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Abstract1

Hippocampal place cells are activated sequentially as an animal explores its environment.2
These activity sequences are internally recreated (“replayed”), either in the same or re-3
versed order, during bursts of activity (sharp wave-ripples; SWRs) that occur in sleep and4
awake rest. SWR-associated replay is thought to be critical for the creation and main-5
tenance of long-term memory. In order to identify the cellular and network mechanisms6
of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of7
the hippocampus. Our results show that the chain-like structure of recurrent excitatory8
interactions established during learning not only determines the content of replay, but is9
essential for the generation of the SWRs as well. We find that bidirectional replay re-10
quires the interplay of the experimentally confirmed, temporally symmetric plasticity rule,11
and cellular adaptation. Our model provides a unifying framework for diverse phenom-12
ena involving hippocampal plasticity, representations, and dynamics, and suggests that13
the structured neural codes induced by learning may have greater influence over cortical14
network states than previously appreciated.15

1

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431868doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431868
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction16

The hippocampal region plays a pivotal role in spatial and episodic memory (O’Keefe and17
Nadel, 1978; Morris et al., 1982). The different stages of memory processing (Marr, 1971;18
Buzsáki, 1989) are associated with distinct brain states, and are characterized by distinct19
oscillatory patterns of the hippocampal local field potential (LFP) (Buzsáki et al., 1983;20
Colgin, 2016). When rodents explore their environment, place cells of the hippocam-21
pus are activated in a sequence that corresponds to the order in which the animal visits22
their preferred spatial locations (place fields) (O’Keefe and Dostrovsky, 1971). The same23
sequences of firing activity can also be identified, on a faster time scale, during indi-24
vidual cycles of the 4-10 Hz theta oscillation that dominates the hippocampal LFP in25
this state (O’Keefe and Recce, 1993; Dragoi and Buzsáki, 2006; Foster and Wilson, 2007).26
These compressed sequences are thought to be optimal for learning via activity-dependent27
synaptic plasticity (Jensen and Lisman, 2005; Foster and Wilson, 2007).28

Other behavioral states such as slow-wave sleep and quiet wakefulness are characterized29
by the repetitive but irregular occurrence of bursts of activity in the hippocampus, marked30
by the appearance of sharp waves (Buzsáki et al., 1983; Wilson and McNaughton, 1994)31
and associated high-frequency (ripple) oscillations (O’Keefe and Nadel, 1978; Buzsáki32
et al., 1992) in the LFP. Disruption of SWRs was shown to impair long-term memory33
(Girardeau et al., 2009; Ego-Stengel and Wilson, 2010; Jadhav et al., 2012; Oliva et al.,34
2020). The activity sequences observed during exploration are also recapitulated during35
SWRs (Nádasdy et al., 1999; Kudrimoti et al., 1999; Lee and Wilson, 2002), in the absence36
of any apparent external driver, and this “replay” can happen either in the same or in a37
reversed order relative to the original behaviorally driven sequence (Foster and Wilson,38
2006; Csicsvari et al., 2007; Diba and Buzsáki, 2007; Davidson et al., 2009; Karlsson and39
Frank, 2009; Gupta et al., 2010). More specifically, awake replay is predominantly in the40
“forward” direction near choice points during navigation (Diba and Buzsáki, 2007; Pfeiffer41
and Foster, 2013), while it is mainly “backward” when the animal encounters a reward42
(Diba and Buzsáki, 2007). Consequently, while sleep replay was suggested to be involved43
in memory consolidation, forward and reverse replay in awake animals may contribute to44
memory recall and reward-based learning, respectively (Carr et al., 2011; Foster, 2017;45
Pfeiffer, 2017; Ólafsdóttir et al., 2018). Finally, behavioral tasks with a high memory46
demand led to an increase in the duration of SWRs, while artificial prolongation of SWRs47
improved memory (Fernández-Ruiz et al., 2019).48

For several decades, area CA3 of the hippocampus has been proposed to be a critical49
site for hippocampal memory operations, mainly due to the presence of an extensive set of50
modifiable excitatory recurrent connections that could support the storage and retrieval51
of activity patterns and thus implement long-term memory (Marr, 1971; McNaughton52
and Morris, 1987; Levy, 1996; Rolls, 1996; Káli and Dayan, 2000). Area CA3 was also53
shown to be strongly involved in the generation of SWRs and the associated forward and54
reverse replay (Buzsáki, 2015; Davoudi and Foster, 2019).55

Several modeling studies have addressed either theta oscillogenesis, learning, sequence56
replay or ripples; however, a unifying model of how the generation of SWRs and the57
associated neuronal activity are shaped by previous experience is currently lacking. In58
the present study, we built a minimal, yet data-driven model of the CA3 network, which,59
after learning via a symmetric spike-timing-dependent synaptic plasticity rule (Mishra60
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et al., 2016) during simulated exploration, featured both forward and backward replay61
during autonomously generated sharp waves, as well as ripple oscillations generated in62
the recurrently connected network of perisomatic interneurons. After validating the model63
against several in vivo and in vitro results (Buzsáki et al., 1992; Hájos et al., 2013; English64
et al., 2014; Schlingloff et al., 2014; Stark et al., 2014; Pfeiffer and Foster, 2015; Gan65
et al., 2017), we took advantage of its in silico nature that made feasible a variety of66
selective manipulations of cellular and network characteristics. Analyzing the changes in67
the model’s behavior after these perturbations allowed us to establish the link between68
learning from theta sequences and the emergence of SWRs during “off-line” states, to69
provide a possible explanation for forward and backward replays, and to disentangle the70
mechanisms responsible for sharp waves and ripple oscillations.71

2 Results72

To identify the core mechanisms that are responsible for the relationship between learn-73
ing during exploration and SWRs during rest, we built a scaled-down network model74
of area CA3 of the rodent hippocampus. In this model, we specifically did not aim to75
capture all the biological details of hippocampal neurons and circuits; instead, our goal76
was to reveal and analyze those mechanisms that are essential for the generation of sharp77
waves, ripple oscillations, and bidirectional activity replay. To gain a mechanistic un-78
derstanding of the relationship between learning during exploration and SWRs during79
rest, as well as the generation and role of ripple oscillation, we built a scaled-down net-80
work model of area CA3 of the rodent hippocampus. The complete network consisted of81
8000 excitatory pyramidal cells (PCs) and 150 inhibitory parvalbumin-containing basket82
cells (PVBCs), corresponding roughly to the size of the CA3 area in a 600 micrometer-83
thick slice of the mouse hippocampus, which is known to be capable of generating SWRs84
(Hájos et al., 2013; Schlingloff et al., 2014). These two cell types are known to be in-85
dispensable to the generation of SWRs (Racz et al., 2009; Ellender et al., 2010; English86
et al., 2014; Schlingloff et al., 2014; Stark et al., 2014; Gulyás and Freund, 2015; Buzsáki,87
2015; Gan et al., 2017). All neurons in the network were modeled as single-compartment,88
adaptive exponential integrate-and-fire (AdExpIF) models whose parameters were fit to89
reproduce in vitro voltage traces of the given cell types in response to a series of step90
current injections (Methods, Supplementary Figure S2). Connections of all types (PC-91
PC, PC-PVBC, PVBC-PC, PVBC-PVBC) were established randomly using connection92
type-specific probabilities estimated from anatomical studies.93

Simulations of the network were run in two phases corresponding to spatial explo-94
ration and “off-line” hippocampal states (slow-wave sleep and awake immobility), respec-95
tively. During the exploration phase, the spiking activity of PCs was explicitly set to96
mimic the firing patterns of a population of place cells during simulated runs on a linear97
track, and the recurrent connections between PCs evolved according to an experimentally-98
constrained, spike-timing-dependent plasticity (STDP) rule (see below). In the subse-99
quent off-line phase, we recorded the spontaneous dynamics of the network in the absence100
of structured external input (or plasticity), analyzed the global dynamics (including av-101
erage firing rates and oscillations), and looked for the potential appearance of sequential102
activity patterns corresponding to the previous activation of place cells during exploration,103
often referred to as “replay”. The main features of the model are summarized in Figure 1.104
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Figure 1: Overview of learning and the spontaneous generation of SWRs and se-
quence replay in the model. (A) Tuning curves (eq. (1)) of exemplar place cells covering
the whole 3 m long linear track. (B) Broad, symmetric STDP kernel used in the learning phase.
The time constant was fit directly to experimental data from Mishra et al. (2016). (C) Learned
excitatory recurrent weight matrix. Neurons are ordered according to the location of their place
fields. Actual dimensions are 8000*8000 (including PCs with no place fields in the environment)
but, for better visualization, each pixel shown represents the average of an 80*80 square. (D)
PC raster plot is shown in the top panel, color-coded and ordered as the place fields in (A).
PC population rate (middle), and LFP estimate (bottom panel), corresponding to the same time
period. (E) Posterior matrix of the decoded positions from spikes within the high activity period
shown in (D). Gray lines indicate the edges of the decoded, constant velocity path.

