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Summary1

Hippocampal place cells are activated sequentially as an animal explores its environment.2
These activity sequences are internally recreated (“replayed”), either in the same or re-3
versed order, during bursts of activity (sharp wave-ripples; SWRs) that occur in sleep and4
awake rest. SWR-associated replay is thought to be critical for the creation and mainte-5
nance of long-term memory. We sought to identify the cellular and network mechanisms6
of SWRs and replay by constructing and simulating a data-driven model of area CA3 of7
the hippocampus. Our results show that the structure of recurrent excitatory interactions8
established during learning not only determines the content of replay, but is essential for9
the generation of the SWRs as well. We find that bidirectional replay requires the inter-10
play of the experimentally confirmed, temporally symmetric plasticity rule, and cellular11
adaptation. Our model provides a unifying framework for diverse phenomena involving12
hippocampal plasticity, representations, and dynamics.13
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1 Introduction17

The hippocampal region plays a pivotal role in spatial and episodic memory (O’Keefe and18
Nadel, 1978; Morris et al., 1982). The different stages of memory processing (Marr, 1971;19
Buzsáki, 1989) are associated with distinct brain states, and are characterized by distinct20
oscillatory patterns of the hippocampal local field potential (LFP) (Buzsáki et al., 1983;21
Colgin, 2016). When rodents explore their environment, place cells of the hippocam-22
pus are activated in a sequence that corresponds to the order in which the animal visits23
their preferred spatial locations (place fields) (O’Keefe and Dostrovsky, 1971). The same24
sequences of firing activity can also be identified, on a faster time scale, during indi-25
vidual cycles of the 4-10 Hz theta oscillation that dominates the hippocampal LFP in26
this state (O’Keefe and Recce, 1993; Dragoi and Buzsáki, 2006; Foster and Wilson, 2007).27
These compressed sequences are thought to be optimal for learning via activity-dependent28
synaptic plasticity (Jensen and Lisman, 2005; Foster and Wilson, 2007).29

Other behavioral states such as slow-wave sleep and quiet wakefulness are characterized30
by the repetitive but irregular occurrence of bursts of activity in the hippocampus, marked31
by the appearance of sharp waves (Buzsáki et al., 1983; Wilson and McNaughton, 1994)32
and associated high-frequency (ripple) oscillations (O’Keefe and Nadel, 1978; Buzsáki33
et al., 1992) in the LFP. Disruption of SWRs was shown to impair long-term memory34
(Girardeau et al., 2009; Ego-Stengel and Wilson, 2010; Jadhav et al., 2012; Oliva et al.,35
2020). The activity sequences observed during exploration are also recapitulated during36
SWRs (Nádasdy et al., 1999; Kudrimoti et al., 1999; Lee and Wilson, 2002), in the absence37
of any apparent external driver, and this “replay” can happen either in the same or in a38
reversed order relative to the original behaviorally driven sequence (Foster and Wilson,39
2006; Csicsvari et al., 2007; Diba and Buzsáki, 2007; Davidson et al., 2009; Karlsson and40
Frank, 2009; Gupta et al., 2010). More specifically, awake replay is predominantly in the41
“forward” direction near choice points during navigation (Diba and Buzsáki, 2007; Pfeiffer42
and Foster, 2013), while it is mainly “backward” when the animal encounters a reward43
(Diba and Buzsáki, 2007). Consequently, while sleep replay was suggested to be involved44
in memory consolidation, forward and reverse replay in awake animals may contribute to45
memory recall and reward-based learning, respectively (Carr et al., 2011; Foster, 2017;46
Pfeiffer, 2017; Ólafsdóttir et al., 2018). Finally, behavioral tasks with a high memory47
demand led to an increase in the duration of SWRs, while artificial prolongation of SWRs48
improved memory (Fernández-Ruiz et al., 2019).49

For several decades, area CA3 of the hippocampus has been proposed to be a critical50
site for hippocampal memory operations, mainly due to the presence of an extensive set of51
modifiable excitatory recurrent connections that could support the storage and retrieval52
of activity patterns and thus implement long-term memory (Marr, 1971; McNaughton53
and Morris, 1987; Levy, 1996; Rolls, 1996; Káli and Dayan, 2000). Area CA3 was also54
shown to be strongly involved in the generation of SWRs and the associated forward and55
reverse replay (Buzsáki, 2015; Davoudi and Foster, 2019).56

Several modeling studies have addressed either theta oscillogenesis, learning, sequence57
replay or ripples; however, a unifying model of how the generation of SWRs and the58
associated neuronal activity are shaped by previous experience is currently lacking. In the59
present study, we built a simplified, yet data-driven model of the CA3 network, which,60
after learning via a symmetric spike-timing-dependent synaptic plasticity rule (Mishra61
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et al., 2016) during simulated exploration, featured both forward and backward replay62
during autonomously generated sharp waves, as well as ripple oscillations generated in63
the recurrently connected network of perisomatic interneurons. After validating the model64
against several in vivo and in vitro results (Buzsáki et al., 1992; Hájos et al., 2013; English65
et al., 2014; Schlingloff et al., 2014; Stark et al., 2014; Pfeiffer and Foster, 2015; Gan66
et al., 2017), we took advantage of its in silico nature that made feasible a variety of67
selective manipulations of cellular and network characteristics. Analyzing the changes in68
the model’s behavior after these perturbations allowed us to establish the link between69
learning from theta sequences and the emergence of SWRs during “off-line” states, to70
provide a possible explanation for forward and backward replays, and to disentangle the71
mechanisms responsible for sharp waves and ripple oscillations.72

2 Results73

To gain a mechanistic understanding of the relationship between learning during explo-74
ration and SWRs during rest, as well as the generation and role of ripple oscillation,75
we built a scaled-down network model of area CA3 of the rodent hippocampus. The76
complete network consisted of 8000 excitatory pyramidal cells (PCs) and 150 inhibitory77
parvalbumin-containing basket cells (PVBCs), corresponding roughly to the size of the78
CA3 area in a 600 micrometer-thick slice of the mouse hippocampus, which is known to79
be capable of generating SWRs (Hájos et al., 2013; Schlingloff et al., 2014). These two cell80
types are known to be indispensable to the generation of SWRs (Racz et al., 2009; Ellen-81
der et al., 2010; English et al., 2014; Schlingloff et al., 2014; Stark et al., 2014; Gulyás and82
Freund, 2015; Buzsáki, 2015; Gan et al., 2017). All neurons in the network were modeled83
as single-compartment, adaptive exponential integrate-and-fire (AdExpIF) models whose84
parameters were fit to reproduce in vitro voltage traces of the given cell types in response85
to a series of step current injections (Methods, Supplementary Figure S2). Connections86
of all types (PC-PC, PC-PVBC, PVBC-PC, PVBC-PVBC) were established randomly87
using connection type-specific probabilities estimated from anatomical studies.88

Simulations of the network were run in two phases corresponding to spatial explo-89
ration and “off-line” hippocampal states (slow-wave sleep and awake immobility), respec-90
tively. During the exploration phase, the spiking activity of PCs was explicitly set to91
mimic the firing patterns of a population of place cells during simulated runs on a linear92
track, and the recurrent connections between PCs evolved according to an experimentally-93
constrained, spike-timing-dependent plasticity (STDP) rule (see below). In the subse-94
quent off-line phase, we recorded the spontaneous dynamics of the network in the absence95
of structured external input (or plasticity), analyzed the global dynamics (including av-96
erage firing rates and oscillations), and looked for the potential appearance of sequential97
activity patterns corresponding to the previous activation of place cells during exploration,98
often referred to as “replay”. The main features of the model are summarized in Figure 1.99
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Figure 1: Overview of learning and the spontaneous generation of SWRs and se-
quence replay in the model. (A) Tuning curves (eq. (1)) of exemplar place cells covering
the whole 3 m long linear track. (B) Broad, symmetric STDP kernel used in the learning phase.
The time constant was fit directly to experimental data from Mishra et al. (2016). (C) Learned
excitatory recurrent weight matrix. Neurons are ordered according to the location of their place
fields. Actual dimensions are 8000*8000 (including PCs with no place fields in the environment)
but, for better visualization, each pixel shown represents the average of an 80*80 square. (D)
PC raster plot is shown in the top panel, color-coded and ordered as the place fields in (A).
PC population rate (middle), and LFP estimate (bottom panel), corresponding to the same time
period. (E) Posterior matrix of the decoded positions from spikes within the high activity period
shown in (D). Gray lines indicate the edges of the decoded, constant velocity path.

