An Exhaustive Multiple Knockout Approach to Understanding Cell Wall Hydrolase Function in *Bacillus subtilis*

Sean Wilson\(^1,2\), Ethan Garner\(^1,2,*\)

\(^1\) Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.
\(^2\) Center for Systems Biology, Harvard University, Cambridge, United States.

Corresponding Author: Ethan C. Garner

NW 445.20, Northwest Building, 52 Oxford Street, Cambridge, MA 02138

E-mail: egarner@g.harvard.edu

ABSTRACT

Most bacteria are surrounded by their cell wall, a highly crosslinked protective envelope of peptidoglycan. To grow, bacteria must continuously remodel their wall, inserting new material and breaking old bonds. Bond cleavage is performed by cell wall hydrolases, allowing the wall to expand. Understanding the functions of individual hydrolases has been impeded by their redundancy: single knockouts usually present no phenotype. We used an exhaustive multiple-knockout approach to determine the minimal set of hydrolases required for growth in *Bacillus subtilis*. We identified 42 candidate cell wall hydrolases. Strikingly, we were able to remove all but two of these genes in a single strain; this "Δ40" strain shows a normal growth rate, indicating that none of the 40 hydrolases are necessary for cell growth. The Δ40 strain does not shed old cell wall, demonstrating that turnover is not essential for growth.

The remaining two hydrolases in the Δ40 strain are LytE and CwlO, previously shown to be synthetically lethal. Either can be knocked out in Δ40, indicating that either...
hydrolase alone is sufficient for cell growth. Environmental screening and zymography revealed that LytE activity is inhibited by Mg$^{2+}$ and that RlpA-like proteins may stimulate LytE activity. Together, these results demonstrate that the only essential function of cell wall hydrolases in *B. subtilis* is to enable cell growth by expanding the wall and that LytE or CwlO alone is sufficient for this function. These experiments introduce the ∆40 strain as a tool to study hydrolase activity and regulation in *B. subtilis*.

IMPORTANCE

In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall – cell wall hydrolases – has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in *Bacillus subtilis* and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of *B. subtilis* in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify 3 ‘helper’ hydrolases that act in certain stress conditions.

INTRODUCTION

Most bacterial cells are surrounded by a peptidoglycan (PG) cell wall – a load-bearing structure that protects cells from lysing due to their high internal turgor (1). Bonds must be broken in the PG for cells to expand during growth (2). PG is built from disaccharide subunits linked to stem peptides. As new PG is inserted into the wall, the
disaccharides are polymerized into long chains, and their stem peptides are crosslinked into the existing wall (3).

The enzymes that break PG bonds are termed cell wall hydrolases (hereafter 'hydrolases'). Hydrolases fall into several broad categories with different chemical specificities (4). Amidases cleave the stem peptide from the sugar subunit. Endopeptidases cleave bonds between peptides within the stem peptide. Lytic transglycosylases (LTGs), lysozymes/muramidases, and glucosaminidases cleave between sugar subunits. A wide array of different protein domains are capable of hydrolase activity – for example, there are at least 7 distinct domains with LTG activity and well over 100 distinct domains with hydrolase activity discovered thus far (5, 6).

Hydrolase activity is essential: without the breakage of PG bonds, the cell wall cannot expand to accommodate the accumulating biomass it contains (2). Hydrolases are also involved in a variety of other processes that require modification of the cell wall: turning over old PG, cell separation, and sporulation, conjugation, and motility (4, 7).

Perhaps owing to the multiple cellular functions that require hydrolases, many bacteria have a large number of hydrolases. *Bacillus subtilis* and *Escherichia coli*, for example, each contain at least 20 hydrolases (4, 8). The large number of hydrolases in each bacterium, combined with a high degree of functional and enzymatic redundancy between them, has made it difficult to identify specific cellular functions for many hydrolases. Single knockouts rarely present clear phenotypes due to compensation by other hydrolases (4, 9). However, multiple-knockout approaches in *B. subtilis* have been successful in revealing the importance of LytE and CwlO for cell growth, uncovering the
role of LytC and LytD in cell wall turnover, and identifying LytE, LytF, and CwlS as cell
separation hydrolases (4, 10, 11).

\textit{lytE} and \textit{cwlO} had been previously shown to be synthetically lethal when both
are deleted in \textit{B. subtilis} (10, 12). The requirement of LytE or CwlO for cell growth was
demonstrated via microscopy: upon depletion of LytE in a \textit{cwlO} null mutant, or vice
versa, cell elongation slows and then stops completely before cells lyse (12). To test
whether any other hydrolases were essential for \textit{B. subtilis} growth, we employed an
exhaustive multiple-knockout approach. We created a minimal hydrolase strain that
allows the study of hydrolases in isolation, making it easier to assign functions to
uncharacterized hydrolases. Using this multiple hydrolase knockout strain, it is
straightforward to assay the biochemical activity and determine the effect of hydrolases
alone or in any desired combination on phenotypes like cell width, cell wall turnover, cell
growth, or any other process.

\section*{RESULTS}

\subsection*{Construction of a multiple hydrolase knockout strain}

To identify the minimal set of hydrolases required for growth in \textit{B. subtilis} PY79,
we constructed a strain in which we sequentially removed as many hydrolases as
possible. First, we used PHMMER to screen the \textit{B. subtilis} proteome for proteins
homologous to known hydrolases (4, 5, 8, 13, Table S2). We filtered our results to
identify candidates for hydrolases involved in growth with the following criteria:
candidates needed to: 1. have a functional hydrolase domain, 2. be secreted (enabling
access to the cell wall) and 3. be endo-acting, meaning that they can cleave internal
bonds rather than acting only on the ends of the stem peptide or glycan chains (exo-
acting) (4, 14), as exo-acting hydrolases, like the D,D-carboxypeptidase DacA or the glucosaminidase NagZ, cannot contribute to cell growth because their activity does not cause PG expansion. Candidates with the potential to be endo-acting were assumed to be endo-acting unless proven otherwise. Candidate hydrolases that fit all above criteria are indicated in Table 1. Cell wall hydrolases not present in PY79, our wild-type (WT) background, are included for completeness.

We next generated single knockouts for each of the candidate hydrolases by replacing the gene with an antibiotic resistance cassette flanked by loxP sites. We then sequentially combined all knockouts into a single strain, using Cre-lox mediated loop outs to remove markers when necessary (Figure 1). After each loop out step, we verified deletion of all modified loci by PCR. After all knockouts had been combined into a single strain, whole-genome sequencing was used to confirm all deletions and to identify any genomic rearrangements or mutations that occurred during the construction process. Despite the multiple rounds of transformation and loop outs this strain was subjected to, we found no evidence of genomic rearrangements, and only 8 SNPs leading to 5 point mutations in genes involved in unrelated processes (Table S1).

Ultimately, this effort produced a strain lacking 40 hydrolases, which we termed “Δ40”. The Δ40 strain is lacking all the identified hydrolases that met our criteria save two - LytE and CwlO, two synthetically lethal endopeptidases previously shown to be essential for growth (10). We were able to further knock out either lytE or cwlO in the Δ40 strain, but not both, due to their synthetic lethality.