2.1 Recurrent weights are learned during exploration via a sym-105

metric STDP rule106

During exploration, half of the PCs had randomly assigned, overlapping place fields in107
the simulated environment, characterized by Gaussian spatial tuning curves, whereas the108
others fired at low rates in a spatially non-specific manner (Methods, Figure 1A). During109
simulated unidirectional runs along a 3 meter-long linear track, these tuning curves, mod-110
ulated by theta oscillation and phase precession, gave rise to generated spike trains similar111
to those observed for real place cells under similar conditions (Methods, Supplementary112
Figure S1). The simulated spike trains served as inputs for STDP, which was characterized113
by the broad, symmetric kernel observed in pairs of CA3 PCs recorded in hippocampal114
slices (Figure 1B) (Mishra et al., 2016). The anatomical connectivity of PCs was sparse115
and random, assuming 10% PC-PC connection probability (Lisman, 1999; Andersen et al.,116
2007), and only these pre-existing connections were allowed to evolve (Methods).117

The most prominent feature of the learned recurrent excitatory synaptic weight matrix118
was its highly organized structure (Figure 1C). Relatively few strong (> 1 nS) synapses119
near the diagonal (representing pairs of cells with overlapping place fields) emerged from120
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a background of much weaker connections. Similar symmetric weight structures have121
been used in continuous “bump” attractor models of various neural systems such as head122
direction cells, place cells, and parametric working memory (Zhang, 1996; Samsonovich123
and McNaughton, 1997; Káli and Dayan, 2000; Compte et al., 2000). In these studies, the124
weights were typically either imposed or learned using rate-based (not STDP) learning125
rules, and led to stationary patterns of activity in the absence of external input. By126
contrast, previous spiking neuron models of sequence learning used temporally asymmetric127
STDP rules, resulting in a weight structure dominated by feedforward chains (each neuron128
giving the strongest input to other neurons which follow it in the spatial sequence), and129
sequential activity patterns that follow these chains of strong connections (Jahnke et al.,130
2015; Chenkov et al., 2017). In order to reveal the combined effect of learned, essentially131
symmetric connections and realistic cell-type-specific neuronal spike responses, we next132
explored the spontaneously generated activity patterns in our full network model.133

2.2 The dynamics of the network model reproduce key features134

of SWRs and replay135

The sparse recurrent excitatory weight matrix resulting from the phenomenological explo-136
ration (Figure 1C) was used directly in network simulations mimicking resting periods, in137
which (with the exception of the simulations shown later in Figure 2C) PCs received only138
spatially and temporally unstructured random synaptic input. The maximal conductances139
of the other types of connections in the network (the weights of PC-PVBC, PVBC-PC,140
and PVBC-PVBC connections as well as the weight of the external random input) were141
optimized using an evolutionary algorithm with network-level objectives, which included142
physiological PC population firing rates, suppressed gamma oscillation in the PC popu-143
lation and strong ripple oscillation in the PVBC population (see Methods for details).144

Spontaneously generated activity in the network consisted of alternating periods of low145
activity (mean PC rates below 1 Hz) and high activity (mean PC rates around 3.5 Hz),146
which resembled the recurring appearance of sharp wave events during slow-wave sleep147
and quiet wakefulness (Figure 2A). Similar to experimental sharp waves, high-activity148
events in the model were accompanied by transient oscillations in the ripple frequency149
range (Figure 2B) (Buzsáki, 1986; Buzsáki et al., 1992; Foster and Wilson, 2006; Buzsáki,150
2015). We calculated an estimate of the LFP by summing the synaptic inputs of a small,151
randomly selected subset of PCs (Mazzoni et al., 2008), and found that ripple oscillations152
were reliably present in this signal during the high-activity periods (Figure 1D, Figure153
2B).154

When we plotted the spike times of all PCs with place cells ordered according to the155
location of their place fields on the track during the learning phase, it became clear that156
place cell sequences were replayed during simulated SWRs, while activity had no obvious157
structure in the low-activity periods between SWRs (Figure 2A). Interestingly, replay of158
place cell sequences could occur in either the forward or the backward direction relative to159
the order of activation in the learning phase (Figure 2A). These qualitative observations160
were confirmed by analysing sequence replays with a Bayesian place decoding and path161
fitting method, using spatial tuning curves introduced for spike train generation in the162
exploration part (Methods, Figure 1E) (Davidson et al., 2009; Karlsson and Frank, 2009;163
Ólafsdóttir et al., 2018). Interestingly, our network model also reproduced the broad,164
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long-tailed step size distribution in the sequence of decoded locations during SWRs, as165
observed experimentally by Pfeiffer and Foster (2015) (Supplementary Figure S3).166

It was also possible to “cue” replay, by giving an additional external stimulation to a167
small subpopulation (n = 100) of PCs which had overlapping place fields in the learned168
environment. In this case, sequence replay started at the location corresponding to the169
cells which received extra stimulation (Figure 2C). This feature may explain why awake170
replay tends to be forward when the animal is planning a trajectory from its current171
location, and backward at the goal location.172

At the level of single cells, we found that both PCs and PVBCs received approxi-173
mately balanced excitation and inhibition during SWR events, and inhibitory currents174
were modulated at the ripple frequency in these periods (Supplementary Figure S4C).175
Excitatory inputs dominated between SWRs, and during the initiation of SWR events.176
Only a small minority of PCs fired in individual ripple cycles, while the participation of177
PVBCs was much higher (but not complete), resulting in a mean PVBC firing rate of178
∼65 Hz during the SWRs, which is much higher than their baseline rate, but significantly179
below the ripple frequency (Supplementary Figure S4A, B). All of these findings were180
consistent with experimental results in vitro (Hájos et al., 2013; Schlingloff et al., 2014)181
and in vivo (English et al., 2014; Hulse et al., 2016; Gan et al., 2017). On the other hand,182
we note that the single cell firing rate distribution of place cells was close to normal in the183
model (Supplementary Figure S4A1), different from the lognormal distribution reported184
in vivo (Mizuseki and Buzsáki, 2013).185

2.2.1 SWRs and replay are robust when recurrent excitation is varied186

To show that our network model reproduces the wide range of experimental findings187
presented above in a robust manner, we ran a sensitivity analysis of several parameters.188
We started by studying the effects of the recurrent excitatory weights, which are the189
link between exploratory and resting dynamics. To this end, we ran simulations with190
systematically up- and downscaled PC-PC weights, and automatically evaluated various191
features of the network dynamics, such as population-averaged firing rates, the presence192
of sequence replay, as well as significant peaks in the ripple frequency range in the power193
spectra as shown before (Methods, Figure 3). The network with PC-PC weights multiplied194
by 0.8 displayed a low-activity, noisy state with severely reduced mean PC firing rate,195
no sequence replay, and no clear oscillation (Figure 3A1). At the 0.9 multiplier level196
sequence replays started to appear, but were less frequent than in the baseline model197
(Figure 3A2). As the PC-PC synaptic weights were scaled up, sequence replays became198
faster (completed in a shorter time) and occurred more often (Figure 3A3), a behavior199
which was stable and realistic up to the 1.5 multiplier level. Ripple oscillations had higher200
power and appeared at lower multiplier levels in the PVBC population than in the PC201
population (Supplementary Figure S5), suggesting that they originate from the PVBCs202
and propagate to the PCs, in agreement with theories based on experimental findings203
(Buzsáki et al., 1992; Ylinen et al., 1995; Racz et al., 2009; Schlingloff et al., 2014; Stark204
et al., 2014; Gan et al., 2017).205
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Figure 2: Forward and backward replay events, accompanied by ripple oscillations,
can occur spontaneously but can also be cued. (A) PC raster plot of a 10-second long
simulation, with sequence replays initiating at random time points and positions and propagating
either in forward or backward direction on the top panel. PC population firing rate is plotted
below. Dashed vertical black lines indicate the periods marked as sustained high activity states
(above 2 Hz for at least 260 ms) which are submitted to automated spectral and replay analysis.
(B) Estimated LFP in the top panel and its time-frequency representation (wavelet analysis)
below. (C) Forward and backward sequence replays resulting from targeted stimulation (using
200 ms long 20 Hz Poisson spike trains) of selected 100 neuron subgroups, indicated by the black
rectangles in the raster plots. (C1) Example of cued forward replay. PC raster plot is shown at
the top with PC population rate, LFP estimate, and its time-frequency representation (wavelet
analysis) below. (C2) Same as (C1), but different neurons are stimulated at the beginning,
leading to backward replay.
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Figure 3: Sharp waves, ripple oscillations, and replay are robust with respect to
scaling the recurrent excitatory weights. (A) PC raster plots on top and PC population
rates at the bottom for E-E scaling factors: 0.9 (A1), 0.95 (A2) and 1.05 (A3). (Scaling factor
of 1.0 is equivalent to Figure 2A.) Dashed vertical black lines have the same meaning as in
Figure 2A. (B) Analysis of selected indicators of network dynamics across different E-E weight
scaling factors (0.8-1.2). Mean PC (blue) and PVBC (gold) population rates are shown on
top. The frequency of significant ripple oscillations (black) and the percentage of power in the
ripple frequency range (red) in the estimated LFP is shown at the bottom. Errors bars indicate
standard deviation and are derived from simulations with 5 different random seeds. See also
Supplementary Figure S5.

