species. 601 

 602 
Strengthening predictive capacity for zoonoses.  While there was wide agreement between our 603 
model predictions and empirical studies, examining biases and mismatches between 604 
experimental results and model-generated predictions will focus research attention on 605 
characterizing what factors underlie the disconnects between predicted and observed zoonotic 606 
capacity. For instance, this study along with multiple other computational and experimental 607 
studies predicted that pigs (Sus scrofa) would be susceptible to SARS-CoV-2 (Figure 1), but this 608 
prediction has not been supported by results from whole animal inoculations [37,53].  609 
 610 

Disconnects between real-world observations, in vivo experimental results, and in silico 611 
predictions of zoonotic capacity may arise because host susceptibility and transmission capacity 612 
are necessary but not sufficient for zoonotic risk to be realized in natural settings. These 613 
processes are embedded in a broader ecological context that impacts host susceptibility,  intra-614 
host infection dynamics (latency, recrudescence, tolerance), and viral persistence that 615 
collectively determine where and when spillover will occur [136–139]. These processes also 616 
depend strongly on the cellular environments in which cell entry and viral replication take place 617 
(e.g., the presence of key proteases, [7]), and on host immunogenicity [139], factors which are 618 
themselves influenced by the environment [140]. Insofar as data limitations preclude perfect 619 
computational predictions of zoonotic capacity (e.g., limited ACE2 sequences, crystal structures, 620 
or species trait data), laboratory experiments are also limited in assessing true zoonotic 621 
capacity. For SARS-CoV-2 and other host-pathogen systems, animals that are readily infected 622 
in the lab appear to be less susceptible in non-lab settings (ferrets in the lab vs. mixed results in 623 
ferrets as pets [36,53,141]; rabbits in the lab vs. rabbits as pets [48,142]. Moreover, wildlife 624 
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hosts confirmed to shed multiple zoonotic viruses in natural settings (e.g., bats, [143]) can be 625 
much less tractable for whole-animal laboratory investigations (for instance, requiring high 626 
biosecurity containment and very limited sample sizes in unnatural settings). While laboratory 627 
experiments are critical for understanding mechanisms of pathogenesis and disease, without 628 
field surveillance and population-level studies they offer imperfect reflections of zoonotic 629 
capacity in the natural world.  630 

 631 
These examples illustrate that there is no single methodology sufficient to understand 632 

and predict zoonotic transmission, for SARS-CoV-2 or any zoonotic pathogen. They also 633 
demonstrate the need for improved coordination among theoretical and statistical models, lab 634 
work, and field work to improve zoonotic predictive capacity [144], and to create new linkages to 635 
underutilized data sources such as natural history collections, which are well-positioned to 636 
augment basic knowledge gaps about the spatial and temporal extents of animal hosts and their 637 
pathogens [145,146]. Integration of multiple methodologies and data streams across biological 638 
scales offers avenues to more efficient iteration between computational predictions, laboratory 639 
experiments, and targeted animal surveillance that will better link transmission mechanisms to 640 
the broader conditions underpinning zoonotic disease emergence in nature.  641 
 642 
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