Hydrolase activity is greatly reduced in the Δ40 strain
To assess whether any other unidentified hydrolases remained in the ∆40 strain, we first used zymography. Zymography is a renaturing SDS-PAGE assay for that detects hydrolase activity (15), where cells wall binding proteins are extracted from cells and separated by size via SDS-PAGE using a gel impregnated with purified cell walls. Following separation by PAGE, proteins in the gel are renatured, and their activity cleaves the purified cell wall in the gel, leading to clear “bands” in the gel which do not stain with methylene blue, corresponding to the molecular weight of the protein with hydrolase activity. It is important to note that zymography can only report on a subset of hydrolases: hydrolases must successfully refold after denaturation and have in vitro activity in the absence of any co-factors. Because either LytE or CwlO must be present for viability, we conducted zymograms on the ∆40, ∆40 ∆lytE, and ∆40 ∆cwlO strains (Figure 2A). The ∆40 strain showed only a single band of hydrolase activity, and this band disappeared upon deletion of lytE. Thus, LytE is the only hydrolase detectable via zymography in the ∆40 strain. We note that, although CwlO is also present in ∆40, we do not expect to detect it by zymography, as previous zymography experiments have suggested that full-length CwlO is inactive in vitro (16), an effect likely arising from CwlO’s auto-inhibitory coiled-coil domain (17).

To detect the activity of hydrolases not visible via zymography, we conducted PG profiling of both wild type (WT) cells and the ∆40 strain (18), allowing us to determine the abundance of hydrolase products in their cell walls (Figure 2B). During sample preparation for PG profiling, we omitted teichoic acid removal to prevent sample degradation: normally, teichoic acids are removed by treatment with a strong acid (18, 19), but this treatment also caused some hydrolysis of amide bonds in the PG,
complicating our analysis (Figure S1). The omission of the teichoic acid removal step has been previously shown not to affect the results of PG profiling other than the disappearance of phosphate-containing muropeptides, species not included in our analysis (18).

Our PG profiling assay has limitations: as PG profiling relies on muramidase digestion to yield soluble muropeptides for HPLC analysis, we could not use this assay to detect hydrolases with muramidase activity. Likewise, D,D-endopeptidases cannot be detected by PG profiling, as they produce products that are indistinguishable from unmodified PG.

We compared the relative abundance of different PG hydrolase products in the ∆40 and WT strains (Figure 2B). The ∆40 strain showed an absence of amidase activity and a strong reduction of glucosaminidase activity, indicating that these classes of hydrolases had been successfully reduced in the ∆40 strain. The residual glucosaminidase activity could represent A) a yet unknown minor glucosaminidase with a novel fold or B) sample degradation during PG purification. We observed an increase in D,L-endopeptidase activity in the ∆40 strain, an expected result given ∆40 retains the D,L-endopeptidases LytE and CwlO. In agreement with previous work (18), L,D-endopeptidase activity was not detected in any strain.

Unexpectedly, the ∆40 strain also showed an increase in LTG activity (Figure 2B). We found that this remaining LTG activity required SweC, a recently characterized membrane-bound CwlO co-factor homologous to the E. coli LTG MltG (20) (Table 1). Removing sweC from the ∆40 strain eliminated all detectible LTG activity (Figure 2B). However, as SweC’s catalytic PG hydrolase domain is cytoplasmic (21), SweC cannot
target the cell wall directly and thus is unlikely to be the direct cause of the residual LTG activity. *B. subtilis* also contains a second membrane protein homologous to MltG, called YrrL. YrrL’s catalytic domain is predicted to be extracellular, although YrrL is likely too small to reach far enough into the cell wall space to directly participate in cell wall expansion. Rather, YrrL may instead be involved in the insertion of new cell wall material, as previously proposed for MltG in *E. coli* (20). If YrrL is indeed the source of the residual LTG activity, its activity must require SweC; perhaps YrrL is activated by interactions with SweC or SweD, similar to what has been seen for CwlO (21).

Cell growth and morphology are similar in the ∆40 strain relative to wild type.

We next characterized the growth rate of the ∆40 strain. The ∆40 strain grew at the same rate as WT cells in both rich (CH) and synthetic media (S750 with glucose and amino acids, see Methods for details) (Figure 3A and B). This indicates that the activity of LytE and CwlO together are sufficient for normal cell growth. To investigate the individual effects of each of these enzymes, we made knockouts of *lytE* and *cwlO* in both WT and ∆40 backgrounds. ∆40 ∆*lytE* and ∆40 ∆*cwlO* both exhibited a ~10% reduction in growth rate compared to ∆40. We observed cell lysis in both ∆40 ∆*lytE* and ∆40 ∆*cwlO* strains in phase-contrast images, which could contribute to their slower growth rates as measured in bulk by OD$_{600}$ (Figure 3D). On the other hand, ∆*lytE* or ∆*cwlO* in a WT background had the same growth rate as WT. This suggests either that in WT cells, other hydrolases participate in but are not required for growth, or that LytE and CwlO are not being expressed highly enough to maintain normal growth on their own in the ∆40 background.
Next, we quantified cell dimensions in these strains using FM 5-95 membrane
stain. ∆40 cells had a WT cell length and were 3% wider (p<0.0001, unpaired t-test with
Welch’s correction). ∆cwlO cells were 13% wider and 18% shorter than WT cells, a
phenotype that persisted in the ∆40 ∆cwlO strain (p<0.0001 for all comparisons:
unpaired t-test with Welch’s correction for width comparisons, Mann-Whitney test for
length comparisons). ∆40 ∆cwlO cells were less able to control their width as compared
to ∆40 cells, having a 1.5x wider cell width distribution (7.5% vs. 11.33% coefficient of
variation, F test p<0.001). In contrast, ∆lytE cells were only slightly wider than WT cells
(1%, p<0.0001, unpaired t-test with Welch’s correction), and ∆40 ∆lytE cells were
slightly narrower (1%, p<0.0001, unpaired t-test with Welch’s correction) than ∆40 strain
alone, with a slight decrease in length (Figure 3C, p<0.0001, Mann-Whitney test). Thus,
CwlO appears to be involved in cell width maintenance, as removing cwlO causes
changes in cell width both in ∆40 and WT backgrounds, consistent with previous reports
(12). Furthermore, given that removing cwlO increases the cell width coefficient of
variation in the ∆40 background but does not increase the width variation when deleted
from WT cells, other hydrolases must also have a role in width homeostasis.

Δ40 cells do not turn over their cell wall

Hydrolases are involved in cell wall turnover, where old PG material is shed from
the cell wall (22). We measured the rate of cell wall turnover of both WT and ∆40 cells
using pulse-chase labeling with the radioactive cell wall precursor ³H-N-
acetylglucosamine (³H-GlcNAc). This revealed that, while WT cells turn over PG at a
rate of about 50% per generation in agreement with previous work (22), turnover in ∆40
strain was absent, with a rate not significantly different from zero (p=0.4837) (Figure
These results demonstrate that LytE and CwlO, the only identifiable remaining hydrolases in the Δ40 strain, do not contribute to cell wall turnover. Furthermore, this data reveals that cell wall turnover is not an essential process: cell growth only requires the cleavage of bonds so the cell can expand.

As hydrolases have been shown to be involved in the regulation of cell wall thickness (23), we measured the cell wall thickness of the Δ40 strain by transmission electron microscopy (TEM), finding it was not significantly different from WT (p=0.1382) (Figure 3B). This suggests that cell wall turnover has no impact on cell wall thickness and that none of the 40 hydrolases removed in the Δ40 strain are responsible for cell wall thickness regulation. Given previous studies have demonstrated hydrolases regulate cell wall thickness, the unchanged cell wall thickness thicknesses observed in our Δ40 demonstrate that LytE and CwlO are the hydrolases controlling cell wall thickness, as these hydrolases are the only non-integral membrane hydrolases remaining.