2.1 Recurrent weights are learned during exploration via a sym-100

metric STDP rule101

During exploration, half of the PCs had randomly assigned, overlapping place fields in102
the simulated environment, characterized by Gaussian spatial tuning curves, whereas the103
others fired at low rates in a spatially non-specific manner (Methods, Figure 1A). During104
simulated unidirectional runs along a 3 meter-long linear track, these tuning curves, mod-105
ulated by theta oscillation and phase precession, gave rise to generated spike trains similar106
to those observed for real place cells under similar conditions (Methods, Supplementary107
Figure S1). The simulated spike trains served as inputs for STDP, which was characterized108
by the broad, symmetric kernel observed in pairs of CA3 PCs recorded in hippocampal109
slices (Figure 1B) (Mishra et al., 2016). The anatomical connectivity of PCs was sparse110
and random, assuming 10% PC-PC connection probability (Lisman, 1999; Andersen et al.,111
2007), and only these pre-existing connections were allowed to evolve (Methods).112

The most prominent feature of the learned recurrent excitatory synaptic weight matrix113
was its highly organized structure (Figure 1C). Relatively few strong (> 1 nS) synapses114
near the diagonal (representing pairs of cells with overlapping place fields) emerged from115
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a background of much weaker connections. Similar symmetric weight structures have116
been used in continuous “bump” attractor models of various neural systems such as head117
direction cells, place cells, and parametric working memory (Zhang, 1996; Samsonovich118
and McNaughton, 1997; Káli and Dayan, 2000; Compte et al., 2000). In these studies, the119
weights were typically either imposed or learned using rate-based (not STDP) learning120
rules, and led to stationary patterns of activity in the absence of external input. By121
contrast, previous spiking neuron models of sequence learning used temporally asymmetric122
STDP rules, resulting in a weight structure dominated by feedforward chains (each neuron123
giving the strongest input to other neurons which follow it in the spatial sequence), and124
sequential activity patterns that follow these chains of strong connections (Jahnke et al.,125
2015; Chenkov et al., 2017). In order to reveal the combined effect of learned, essentially126
symmetric connections and realistic cell-type-specific neuronal spike responses, we next127
explored the spontaneously generated activity patterns in our full network model.128

2.2 The dynamics of the network model reproduce key features129

of SWRs and replay130

The sparse recurrent excitatory weight matrix resulting from the phenomenological explo-131
ration (Figure 1C) was used directly in network simulations mimicking resting periods, in132
which (with the exception of the simulations shown later in Figure 2C) PCs received only133
spatially and temporally unstructured random synaptic input. The maximal conductances134
of the other types of connections in the network (the weights of PC-PVBC, PVBC-PC,135
and PVBC-PVBC connections as well as the weight of the external random input) were136
optimized using an evolutionary algorithm with network-level objectives, which included137
physiological PC population firing rates, suppressed gamma oscillation in the PC popu-138
lation and strong ripple oscillation in the PVBC population (see Methods for details).139

Spontaneously generated activity in the network consisted of alternating periods of low140
activity (mean PC rates below 1 Hz) and high activity (mean PC rates around 3.5 Hz),141
which resembled the recurring appearance of sharp wave events during slow-wave sleep142
and quiet wakefulness (Figure 2A). Similar to experimental sharp waves, high-activity143
events in the model were accompanied by transient oscillations in the ripple frequency144
range (Figure 2B) (Buzsáki, 1986; Buzsáki et al., 1992; Foster and Wilson, 2006; Buzsáki,145
2015). We calculated an estimate of the LFP by summing the synaptic inputs of a small,146
randomly selected subset of PCs (Mazzoni et al., 2008), and found that ripple oscillations147
were reliably present in this signal during the high-activity periods (Figure 1D, Figure148
2B).149

When we plotted the spike times of all PCs with place cells ordered according to the150
location of their place fields on the track during the learning phase, it became clear that151
place cell sequences were replayed during simulated SWRs, while activity had no obvious152
structure in the low-activity periods between SWRs (Figure 2A). Interestingly, replay of153
place cell sequences could occur in either the forward or the backward direction relative to154
the order of activation in the learning phase (Figure 2A). These qualitative observations155
were confirmed by analysing sequence replays with a Bayesian place decoding and path156
fitting method, using spatial tuning curves introduced for spike train generation in the157
exploration part (Methods, Figure 1E) (Davidson et al., 2009; Karlsson and Frank, 2009;158
Ólafsdóttir et al., 2018). Interestingly, our network model also reproduced the broad,159
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long-tailed step size distribution in the sequence of decoded locations during SWRs, as160
observed experimentally by Pfeiffer and Foster (2015) (Supplementary Figure S3).161

It was also possible to “cue” replay, by giving an additional external stimulation to a162
small subpopulation (n = 100) of PCs which had overlapping place fields in the learned163
environment. In this case, sequence replay started at the location corresponding to the164
cells which received extra stimulation (Figure 2C). This feature may explain why awake165
replay tends to be forward when the animal is planning a trajectory from its current166
location, and backward at the goal location.167

At the level of single cells, we found that both PCs and PVBCs received approxi-168
mately balanced excitation and inhibition during SWR events, and inhibitory currents169
were modulated at the ripple frequency in these periods (Supplementary Figure S4C).170
Excitatory inputs dominated between SWRs, and during the initiation of SWR events.171
Only a small minority of PCs fired in individual ripple cycles, while the participation of172
PVBCs was much higher (but not complete), resulting in a mean PVBC firing rate of173
∼65 Hz during the SWRs, which is much higher than their baseline rate, but significantly174
below the ripple frequency (Supplementary Figure S4A, B). All of these findings were175
consistent with experimental results in vitro (Hájos et al., 2013; Schlingloff et al., 2014)176
and in vivo (English et al., 2014; Hulse et al., 2016; Gan et al., 2017). On the other hand,177
we note that the single cell firing rate distribution of place cells was close to normal in the178
model (Supplementary Figure S4A1), different from the lognormal distribution reported179
in vivo (Mizuseki and Buzsáki, 2013).180

2.2.1 SWRs and replay are robust when recurrent excitation is varied181

To show that our network model reproduces the wide range of experimental findings182
presented above in a robust manner, we ran a sensitivity analysis of several parameters.183
We started by studying the effects of the recurrent excitatory weights, which are the184
link between exploratory and resting dynamics. To this end, we ran simulations with185
systematically up- and downscaled PC-PC weights, and automatically evaluated various186
features of the network dynamics, such as population-averaged firing rates, the presence187
of sequence replay, as well as significant peaks in the ripple frequency range in the power188
spectra as shown before (Methods, Figure 3). The network with PC-PC weights multiplied189
by 0.8 displayed a low-activity, noisy state with severely reduced mean PC firing rate,190
no sequence replay, and no clear oscillation (Figure 3A1). At the 0.9 multiplier level191
sequence replays started to appear, but were less frequent than in the baseline model192
(Figure 3A2). As the PC-PC synaptic weights were scaled up, sequence replays became193
faster (completed in a shorter time) and occurred more often (Figure 3A3), a behavior194
which was stable and realistic up to the 1.5 multiplier level. Ripple oscillations had higher195
power and appeared at lower multiplier levels in the PVBC population than in the PC196
population (Supplementary Figure S5), suggesting that they originate from the PVBCs197
and propagate to the PCs, in agreement with theories based on experimental findings198
(Buzsáki et al., 1992; Ylinen et al., 1995; Racz et al., 2009; Schlingloff et al., 2014; Stark199
et al., 2014; Gan et al., 2017).200
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Figure 2: Forward and backward replay events, accompanied by ripple oscillations,
can occur spontaneously but can also be cued. (A) PC raster plot of a 10-second long
simulation, with sequence replays initiating at random time points and positions and propagating
either in forward or backward direction on the top panel. PC population firing rate is plotted
below. Dashed vertical black lines indicate the periods marked as sustained high activity states
(above 2 Hz for at least 260 ms) which are submitted to automated spectral and replay analysis.
(B) Estimated LFP in the top panel and its time-frequency representation (wavelet analysis)
below. (C) Forward and backward sequence replays resulting from targeted stimulation (using
200 ms long 20 Hz Poisson spike trains) of selected 100 neuron subgroups, indicated by the black
rectangles in the raster plots. (C1) Example of cued forward replay. PC raster plot is shown at
the top with PC population rate, LFP estimate, and its time-frequency representation (wavelet
analysis) below. (C2) Same as (C1), but different neurons are stimulated at the beginning,
leading to backward replay.
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2.2.2 Multiple environments can be learned and replayed201