2.2.2 Multiple environments can be learned and replayed206

Next we showed that it is possible to store the representations of multiple environments207
in the weight matrix, and this change does not fundamentally alter the network dynamics208
(Figure 4). In particular, we simulated experience and STDP-based learning in two linear209
environments with a different but overlapping random set of place cells (Figure 4A). The210
resulting population-level dynamics was quite similar to the one following experience in a211
single environment, but, during each SWR event, a place cell sequence from either one or212
the other environment was reactivated (Figure 4B, C). Learning two sequences with the213
same additive symmetric (non-decreasing) STDP rule led to stronger PC-PC synapses on214
average (Figure 4A4), which resulted in a higher overall mean PC rate (Figure 4B, D).215
As a consequence, detectable sequence replays and significant ripple oscillations appeared216
at lower PC-PC weight multiplier levels (Figure 4D).217
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(A) Learned excitatory recurrent weight matrices. (A1) Weights after learning the first environ-
ment. Note that the matrix appears random because neurons are arranged according to their
place field location in the second environment, which has not been explored at this point. (A3)
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Figure 4: (C) Posterior matrices of decoded positions from spikes (see Figure 1E) within a
selected high activity state (8th and 10th from (B)). From left to right: decoding of replay in 1st
environment (8th event from (B)) according to the first (significant) and second environment;
decoding of replay in second environment (10th event from (B)) according to the first and second
(significant) environment. (D) Analysis of selected network dynamics indicators across different
E-E weight scaling factors (0.7-1.1) as in Figure 3 (B).

2.3 Manipulating the model reveals mechanisms of sharp wave-218

ripple generation and sequence replay219

2.3.1 Symmetric STDP rule is necessary for bidirectional replay220

Our network model, equipped with structured recurrent excitation resulting from learning,221
was able to robustly reproduce recurring sharp wave events accompanied by bidirectional222
sequence replay and ripple oscillations. Next, we set out to modify this excitatory weight223
matrix to gain a more causal understanding of how the learned weight pattern is related224
to the emergent spontaneous dynamics of the network.225

First, in order to gauge the significance of the experimentally determined symmetric226
STDP rule, we changed the STDP kernel to the classical asymmetric one that characterizes227
many other connections in the nervous system (Figure 5A-C) (Bi and Poo, 1998; Gerstner228
et al., 2014). In this case, the learned weight matrix was reminiscent of the feedforward229
chains that characterized several of the earlier models of hippocampal replay (Jahnke230
et al., 2015; Chenkov et al., 2017; Theodoni et al., 2018). We found that this weight231
structure also supported the generation of SWR events and the reactivation of learned232
sequences in our model; however, crucially, sequence replays occurred only in the forward233
direction (Figure 5D, E). Theodoni et al. (2018) presented a thorough analysis of the234
relationship between the shape of the plasticity kernel and the sequence replay in a rate235
based model, and thus we shifted our focus towards different modifications.236

2.3.2 The structure rather than the statistics of recurrent excitatory weights237
is critical for SWRs238

Inspired by the observation that many network-level properties, such as single PC firing239
rates, burst index, and participation in SWR events, follow a skewed, lognormal distri-240
bution in vivo (Mizuseki and Buzsáki, 2013), Omura et al. (2015) built a network model241
with recurrent excitatory weights following a lognormal distribution. Their network with242
unstructured, but lognormally distributed recurrent synaptic strengths reproduced most243
of the in vivo observations of Mizuseki and Buzsáki (2013); however, no sequence replay or244
ripple oscillation was involved. In the network presented here, the distribution of PC-PC245
weights is the result of the application of STDP on the generated spike trains and does not246
strictly follow a lognormal distribution, although it has a similar long tail (Figure 6D2).247
In order to establish whether the overall distribution or the fine structure of the weights248
is the key determinant of neural dynamics in our model, we performed two more drastic249
perturbations of the recurrent weight matrix itself, starting from the version established250
in the learning phase.251

Our first perturbation kept the structure of the interactions and the overall mean252
weight intact, but completely changed the distribution of the weights. This was achieved253

10

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431868doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431868
http://creativecommons.org/licenses/by-nc/4.0/


Δt post-pre (ms)

Δw
 (n

S)

Asymmetric STDP rule

τ = 20 (ms)

Bl
oc

k 
of

 s
ou

rc
e 

ne
ur

on
s

Block of target neurons

Av
er

ag
e 

sy
na

pt
ic

 w
ei

gh
t (

nS
)Learned weight matrix

Synaptic weight (nS)

C
ou

nt

Distribution of excitatory weights
asym. STDP

Network activity

Time (ms)

N
eu

ro
n 

ID
Ra

te
(H

z)

Sa
m

pl
ed

 p
os

iti
on

 (c
m

)

Time (ms)

Po
st

er
io

r p
ro

ba
bi

lit
y

Replayed path detection
A B C

D

E

PC BC

PC
 ra

te
 (H

z)

PV
BC

 ra
te

 (H
z)

Fr
eq

ue
nc

y 
(H

z)

Po
w

er
 (%

)

Analysis across PC-PC weight scaling factors

PC-PC weight multiplier PC-PC weight multiplier

F

Figure 5: Learning with an asymmetric STDP rule leads to the absence of backward
replay. (A) Asymmetric STDP kernel used in the learning phase. (B) Learned excitatory
recurrent weight matrix. (C) Distribution of non-zero synaptic weights in the weight matrix
shown in (B). (D) PC raster plot on top and PC population rate at the bottom (see Figure 2
(A) from a simulation run with the weight matrix shown in (B). (E) Posterior matrix of the
decoded positions from spikes (see Figure 1 (E) within a selected high activity state (6th one from
(D)). (F) Analysis of selected network dynamics indicators across different E-E weight scaling
factors (0.8-1.2) as in Figure 3 (B).

by binarizing the values of the learned weight matrix. Specifically, we divided weights254
into two groups, the strongest 3% and the remaining 97%, and set each weight in both255
groups to the group average (Figure 6A). Using the modified recurrent synapses between256
the PCs in the network, we observed extremely similar behaviour to our baseline network:257
sequence replays in both directions, always accompanied by ripple oscillation, with only258
a small change in the required multiplier for the PC-PC weights (Figure 6B, C).259

The second modification kept the same overall weight distribution and even the ac-260
tual values of the outgoing weights for all neurons, but destroyed the global structure of261
synaptic interactions in the network. To this end, we randomly shuffled the identity of the262
postsynaptic neurons (by shuffling the columns of the weight matrix). Strong synapses263
were not clustered anymore along the diagonal (representing interactions between neurons264
with nearby place fields), but distributed homogeneously within the matrix (Figure 6D1).265
None of the networks equipped with the scaled versions of this shuffled weight matrix266
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Figure 6: Altering the structure of recurrent excitatory interactions changes the
network dynamics but altering the weight statistics has little effect. (A1) Binarized
(largest 3% and remaining 97% non-zero weights averaged separately) recurrent excitatory weight
matrix. (Derived from the baseline one shown in Figure 1C.) (A2) Distribution of non-zero
synaptic weights in the learned weight matrix shown in (A1). (B) PC raster plot on top and
PC population rate at the bottom (see Figure 2A) from a simulation ran with 1.1* the binarized
weight matrix shown in (A). (C) Analysis of selected network dynamics indicators across different
E-E weight scaling factors (0.9-1.3) as in Figure 3B. (D1) Column-shuffled recurrent excitatory
weight matrix. (Derived from the baseline one shown in Figure 1C.) (D2) Distribution of non-
zero synaptic weights in the weight matrix shown in (D1) (identical to the distribution of the
baseline weight matrix shown in Figure 1C). (E) PC raster plot on top and PC population rate
at the bottom from a simulation run with the shuffled weight matrix shown in (D1). (F) Analysis
of selected network dynamics indicators across different E-E weight scaling factors (1.0-4.0) as
in Figure 3B. Note the significantly extended horizontal scale compared to other cases.

exhibited sequence replay, mean PC rates were severely reduced, and no sharp wave-like267
events were observed (Figure 6E, F). On the other hand, with sufficiently amplified (*3.5)268
PC-PC weights we detected significant peaks in the ripple frequency range of the LFP269
(Figure 6F).270