Δ40 ΔcwlO cells are sensitive to various stresses, including ionic stress

Although the Δ40 strain grows normally under our standard lab conditions, we wondered whether the absence of so many hydrolases would sensitize cells to stress conditions. We used a spot dilution assay to measure the viability of our strains under a variety of stress conditions: temperature, ionic stress, pH, and osmotic pressure (Figure 5). In all conditions, including our control (37°C), Δ40 cells had fewer CFUs than WT. This is expected because Δ40 cells grow in long chains, and thus cells are cannot readily separate into individual CFUs; we do not believe that this reflects an overall change in viability because Δ40 grows at the same rate as WT (Figure 3). In all stress
conditions ∆40 cells were similarly viable to WT cells, as were ∆lytE, ∆cw/O, and ∆40 ∆lytE cells. However, ∆40 ∆cw/O cells were susceptible to multiple stresses, including low pH, low temperature, and ionic stress.

We were particularly intrigued by the susceptibility of ∆40 ∆cw/O to Mg^{2+}. Mg^{2+} is coordinated between PG and teichoic acids (24), and this Mg^{2+} binding is thought to give structural stability to the cell wall (25, 26). High levels of Mg^{2+} are often protective against cell wall perturbations, including knockouts of hydrolases, PBPs, or components of the rod complex (10, 27); thus, the Mg^{2+} sensitivity of the ∆40 ∆cw/O strain seemed counterintuitive. Our experiments indicated ∆40 ∆cw/O cells were sensitive to both Ca^{2+} and Mg^{2+}; growth was inhibited by the addition of 10 mM MgCl_{2}, 10 mM MgSO_{4}, and 10 mM CaCl_{2}, but not by the addition of 20 mM NaCl, suggesting that the growth inhibition was not due to changes in ionic strength or chloride ions. We did observe growth inhibition due to ionic stress at far higher salt concentrations (500 mM NaCl). Notably, cells were not sensitive to an equivalent osmotic stress (1M sorbitol), indicating the sensitivity is to ionic stress, not osmotic.

As ∆cw/O mutants in the WT background were Mg^{2+} insensitive, we sought to identify which hydrolases caused cells to be sensitive to Mg^{2+} when they were removed. To find these hydrolases, we returned to intermediate strains used to construct the ∆40 strain, which are missing subsets of hydrolases. We transformed a cw/O knockout into these intermediate strains, then screened these crosses for the same small colony phenotype and the Mg^{2+} sensitivity seen in the ∆40 ∆cw/O strain. This identified two genes: yabE and ydjM. Notably, during construction of the ∆40 strain, we had noticed that yocH seemed significant – at several intermediate verification steps, a WT copy of
yocH had reintegrated itself. Furthermore, a ΔydjM ΔyocH ΔcwlO mutant was previously demonstrated to be sick, with short and sometimes anucleate cells (10). Because yabE, ydjM, and yocH have similar hydrolase domains, and because yocH and ydjM had been identified previously to be involved in a synthetic sick interaction with cwlO, we additionally tested whether the removal of yocH contributed to the Δ40 ΔcwlO Mg\(^{2+}\) sensitivity phenotype, and found that it did.

In total, we identified three genes, yabE, ydjM, and yocH, whose absence in a ΔcwlO background caused the Mg\(^{2+}\) sensitivity: A ΔyabE ΔydjM ΔyocH ΔcwlO strain showed a similar stress profile to Δ40 ΔcwlO, including sensitivity to MgCl\(_2\) and CaCl\(_2\) (Figure 6A). yabE, ydjM, and yocH are 3 uncharacterized RlpA-like superfamily domain-containing proteins expressed during exponential growth. Like lytE and cwlO, yocH and ydjM are in the walR regulon, while yabE is regulated by sigA (Table 1). All are likely lytic transglycosylases: yocH has been shown to have lytic activity and has homology to the E. coli lytic transglycosylase mltA (28), and all three share a similar catalytic domain. Because yabE, ydjM, and yocH all contain a RlpA-like protein domain, we refer to these genes collectively as RLPAs, and to the triple deletion of all three genes as ΔRLPAs.

LytE is inhibited by Mg\(^{2+}\) in vitro and in vivo, and RLPAs suppress Mg\(^{2+}\) lethality in vivo

Finally, we sought to identify the source of Mg\(^{2+}\) growth inhibition in the ΔRLPAs ΔcwlO background. Because LytE is essential in the absence of CwlO, we hypothesized that the sensitivity of the Δ40 ΔcwlO strain to Mg\(^{2+}\) (and, by extension, the sensitivity of the ΔRLPAs ΔcwlO strain to Mg\(^{2+}\)) could be explained by Mg\(^{2+}\) inhibition of LytE. To investigate this, we first characterized the response of ΔcwlO cells to the removal of
LytE. We constructed an otherwise wildtype strain with cw/O knocked out and lytE under inducible control and monitored its growth by time-lapse phase-contrast microscopy. When lytE was induced, cell growth was normal (Movie S1). When lytE induction was removed, cell growth initially slowed, followed by a period of ‘stuttery’ growth, where elongating cells intermittently shrank while showing accompanying fluctuations in their phase contrast signal (Movie S2). Ultimately, cells lysed about 1-2 doubling times after the removal of lytE induction as previously observed (10, 12). Next, we performed the same imaging in the ∆RLPAs ∆cw/O strain after the addition of 10 mM MgCl₂ and observed the same ‘stuttery’ phenotype, suggesting that LytE function might be inhibited by Mg²⁺ (Movie S4). Without the addition of Mg²⁺, cell growth of the ∆RLPAs ∆cw/O strain was normal (Movie S3). In WT cells or ∆cw/O cells, the presence of Mg²⁺ has no effect on cell viability or growth – growth is only inhibited in the absence of the RLPAs. Thus, the RLPAs appear to allow LytE to maintain its activity in the presence of Mg²⁺.

To test whether LytE activity is directly inhibited by Mg²⁺, we performed zymography with the addition of Mg²⁺ to the renaturation buffer on the ∆40 ∆cw/O strain, where LytE activity is easy to detect as it is the only remaining band (Figure 2A). Indeed, LytE activity was strongly reduced in the presence of 25 mM MgCl₂ (Figure 6B).

Additionally, we reasoned that if the Mg²⁺-sensitivity phenotype was due to direct inhibition of LytE by Mg²⁺, increasing the levels of LytE should protect cells from death by increasing the total amount of LytE activity. Indeed, overexpression of LytE allowed cells to survive in the presence of higher levels of Mg²⁺, although 100 mM MgCl₂ still inhibited growth (Figure 6C).
Thus, we conclude that LytE activity is inhibited by Mg$^{2+}$ both in vivo and in vitro. Furthermore, our data indicates that the RPLAs allow LytE to maintain normal function in the presence of Mg$^{2+}$, though the specific mechanism is unclear. Whether the RLPAs act directly or indirectly on LytE remains to be determined, but we anticipate that the RLPAs interact with and activate LytE similar to what has been observed for the *Mycobacterium smegatis* hydrolases RipA and RpfB: RipA’s C-terminus (containing a NLPC/P60 domain like LytE) interacts with RpfB’s RlpA-like LTG domain (29), and RipA and RpfB have synergistic activity in vitro (30). By analogy, LytE’s catalytic NLPC/P60 domain may interact with the RlpA-like domains in YabE, YdjM, and YocH, leading to increased LytE activity, allowing LytE to continue to function in the presence of Mg$^{2+}$. The ∆RLPAs ∆cwlO strain also has increased sensitivity to ionic stress and low temperatures, suggesting RLPAs might stimulate LytE activity under those conditions as well.