Next we showed that it is possible to store the representations of multiple environments202
in the weight matrix, and this change does not fundamentally alter the network dynamics203
(Figure 4). In particular, we simulated experience and STDP-based learning in two linear204
environments with a different but overlapping random set of place cells (Figure 4A). The205
resulting population-level dynamics was quite similar to the one following experience in a206
single environment, but, during each SWR event, a place cell sequence from either one or207
the other environment was reactivated (Figure 4B, C). Learning two sequences with the208
same additive symmetric (non-decreasing) STDP rule led to stronger PC-PC synapses on209
average (Figure 4A4), which resulted in a higher overall mean PC rate (Figure 4B, D).210
As a consequence, detectable sequence replays and significant ripple oscillations appeared211
at lower PC-PC weight multiplier levels (Figure 4D).212

2.3 Manipulating the model reveals mechanisms of sharp wave-213

ripple generation and sequence replay214

2.3.1 Symmetric STDP rule is necessary for bidirectional replay215

Our network model, equipped with structured recurrent excitation resulting from learning,216
was able to robustly reproduce recurring sharp wave events accompanied by bidirectional217
sequence replay and ripple oscillations. Next, we set out to modify this excitatory weight218
matrix to gain a more causal understanding of how the learned weight pattern is related219
to the emergent spontaneous dynamics of the network.220

First, in order to gauge the significance of the experimentally determined symmetric221
STDP rule, we changed the STDP kernel to the classical asymmetric one that characterizes222
many other connections in the nervous system (Figure 5A-C) (Bi and Poo, 1998; Gerstner223
et al., 2014). In this case, the learned weight matrix was reminiscent of the feedforward224
chains that characterized several of the earlier models of hippocampal replay (Jahnke225
et al., 2015; Chenkov et al., 2017; Theodoni et al., 2018). We found that this weight226
structure also supported the generation of SWR events and the reactivation of learned227
sequences in our model; however, crucially, sequence replays occurred only in the forward228
direction (Figure 5D, E). Theodoni et al. (2018) presented a thorough analysis of the229
relationship between the shape of the plasticity kernel and the sequence replay in a rate230
based model, and thus we shifted our focus towards different modifications.231

2.3.2 The structure rather than the statistics of recurrent excitatory weights232
is critical for SWRs233

Inspired by the observation that many network-level properties, such as single PC firing234
rates, burst index, and participation in SWR events, follow a skewed, lognormal distri-235
bution in vivo (Mizuseki and Buzsáki, 2013), Omura et al. (2015) built a network model236
with recurrent excitatory weights following a lognormal distribution. Their network with237
unstructured, but lognormally distributed recurrent synaptic strengths reproduced most238
of the in vivo observations of Mizuseki and Buzsáki (2013); however, no sequence replay or239
ripple oscillation was involved. In the network presented here, the distribution of PC-PC240
weights is the result of the application of STDP on the generated spike trains and does not241
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Figure 4: Two distinct environments can be learned and replayed by the network.
(A) Learned excitatory recurrent weight matrices. (A1) Weights after learning the first environ-
ment. Note that the matrix appears random because neurons are arranged according to their
place field location in the second environment, which has not been explored at this point. (A3)
Weights after learning in the second environment. (A2) and (A4) distribution of non-zero synap-
tic weights in the learned weight matrices in (A1) and (A2) respectively. (B) PC raster plots: in
the top panel neurons are ordered and colored according to the first environment; in the middle
panel neurons are ordered and colored according to the second environment; and PC population
rate is shown at the bottom (see Figure 2A) from a simulation run with 0.9* the modified weight
matrix shown in (A3).
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Figure 4: (C) Posterior matrices of decoded positions from spikes (see Figure 1E) within a
selected high activity state (8th and 10th from (B)). From left to right: decoding of replay in 1st
environment (8th event from (B)) according to the first (significant) and second environment;
decoding of replay in second environment (10th event from (B)) according to the first and second
(significant) environment. (D) Analysis of selected network dynamics indicators across different
E-E weight scaling factors (0.7-1.1) as in Figure 3 (B).
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Figure 5: Learning with an asymmetric STDP rule leads to the absence of backward
replay. (A) Asymmetric STDP kernel used in the learning phase. (B) Learned excitatory
recurrent weight matrix. (C) Distribution of non-zero synaptic weights in the weight matrix
shown in (B). (D) PC raster plot on top and PC population rate at the bottom (see Figure 2
(A) from a simulation run with the weight matrix shown in (B). (E) Posterior matrix of the
decoded positions from spikes (see Figure 1 (E) within a selected high activity state (6th one from
(D)). (F) Analysis of selected network dynamics indicators across different E-E weight scaling
factors (0.8-1.2) as in Figure 3 (B).

strictly follow a lognormal distribution, although it has a similar long tail (Figure 6D2).242
In order to establish whether the overall distribution or the fine structure of the weights243
is the key determinant of neural dynamics in our model, we performed two more drastic244
perturbations of the recurrent weight matrix itself, starting from the version established245
in the learning phase.246
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Our first perturbation kept the structure of the interactions and the overall mean247
weight intact, but completely changed the distribution of the weights. This was achieved248
by binarizing the values of the learned weight matrix. Specifically, we divided weights249
into two groups, the strongest 3% and the remaining 97%, and set each weight in both250
groups to the group average (Figure 6A). Using the modified recurrent synapses between251
the PCs in the network, we observed extremely similar behaviour to our baseline network:252
sequence replays in both directions, always accompanied by ripple oscillation, with only253
a small change in the required multiplier for the PC-PC weights (Figure 6B, C).254

The second modification kept the same overall weight distribution and even the ac-255
tual values of the outgoing weights for all neurons, but destroyed the global structure of256
synaptic interactions in the network. To this end, we randomly shuffled the identity of the257
postsynaptic neurons (by shuffling the columns of the weight matrix). Strong synapses258
were not clustered anymore along the diagonal (representing interactions between neurons259
with nearby place fields), but distributed homogeneously within the matrix (Figure 6D1).260
None of the networks equipped with the scaled versions of this shuffled weight matrix261
exhibited sequence replay, mean PC rates were severely reduced, and no sharp wave-like262
events were observed (Figure 6E, F). On the other hand, with sufficiently amplified (*3.5)263
PC-PC weights we detected significant peaks in the ripple frequency range of the LFP264
(Figure 6F).265

Taken together these modifications suggest that, unlike in the model of Omura et al.266
(2015), the distribution of the excitatory recurrent synaptic weights is neither necessary267
nor sufficient for the observed physiological population activity in our model. In other268
words, our simulation results suggest that the fine structure of recurrent excitation not269
only enables coding (sequence replay), but also has a major effect on the global average270
network dynamics (firing rates, sharp waves and ripple oscillations) in hippocampal area271
CA3.272