Taken together these modifications suggest that, unlike in the model of Omura et al.271
(2015), the distribution of the excitatory recurrent synaptic weights is neither necessary272
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nor sufficient for the observed physiological population activity in our model. In other273
words, our simulation results suggest that the fine structure of recurrent excitation not274
only enables coding (sequence replay), but also has a major effect on the global average275
network dynamics (firing rates, sharp waves and ripple oscillations) in hippocampal area276
CA3.277

2.3.3 Cellular adaptation is necessary for replay278

As mentioned earlier, most previous models with symmetrical local excitatory interac-279
tions and global feedback inhibition functioned as “bump attractor” networks, in which280
the dynamics converge to stable patterns of activity involving high rates in a group of281
neurons with similar tuning properties (adjacent place fields), and suppressed firing in282
the rest of the excitatory population (Zhang, 1996; Samsonovich and McNaughton, 1997;283
Káli and Dayan, 2000; Compte et al., 2000). Recent work with rate-based models has284
also shown that these “stable bumps” can be transformed into “traveling bumps” by the285
introduction of short-term depression (York and van Rossum, 2009; Romani and Tsodyks,286
2015; Theodoni et al., 2018) or spike threshold adaptation (Itskov et al., 2011; Azizi et al.,287
2013). On the other hand, previous spiking models of sequence learning and recall/replay288
typically relied on temporally asymmetric learning rules and the resulting asymmetric289
weight matrices to ensure that neurons are reactivated in the same sequence as during290
learning (Jahnke et al., 2015; Chenkov et al., 2017), which is also why it is difficult for291
these models to capture bidirectional replay. By contrast, our model uses the experimen-292
tally recorded symmetric STDP rule, which results in symmetrical synaptic interactions293
(although only at the population level rather than the single neuron level, due to the ran-294
domness of connectivity). Since our network generated a bump of activity that traveled295
unidirectionally in any given replay event rather than a “stable bump”, we hypothesized296
that the cellular-level adaptation that characterized CA3 PCs and was also captured by297
our model may destabilize stable bumps and lead to their constant movement.298

To test this hypothesis, we re-fitted our single-cell data on PC responses to current299
injections using a modified ExpIF model which did not contain any adaptation mech-300
anism (but was otherwise similar to the baseline model). Although the non-adapting301
ExpIF model provided a reasonably good fit to our single-cell data (Figure 7A), and the302
weights resulting from learning were identical to the baseline case, the spontaneous net-303
work dynamics was completely different: there was no sequence replay for any scaling of304
the recurrent PC-PC weights; instead, when structured activity emerged from the random305
background, it was in the form of a stationary rather than a moving bump (Figure 7B).306
Therefore, it was the combination of a symmetric learning rule with cellular adaptation307
that created the possibility of bidirectional replay in our network model.308

2.3.4 Ripple oscillations are generated by the recurrently coupled inhibitory309
population310

From the weight matrix modifications, we also learned that ripple oscillations can be dis-311
entangled from sequence replays, and only require sufficient drive to the interconnected312
PVBC population in our model (Figure 6F). The same conclusion was reached by re-313
cent experimental studies in vivo (Stark et al., 2014) and in vitro (Ellender et al., 2010;314

13

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.02.18.431868doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431868
http://creativecommons.org/licenses/by-nc/4.0/


A B
PC

Time (ms)

V m
 (m

V)
I in

p (
pA

)

Iinp (pA)

f (
H

z)

ExpIF PC model

Time (ms)

N
eu

ro
n 

ID
Ra

te
(H

z)

Network activity
PC BCPC

Figure 7: Sequential replay requires firing rate adaptation in the PC population.
(A) Voltage traces of fitted AdExpIF (blue) and ExpIF (gray) PC models and experimental
traces (red) are shown in the top panel. Inserts show the fI curves of the in vitro (red) and in
silico cells. The amplitudes of the 800 ms long step current injections shown at the bottom were
as follows: -0.04, 0.15 and 0.6 nA. For parameters of the cell models see Table 2. (B) PC raster
plot of a 10-second long simulation with the ExpIF PC models, showing stationary activity in
the top panel. PC population rate is shown below.

Schlingloff et al., 2014). To further investigate the generation of ripples in our model, we315
simulated and analyzed two additional modified versions of the full network.316

First, we disconnected the PVBC network from the PCs and replaced the PC input317
with independent Poisson synaptic input at rates derived from the firing of the PC pop-318
ulation during SWRs in the full simulation (Figure 8A, B). In this simplified, recurrently319
connected, purely PVBC network we systematically scanned different values of PC input320
rate and PC-PVBC synaptic weight and measured ripple power as well as the frequency321
of any significant ripple oscillation as in the full network before (Figure 8A, B). We found322
that ripple oscillations emerged when the net excitatory drive to PVBCs (which is pro-323
portional to the product of the incoming weight and the presynaptic firing rate) was324
sufficiently large. Above this threshold, the properties of the oscillation depended only325
mildly on the strength of the input (e.g., the frequency of the oscillation increased mod-326
erately with increasing drive), and the firing of PVBCs was synchronized mainly by the327
decay of inhibitory synaptic current evoked by shared input from their peers.328

Several experiments have shown that local application of GABA blockers eliminates329
ripples (Maier et al., 2003; Ellender et al., 2010; Schlingloff et al., 2014; Stark et al., 2014);330
however, in an experimental setup it is hard to distinguish feedback inhibition (PVBC-331
PC) from reciprocal inhibition (PVBC-PVBC). As a final perturbation, we modified the332
full baseline model by eliminating only the recurrent inhibitory synapses (Figure 8C, D).333
The resulting dynamics were stable and with enhanced (*1.3) PC-PC weights it also dis-334
played sequence replay, but ripple oscillations were never observed (Figure 8D, E). Taken335
together, these results support the conclusions of previous modeling (Brunel and Wang,336
2003; Geisler et al., 2005; Taxidis et al., 2012; Donoso et al., 2018; Ramirez-Villegas et al.,337
2018) as well as experimental studies (Buzsáki et al., 1992; Ylinen et al., 1995; Racz338
et al., 2009; Ellender et al., 2010; Schlingloff et al., 2014; Stark et al., 2014; Gulyás and339
Freund, 2015; Gan et al., 2017) proposing that ripple oscillations are generated in strongly340
driven, recurrently connected inhibitory networks by the fast inhibitory neuronal oscilla-341
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tion (FINO) mechanism. In fact, recurrent inhibitory connections were both necessary342
and sufficient for the generation of ripple oscillations in our model.343
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Figure 8: Generation of ripple oscillations relies on recurrent connections within
the PVBC population. (A) Significant ripple frequency (A1) and ripple power (A2) of a
purely PVBC network, driven by (independent) spike trains mimicking PC population activity.
Gray color in (A1) means no significant ripple peak. (B) From top to bottom: Raster plot,
mean PVBC rate, voltage trace (of a selected cell), EPSCs and IPSCs of the selected cell from
the middle (100 ms long window) of a simulation used for (A). Ripple frequency and power
corresponding to this simulation are marked with a black rectangle in (A1) and (A2). (C)
PC raster plot on top and PC population rate at the bottom from a simulation ran with a
network with 1.3* baseline E-E weight matrix but without any PVBC-PVBC synapses featuring
stochastic forward and backward replays but no ripple oscillation (see below). (D) Estimated
LFP in the top panel and its time-frequency representation (wavelet analysis) below. (Compared
to Figure 2B there is increased power in the gamma range, but no ripple frequency oscillation.)
(E) Analysis of selected network dynamics indicators across different E-E weight scaling factors
(0.8-1.6) as in Figure 3B.