DISCUSSION

Bacterial cell growth requires the action of PG hydrolases, but previous in vivo hydrolase studies have been impeded by their diversity and redundancy. We constructed and validated a *B. subtilis* strain lacking all hydrolases potentially involved in cell growth besides LytE and CwlO. These deletions constitute 40 genes in total, representing 10% of secreted proteins and 1% of all genes. The resulting ∆40 strain enables the investigation of given hydrolases and the cellular contexts in which they function, and in this work, allowed several new discoveries regarding their sufficiency, regulation, and genetic interplay.
First, we found that not only is the ∆40 strain viable, it grows at the same rate as WT cells under standard lab growth conditions. This demonstrates that LytE and CwlO alone can function to expand the cell wall to allow cell growth. Furthermore, as single knockouts of LytE and CwlO in the ∆40 strain are viable and allow growth (albeit at a slightly reduced rates with some shape defects), this demonstrates *B. subtilis* requires only one of these two hydrolases to grow.

Second, the ∆40 strain allowed us to discover a yet-to-be-identified LTG which requires SweC for its activity in the ∆40 strain. Given that the only remaining candidate LTG we identified in the ∆40 strain is YrrL, it is likely that SweC is required for YrrL activity. As CwlO activity is dependent on SweC, and SweC forms a complex with SweD, FtsE, and FtsX (21), YrrL might be an additional member of this complex, and SweCD/FtsEX might regulate both YrrL and CwlO. These experiments demonstrate how the ∆40 strain can be used to interrogating the regulation or direct biochemical activity of any other *B. subtilis* hydrolase: as the majority of cell wall hydrolase activity is removed in the ∆40 strain, PG profiling can be used to identify the specific activities of individual hydrolases reintroduced back into the ∆40 background.

Likewise, our minimal hydrolase strain allowed us to show that RlpA-like lytic transglycosylases enhance LytE activity *in vivo* and that this enhancement can be important for growth under conditions where LytE activity is inhibited, including the presence of divalent cations, ionic stress, and cold. Although the mechanism for LytE enhancement is unclear, we hypothesize that RlpAs stimulate LytE activity via a direct interaction, as has been observed in *M. smegmatis* (30). Synthetic lethal or synthetic sick interactions are straightforward to identify and characterize in the ∆40 strain, giving
a useful tool to interrogate genetic relationships between different hydrolases or between hydrolases and other genes of interest – such as those involved in cell wall synthesis.

Surprisingly, the ∆40 strain grows normally under standard lab conditions. What, then, is the function of these 40 hydrolases, and why does B. subtilis encode so many of them? This multitude of hydrolases likely arises from the fact that hydrolases are involved in other processes aside from cell growth such as sporulation (4) and cell motility (31). Additionally, some hydrolases might be only be needed under nutrient conditions not tested here, such as during phosphate limitation where teichoic acids are not produced, where cells may require hydrolases that are not regulated by teichoic acids (32–34). Finally, these other hydrolases may be important during non-exponential growth states such as during stationary phase, where the recycling of cell wall turnover products, lacking in the ∆40 strain, reduces cell lysis (35). Thus, a broader screen of the sensitivity of the ∆40 strain in different nutrient and environmental conditions will allow researchers to determine which hydrolases are useful for which conditions.

In summary, the ∆40 minimal hydrolase strain provides a powerful experimental background to investigate the function, regulation, and interplay of hydrolases, improving our understanding of precisely how these enzymes conduct their cellular tasks. In the future, individual hydrolases can be reintroduced into the ∆40 strain to investigate their specific activities in the absence of confounding contributions from the other 39 genes. Using the ∆40 strain, PG profiling can determine the biochemical activity of hydrolases. Uncovering synthetic genetic interactions between hydrolases and other genes of interest – now easy to do for all 40 hydrolases at once – will allow us
to flesh out our understanding of bacterial cell growth. Understanding the function of cell wall hydrolases is essential for a complete understanding of how bacteria grow, and the Δ40 strain will allow rapid progress to this end.

ACKNOWLEDGEMENTS

We would like to thank Carl Wivagg, Alex Bisson, Matthew Holmes, Ferran Garcia-Pichel, and Susanne Neuer for helpful advice and discussions, and Georgia Squyres for both helpful advice, discussions, and reading of the manuscript. This work was funded by National Institutes of Health Grants DP2AI117923-01 to ECG, as well as support from the Volkswagen Foundation. This work was supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard (1764269) and the Harvard Quantitative Biology Initiative. Some work was performed at the Center for Nanoscale Systems at Harvard University, supported by NSF ECS-0335765. HPLC-MS work was performed by the Harvard Center for Mass Spectrometry Core Facility, and sequencing was performed by the Bauer Core Facility at Harvard University.
METHODS

Strains, media, and growth conditions

Glycerol stocks stored at -80°C were struck onto LB agar plates. For strain bSW61 (*lytE::pSpac-lytE, ΔcwlO*), these plates were additionally top spread with 1 mM IPTG. After incubation overnight at 37°C, colonies were inoculated into 1 mL media and grown on a roller at 37°C until they reached mid-exponential-phase growth (OD ~0.2). Cells were diluted 1:10 in prewarmed media and again grown until mid-exponential phase; this process was repeated until the start of the experiment. Alternately, a 1:10 dilution series of cells were grown overnight in media on a roller at 25°C. The next day, the culture whose OD600 was nearest to 0.2 was diluted 1:10 and grown in media at 37°C as above. S750AA indicates S750 media with added amino acids as in (36).

Strain construction

The wild type strain for this work was *B. subtilis* PY79. Strains used in this study are listed in Table S3. Constructs were created using Gibson assembly of PCR products. Linear Gibson assembly products were transformed into competent *B. subtilis*. Transformants were selected on LB plates containing the appropriate antibiotic. The resulting strains were verified by PCR. Constructs used in this study, as well as any plasmids used to create each construct, are listed in Table S3. Primers, along with strain construction details, are listed in Table S4. Resistance cassettes and promoters were amplified from purified plasmids (listed in Table S3), all other fragments were amplified from WT gDNA.

To combine knockouts, the parent strain was transformed with PCR product containing the locus (homology arms + resistance cassette) or gDNA as indicated. All
resistance cassettes used have loxP sites flanking the cassette, allowing Cre-based
loop out using plasmid pDR244 (a gift from David Rudner) of the cassette to yield a
markerless knockout. Removal of the plasmid was accomplished by shifting streaks to
42˚C where it cannot be replicated due to a temperature-sensitive origin. Successful
loop outs were confirmed via loss of antibiotic resistance.

PHMMER search

We used pfamscan version 1.6 to search the *B. subtilis* 168 and PY79 proteomes
for all pfam domains using default parameters: e-value: 0.01, significance E-values [hit]:
0.03, significance bit scores [sequence]: 25, significance bit scores [hit]: 22. We then
filtered the list for domains of interest, found in Table S3, and removed any cytoplasmic
proteins.