2.3.3 Cellular adaptation is necessary for replay273

As mentioned earlier, most previous models with symmetrical local excitatory interac-274
tions and global feedback inhibition functioned as “bump attractor” networks, in which275
the dynamics converge to stable patterns of activity involving high rates in a group of276
neurons with similar tuning properties (adjacent place fields), and suppressed firing in277
the rest of the excitatory population (Zhang, 1996; Samsonovich and McNaughton, 1997;278
Káli and Dayan, 2000; Compte et al., 2000). Recent work with rate-based models has279
also shown that these “stable bumps” can be transformed into “traveling bumps” by the280
introduction of short-term depression (York and van Rossum, 2009; Romani and Tsodyks,281
2015; Theodoni et al., 2018) or spike threshold adaptation (Itskov et al., 2011; Azizi et al.,282
2013). On the other hand, previous spiking models of sequence learning and recall/replay283
typically relied on temporally asymmetric learning rules and the resulting asymmetric284
weight matrices to ensure that neurons are reactivated in the same sequence as during285
learning (Jahnke et al., 2015; Chenkov et al., 2017), which is also why it is difficult for286
these models to capture bidirectional replay. By contrast, our model uses the experimen-287
tally recorded symmetric STDP rule, which results in symmetrical synaptic interactions288
(although only at the population level rather than the single neuron level, due to the ran-289
domness of connectivity). Since our network generated a bump of activity that traveled290
unidirectionally in any given replay event rather than a “stable bump”, we hypothesized291
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Figure 6: Altering the structure of recurrent excitatory interactions changes the
network dynamics but altering the weight statistics has little effect. (A1) Binarized
(largest 3% and remaining 97% non-zero weights averaged separately) recurrent excitatory weight
matrix. (Derived from the baseline one shown in Figure 1 (C).) (A2) Distribution of non-zero
synaptic weights in the learned weight matrix shown in (A1). (B) PC raster plot on top and
PC population rate at the bottom (see Figure 2A) from a simulation ran with 1.1* the binarized
weight matrix shown in (A). (C) Analysis of selected network dynamics indicators across different
E-E weight scaling factors (0.9-1.3) as in Figure 3 (B). (D1) Column-shuffled recurrent excitatory
weight matrix. (Derived from the baseline one shown in Figure 1 (C).) (D2) Distribution of non-
zero synaptic weights in the weight matrix shown in (D1) (identical to the distribution of the
baseline weight matrix shown in Figure 1 (C)). (E) PC raster plot on top and PC population rate
at the bottom from a simulation run with the shuffled weight matrix shown in (D1). (F) Analysis
of selected network dynamics indicators across different E-E weight scaling factors (1.0-4.0) as
in Figure 3 (B). Note the significantly extended horizontal scale compared to other cases.

that the cellular-level adaptation that characterized CA3 PCs and was also captured by292
our model may destabilize stable bumps and lead to their constant movement.293

To test this hypothesis, we re-fitted our single-cell data on PC responses to current294
injections using a modified ExpIF model which did not contain any adaptation mech-295
anism (but was otherwise similar to the baseline model). Although the non-adapting296
ExpIF model provided a reasonably good fit to our single-cell data (Figure 7A), and the297
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weights resulting from learning were identical to the baseline case, the spontaneous net-298
work dynamics was completely different: there was no sequence replay for any scaling of299
the recurrent PC-PC weights; instead, when structured activity emerged from the random300
background, it was in the form of a stationary rather than a moving bump (Figure 7B).301
Therefore, it was the combination of a symmetric learning rule with cellular adaptation302
that created the possibility of bidirectional replay in our network model.303
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Figure 7: Sequential replay requires firing rate adaptation in the PC population.
(A) Voltage traces of fitted AdExpIF (blue) and ExpIF (gray) PC models and experimental
traces (red) are shown in the top panel. Inserts show the fI curves of the in vitro (red) and in
silico cells. The amplitudes of the 800 ms long step current injections shown at the bottom were
as follows: -0.04, 0.15 and 0.6 nA. For parameters of the cell models see Table 2. (B) PC raster
plot of a 10-second long simulation with the ExpIF PC models, showing stationary activity in
the top panel. PC population rate is shown below.

2.3.4 Ripple oscillations are generated by the recurrently coupled inhibitory304
population305

From the weight matrix modifications, we also learned that ripple oscillations can be dis-306
entangled from sequence replays, and only require sufficient drive to the interconnected307
PVBC population in our model (Figure 6F). The same conclusion was reached by re-308
cent experimental studies in vivo (Stark et al., 2014) and in vitro (Ellender et al., 2010;309
Schlingloff et al., 2014). To further investigate the generation of ripples in our model, we310
simulated and analyzed two additional modified versions of the full network.311

First, we disconnected the PVBC network from the PCs and replaced the PC input312
with independent Poisson synaptic input at rates derived from the firing of the PC pop-313
ulation during SWRs in the full simulation (Figure 8A, B). In this simplified, recurrently314
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connected, purely PVBC network we systematically scanned different values of PC input315
rate and PC-PVBC synaptic weight and measured ripple power as well as the frequency316
of any significant ripple oscillation as in the full network before (Figure 8A, B). We found317
that ripple oscillations emerged when the net excitatory drive to PVBCs (which is pro-318
portional to the product of the incoming weight and the presynaptic firing rate) was319
sufficiently large. Above this threshold, the properties of the oscillation depended only320
mildly on the strength of the input (e.g., the frequency of the oscillation increased mod-321
erately with increasing drive), and the firing of PVBCs was synchronized mainly by the322
decay of inhibitory synaptic current evoked by shared input from their peers.323

Several experiments have shown that local application of GABA blockers eliminates324
ripples (Maier et al., 2003; Ellender et al., 2010; Schlingloff et al., 2014; Stark et al.,325
2014); however, in an experimental setup it is hard to distinguish feedback inhibition326
(PVBC-PC) from reciprocal inhibition (PVBC-PVBC). As a final perturbation, we mod-327
ified the full baseline model by eliminating only the recurrent inhibitory synapses (Figure328
8C, D). The resulting dynamics were stable and with enhanced (*1.3) PC-PC weights it329
also displayed sequence replay, but ripple oscillations were never observed (Figure 8D).330
Taken together, these results support the conclusions of previous modeling (Brunel and331
Wang, 2003; Geisler et al., 2005; Taxidis et al., 2012; Donoso et al., 2018; Ramirez-Villegas332
et al., 2018) as well as experimental studies (Buzsáki et al., 1992; Ylinen et al., 1995; Racz333
et al., 2009; Ellender et al., 2010; Schlingloff et al., 2014; Stark et al., 2014; Gulyás and334
Freund, 2015; Gan et al., 2017) proposing that ripple oscillations are generated in strongly335
driven, recurrently connected inhibitory networks by the fast inhibitory neuronal oscilla-336
tion (FINO) mechanism. In fact, recurrent inhibitory connections were both necessary337
and sufficient for the generation of ripple oscillations in our model.338

3 Discussion339

Using a data-driven network model of area CA3 of the hippocampus which reproduces the340
main characteristics of SWRs, we examined the link between learning during exploration341
and the network dynamics in resting periods. Our principal findings from analyzing and342
manipulating this model are as follows: (1) structured (learned) recurrent excitation in343
the CA3 region not only enables coding and memory, but is critical for the generation344
of SWRs as well; (2) the symmetric STDP rule described by Mishra et al. (2016), in345
combination with cellular adaptation in CA3 PCs, provides an explanation for the co-346
existence of forward and reverse replays; (3) the pattern of strong connections in the347
network rather than the overall weight statistics may be critical for the emergence and348
key properties of SWRs and replay in area CA3; (4) ripple oscillations are generated in349
the strongly driven, recurrently connected network of fast-spiking PVBCs by the FINO350
mechanism (Schlingloff et al., 2014) (also known as PYR-INT-INT (Stark et al., 2014;351
Buzsáki, 2015; Ramirez-Villegas et al., 2018)).352
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Figure 8: Generation of ripple oscillations relies on recurrent connections within
the PVBC population. (A) Significant ripple frequency (A1) and ripple power (A2) of a
purely PVBC network, driven by (independent) spike trains mimicking PC population activity.
Gray color in (A1) means no significant ripple peak. (B) From top to bottom: Raster plot,
mean PVBC rate, voltage trace (of a selected cell), EPSCs and IPSCs of the selected cell from
the middle (100 ms long window) of a simulation used for (A). Ripple frequency and power
corresponding to this simulation are marked with a black rectangle in (A1) and (A2). (C)
PC raster plot on top and PC population rate at the bottom from a simulation ran with a
network without any PVBC-PVBC synapses featuring stochastic forward and backward replays
but no ripple oscillation (see below). (D) Analysis of selected network dynamics indicators across
different E-E weight scaling factors (0.8-1.6) as in Figure 3 (B).
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3.1 Connections of sharp waves, sequence replay and ripple os-353

cillations354

SWRs represent the most synchronous physiological activity pattern with the largest ex-355
citatory gain in the mammalian brain (Buzsáki et al., 1983, 1992; Buzsáki, 1989, 2015).356
Under normal conditions, ripples are typically observed riding on top of naturally emerg-357
ing sharp waves. More recently, using optogenetics, Schlingloff et al. (2014) and Stark358
et al. (2014) managed to decouple ripples from sharp waves by directly activating the359
interconnected network of PVBCs. Our in silico results perfectly parallel this work:360
without drastic, non-physiological modifications of the model ripples were always tied to361
sequence replay, which was in turn associated with bouts of increased spiking activity in362
the network (the sharp waves). When we separated the BC network, we found that a363
relatively high (> 2 Hz) mean firing rate in the PC population was required for induc-364
ing ripple oscillation, a condition that was satisfied only during sharp wave events and365
the associated sequence replay in our full baseline network. When the PC population366
reaches this frequency after a stochastically initiated buildup period, the strongly driven,367
high-frequency firing of PVBCs is synchronized and phase-locked via reciprocal inhibition.368
Thus, the learned recurrent PC-PC synaptic weights are responsible for coding, govern369
sequence replay and, by giving rise to high PC activity during the replay, they also cause370
the ripples. In summary, memory storage and recall, as well as the main hippocampal371
oscillations and transient activity patterns, are intimately interconnected in our unifying372
model.373