3 Discussion344

Using a data-driven network model of area CA3 of the hippocampus which reproduces the345
main characteristics of SWRs, we examined the link between learning during exploration346
and the network dynamics in resting periods. Our principal findings from analyzing and347
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manipulating this model are as follows: (1) structured (learned) recurrent excitation in348
the CA3 region not only enables coding and memory, but is critical for the generation349
of SWRs as well; (2) the symmetric STDP rule described by Mishra et al. (2016), in350
combination with cellular adaptation in CA3 PCs, provides an explanation for the co-351
existence of forward and reverse replays; (3) the pattern of strong connections in the352
network rather than the overall weight statistics may be critical for the emergence and353
key properties of SWRs and replay in area CA3; (4) ripple oscillations are generated in354
the strongly driven, recurrently connected network of fast-spiking PVBCs by the FINO355
mechanism (Schlingloff et al., 2014) (also known as PYR-INT-INT (Stark et al., 2014;356
Buzsáki, 2015; Ramirez-Villegas et al., 2018)).357

3.1 Connections of sharp waves, sequence replay and ripple os-358

cillations359

SWRs represent the most synchronous physiological activity pattern with the largest ex-360
citatory gain in the mammalian brain (Buzsáki et al., 1983, 1992; Buzsáki, 1989, 2015).361
Under normal conditions, ripples are typically observed riding on top of naturally emerg-362
ing sharp waves. More recently, using optogenetics, Schlingloff et al. (2014) and Stark363
et al. (2014) managed to decouple ripples from sharp waves by directly activating the364
interconnected network of PVBCs. Our in silico results perfectly parallel this work:365
without drastic, non-physiological modifications of the model ripples were always tied to366
sequence replay, which was in turn associated with bouts of increased spiking activity in367
the network (the sharp waves). When we separated the BC network, we found that a368
relatively high (> 2 Hz) mean firing rate in the PC population was required for induc-369
ing ripple oscillation, a condition that was satisfied only during sharp wave events and370
the associated sequence replay in our full baseline network. When the PC population371
reaches this frequency after a stochastically initiated buildup period, the strongly driven,372
high-frequency firing of PVBCs is synchronized and phase-locked via reciprocal inhibition.373
Thus, the learned recurrent PC-PC synaptic weights are responsible for coding, govern374
sequence replay and, by giving rise to high PC activity during the replay, they also cause375
the ripples. In summary, memory storage and recall, as well as the main hippocampal376
oscillations and transient activity patterns, are intimately interconnected in our unifying377
model.378

3.2 Biological plausibility of the model379

The network model presented here was constrained strongly by the available experimental380
data. Many cellular and synaptic parameters were fit directly to in vitro measurements,381
and most functional parameters correspond to in vivo recordings of hippocampal place382
cells. Nevertheless, there are certainly many biological features that are currently missing383
from our model. We do not see this as a major limitation of our study, as our goal was384
to provide a mechanistic explanation for a core set of phenomena by identifying the key385
underlying biological components and interactions. On the other hand, our model can386
be systematically refined and extended, especially when new experimental data become387
available. The main assumptions we made when constructing the model are explicitly388
stated in Table 1. Here we briefly discuss some of these assumptions, as well as some re-389
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maining discrepancies between our simulation results and the corresponding experimental390
data.391

The 10% PC-PC connection probability is based on the classical viewpoint that con-392
siders the CA3 region as a highly interconnected network (Lisman, 1999; Andersen et al.,393
2007). Although a recent physiological study Guzman et al. (2016) estimated < 1% con-394
nection probability in 400 µm thick slices, the authors concluded from “virtual slicing”395
experiments that recurrent axons were substantially reduced. This is in agreement with396
Li et al. (1994), who reported at least 70% axonal loss in 400 µm slices. Thus, the in vivo397
connection probability is likely to be considerably higher than 1%.398

Our model network contained 8000 PCs and 150 PVBCs, which is rather small com-399
pared to the full rodent CA3 region. While in vitro studies suggest that this network size400
is sufficient for the generation of SWRs, and that these two cell types are the key players401
in this process, it is likely that the much larger network size and the various additional402
cell types modify the quantitative aspects of SWRs in vivo.403

For simplicity, we also decided not to model all the different types of variation in404
single cell and synaptic properties that characterize real cortical networks. However, it is405
important to note that several sources of variability (e.g., those resulting from the random406
assignment of place field locations, sparse, randomized connectivity, and stochastic, inde-407
pendent external drive) were still included in the model. The variability that we include is408
sufficient to avoid the regular, unnaturally synchronous dynamics that often characterize409
homogeneous networks, and results in variable, natural-looking spike patterns during both410
exploration and spontaneous SWR activity. Including additional forms of heterogeneity411
would likely increase the cell-to-cell variability of activity (such as firing rates), but (up412
to a certain limit) would not be expected to change our results qualitatively.413

We modeled activity-dependent synaptic plasticity based on the study of Mishra et al.414
(2016), who uncovered an unusual, temporally symmetric form of spike-timing-dependent415
plasticity in the recurrent excitatory connections between CA3 pyramidal neurons. We fit416
the temporal kernel of our STDP rule directly to their data, assumed linear summation417
of synaptic modifications from all the spike pairs that occurred during the exploration418
phase, and ignored all higher-order (triplet, etc.) spike interactions. However, we note419
that the details of the plasticity rule are not expected to have a major impact on our420
results concerning the emergent dynamics of the CA3 network during resting periods,421
as long as learning results in the strengthening of connections between PCs that are422
approximately co-active during exploration, independent of the exact temporal order of423
their spikes. This requirement would be satisfied by a variety of different learning rules,424
including the behavioral time-scale plasticity rule recently described in hippocampal CA1425
PCs (Bittner et al., 2017).426

One substantial difference between SWRs in the model and those recorded in vivo is427
the duration of the SWR events and the associated replay. Ripple episodes typically last428
40-100 ms in vivo (O’Keefe and Nadel, 1978; Buzsáki et al., 1983, 1992; Ylinen et al., 1995),429
although Fernández-Ruiz et al. (2019) recently showed that learning in spatial memory430
tasks is associated with prolonged SWRs and replays. In our model, SWRs can be up to431
800 ms in duration as they are terminated when the replayed sequence reaches either the432
end or the beginning of the learned trajectory (depending on the direction of replay), thus433
the length of the track determines the maximal duration of the SWR, in combination with434
the speed of replay (i.e., the rate at which activation propagates across the population of435
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place cells). The speed of replay in the model is consistent with experimental findings, but436
a single replay event can cover the whole 3m-long track. Davidson et al. (2009) also used437
a long track in their experiments; however, they reported that the whole path was never438
replayed during a single SWR, only short segments, which combined to cover the whole439
track over multiple SWRs. Therefore, it appears likely that our simplified model lacks440
some additional mechanisms that contribute to the termination of individual SWRs in the441
experiments. For example, building on the work of York and van Rossum (2009), some442
rate-based models of sequence replay in a circular environment (Romani and Tsodyks,443
2015; Theodoni et al., 2018) included short-term synaptic depression as a mechanism444
for terminating replay. However, Guzman et al. (2016) found pseudo-linear short-term445
plasticity profiles for the recurrent PC-PC connections at physiological temperatures (al-446
though depression was present in recordings at room temperature). Moreover, PCs in our447
simulations typically fired single spikes at relatively low rates rather than bursts during448
SWRs (which is similar to the in vitro observations of Schlingloff et al. (2014) but in con-449
trast to the in vivo results of (Mizuseki and Buzsáki, 2013)), which rules out short-term450
synaptic plasticity as a key termination mechanism in our model. Another possibility is451
that an additional cell type that is not currently included in our model is responsible for452
the termination of SWR events. This explanation was supported by some exploratory453
simulations where we found that the duration of SWRs could be controlled by a second454
type of interneuron that provided delayed, long-lasting feedback inhibition to the PCs in455
the model.456

Finally, we have presented our work as a model of the hippocampal CA3 area. This457
is because this area is known to be able to generate SWRs on its own, has modifiable458
recurrent connections that are thought to be essential for memory, and there are sufficient459
experimental data from this region to constrain the model. However, other cortical regions460
such as CA2, the subiculum, and entorhinal cortex, are likely involved in the initiation of461
SWRs under normal conditions (Oliva et al., 2016, 2020), and the mechanisms we describe462
here may be operational in these and other brain areas as well.463

3.3 Previous models of sharp wave-ripples and sequence replay464

In this study, our main objective was to build a simplified, yet powerful model of area465
CA3 that is strongly constrained by experimental data at all levels, and thus allows466
us to uncover the mechanistic links between learning, neural population dynamics, and467
the representation of spatial (or other) sequences in the hippocampus during different468
behavioral states. Although there is a plethora of hippocampal models that shed light on469
some of these aspects (these models have been recently reviewed (Buzsáki, 2015; Jahnke470
et al., 2015) and are also cited when relevant throughout the Results section), there are471
only a handful of recent models that attempted to treat all of them within a single coherent472
framework.473

The study of Jahnke et al. (2015) is probably the most similar in spirit to ours, as474
it also explores the relationship between learning, replay, and SWRs. One distinguishing475
feature of their model is that it relies on the nonlinear amplification of synaptic inputs476
by dendritic spikes in CA3 PCs for the generation of both sequential activity and ripple477
oscillations (Memmesheimer, 2010). Importantly, replay always occurs in the forward478
direction in their model, as it relies on feed-forward chains of strong weights in the network,479
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established by an asymmetric STDP rule that is quite distinct from the one that was later480
found empirically by Mishra et al. (2016). In addition, the generation of ripple oscillations481
in their model relies on synchronized pulses of activity generated by interconnected PCs,482
while recent experimental findings appear to provide causal evidence for the involvement of483
fast-spiking PVBCs in ripple frequency oscillation generation (Racz et al., 2009; Ellender484
et al., 2010; English et al., 2014; Schlingloff et al., 2014; Stark et al., 2014; Gulyás and485
Freund, 2015; Buzsáki, 2015; Gan et al., 2017). Finally, SWRs need to be evoked by486
synchronous external input in the model of Jahnke et al. (2015), while they can also487
emerge spontaneously in our model.488