PG purification, HPLC conditions, and MS data analysis

PG purification was conducted as in (37), with the addition of a protein digestion
step. Cells were grown in a baffled flask to an OD of ~0.5 in 50 mL of CH media. Cells
were mixed 50/50 with 50 mL of boiling 10% SDS and boiled for 15 min in a water bath,
then pelleted at 5000x g and washed 5x with ddH2O. Cells were then resuspended in 2
mL DNAse/RNase buffer (10 mM Tris pH 7.5, 2.5 mM MgCl$_2$, 0.5 mM CaCl$_2$) with 20 uL
DNAse I and 20 uL RNAse A, then incubated overnight at 37˚C and washed 3x with
ddH2O to remove nucleic acids. Next, cells were resuspended in 2 mL Proteinase K
buffer (10 mM Tris pH 7.5, 1 mM CaCl$_2$) with 20 uL Proteinase K, incubated overnight at
45C, and washed 3x with ddH2O to remove proteins. Purified PG at this point was
ready for use in zymography as substrate. For PG profiling, the PG was resuspended in
12.5 mM NaHPO$_4$ pH 5.5 with 5000 units of mutanolysin and digested overnight (16h)
at 37˚C on a roller to yield soluble muropeptides. Undigested material was pelleted by spinning at 16000x g for 5 mins and the supernatant was transferred to a new tube. Soluble muropeptides were reduced with sodium borohydride (1 mg/mL) for 30 mins and the reaction was stopped by adding 10 uL 30% phosphoric acid. The pH was adjusted to 4-6 using NaOH, and the reduced soluble muropeptides were characterized by high-resolution LC-MS operating in both positive and negative mode. Soluble reduced muropeptides were separated on a Waters column with the following method: column temperature 52˚C, flow rate 0.5 mL/min, linear gradient of solvent A (0.1% formate) to 10% solvent B (acetonitrile + 0.1% formate) over 80 min.

Mass spectrometry data was analyzed using a custom MATLAB program, available at https://bitbucket.org/garnerlab/wilson_40_2020/. For each compound, at each time point, theoretical m/z values were compared with observed m/z with a cutoff of 0.05 Da. Charge was determined from the isotopic distribution. To be considered a match, each compound needed to have the appropriate charge, isotopic distribution, and m/z value, and we required that a compound be present on both the positive and negative scans. We filtered out any compounds that were less than 1% the abundance of the most abundant species at each time point. Finally, if multiple compounds were found at the same time point, the less abundant ones were filtered out.

Zymography

Zymography was performed as in (38), but using PG prepared as detailed under PG purification. Purified PG was sonicated at max power on a sonicator for 2 min. A 15% polyacrylamide bis-Tris gel was prepared with the purified PG. 50 mL of cells were grown in a baffled flask with shaking to an OD of ~0.5. Cells were concentrated by
centrifugation at 5000x g for 5 min, resuspended in 1 mL of supernatant, then further concentrated by centrifugation at 16,000x g for 2.5 min. All media was aspirated, the centrifuge tube turned around, and centrifuged again at 16,000x g for 2.5 min. Cell wall binding proteins were extracted by resuspending the pellet in an equal volume of 8% SDS. This mixture was heated at 95˚C for 2 min then centrifuged at 16,000x g for 2.5 min. The supernatant was transferred to a new tube, 6x SDS-PAGE Laemmli buffer was added, and the extracted proteins were loaded on the gel. Gels were run in SDS-MOPS buffer at constant amps (20 mA) for 4-6 hours, then washed with ddH2O, and placed in renaturation solution (1% Triton-X 100, 25 mM Tris pH 7.5). The gel was incubated for 16h at 37C with gentle shaking, then stained 4h with a methylene blue staining solution (1% methylene blue, 0.1% KOH), washed several times with ddH2O, and destained overnight in 500 mL ddH2O with gentle shaking. Gels were photographed using a Canon SC1011 scanner in a standard plastic page protector.

Growth rates

Cells were grown to an OD of ~0.3-0.5 on a roller drum at 37˚C and diluted to an OD of ~0.05 in baffled flasks in a water bath shaker at 37˚C. Samples were withdrawn at 5 min intervals and OD was measured in a plastic cuvette using a Biowave Cell Density Meter CO8000. T vs. OD curves were fit to a single exponential (OD = Ae^{BT}) to extract a growth rate (B).

Turnover rates

Cells were grown in S750AA to an OD of ~0.3-0.5 on a roller drum at 37˚C and diluted to an OD of ~0.05 in 3 mL of prewarmed media containing 1 uCi of ^3^H-N-acetylglucosamine (specific activity: 20 Ci/mmol, American Radiolabeled Chemicals,
Inc., St. Louis, MI, USA) in 25mm wide test tubes in a water bath shaker at 37˚C. Cells were labeled for 3 generations (OD ~0.4), then filtered, washed twice with prewarmed media, and resuspended in 25 mL of prewarmed media. Samples were withdrawn at 5 min intervals and OD was measured in a plastic cuvette using a Biowave Cell Density Meter CO8000. Samples were mixed 50:50 with ice cold 10% TCA + 20 mM unlabeled GlcNAc, incubated on ice for 10 mins, then filtered and washed. Filters were dried, resuspended in Ultima Gold LSC cocktail (PerkinElmer, Waltham, MA, USA) and radioactivity was measured using a scintillation counter (Tri-Carb 2100 TR, PerkinElmer). Counts/min vs. OD plots were fit to a single exponential (CPM = Ae^{BT}) to extract a turnover rate (B).

Cell dimensions

Cells were grown to an OD of ~0.3-0.5 in a water bath shaker at 37˚C. 1 mL of culture was stained with FM 5-95 and concentrated to 100 uL by centrifugation at 2000x g and resuspension. 5 uL of concentrated cells were spotted under 2% agarose pads in CH containing 0.5 ug/mL FM 5-95. Images were collected on a Nikon Ti-E microscope using a Nikon CFI Plan Apo DM Lambda 100X Oil objective, 1.45 NA, phase ring Ph3 using an ORCA-Flash4.0 V2 sCMOS camera. Analysis was performed using Morphometrics v1.1 (39). Zero length or width cells were discarded, as well as any cells with width greater than length. Outliers were removed using Graphpad Prism ROUT with default parameters (1%).

Electron microscopy and cell wall thickness

Electron microscopy was performed as in (40). Briefly, exponentially growing cells were fixed in 100 mM MOPS buffer pH 7 containing 2% paraformaldehyde, 2.5%
gluteraldehyde, and 1% dimethyl sulfoxide overnight at 4°C, washed, stained with 2% osmium tetroxide in 100 mM MOPS for 1 hr, washed, and stained overnight with 2% uranyl acetate. The cells were then dehydrated and embedded in Embed 812 resin. Serial ultrathin sections (80 nm) were cut with a Diatome diamond knife (EMS, PA) on a Leica Ultracut UCT (Leica Microsystems, Germany) and collected on 200-mesh thin-bar formvar carbon grids. Sections were imaged on a Hitachi HT7800 transmission electron microscope.

Images collected were segmented (inner cell wall, outer cell wall) using DeepCell (41), and cell wall thickness was measured using a custom Matlab program available at https://bitbucket.org/garnerlab/wilson_40_2020/. Briefly, the distance between the inner and outer cell wall was measured every 10 nm along a user-defined line, and the mean of that measurement was taken to be the cell’s cell wall thickness.

Spot dilution assay

Cells were grown to an OD of 0.5 and diluted 1:10 into 100 uL of LB media in a 96 well plate. A 1:10 serial dilution series was made, and 3 uL of each dilution was spotted onto the plate using a multichannel pipettor. The plates were allowed to dry and incubated in at 37°C or 42°C as indicated for 18h. Plates incubated at 25°C or 18°C were left for additional time (24h and 48h, respectively). Plates were photographed using a Canon SC1011 scanner with the lid open.

For the colony morphology assay in Figure 1, this protocol was followed except that a colony of cells of each strain were simply resuspended in 100 uL of media using a toothpick (omitting the broth culture step).