3.2 Biological plausibility of the model374

The network model presented here was constrained strongly by the available experimental375
data. Many cellular and synaptic parameters were fit directly to in vitro measurements,376
and most functional parameters correspond to in vivo recordings of hippocampal place377
cells. Nevertheless, there are certainly many biological features that are currently missing378
from our model. We do not see this as a major limitation of our study, as our goal was379
to provide a mechanistic explanation for a core set of phenomena by identifying the key380
underlying biological components and interactions. On the other hand, our model can381
be systematically refined and extended, especially when new experimental data become382
available.383

The main assumptions we made when constructing the model are explicitly stated in384
Table 1. Here we briefly discuss some of these assumptions, as well as some remaining385
discrepancies between our simulation results and the corresponding experimental data.386

The 10% PC-PC connection probability is based on the classical viewpoint that con-387
siders the CA3 region as a highly interconnected network (Lisman, 1999; Andersen et al.,388
2007). Although a recent physiological study Guzman et al. (2016) estimated < 1% con-389
nection probability in 400 µm thick slices, the authors concluded from “virtual slicing”390
experiments that recurrent axons were substantially reduced. This is in agreement with391
Li et al. (1994), who reported at least 70% axonal loss in 400 µm slices. Thus, the in vivo392
connection probability is likely to be considerably higher than 1%.393

Our model network contained 8000 PCs and 150 PVBCs, which is rather small com-394
pared to the full rodent CA3 region. While in vitro studies suggest that this network395
size is sufficient for the generation of SWRs, and that these two cell types are the key396
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players in this process (Hájos et al., 2013; Schlingloff et al., 2014), it is likely that the397
much larger network size and the various additional cell types modify the quantitative398
aspects of SWRs in vivo.399

One substantial difference between SWRs in the model and those recorded in vivo is400
the duration of the SWR events and the associated replay. Ripple episodes typically last401
40-100 ms in vivo (O’Keefe and Nadel, 1978; Buzsáki et al., 1983, 1992; Ylinen et al., 1995),402
although Fernández-Ruiz et al. (2019) recently showed that learning in spatial memory403
tasks is associated with prolonged SWRs and replays. In our model, SWRs can be up to404
800 ms in duration as they are terminated when the replayed sequence reaches either the405
end or the beginning of the learned trajectory (depending on the direction of replay), thus406
the length of the track determines the maximal duration of the SWR, in combination with407
the speed of replay (i.e., the rate at which activation propagates across the population of408
place cells). The speed of replay in the model is consistent with experimental findings, but409
a single replay event can cover the whole 3m-long track. Davidson et al. (2009) also used410
a long track in their experiments; however, they reported that the whole path was never411
replayed during a single SWR, only short segments, which combined to cover the whole412
track over multiple SWRs. Therefore, it appears likely that our simplified model lacks413
some additional mechanisms that contribute to the termination of individual SWRs in the414
experiments. For example, building on the work of York and van Rossum (2009), some415
rate-based models of sequence replay in a circular environment (Romani and Tsodyks,416
2015; Theodoni et al., 2018) included short-term synaptic depression as a mechanism417
for terminating replay. However, Guzman et al. (2016) found pseudo-linear short-term418
plasticity profiles for the recurrent PC-PC connections at physiological temperatures (al-419
though depression was present in recordings at room temperature). Moreover, PCs in our420
simulations typically fired single spikes at relatively low rates rather than bursts during421
SWRs (which is similar to the in vitro observations of Schlingloff et al. (2014) but in con-422
trast to the in vivo results of (Mizuseki and Buzsáki, 2013)), which rules out short-term423
synaptic plasticity as a key termination mechanism in our model. Another possibility is424
that an additional cell type that is not currently included in our model is responsible for425
the termination of SWR events. This explanation was supported by some exploratory426
simulations where we found that the duration of SWRs could be controlled by a second427
type of interneuron that provided delayed, long-lasting feedback inhibition to the PCs in428
the model.429

3.3 Previous models of sharp wave-ripples and sequence replay430

In this study, our main objective was to build a simplified, yet powerful model of area431
CA3 that is strongly constrained by experimental data at all levels, and thus allows432
us to uncover the mechanistic links between learning, neural population dynamics, and433
the representation of spatial (or other) sequences in the hippocampus during different434
behavioral states. Although there is a plethora of hippocampal models that shed light on435
some of these aspects (these models have been recently reviewed (Buzsáki, 2015; Jahnke436
et al., 2015) and are also cited when relevant throughout the Results section), there are437
only a handful of recent models that attempted to treat all of them within a single coherent438
framework.439
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The study of Jahnke et al. (2015) is probably the most similar in spirit to ours, as440
it also explores the relationship between learning, replay, and SWRs. One distinguishing441
feature of their model is that it relies on the nonlinear amplification of synaptic inputs442
by dendritic spikes in CA3 PCs for the generation of both sequential activity and ripple443
oscillations (Memmesheimer, 2010). Importantly, replay always occurs in the forward444
direction in their model, as it relies on feed-forward chains of strong weights in the network,445
established by an asymmetric STDP rule that is quite distinct from the one that was later446
found empirically by Mishra et al. (2016). In addition, the generation of ripple oscillations447
in their model relies on synchronized pulses of activity generated by interconnected PCs,448
while recent experimental findings appear to provide causal evidence for the involvement of449
fast-spiking PVBCs in ripple frequency oscillation generation (Racz et al., 2009; Ellender450
et al., 2010; English et al., 2014; Schlingloff et al., 2014; Stark et al., 2014; Gulyás and451
Freund, 2015; Buzsáki, 2015; Gan et al., 2017). Finally, SWRs need to be evoked by452
synchronous external input in the model of Jahnke et al. (2015), while they can also453
emerge spontaneously in our model.454

Malerba and Bazhenov (2019) developed a combined model of areas CA3 and CA1455
to study the generation of sharp waves in CA3 and associated ripple oscillations in CA1.456
This model relies on distance-dependent connection probabilities in the network for the457
generation of spatially localized SWR events. The study shows that modifying the recur-458
rent excitatory weights via an asymmetric STDP rule during a simulated learning epoch459
biases the content of SWRs towards the (forward) reactivation of learned trajectories.460
Ripple oscillations are modeled only in CA1 and, in contrast to our model (and the mod-461
els of Taxidis et al. (2012); Donoso et al. (2018); Ramirez-Villegas et al. (2018)), their462
generation is independent of recurrent inhibition.463

A notable recent example of functionally motivated (top-down) modeling of these464
phenomena is the study of Nicola and Clopath (2019). The authors designed and trained465
(using supervised learning methods) a network of spiking neurons to generate activity466
sequences that were either tied to the population-level theta oscillation, or occurred spon-467
taneously in isolation (in a compressed manner), depending on the presence or absence468
of an external theta-frequency input. Interestingly, these results were achieved by tuning469
specifically the inhibitory weights in the network, while all other models (including ours)470
rely on plasticity in the recurrent excitatory synapses. Their model produced forward471
replay of sequences by default; however, sequences could be reversed by the activation of472
a distinct, dedicated class of interneurons.473