Malerba and Bazhenov (2019) developed a combined model of areas CA3 and CA1489
to study the generation of sharp waves in CA3 and associated ripple oscillations in CA1.490
This model relies on distance-dependent connection probabilities in the network for the491
generation of spatially localized SWR events. The study shows that modifying the recur-492
rent excitatory weights via an asymmetric STDP rule during a simulated learning epoch493
biases the content of SWRs towards the (forward) reactivation of learned trajectories.494
Ripple oscillations are modeled only in CA1 and, in contrast to our model (and the mod-495
els of Taxidis et al. (2012); Donoso et al. (2018); Ramirez-Villegas et al. (2018)), their496
generation is independent of recurrent inhibition.497

A notable recent example of functionally motivated (top-down) modeling of these498
phenomena is the study of Nicola and Clopath (2019). The authors designed and trained499
(using supervised learning methods) a network of spiking neurons to generate activity500
sequences that were either tied to the population-level theta oscillation, or occurred spon-501
taneously in isolation (in a compressed manner), depending on the presence or absence502
of an external theta-frequency input. Interestingly, these results were achieved by tuning503
specifically the inhibitory weights in the network, while all other models (including ours)504
rely on plasticity in the recurrent excitatory synapses. Their model produced forward505
replay of sequences by default; however, sequences could be reversed by the activation of506
a distinct, dedicated class of interneurons.507

To our best knowledge, ours is the first model that autonomously generates SWRs508
and replay in a spiking network model using synaptic weights established via the exper-509
imentally observed symmetric STDP rule. The model of Haga and Fukai (2018) used510
symmetric STDP (in combination with short-term plasticity) to modify an existing (pre-511
wired) weight structure, and showed that these changes biased evoked activity sequences512
towards reverse replay. Neither spontaneous sharp-waves nor ripple oscillations were ob-513
served in this model.514

We believe that our approach of fitting the parameters of our single cell models directly515
to experimental data to mimic the physiological spiking behavior of real PCs and PVBCs is516
also quite unique. This enabled our models of PCs to capture spike frequency adaptation,517
which proved to be essential for the generation of propagating activity (sequence replay)518
despite the essentially symmetric nature of synaptic interactions.519

3.4 Conclusions520

At a more general level, our results highlight the significance of some previously neglected521
interactions between three fundamental components of brain function: population dynam-522
ics, coding, and plasticity. Specifically, the different types of population dynamics (includ-523
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ing oscillations and transients such as sharp waves) are mostly seen as a background over524
which coding and plasticity occur, while the impacts of plasticity and especially neural525
representations on the generation of population activity patterns are rarely considered.526
However, our results strongly suggest that the structured network interactions resulting527
from activity-dependent learning (or development) lead to specific spatio-temporal ac-528
tivity patterns (such as autonomously generated replay sequences), which are in turn529
critical for the emergence of physiological population activity (such as sharp waves and530
ripple oscillations). Therefore, our study indicates that the complex structure of synaptic531
interactions in neuronal networks may have a hitherto unappreciated degree of control532
over the general mode of activity in the network, and should be taken into account by533
future theories and models of population activity patterns in any part of the nervous534
system.535

4 Methods536

In order to investigate the mechanisms underlying hippocampal network dynamics and537
how these are affected by learning, we built a simplified network model of area CA3. This538
scaled-down version of CA3 contained 8000 PCs and 150 PVBCs, which is approximately539
equivalent to cell numbers in area CA3 in a 600 µm thick hippocampal slice based on our540
previous estimates (Schlingloff et al., 2014), which are also in good agreement with other541
estimates (Bezaire and Soltesz, 2013; Donoso et al., 2018). The connection probability542
was estimated to be 25% for PVBCs (Schlingloff et al., 2014) and 10% for PCs (Table543
3), and was independent of distance in the model. Half of the PCs were assumed to have544
place fields on the simulated 3 m long linear track.545

Only PCs received external input; during exploration, they were activated directly to546
model place-associated firing; otherwise, they received synaptic input (through the mossy547
fibers) in the form of uncorrelated Poisson spike trains with a mean rate of 15 Hz. As the548
hallmark of granule cell activity in the dentate gyrus is sparse, low frequency firing (Jung549
and McNaughton, 1993; Skaggs et al., 1996), and each CA3 PC is contacted by only a550
few mossy fibers, the physiological mean rate of mossy fiber input to PCs is probably551
substantially lower (especially in off-line states of the hippocampus). On the other hand,552
real CA3 PCs also receive direct input from the entorhinal cortex, and also spontaneous553
EPSPs from a large population of recurrent collateral synapses. Overall, these other554
numerous, but small-amplitude inputs may be responsible for most of the depolarization555
required to bring CA3 PCs close to their firing threshold, in which case mossy fiber556
input at a significantly lower rate would be sufficient to evoke the same number of action557
potentials in CA3 PCs.558

Network simulations were run in Brian2 (Stimberg et al., 2019). Learning of the559
structure of recurrent excitation, single cell and network optimization, and the analysis560
of the network simulations are detailed in the following sections. A comprehensive list of561
assumptions made during the model building process is presented in Table 1.562

4.1 Spike trains during exploration563

Spike trains mimicking CA3 PC activity during exploration were generated with expo-564
nentially distributed inter spike intervals (ISIs) with mean 1/λ, giving rise to Poisson565
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Table 1: List of modeling assumptions.

1 In the absence of unified data sets, it was assumed that published parameters from
different animals (mouse/rat, strain, sex, age) can be used together to build a general
model.

2 Connection probabilities were assumed to depend only on the presynaptic cell type
and to be independent of distance.

3 Each PC was assumed to have a place field in any given environment with a prob-
ability of 50%. For simplicity, multiple place fields were not allowed.

4 When constructing the "teaching spike trains" during simulated exploration, place
fields were assumed to have a uniform size, tuning curve shape and maximum firing
rate.

5 It was assumed that deterministic synapses without short- or long-term plasticity
during network simulations can capture the relevant behaviour of the modeled CA3
synapses.

6 When considering the non-specific drive to the network in the off-line state, it was
assumed that the external input can be modeled as uncorrelated random spike trains
(one per cell) activating strong synapses (representing the mossy fibers) in the PC
population.

7 Some fundamental assumptions are inherited from common practices in computa-
tional neuroscience; these include modeling spike trains as Poisson processes, captur-
ing weight changes with additive STDP, describing cells with single compartmental
AdExpIF models, modeling a neuronal population with replicas of a single model
and representing synapses with conductance-based models with bi-exponential ki-
netics.

8 When comparing our model to in vivo data, an implicit assumption was that the
behaviour of a simplified model based on slice constraints can generalize to the
observed behaviour of the full CA3 region in vivo, in the context of studying the
link between activity-dependent plasticity and network dynamics.

processes. Spike trains of non-place cells had mean firing rates of λ = 0.1 Hz. For the566
spike trains of the randomly selected 4000 place cells, homogeneous Poisson processes with567
λ = 20 Hz were generated, and spike times were accept-reject sampled with acceptance568
probability coming from place cell-like tuning curves (eq. (2)), which led to inhomoge-569
neous Poisson processes with time-dependent rate λ(t). Tuning curves were modeled as570
Gaussians centered at randomly distributed positions and standard deviation set to cover571
10% of the 3 m long linear track (eq. (1)). Edges of the place fields were defined where572
the firing rate dropped to 10% of the maximal 20 Hz (Dragoi and Buzsáki, 2006). Tuning573
curves were also modulated by the background fθ = 7 Hz theta activity, phase precessed574
up to 180◦ at the beginning of the place field (O’Keefe and Recce, 1993). The firing rate575
of the ith place cell was calculated as follows:576

τi(x) = exp
(−(x−mPF

i )2

2σ2

)
(1)

577

λi(t) = τi(x(t))× cos
(

2πfθt−
ltr/2

lPF
(x(t)− sPFi )

)
× λmax (2)
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where τi(x) is the spatial tuning curve of the ith neuron, x(t) is the position of the578
animal, mPF

i , lPF = 0.3 m and sPFi are the middle, length and start of the given place579
field respectively, while ltr = 3 m is the length of the linear track; λmax = 20Hz is the580
maximum in-field firing rate.581

Spikes within a 5 ms refractory period of the previous spike were always rejected. The582
speed of the animal was set to 32.5 cm/s, thus each run took ∼ 9.2 s, after which the583
animal was immediately “teleported back” to the start of the linear track. Generated spike584
trains were 400 s long, leading to ∼ 43 repetitions on the same linear track.585

4.2 Learning via STDP586

STDP was implemented by an additive pair-based learning rule, evaluated at spike arrivals
(Kempter et al., 1999; Gerstner et al., 2014). Synaptic weights evolved as follows:

∆w+ = A+ exp
(
− ∆t

τ+

)
at tpost if tpre < tpost (3)