Data availability
All custom software used in this work is available at
<table>
<thead>
<tr>
<th>Name (alias)</th>
<th>PY79</th>
<th>UniProt</th>
<th>Locus tag</th>
<th>Regulons</th>
<th>e-value</th>
<th>References</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMIDASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amidase_2 (PF01510)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cwlA</td>
<td>Y/KO</td>
<td>P24808</td>
<td>BSU25900</td>
<td></td>
<td>5.60E-19</td>
<td>(42–44)</td>
<td></td>
</tr>
<tr>
<td>cwlH (yqeE)</td>
<td>Y/KO</td>
<td>P54450</td>
<td>BSU25710</td>
<td>gerE**, sigK**</td>
<td>7.50E-25</td>
<td>(45)</td>
<td></td>
</tr>
<tr>
<td>xlyA</td>
<td>Y/KO</td>
<td>P39800</td>
<td>BSU12810</td>
<td>xpf*</td>
<td>1.00E-23</td>
<td>(46)</td>
<td></td>
</tr>
<tr>
<td>xlyB (yjpB)</td>
<td>Y/KO</td>
<td>O34391</td>
<td>BSU12460</td>
<td></td>
<td>2.20E-18</td>
<td>similarity; xlyA</td>
<td></td>
</tr>
<tr>
<td>blyA (yomC)</td>
<td>N</td>
<td>O31982</td>
<td>BSU21410</td>
<td></td>
<td>2.30E-18</td>
<td>(47)</td>
<td></td>
</tr>
<tr>
<td>Amidase_3 (PF01520)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cwlC</td>
<td>Y/KO</td>
<td>Q06320</td>
<td>BSU17410</td>
<td>sigK**</td>
<td>3.4E-44</td>
<td>(48, 49)</td>
<td></td>
</tr>
<tr>
<td>cwlD</td>
<td>Y/KO</td>
<td>P50864</td>
<td>BSU01530</td>
<td>lexA**, sigE**, sigG**</td>
<td>1.10E-48</td>
<td>(19, 50, 51)</td>
<td></td>
</tr>
<tr>
<td>lytC (cwlB)</td>
<td>Y/KO</td>
<td>Q02114</td>
<td>BSU35620</td>
<td>sigA**, sigD**, sinR**, slrR**, yvrHB**</td>
<td>6.4E-54</td>
<td>(7, 49, 52–54)</td>
<td></td>
</tr>
<tr>
<td>yqil</td>
<td>Y/KO</td>
<td>P54525</td>
<td>BSU24190</td>
<td>sigA*</td>
<td>5.50E-56</td>
<td>(55)</td>
<td></td>
</tr>
<tr>
<td>yrvJ</td>
<td>Y/KO</td>
<td>O32041</td>
<td>BSU27580</td>
<td>sigH*</td>
<td>2.30E-44</td>
<td>similarity; lytC</td>
<td></td>
</tr>
<tr>
<td>Amidase_6 (PF12671)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yhbB (ygaQ)</td>
<td>Y</td>
<td>O31589</td>
<td>BSU08920</td>
<td>sigE**</td>
<td>1.50E-39</td>
<td>uncharacterized</td>
<td></td>
</tr>
<tr>
<td>yjcM</td>
<td>Y/KO</td>
<td>O31635</td>
<td>BSU11910</td>
<td>abrB*, sigD*</td>
<td>1.30E-23</td>
<td>uncharacterized</td>
<td></td>
</tr>
<tr>
<td>SpolIP (PF07454)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spolIP</td>
<td>Y/KO</td>
<td>P37968</td>
<td>BSU25530</td>
<td>sigE**, sigF**, sigG**, spoVT**</td>
<td>9.70E-79</td>
<td>(56, 57) amidase, DDEP</td>
<td></td>
</tr>
<tr>
<td>Beta-lactamase (PF00144)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbpE</td>
<td>Y/KO</td>
<td>P32959</td>
<td>BSU34440</td>
<td>sigW**</td>
<td>3.40E-61</td>
<td>(58) not shown</td>
<td></td>
</tr>
<tr>
<td>pbpX</td>
<td>Y/KO</td>
<td>O31773</td>
<td>BSU16950</td>
<td>sigM**, sigV**, sigW*, sigX**</td>
<td>7.90E-54</td>
<td>similarity; pbpE</td>
<td></td>
</tr>
<tr>
<td>amiE (ybbE)</td>
<td>Y</td>
<td>O05213</td>
<td>BSU01670</td>
<td>murR*</td>
<td>7.40E-76</td>
<td>does not hydrolyse</td>
<td>PG (14)</td>
</tr>
<tr>
<td>N-ACETYLGlicosAMIDASE/LYTIC TRANSGLYCOSYLASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyco_hydro_3 (PF01915)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nagZ (yzbA, ybbD)</td>
<td>Y</td>
<td>P40406</td>
<td>BSU01660</td>
<td>murR*</td>
<td>6.50E-131</td>
<td>PG (14)</td>
<td></td>
</tr>
<tr>
<td>Glyco_hydro_18 (PF00704)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yaaH (sleL)</td>
<td>Y/KO</td>
<td>P37531</td>
<td>BSU00160</td>
<td>sigB**, sigE**, spolIP**</td>
<td>1.20E-26</td>
<td>cleaves small fragments (59–61)</td>
<td></td>
</tr>
<tr>
<td>ydhD</td>
<td>Y/KO</td>
<td>O05495</td>
<td>BSU05710</td>
<td>sigE**</td>
<td>9.60E-30</td>
<td>similarity; yaaH</td>
<td></td>
</tr>
<tr>
<td>ykvQ</td>
<td>Y/KO</td>
<td>O31682</td>
<td>BSU13790</td>
<td>sigK**</td>
<td>2.50E-23</td>
<td>similarity; yaaH</td>
<td></td>
</tr>
<tr>
<td>yvbX</td>
<td>Y/KO</td>
<td>O32258</td>
<td>BSU34020</td>
<td></td>
<td>1.10E-33</td>
<td>similarity; yaaH</td>
<td></td>
</tr>
</tbody>
</table>
Glucosaminidase (PF01832)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>lytD (cwlG)</td>
<td>Y/KO</td>
<td>P39848</td>
<td>BSU35780</td>
<td>sigD**, sigG^</td>
<td>3.30E-11</td>
<td>(7, 62, 63)</td>
</tr>
<tr>
<td>lytG</td>
<td>Y/KO</td>
<td>O32083</td>
<td>BSU31120</td>
<td></td>
<td>6.80E-24</td>
<td>(64)</td>
</tr>
</tbody>
</table>

3D (PF06725)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>yabE</td>
<td>Y/KO</td>
<td>P37546</td>
<td>BSU00400</td>
<td>sigA^*</td>
<td>1.80E-22</td>
<td>similarity; yuiC, yocH probably LTG</td>
</tr>
<tr>
<td>yocH</td>
<td>Y/KO</td>
<td>O34669</td>
<td>BSU19210</td>
<td>abrB**, sigA**, spo0A**, walR**</td>
<td>3.50E-22</td>
<td>(28) probably LTG</td>
</tr>
<tr>
<td>yuiC</td>
<td>Y/KO</td>
<td>O32108</td>
<td>BSU32070</td>
<td>codY**, sigF**</td>
<td>9.40E-21</td>
<td>(65) probably LTG</td>
</tr>
<tr>
<td>yorM</td>
<td>N</td>
<td>O31901</td>
<td>BSU20330</td>
<td></td>
<td>7.90E-11</td>
<td>similarity; yuiC, yocH probably LTG</td>
</tr>
</tbody>
</table>

