Summary
Gliomas synaptically integrate into neural circuits. Prior work has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth and gliomas increasing neuronal excitability. In this study we wanted to know how glioma induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. We use intracranial brain recordings during lexical retrieval language tasks in awake humans in addition to site specific tumor tissue biopsies and cell biology experiments. We find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumor-infiltrated cortex, beyond cortical excitation normally recruited in the healthy brain. Site-directed biopsies from functionally connected regions within the tumor are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumor cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumor regions compared to tumor regions with less functional connectivity. The degree of functional connectivity between glioblastoma and the normal brain negatively impacts both patient survival and language task performance. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumor proliferation and impairs cognition.
Competing Interest Statement
The authors have declared no competing interest.