To our best knowledge, ours is the first model that autonomously generates SWRs474
and replay in a spiking network model using synaptic weights established via the exper-475
imentally observed symmetric STDP rule. The model of Haga and Fukai (2018) used476
symmetric STDP (in combination with short-term plasticity) to modify an existing (pre-477
wired) weight structure, and showed that these changes biased evoked activity sequences478
towards reverse replay. Neither spontaneous sharp-waves nor ripple oscillations were ob-479
served in this model.480

We believe that our approach of fitting the parameters of our single cell models directly481
to experimental data to mimic the physiological spiking behavior of real PCs and PVBCs is482
also quite unique. This enabled our models of PCs to capture spike frequency adaptation,483
which proved to be essential for the generation of propagating activity (sequence replay)484
despite the essentially symmetric nature of synaptic interactions.485
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At a more general level, our study strongly suggests that the complex structure of486
synaptic interactions in neuronal networks, whether it results from learning or develop-487
mental processes, may have a hitherto unappreciated degree of control over the general488
mode of activity in the network, and should be taken into account by future theories and489
models of population activity patterns in any part of the nervous system.490

4 Methods491

In order to investigate the mechanisms underlying hippocampal network dynamics and492
how these are affected by learning, we built a simplified network model of area CA3. This493
scaled-down version of CA3 contained 8000 PCs and 150 PVBCs, which is approximately494
equivalent to cell numbers in area CA3 in a 600 µm thick hippocampal slice based on our495
previous estimates (Schlingloff et al., 2014), which are also in good agreement with other496
estimates (Bezaire and Soltesz, 2013; Donoso et al., 2018). The connection probability497
was estimated to be 25% for PVBCs (Schlingloff et al., 2014) and 10% for PCs (Table498
3), and was independent of distance in the model. Half of the PCs were assumed to have499
place fields on the simulated 3 m long linear track.500

Only PCs received external input; during exploration, they were activated directly to501
model place-associated firing; otherwise, they received synaptic input (through the mossy502
fibers) in the form of uncorrelated Poisson spike trains with a mean rate of 15 Hz. As the503
hallmark of granule cell activity in the dentate gyrus is sparse, low frequency firing (Jung504
and McNaughton, 1993; Skaggs et al., 1996), and each CA3 PC is contacted by only a505
few mossy fibers, the physiological mean rate of mossy fiber input to PCs is probably506
substantially lower (especially in off-line states of the hippocampus). On the other hand,507
real CA3 PCs also receive direct input from the entorhinal cortex, and also spontaneous508
EPSPs from a large population of recurrent collateral synapses. Overall, these other509
numerous, but small-amplitude inputs may be responsible for most of the depolarization510
required to bring CA3 PCs close to their firing threshold, in which case mossy fiber511
input at a significantly lower rate would be sufficient to evoke the same number of action512
potentials in CA3 PCs.513

Network simulations were run in Brian2 (Stimberg et al., 2019). Learning of the514
structure of recurrent excitation, single cell and network optimization, and the analysis515
of the network simulations are detailed in the following sections. A comprehensive list of516
assumptions made during the model building process is presented in Table 1.517

4.1 Spike trains during exploration518

Spike trains mimicking CA3 PC activity during exploration were generated with expo-519
nentially distributed inter spike intervals (ISIs) with mean 1/λ, giving rise to Poisson520
processes. Spike trains of non-place cells had mean firing rates of λ = 0.1 Hz. For the521
spike trains of the randomly selected 4000 place cells, homogeneous Poisson processes with522
λ = 20 Hz were generated, and spike times were accept-reject sampled with acceptance523
probability coming from place cell-like tuning curves (eq. (2)), which led to inhomoge-524
neous Poisson processes with time-dependent rate λ(t). Tuning curves were modeled as525
Gaussians centered at randomly distributed positions and standard deviation set to cover526
10% of the 3 m long linear track (eq. (1)). Edges of the place fields were defined where527
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Table 1: List of modeling assumptions.

1 In the absence of unified data sets, it was assumed that published parameters from
different animals (mouse/rat, strain, sex, age) can be used together to build a general
model.

2 Connection probabilities were assumed to depend only on the presynaptic cell type
and to be independent of distance.

3 Each PC was assumed to have a place field in any given environment with a prob-
ability of 50%. For simplicity, multiple place fields were not allowed.

4 When constructing the "teaching spike trains" during simulated exploration, place
fields were assumed to have a uniform size, tuning curve shape and maximum firing
rate.

5 It was assumed that deterministic synapses without short- or long-term plasticity
during network simulations can capture the relevant behaviour of the modeled CA3
synapses.

6 When considering the non-specific drive to the network in the off-line state, it was
assumed that the external input can be modeled as uncorrelated random spike trains
(one per cell) activating strong synapses (representing the mossy fibers) in the PC
population.

7 Some fundamental assumptions are inherited from common practices in computa-
tional neuroscience; these include modeling spike trains as Poisson processes, captur-
ing weight changes with additive STDP, describing cells with single compartmental
AdExpIF models, modeling a neuronal population with replicas of a single model
and representing synapses with conductance-based models with bi-exponential ki-
netics.

8 When comparing our model to in vivo data, an implicit assumption was that the
behaviour of a simplified model based on slice constraints can generalize to the
observed behaviour of the full CA3 region in vivo, in the context of studying the
link between activity-dependent plasticity and network dynamics.

the firing rate dropped to 10% of the maximal 20 Hz (Dragoi and Buzsáki, 2006). Tuning528
curves were also modulated by the background fθ = 7 Hz theta activity, phase precessed529
up to 180◦ at the beginning of the place field (O’Keefe and Recce, 1993). The firing rate530
of the ith place cell was calculated as follows:531

τi(x) = exp
(−(x−mPF

i )2

2σ2

)
(1)

532

λi(t) = τi(x(t))× cos
(

2πfθt−
ltr/2

lPF
(x(t)− sPFi )

)
× λmax (2)

where τi(x) is the spatial tuning curve of the ith neuron, x(t) is the position of the533
animal, mPF

i , lPF = 0.3 m and sPFi are the middle, length and start of the given place534
field respectively, while ltr = 3 m is the length of the linear track; λmax = 20Hz is the535
maximum in-field firing rate.536

Spikes within a 5 ms refractory period of the previous spike were always rejected. The537
speed of the animal was set to 32.5 cm/s, thus each run took ∼ 9.2 s, after which the538
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animal was immediately “teleported back” to the start of the linear track. Generated spike539
trains were 400 s long, leading to ∼ 43 repetitions on the same linear track.540

4.2 Learning via STDP541

STDP was implemented by an additive pair-based learning rule, evaluated at spike arrivals
(Kempter et al., 1999; Gerstner et al., 2014). Synaptic weights evolved as follows:

∆w+ = A+ exp
(
− ∆t

τ+

)
at tpost if tpre < tpost (3)

∆w− = A− exp
(∆t

τ−

)
at tpre if tpre > tpost (4)

where ∆t = tpost − tpre is the time difference between action potentials, A± describe the542
weight update, which decayed exponentially with time constants τ±. Synaptic weights543
were cropped at wmax = 20 nS. To reproduce the broad STDP curve presented in Mishra544
et al. (2016) τ± = 62.5 ms was used. In the classical asymmetric STDP rules A+ is positive,545
while A− is negative; here, both of them were set to 80 pA to obtain a symmetric STDP546
curve (Mishra et al., 2016). In simulations using the asymmetric STDP rule, τ± = 20 ms,547
A+ = 400 pA, A− = −400 pA, and wmax = 40 nS were used. In both cases PCs were548
sparsely connected (Table 3) and weights were initialized to 0.1 nS. In the learning phase549
the intrinsic dynamics of the PCs were not modeled explicitly, since only the timing of550
their spikes mattered, which was set directly as described above. No self-connections were551
allowed, and diagonal elements of the learned recurrent weight matrix were always set to552
zero after any modification.553