Hydrolase_2 (PF07486)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>cwIJ (ycbQ)</td>
<td>Y/KO</td>
<td>P42249</td>
<td>BSU26060</td>
<td>sigE^, sigK^, spoIIID^*</td>
<td>1.60E-18</td>
<td>(66) probably LTG</td>
</tr>
<tr>
<td>sleB (ypeA)</td>
<td>Y/KO</td>
<td>P50739</td>
<td>BSU22930</td>
<td>sigG^*</td>
<td>1.20E-25</td>
<td>(67–69) probably LTG</td>
</tr>
<tr>
<td>ykvT</td>
<td>Y/KO</td>
<td>O31685</td>
<td>BSU13820</td>
<td>walR^*</td>
<td>5.80E-28</td>
<td>similarity; sleB, cwIJ probably LTG</td>
</tr>
</tbody>
</table>

SLT (PF01464)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>xkdO</td>
<td>Y/KO</td>
<td>P54334</td>
<td>BSU12680</td>
<td>xpf*</td>
<td>6.20E-20</td>
<td>similarity; cwI, cwP probably LTG</td>
</tr>
<tr>
<td>cwI (yjbJ)</td>
<td>Y/KO</td>
<td>O31608</td>
<td>BSU11570</td>
<td>sigD^*</td>
<td>1.70E-34</td>
<td>(70, 71) LTG + muramidase</td>
</tr>
<tr>
<td>yqbO</td>
<td>Y/KO</td>
<td>P45931</td>
<td>BSU26030</td>
<td></td>
<td>5.70E-24</td>
<td>similarity; cwI, cwP muramidase, DDEP</td>
</tr>
<tr>
<td>cwP (yomi)</td>
<td>Y/KO</td>
<td>O31976</td>
<td>BSU21350</td>
<td></td>
<td>1.80E-32</td>
<td>(72)</td>
</tr>
</tbody>
</table>

Lysozyme_like (PF13702)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>yocA</td>
<td>Y/KO</td>
<td>O34636</td>
<td>BSU19130</td>
<td></td>
<td>4.30E-59</td>
<td>similarity; CwlT probably muramidase</td>
</tr>
<tr>
<td>cwI (yddH)</td>
<td>N</td>
<td>P96645</td>
<td>BSU04970</td>
<td>immR^*</td>
<td>2.10E-42</td>
<td>(73) muramidase, DLEP</td>
</tr>
</tbody>
</table>

DPBB_1 (PF03330)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ydJM (yzvA)</td>
<td>Y/KO</td>
<td>P40775</td>
<td>BSU06250</td>
<td>phoP*, walR^*</td>
<td>1.00E-09</td>
<td>similarity; PaRlpA (74) probably LTG</td>
</tr>
<tr>
<td>yoaJ (EXLX1)</td>
<td>N</td>
<td>O34918</td>
<td>BSU18630</td>
<td>fur^*</td>
<td>2.90E-07</td>
<td>does not hydrolyse PG (75)</td>
</tr>
</tbody>
</table>

SpolIID (PF08486)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>spolIID (spolIC)</td>
<td>Y/KO</td>
<td>P07372</td>
<td>BSU36750</td>
<td>sigE^, spoIIID^</td>
<td>1.30E-23</td>
<td>(56, 76) LTG</td>
</tr>
<tr>
<td>lytB (cwbA)</td>
<td>Y</td>
<td>Q02113</td>
<td>BSU35630</td>
<td>sigA**, sigD**, sinR**, slrR**, yvrHB**</td>
<td>3.90E-23</td>
<td>does not hydrolyse PG (77, 78)</td>
</tr>
</tbody>
</table>

YceG (PF02618)

<table>
<thead>
<tr>
<th>Gene</th>
<th>KO Status</th>
<th>Accession</th>
<th>BSU</th>
<th>Sig Levels</th>
<th>E Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>yrrL (mltG)</td>
<td>Y</td>
<td>O34758</td>
<td>BSU27370</td>
<td>spo0A^*</td>
<td>3.20E-90</td>
<td>similarity; EcMltG (20) probably LTG</td>
</tr>
<tr>
<td>sweC (yqzC)</td>
<td>Y</td>
<td>O32023</td>
<td>BSU24940</td>
<td>spo0A^*</td>
<td>1.40E-07</td>
<td>similarity; EcMltG (20)</td>
</tr>
</tbody>
</table>
Table 1: List of cell wall hydrolases in *Bacillus subtilis* identified using PHMMER.
Cell wall hydrolases were identified via a PHMMR (13) search with default parameters of the *B. subtilis* subsp. 168 and *B. subtilis* subsp. PY79 proteome for PFAM domains associated with known cell wall hydrolases (Table S2). For each hydrolase, we report its name (and any aliases), whether it is knocked out in the ∆40 strain (KO) or present in PY79 (Y/N), its UniProt accession number, its locus tag, any reported regulons it is a member of (^ indicates source Faria et al. 2016, * indicates source SubtiWiki), the PHMMR search significance e-value, and any relevant references showing its biochemical activity. Abbreviations: DLEP, D,L-endopeptidase; LDEP, L,D-endopeptidase; LTG, lytic transglycosylase.

<table>
<thead>
<tr>
<th>Name</th>
<th>KO</th>
<th>Y/N</th>
<th>UniProt Accession</th>
<th>Locus Tag</th>
<th>Regulon</th>
<th>PHMMR Search Significance e-value</th>
<th>Reference</th>
</tr>
</thead>
</table>

Abbreviations: DLEP, D,L-endopeptidase; LDEP, L,D-endopeptidase; LTG, lytic transglycosylase.
Figure 1: Construction of the Δ40 strain via sequential knockout and loopout.

Colony morphology of each cloning intermediate for the Δ40 strain. WT cells were transformed with a series of resistance-cassette-marked knockouts (starting with ΔcwIQ). Periodically, antibiotic resistance cassettes were removed via Cre-loxP mediated loopout (indicated by LO). Arrows indicate sequential integrations (e.g., the strain indicated by ΔyocH contains ΔyocH and ΔcwIQ). Dense cell suspensions were spotted and incubated overnight to visualize colony morphology.
A

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>72</td>
<td>43</td>
<td>34</td>
<td>26</td>
<td>17</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

B

D,L-endopeptidase product

- **Glucosaminidase product**

- **Amidase product**

- **Lytic transglycosylase product**

- **Percent of precursor compound**

- **no amidation**
- **single amidation**
- **two amidations**
Figure 2: The Δ40 strain has a substantially reduced cell wall hydrolytic complement.

A: Only LytE activity is visible by zymography in the Δ40 strain. Zymography (renaturing SDS-PAGE gel using purified *B. subtilis* cell walls as substrate) was performed as described in Methods. The activity of cell wall hydrolases causes clearing of the gel. In each pair of lanes, the first was loaded with 20 µL of cell wall binding protein extract, and the second with 5 µL. Several major and minor bands of cell wall hydrolytic activity are visible in the wild type strain (strain PY79, lanes 7 and 8). Only one band of cell wall hydrolytic activity is visible in the Δ40 mutant (strain bSW431, lanes 1 and 2). This band is still visible when *cwlO* is knocked out in the Δ40 strain (Δ40 Δ*cwlO*, strain bSW433, lanes 3 and 4) but disappears in the reciprocal *lytE* knockout (Δ40 Δ*lytE*, strain bSW435, lanes 5 and 6). Thus, this band represents LytE activity.