∆w− = A− exp
(∆t

τ−

)
at tpre if tpre > tpost (4)

where ∆t = tpost − tpre is the time difference between action potentials, A± describe the587
weight update, which decayed exponentially with time constants τ±. Synaptic weights588
were cropped at wmax = 20 nS. To reproduce the broad STDP curve presented in Mishra589
et al. (2016) τ± = 62.5 ms was used. In the classical asymmetric STDP rules A+ is positive,590
while A− is negative; here, both of them were set to 80 pA to obtain a symmetric STDP591
curve (Mishra et al., 2016). In simulations using the asymmetric STDP rule, τ± = 20 ms,592
A+ = 400 pA, A− = −400 pA, and wmax = 40 nS were used. In both cases PCs were593
sparsely connected (Table 3) and weights were initialized to 0.1 nS. In the learning phase594
the intrinsic dynamics of the PCs were not modeled explicitly, since only the timing of595
their spikes mattered, which was set directly as described above. No self-connections were596
allowed, and diagonal elements of the learned recurrent weight matrix were always set to597
zero after any modification.598

4.3 In vitro electrophysiology599

Somatic whole-cell patch-clamp recordings were performed in acute hippocampal slices as600
described before (Papp et al., 2013; Schlingloff et al., 2014; Kohus et al., 2016). Pyramidal601
cells were recorded in the CA3 pyramidal cell layer of juvenile control mice, while PVBCs602
were recorded in a targeted manner in transgenic mice that expressed enhanced green603
flurenscent protein controlled by the parvalbumin promoter (BAC-PV-eGFP) (Meyer604
et al., 2002). To characterize the physiological response properties of the neurons, hy-605
perpolarizing and depolarizing current steps of various amplitudes were injected into the606
soma, and the voltage response of the cell was recorded. Injected current pulses had a607
duration of 800 ms, and amplitudes between -100 and 600 pA. Experimental traces were608
corrected for the theoretical liquid junction potential before further use.609
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4.4 Single cell models610

Neurons were modeled with the AdExpIF model (Naud et al., 2008; Gerstner et al., 2014).611
AdExpIF neurons are described by their membrane potential V (t) and the adaptation612
variable w(t), which obey:613

Cm
dVm(t)

dt
= −

(
gL(V (t)− Vrest)− gL∆T exp

(V (t)− ϑ
∆T

)
+ Isyn(t) + w(t)

)
(5)

614

τw
dw(t)

dt
= a(V (t)− Vrest)− w(t) (6)

where Cm is the membrane capacitance, gL is the leak conductance, Vrest is the reversal615
potential of the linear leak current (which is approximately equal to the resting potential),616
ϑ is the intrinsic spike threshold, ∆T characterizes the “sharpness” of the threshold, w(t)617
is the adaptation current and Isyn is the synaptic current (see below). When V (t) crosses618
the firing threshold θ, it is reset to Vreset and remains there for a refractory period tref .619
The adaptation current is also increased by a factor b at each spike arrival and decays ex-620
ponentially afterwards with the time constant τw. The parameter a describes the strength621
of sub-threshold adaptation.622

To investigate the role of adaptation, an ExpIF PC model was also fit to the data. The623
ExpIF model is the same as eq. (5) without the w(t) adaptation current (implemented624
as an AdExpIF model with parameters a and b set identically to zero). The parameters625
of all models were fit to experimental data from our somatic whole-cell recordings, and626
the voltage responses to current injections of four different amplitudes (including two627
subthreshold and two suprathreshold stimuli) were used in each case. Parameters were628
tuned using the Optimizer package (Friedrich et al., 2014) with the NEST simulator as629
backend (Gewaltig and Diesmann, 2007). Spike count, ISI distribution, latency to first630
spike and mean squared error (excluding spikes) were used as equally weighted features.631
After comparing different optimization techniques, the final parameters presented here632
were obtained with an evolutionary algorithm implemented by the inspyred package633
(Garrett, 2012), running for 100 generations with a population size of 100. The parameters634
which yield the best models for the CA3 populations are summarized in Table 2.

Table 2: Optimized parameters of PC (AdExpIF and ExpIF) and PVBC models. Physical
dimensions are as follows: Cm: pF, gL and a: nS, Vrest, ∆T , ϑ, θ and Vreset: mV, tref and τw:
ms, b: pA.

Cm gL Vrest ∆T ϑ θ Vreset tref τw a b

PC 180.13 4.31 -75.19 4.23 -24.42 -3.25 -29.74 5.96 84.93 -0.27 206.84
PC 344.18 4.88 -75.19 10.78 -28.77 25.13 -58.82 1.07 - - -
PVBC 118.52 7.51 -74.74 4.58 -57.71 -34.78 -64.99 1.15 178.58 3.05 0.91

635

4.5 Synapse models636

Synapses were modeled as conductances with bi-exponential kinetics:637

g(t) = ĝA
(

exp(− t

τd
)− exp(− t

τr
)
)

(7)
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where ĝ is the peak conductance (which will also be referred to as the synaptic weight)638
and τr and τd are rise and decay time constants respectively. The normalization constant639
A = exp(− tp

τd
)−exp(− tp

τr
) was chosen such that the synapses reach their peak conductance640

at tp = τdτr/(τd − τr)log(τd/τr) ms. Kinetic parameters were taken from the literature641
(Geiger et al., 1997; Bartos et al., 2002; Lee et al., 2014; Vyleta et al., 2016; Guzman642
et al., 2016) and are summarized in Table 3. The postsynaptic current contained AMPA643
receptor- and GABA-A receptor-mediated components, and was computed as:644

Isyn(t) = gAMPA(t)(V (t)− Eexc) + gGABA(t)(V (t)− Einh) (8)

where Eexc = 0 mV and Einh = −70 mV are the reversal potentials of excitatory and645
inhibitory currents, respectively.

Table 3: Synaptic parameters (taken from the literature or optimized). Physical dimensions
are as follows: ĝ: nS, τr, τd and td (synaptic delay): ms and connection probability pconn is
dimensionless. GC stands for the granule cells of the dentate gyrus. (GC → PC synapses are
referred as mossy fibers.)

ĝ τr τd td pconn
sym. asym.

PC → PC 0.1-6.3 0-15 1.3 9.5 2.2 0.1
PC → PVBC 0.85 1 4.1 0.9 0.1
PVBC → PC 0.65 0.3 3.3 1.1 0.25
PVBC → PVBC 5 0.25 1.2 0.6 0.25
GC → PC 19.15 21.5 0.65 5.4 - -

646

4.6 Network optimization647

Synaptic weights of the network (5 parameters in total) were optimized with an evolu-648
tionary algorithm using a custom written evaluator in BluePyOpt (Van Geit et al., 2016).649
The multi-objective fitness function F , designed for this network included 6 separately650
weighted features (eq. (9)): physiological PC firing rate, no significant gamma oscillation651
in the PC population, significant ripple frequency oscillations in the rates of PC and652
PVBC populations as well as high ripple vs. gamma power in the rates of the PC and653
PVBC populations:654

F =
[

exp
(
− (νPC − 2)2

2× 0.52

)
, δ(fγPV BC), exp

(
− (frPC − 180)2

2× 202

)
,

2× exp
(
− (frPV BC − 180)2

2× 202

)
, 5×

∑
P (ωrPC)∑
P (ωγPC)

, 10×
∑
P (ωrPV BC)∑
P (ωγPV BC)

] (9)

where ν is the firing rate, δ is the Dirac-delta function, fr and fγ are significant peaks655
in the ripple and gamma range (see below) of the PSD of the firing rate respectively656
and P (ωr) and P (ωγ) are the periodogram values within the gamma and ripple bands657
of the firing rate respectively, while the sum of them represents the power within the658
frequency bands (as below). As in the case of the network simulations (see above) if the659
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PC firing rate exceeded the 2 Hz high activity state detection threshold spectral features660
were only extracted in these time windows. Sequence replay was not analysed during661
the optimization. Optimizations were run with 50 offspring for 10 generations. Synaptic662
weights were varied in the [0.1, 5] nS range, except the “detonator” mossy fiber ones663
which were given a higher [15, 30] nS range (Henze et al., 2002; Vyleta et al., 2016). For664
the learned recurrent excitatory weights an additional scaling factor was introduced. All665
learned weights are presented with this optimized scale factor (0.62 for symmetric and666
1.27 for asymmetric STDP rule) taken into account. Final weights are presented in Table667
3. The ExpIF PC model required much higher synaptic drive to fire at the same frequency668
as the AdExpIF model, thus the mossy fiber input weight was doubled (38.3 nS) when669
ExpIF PC models were used.670

4.7 LFP estimate671

An estimate of the LFP was calculated by summing the synaptic currents of a small672
randomly selected subset of N = 400 PCs (Mazzoni et al., 2008). This approach is673
essentially equivalent to using “transmembrane” currents to calculate the field potential674
at an arbitrary sampling point xe, using volume conduction theory and the forward model675
(Einevoll et al., 2013):676