4.3 In vitro electrophysiology554

Somatic whole-cell patch-clamp recordings were performed in acute hippocampal slices as555
described before (Papp et al., 2013; Schlingloff et al., 2014; Kohus et al., 2016). Pyramidal556
cells were recorded in the CA3 pyramidal cell layer of juvenile control mice, while PVBCs557
were recorded in a targeted manner in transgenic mice that expressed enhanced green558
flurenscent protein controlled by the parvalbumin promoter (BAC-PV-eGFP) (Meyer559
et al., 2002). To characterize the physiological response properties of the neurons, hy-560
perpolarizing and depolarizing current steps of various amplitudes were injected into the561
soma, and the voltage response of the cell was recorded. Injected current pulses had a562
duration of 800 ms, and amplitudes between -100 and 600 pA. Experimental traces were563
corrected for the theoretical liquid junction potential before further use.564

4.4 Single cell models565

Neurons were modeled with the AdExpIF model (Naud et al., 2008; Gerstner et al., 2014).566
AdExpIF neurons are described by their membrane potential V (t) and the adaptation567
variable w(t), which obey:568

Cm
dVm(t)

dt
= −

(
gL(V (t)− Vrest)− gL∆T exp

(V (t)− ϑ
∆T

)
+ Isyn(t) + w(t)

)
(5)
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569

τw
dw(t)

dt
= a(V (t)− Vrest)− w(t) (6)

where Cm is the membrane capacitance, gL is the leak conductance, Vrest is the reversal570
potential of the linear leak current (which is approximately equal to the resting potential),571
ϑ is the intrinsic spike threshold, ∆T characterizes the “sharpness” of the threshold, w(t)572
is the adaptation current and Isyn is the synaptic current (see below). When V (t) crosses573
the firing threshold θ, it is reset to Vreset and remains there for a refractory period tref .574
The adaptation current is also increased by a factor b at each spike arrival and decays ex-575
ponentially afterwards with the time constant τw. The parameter a describes the strength576
of sub-threshold adaptation.577

To investigate the role of adaptation, an ExpIF PC model was also fit to the data. The578
ExpIF model is the same as eq. (5) without the w(t) adaptation current (implemented579
as an AdExpIF model with parameters a and b set identically to zero). The parameters580
of all models were fit to experimental data from our somatic whole-cell recordings, and581
the voltage responses to current injections of four different amplitudes (including two582
subthreshold and two suprathreshold stimuli) were used in each case. Parameters were583
tuned using the Optimizer package (Friedrich et al., 2014) with the NEST simulator as584
backend (Gewaltig and Diesmann, 2007). Spike count, ISI distribution, latency to first585
spike and mean squared error (excluding spikes) were used as equally weighted features.586
After comparing different optimization techniques, the final parameters presented here587
were obtained with an evolutionary algorithm implemented by the inspyred package588
(Garrett, 2012), running for 100 generations with a population size of 100. The parameters589
which yield the best models for the CA3 populations are summarized in Table 2.

Table 2: Optimized parameters of PC (AdExpIF and ExpIF) and PVBC models. Physical
dimensions are as follows: Cm: pF, gL and a: nS, Vrest, ∆T , ϑ, θ and Vreset: mV, tref and τw:
ms, b: pA.

Cm gL Vrest ∆T ϑ θ Vreset tref τw a b

PC 180.13 4.31 -75.19 4.23 -24.42 -3.25 -29.74 5.96 84.93 -0.27 206.84
PC 344.18 4.88 -75.19 10.78 -28.77 25.13 -58.82 1.07 - - -
PVBC 118.52 7.51 -74.74 4.58 -57.71 -34.78 -64.99 1.15 178.58 3.05 0.91

590

4.5 Synapse models591

Synapses were modeled as conductances with bi-exponential kinetics:592

g(t) = ĝA
(

exp(− t

τd
)− exp(− t

τr
)
)

(7)

where ĝ is the peak conductance (which will also be referred to as the synaptic weight)593
and τr and τd are rise and decay time constants respectively. The normalization constant594
A = exp(− tp

τd
)−exp(− tp

τr
) was chosen such that the synapses reach their peak conductance595

at tp = τdτr/(τd − τr)log(τd/τr) ms. Kinetic parameters were taken from the literature596
(Geiger et al., 1997; Bartos et al., 2002; Lee et al., 2014; Vyleta et al., 2016; Guzman597
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et al., 2016) and are summarized in Table 3. The postsynaptic current contained AMPA598
receptor- and GABA-A receptor-mediated components, and was computed as:599

Isyn(t) = gAMPA(t)(V (t)− Eexc) + gGABA(t)(V (t)− Einh) (8)

where Eexc = 0 mV and Einh = −70 mV are the reversal potentials of excitatory and600
inhibitory currents, respectively.

Table 3: Synaptic parameters (taken from the literature or optimized). Physical dimensions
are as follows: ĝ: nS, τr, τd and td (synaptic delay): ms and connection probability pconn is
dimensionless. GC stands for the granule cells of the dentate gyrus. (GC → PC synapses are
referred as mossy fibers.)

ĝ τr τd td pconn
sym. asym.

PC → PC 0.1-6.3 0-15 1.3 9.5 2.2 0.1
PC → PVBC 0.85 1 4.1 0.9 0.1
PVBC → PC 0.65 0.3 3.3 1.1 0.25
PVBC → PVBC 5 0.25 1.2 0.6 0.25
GC → PC 19.15 21.5 0.65 5.4 - -

601

4.6 Network optimization602

Synaptic weights of the network (5 parameters in total) were optimized with an evolu-603
tionary algorithm using a custom written evaluator in BluePyOpt (Van Geit et al., 2016).604
The multi-objective fitness function F , designed for this network included 6 separately605
weighted features (eq. (9)): physiological PC firing rate, no significant gamma oscillation606
in the PC population, significant ripple frequency oscillations in the rates of PC and607
PVBC populations as well as high ripple vs. gamma power in the rates of the PC and608
PVBC populations:609

F =
[

exp
(
− (νPC − 2)2

2× 0.52

)
, δ(fγPV BC), exp

(
− (frPC − 180)2

2× 202

)
,

2× exp
(
− (frPV BC − 180)2

2× 202

)
, 5×

∑
P (ωrPC)∑
P (ωγPC)

, 10×
∑
P (ωrPV BC)∑
P (ωγPV BC)

] (9)

where ν is the firing rate, δ is the Dirac-delta function, fr and fγ are significant peaks610
in the ripple and gamma range (see below) of the PSD of the firing rate respectively611
and P (ωr) and P (ωγ) are the periodogram values within the gamma and ripple bands612
of the firing rate respectively, while the sum of them represents the power within the613
frequency bands (as below). As in the case of the network simulations (see above) if the614
PC firing rate exceeded the 2 Hz high activity state detection threshold spectral features615
were only extracted in these time windows. Sequence replay was not analysed during616
the optimization. Optimizations were run with 50 offspring for 10 generations. Synaptic617
weights were varied in the [0.1, 5] nS range, except the “detonator” mossy fiber ones618
which were given a higher [15, 30] nS range (Henze et al., 2002; Vyleta et al., 2016). For619
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the learned recurrent excitatory weights an additional scaling factor was introduced. All620
learned weights are presented with this optimized scale factor (0.62 for symmetric and621
1.27 for asymmetric STDP rule) taken into account. Final weights are presented in Table622
3. The ExpIF PC model required much higher synaptic drive to fire at the same frequency623
as the AdExpIF model, thus the mossy fiber input weight was doubled (38.3 nS) when624
ExpIF PC models were used.625

4.7 LFP estimate626

An estimate of the LFP was calculated by summing the synaptic currents of a small627
randomly selected subset of N = 400 PCs (Mazzoni et al., 2008). This approach is628
essentially equivalent to using “transmembrane” currents to calculate the field potential629
at an arbitrary sampling point xe, using volume conduction theory and the forward model630
(Einevoll et al., 2013):631

V (xe, t) =
1

4πσ

N∑
n=1

In(t)

|xe − xn|
(10)

where σ = 1/3.54 S/m is the extracellular conductivity and In(t) denotes the trans-632
membrane currents of the nth neuron. There was no attempt to replicate the spatial633
organization of CA3 PCs and a uniform |xe − xn| = 1µm distance from the sampling634
point was used (note that this choice affects the results only as a constant scaling factor).635
The resulting signal was low pass filtered at 500 Hz with a 3rd order Butterworth filter.636