B: Identification of cell wall hydrolase products in WT and Δ40 cells by peptidoglycan profiling. Purified cell walls were digested to yield soluble muropeptides which were separated and characterized via HPLC-MS (see Methods for details). The abundance of each cell wall hydrolase product was normalized by the abundance of its precursor compound; each product contains two mDAP residues, and each mDAP can be amidated, so these species were compared separately (for example, the abundance of singly amidated glucosaminidase product was divided by the abundance of singly amidated crosslinked PG, its immediate biochemical precursor). D,L-endopeptidase products are still present as expected, because the strain retains the D,L-endopeptidases LytE and CwlO. Amidase products are largely absent. Glucosaminidase products are substantially reduced in abundance. Lytic
transglycosylase products are still present in the Δ40 strain but disappear if sweC is additionally knocked out. Thus, the Δ40 strain is deficient for several major classes of cell wall hydrolase activity. Strains used: PY79, WT; bSW431, Δ40; bSW537, Δ40 ΔsweC.
Figure 3: The ∆40 strain grows at a similar rate as WT cells and has mild shape defects.

A: The ∆40 strain has a similar growth rate to WT in rich media. Cultures were grown in CH media at 37°C to an OD of ~0.3-0.5, diluted to an OD of 0.05, and samples were collected every 6 minutes for 1.5 hrs (~3 doublings). OD_{600} vs time plots were fit to a single exponential to obtain the growth rate. Each point represents the doubling time from a single experiment, and solid lines show mean and standard deviation. The dotted line shows the mean WT growth rate, for comparison. While ∆40 has a similar growth rate to WT, lytE and cwlO knockouts grow more slowly in this background than in a WT background. Strains used: PY79, WT; bSW23, ∆cwlO; bSW295, ∆lytE; bSW431, ∆40; bSW433, ∆40 ∆cwlO; bSW435, ∆40 ∆lytE.

B: The ∆40 strain has a similar growth rate to WT in minimal media. Cultures were grown in S7_{50}AA media at 37°C. Samples were collected and data was analyzed as in (A). Strains used: PY79, WT; bSW431, ∆40.

C: Cell lengths (left) and widths (right) in hydrolase mutants. Cells were labeled with membrane stain and imaged by epifluorescence microscopy. Cell dimensions were measured from these images using Morphometrics. Solid lines in violins show medians. Dashed line outside violins shows WT median for comparison. Shaded region outside violins shows WT quartiles. Strains used: PY79, WT; bSW23, ∆cwlO; bSW295, ∆lytE; bSW431, ∆40; bSW433, ∆40 ∆cwlO; bSW435, ∆40 ∆lytE.

D: Representative phase contrast images of hydrolase mutant strains. ∆40 cells primarily form long chains, ∆40 ∆cwlO cells have variable widths, and ∆40 ∆lytE cells sometimes have phase-light, lysed cells still attached to their poles (see Figure S2 for...
TEM images). Both Δ40 Δcw/O and Δ40 ΔlytE have a population of phase-light, lysed cells. Scale bar is 10 µm.

Figure 4: The Δ40 strain has no increase in cell wall thickness and does not turn over cell wall.

A: Cell wall turnover rate is negligible in the Δ40 strain. *Left:* Pulse-chase radiolabel measurements were used to determine the cell wall turnover rate. Cells were labeled with H3-GlcNAc, which incorporates into the cell wall. The 3H-GlcNAc was then washed out and radioactivity was subsequently measured for 3 generations. A decrease in radioactivity indicates that material is being removed from the cell wall, e.g. that cell wall is turning over. Each experiment was replicated at least 3 times. Dotted lines show
single exponential fit to mean data. Right: Single exponential fits to each experiment at left. Each point represents the time constant (-k) obtained from a fit to a single experiment. Error bars show SD. The ∆40 turnover rate is not significantly different from zero (one sample t test, p=0.4837). Strains used: PY79, WT; bSW431, ∆40.

B: Cell wall thickness in the ∆40 strain is similar to WT. Cell wall thickness was measured via transmission electron microscopy as described in Methods. Briefly, exponentially growing cells were fixed, osmicated, stained with uranyl acetate, embedded in Embed 812, sectioned, and imaged without additional staining. Each point is the mean cell wall thickness measured for a single cell. Error bars show SD. Strains used: PY79, WT; bSW431, ∆40.

C: Representative images of cell wall thickness. Representative images of cell wall thickness analyzed in C. Strains used: PY79, WT; bSW431, ∆40. Scale bar is 50 nm.
Figure 5: The ∆40 strain has similar viability to WT in a range of stress conditions, but ∆40 ΔcwIO is sensitive to ionic, cold, and low pH stress. Spot dilution assays of different strains under various stress conditions. Cultures of each strain were plated in a 1:10 dilution series onto LB plates containing various stressors and grown overnight at the specified temperature, or at 37°C if not indicated. Most conditions supported normal
growth, but growth of the Δ40 ΔcwlO strain was inhibited at 25°C, pH 5.5, or with the addition of 10 mM MgCl₂, 10 mM MgSO₄, 10 mM CaCl₂, or 300 mM NaCl. Strains used:PY79, WT; bSW23, ΔcwlO; bSW295, ΔlytE; bSW431, Δ40; bSW433, Δ40 ΔcwlO;
bSW435, Δ40 ΔlytE.
Figure 6: Three uncharacterized RlpA-like proteins stimulate LytE activity in the presence of divalent cations.

A: The removal of three RlpA-like proteins makes ∆cwlO cells stress-sensitive. Spot dilution assays were performed as in Figure 4. ∆yabE ∆yocH ∆ydjM (∆RLPAs) ∆cwlO showed the same stress sensitivity profile as ∆40 ∆cwlO, except that 10 mM
MgSO₄ and 25°C only partially inhibited growth. Strain used: bSW490, ΔcwI/O ΔyabE ΔyocH ΔydjM.

B: Mg²⁺ directly inhibits LytE activity. Zymography was performed on Δ40 ΔcwI/O cells as in Figure 1A, but with the addition of the indicated concentration of MgCl₂ to the renaturation buffer. 25 mM MgCl₂ almost completely inhibited the activity of LytE. Strain used: bSW433, Δ40 ΔcwI/O.

C: LytE overexpression rescues Mg²⁺ sensitivity in the ΔRLPAs ΔcwI/O background. Spot dilutions were performed as in Figure 5A, with the indicated concentration of MgCl₂ and the addition of 1 mM IPTG to drive LytE overexpression. Strains used: PY79, WT; (ΔRLPAs) ΔcwI/O, bSW490, ΔcwI/O ΔyabE ΔyocH ΔydjM; (ΔRLPAs) ΔcwI/O lytE overexpression, bSW519, ΔcwI/O ΔyabE ΔyocH ΔydjM amyE::pHyperSpank-lytE.
REFERENCES

 KM. 2007. The essential YycFG two-component system controls cell wall

 2006. A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role
 5550.

12. Meisner J, Montero Llopis P, Sham LT, Garner E, Bernhardt TG, Rudner DZ.
 2013. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall

 Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-
 acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase. J Bacteriol
 192:3132–3143.

 Vegetative Growth and Differentiation by Using Renaturing Polyacrylamide Gel

 Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE
 (named cwlO), and the enzymatic properties of its encoded protein. J Biosci

Microbiol 64:139–152.

73. Fukushima T, Kitajima T, Yamaguchi H, Ouyang Q, Furuhata K, Yamamoto H,