V (xe, t) =
1

4πσ

N∑
n=1

In(t)

|xe − xn|
(10)

where σ = 1/3.54 S/m is the extracellular conductivity and In(t) denotes the trans-677
membrane currents of the nth neuron. There was no attempt to replicate the spatial678
organization of CA3 PCs and a uniform |xe − xn| = 1µm distance from the sampling679
point was used (note that this choice affects the results only as a constant scaling factor).680
The resulting signal was low pass filtered at 500 Hz with a 3rd order Butterworth filter.681

4.8 Spectral analysis682

Power spectral density (PSD) was estimated by Welch’s method with a Hanning window,683
using 512 long segments in case of population rates (sampling frequency = 1 kHz) and 4096684
long segments for LFP (see below, sampling frequency = 10 kHz) with 0.5 overlap. If the685
network showed multiple sequence replays during the 10-seconds long simulations (most686
cases) only the detected high activity states (see above) were analysed and averaged, to687
get rid of the high power at ∼ 1.5 Hz, signaling the frequency of sequence replays. In this688
case shorter segments (256 and 2048 respectively) were used to estimate the PSD. The689
significance of peaks in the power spectra in the gamma (30-100 Hz) and ripple (150-220690
Hz) bands was evaluated using Fisher’s g-statistic (Fisher, 1929) defined as:691

g =
maxk(P (ωk))∑N

k=1 P (ωk)
(11)

where P (ω) is the periodogram (Welch’s method estimates PSD by averaging periodograms692
from the short segments) evaluated at k discrete frequencies, N is the length of the693
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periodogram and
∑N

k=1 P (ωk) is the total power of the spectrum. The distribution of694
g-statistics under the null hypothesis (H0) (Gaussian white noise) is given by:695

p = Pr(g∗ > g) =
b∑

k=1

(−1)k−1 N !

k!(N − k)!
(1− kg)N−1 (12)

where b is the largest integer less than 1/g. Large value of g (small p-value) indicates a696
strong periodic component and leads to the rejection of H0. Alpha level 0.05 was used697
throughout the study. To characterize non-significant oscillations too, gamma and ripple698
power (defined as the sum in the given frequency band divided by the total power in the699
0-500 Hz range) were calculated as well. Time-frequency representations were created by700
convolving the firing rates (or LFP) with samples of the integral of the Morlet wavelet701
Ψ(t) = exp(−t2/2)cos(5t) evaluated at the scales corresponding to the 25-325 Hz band,702
using the pywt package (Lee et al., 2006).703

4.9 Replay analysis704

Sequence replay was analysed with methods used by experimentalists having access to705
spike times of hundreds of identified neurons (Ólafsdóttir et al., 2018). Firstly, candidate706
replay events were selected based on the averaged (into 20 ms bins) PC population firing707
rate crossing the threshold of 2 Hz for at least 260 ms. Secondly, the animal’s position708
was estimated with a memoryless Bayesian place decoder based on the observed spikes709
within the selected time windows (Davidson et al., 2009; Karlsson and Frank, 2009). Only710
spikes from the N = 4000 place cells were used. For numerical stability log likelihoods711
were calculated:712

log(Pr(spikes|x)) =
N∑
i=1

ni log(
∆Tτi(x)

ni!
)−∆T

N∑
i=1

τi(x) (13)

where ni is the number of spikes of the ith neuron within the ∆T = 10 ms long, non-713
overlapping time bins and τi(x) is the tuning curve used for spike train generation (eq.714
(1)). The 3 m long linear track was binned into 50 intervals, resulting in 6 cm spatial715
resolution. Thirdly, constant velocity v neural trajectories were detected with a 2D band716
finding method in the decoded posterior matrix (Davidson et al., 2009). For candidate717
events consisting of n time bins, the average likelihood R that the animal is within distance718
d = 18 cm of a particular trajectory is given by:719

R(v, x0) =
1

n

n−1∑
k=0

Pr(|x− (x0 + vk∆T )| ≤ d) (14)

where x0 is the starting position of the trajectory. R(v, x0) was maximized using an720
exhaustive search to test all combinations of v between -18 m/s and 18 m/s in 0.3 ms/s721
increments (excluding slow trajectories with speed ∈ [−0.3, 0.3] m/s) and x0 between -1.5722
m and 4.5 m in 3 cm increments. Lastly, to determine the significance of replay, Rmax was723
compared to the best line fits of 100 posterior probability matrices generated by shuffling724
the identities of cells included in the candidate event. Only events with Rmax values725
exceeding the 95th percentile of their own shuffled distribution were labeled as replay.726
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To replicate the step-size analysis of Pfeiffer and Foster (2015) the position of the an-727
imal was estimated as a weighted average based on the posterior matrix in each time bin728
instead of the band finding method. As their control distribution for the skewed step-sizes729
(“predicted step-size” distribution) was derived for a 2D arena, it was not directly appli-730
cable to our linear track setup. Therefore, we defined the predicted step-size distribution731
based on the ratio of the length of the replayed path and the duration of the replay event732
for the SWRs detected in the simulations.733
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Figure S1: The generation of the spike trains of PCs in the exploration phase. (A)
Firing rates of exemplar place cells covering the whole 3 m long linear track. Compared to the
tuning curves shown in Figure 1A (eq. (1)), these are time-dependent rates modulated by theta
oscillation and phase precession (eq. (2)). (B) Exemplar spike trains generated based on the
firing rates shown in (A). (Spike trains used in the learning phase were 400 second long. For
the purpose of visualization, only the beginning is shown here.) (C) ISI distribution of the
generated spike trains. ISIs of place cells (C1) (insert is a zoom into the same distribution at a
finer timescale to show theta modulation) and non-place cells (C2).
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Figure S2: Single cell models. (A) Fitted AdExpIF PC model (blue) and experimental
traces (red) are shown on the top panel. The 800 ms long step current injections shown in the
bottom were as follows: -0.04, 0.15 and 0.6 nA. (B) Fitted ExpIF PVBC model (gold) and
experimental traces (red) are shown in the top panel. The amplitudes of the 800 ms long step
current injections shown at the bottom were as follows: -0.03, 0.09 and 0.25 nA. Inserts show
the fI curve of the in vitro (red) and in silico cells. For parameters of the cell models see Table
2.
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Figure S3: The step-size distribution of the decoded paths is much wider than
expected. (A) Posterior matrix of the decoded positions from spikes within a selected high
activity state (1st one from Figure 2A). Thick gray lines indicate the edges of the decoded,
constant velocity path. Thin gray line shows the decoded path by connecting the weighted
average positions in every 10 ms long time step. (B) Step sizes from the decoded, variable
velocity path (see (A)) for the same period (1st high activity state in Figure 2A). The horizontal
dashed black line shows the average or predicted step-size within the given period. (C1) Skewed
distribution of observed step sizes (in gray) and the predicted (from evenly spacing) step-size
distribution (in red) for more than a hundred replay events (similar to the one in (A) and
(B)). Inserat shows the same distributions at smaller scales. (C2) Cumulative distribution of
the observed and predicted step sizes shown in (C1). Observed vs. predicted distributions
significantly differ (two-sample Kolmogorov-Smirnov test).
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Figure S4: Single cell characteristics during network simulations. (A) Single cell PC
(A1) and PVBC (A2) firing rates of the 10 second long simulation shown in Figure 2. (B) ISIs
of PCs (B1) and PVBCs (B2) in the 10-second long simulation shown in Figure 2. (C) Synaptic
input currents of PCs (C1) and PVBCs (C2) during sequence replay initiation. Gray lines are
the averages of the EPSCs and IPSCs of 400 PCs and 30 PVBCs respectively. Individual gray
lines correspond to individual high activity states (n=7, see Figure 2A). Dashed vertical lines
(at 0 ms) indicate the beginning of the periods marked as high activity states (see Figure 2A).
Colored lines represent the grand average EPSC (blue) and IPSC (gold) arriving at PCs (C1)
and PVBCs (C2) during SWR initiation.
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Figure S5: Spectral analysis of network dynamics across different PC-PC weight
scaling factors. (A) PSDs of PC (A1) and PVBC (A2) population rates and estimated LFP
(A3). Gray lines correspond to individual high activity states (n=14) shown in Figure 2A, while
the thicker colored lines are their averages. Ripple frequency range (150-220 Hz) is highlighted
in red. Shaded red area below the curves indicates the power in the ripple range. (B) Spectral
analysis of network dynamics across different E-E weight scaling factors (0.8-1.2). The frequency
of significant ripple oscillation and ripple oscillation power (red) are shown for PC (B1) and
PVBC (B2) population rates and estimated LFP (B3). (B3) is the same as the bottom panel
of Figure 3B and it is duplicated only to show how similar the curves are for the rates and the
estimated LFP.
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