4.8 Spectral analysis637

Power spectral density (PSD) was estimated by Welch’s method with a Hanning window,638
using 512 long segments in case of population rates (sampling frequency = 1 kHz) and 4096639
long segments for LFP (see below, sampling frequency = 10 kHz) with 0.5 overlap. If the640
network showed multiple sequence replays during the 10-seconds long simulations (most641
cases) only the detected high activity states (see above) were analysed and averaged, to642
get rid of the high power at ∼ 1.5 Hz, signaling the frequency of sequence replays. In this643
case shorter segments (256 and 2048 respectively) were used to estimate the PSD. The644
significance of peaks in the power spectra in the gamma (30-100 Hz) and ripple (150-220645
Hz) bands was evaluated using Fisher’s g-statistic (Fisher, 1929) defined as:646

g =
maxk(P (ωk))∑N

k=1 P (ωk)
(11)

where P (ω) is the periodogram (Welch’s method estimates PSD by averaging periodograms647
from the short segments) evaluated at k discrete frequencies, N is the length of the648
periodogram and

∑N
k=1 P (ωk) is the total power of the spectrum. The distribution of649

g-statistics under the null hypothesis (H0) (Gaussian white noise) is given by:650

p = Pr(g∗ > g) =
b∑

k=1

(−1)k−1 N !

k!(N − k)!
(1− kg)N−1 (12)

where b is the largest integer less than 1/g. Large value of g (small p-value) indicates a651
strong periodic component and leads to the rejection of H0. Alpha level 0.05 was used652
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throughout the study. To characterize non-significant oscillations too, gamma and ripple653
power (defined as the sum in the given frequency band divided by the total power in the654
0-500 Hz range) were calculated as well. Time-frequency representations were created by655
convolving the firing rates (or LFP) with samples of the integral of the Morlet wavelet656
Ψ(t) = exp−t

2/2cos(5t) evaluated at the scales corresponding to the 25-325 Hz band, using657
the pywt package (Lee et al., 2006).658

4.9 Replay analysis659

Sequence replay was analysed with methods used by experimentalists having access to660
spike times of hundreds of identified neurons (Ólafsdóttir et al., 2018). Firstly, candidate661
replay events were selected based on the averaged (into 20 ms bins) PC population firing662
rate crossing the threshold of 2 Hz for at least 260 ms. Secondly, the animal’s position663
was estimated with a memoryless Bayesian place decoder based on the observed spikes664
within the selected time windows (Davidson et al., 2009; Karlsson and Frank, 2009). Only665
spikes from the N = 4000 place cells were used. For numerical stability log likelihoods666
were calculated:667

log(Pr(spikes|x)) =
N∑
i=1

ni log(
∆Tτi(x)

ni!
)−∆T

N∑
i=1

τi(x) (13)

where ni is the number of spikes of the ith neuron within the ∆T = 10 ms long, non-668
overlapping time bins and τi(x) is the tuning curve used for spike train generation (eq.669
(1)). The 3 m long linear track was binned into 50 intervals, resulting in 6 cm spatial670
resolution. Thirdly, constant velocity v neural trajectories were detected with a 2D band671
finding method in the decoded posterior matrix (Davidson et al., 2009). For candidate672
events consisting of n time bins, the average likelihood R that the animal is within distance673
d = 18 cm of a particular trajectory is given by:674

R(v, x0) =
1

n

n−1∑
k=0

Pr(|x− (x0 + vk∆T )| ≤ d) (14)

where x0 is the starting position of the trajectory. R(v, x0) was maximized using an675
exhaustive search to test all combinations of v between -18 m/s and 18 m/s in 0.3 ms/s676
increments (excluding slow trajectories with speed ∈ [−0.3, 0.3] m/s) and x0 between -1.5677
m and 4.5 m in 3 cm increments. Lastly, to determine the significance of replay, Rmax was678
compared to the best line fits of 100 posterior probability matrices generated by shuffling679
the identities of cells included in the candidate event. Only events with Rmax values680
exceeding the 95th percentile of their own shuffled distribution were labeled as replay.681

To replicate the step-size analysis of Pfeiffer and Foster (2015) the position of the an-682
imal was estimated as a weighted average based on the posterior matrix in each time bin683
instead of the band finding method. As their control distribution for the skewed step-sizes684
(“predicted step-size” distribution) was derived for a 2D arena, it was not directly appli-685
cable to our linear track setup. Therefore, we defined the predicted step-size distribution686
based on the ratio of the length of the replayed path and the duration of the replay event687
for the SWRs detected in the simulations.688
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Accessibility689

The source code is publicly available at https://github.com/KaliLab/ca3net.690
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Figure S1: The generation of the spike trains of PCs in the exploration phase. (A)
Firing rates of exemplar place cells covering the whole 3 m long linear track. Compared to the
tuning curves shown in Figure 1 (A) (eq. (1)), these are time-dependent rates modulated by
theta oscillation and phase precession (eq. (2)). (B) Exemplar spike trains generated based on
the firing rates shown in (A). (Spike trains used in the learning phase were 400 second long.
For the purpose of visualization, only the beginning is shown here.) (C) ISI distribution of the
generated spike trains. ISIs of place cells (C1) (insert is a zoom into the same distribution at a
finer timescale to show theta modulation) and non-place cells (C2).
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Figure S2: Single cell models. (A) Fitted AdExpIF PC model (blue) and experimental
traces (red) are shown on the top panel. The 800 ms long step current injections shown in the
bottom were as follows: -0.04, 0.15 and 0.6 nA. (B) Fitted ExpIF PVBC model (gold) and
experimental traces (red) are shown in the top panel. The amplitudes of the 800 ms long step
current injections shown at the bottom were as follows: -0.03, 0.09 and 0.25 nA. Inserts show
the fI curve of the in vitro (red) and in silico cells. For parameters of the cell models see Table
2.
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Figure S3: The step-size distribution of the decoded paths is much wider than
expected. (A) Posterior matrix of the decoded positions from spikes within a selected high
activity state (1st one from Figure 2 (A)). Thick gray lines indicate the edges of the decoded,
constant velocity path. Thin gray line shows the decoded path by connecting the weighted
average positions in every 10 ms long time step. (B) Step sizes from the decoded, variable
velocity path (see (A)) for the same period (1st high activity state in Figure 2 (A)). The horizontal
dashed black line shows the average or predicted step-size within the given period. (C1) Skewed
distribution of observed step sizes (in gray) and the predicted (from evenly spacing) step-size
distribution (in red) for more than a hundred replay events (similar to the one in (A) and
(B)). Inserat shows the same distributions at smaller scales. (C2) Cumulative distribution of
the observed and predicted step sizes shown in (C1). Observed vs. predicted distributions
significantly differ (two-sample Kolmogorov-Smirnov test).
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Figure S4: Single cell characteristics during network simulations. (A) Single cell PC
(A1) and PVBC (A2) firing rates of the 10 second long simulation shown in Figure 2. (B) ISIs
of PCs (B1) and PVBCs (B2) in the 10-second long simulation shown in Figure 2. (C) Synaptic
input currents of PCs (C1) and PVBCs (C2) during sequence replay initiation. Gray lines are
the averages of the EPSCs and IPSCs of 400 PCs and 30 PVBCs respectively. Individual gray
lines correspond to individual high activity states (n=7, see Figure 2 (A)). Dashed vertical lines
(at 0 ms) indicate the beginning of the periods marked as high activity states (see Figure 2 (A)).
Colored lines represent the grand average EPSC (blue) and IPSC (gold) arriving at PCs (C1)
and PVBCs (C2) during SWR initiation.
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Figure S5: Spectral analysis of network dynamics across different PC-PC weight
scaling factors. (A) PSDs of PC (A1) and PVBC (A2) population rates and estimated LFP
(A3). Gray lines correspond to individual high activity states (n=14) shown in Figure 2 (A), while
the thicker colored lines are their averages. Ripple frequency range (150-220 Hz) is highlighted
in red. Shaded red area below the curves indicates the power in the ripple range. (B) Spectral
analysis of network dynamics across different E-E weight scaling factors (0.8-1.2). The frequency
of significant ripple oscillation and ripple oscillation power (red) are shown for PC (B1) and
PVBC (B2) population rates and estimated LFP (B3). (B3) is the same as the bottom panel of
Figure 3 (B) and it is duplicated only to show how similar the curves are for the rates and the
estimated LFP.
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