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An Interpretable Deep Learning Approach for
Biomarker Detection in LC-MS Proteomics Data

Sahar Iravani and Tim O.F. Conrad

Abstract—Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the
high dimensionality, low sample size, and high level of noise. Besides, DL-based workflows are often hindered to be integrated into
medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address
these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying
complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural
networks. Next, based on the trained neural networks, biomarkers can be identified using the layer-wise relevance propagation technique.
This enables detecting discriminating regions of the data and the design of more robust networks. We show that DLearnMS outperforms
conventional LC-MS biomarker detection approaches in detecting fewer false positive peaks while maintaining a comparable amount of
true positives peaks. Unlike other methods, no explicit preprocessing step is needed in DLearnMS.

Index Terms—Biomarker Detection, Mass Spectrometry, LC-MS Proteomics, Deep Learning Interpretation, Layer-Wise Relevance
Propagation

F

1 Introduction

L IQUID chromatography-mass spectrometry (LC-MS)
based proteomics allows the analysis of complex bio-

logical mixtures, such as body fluids (e.g., blood or urine).
Due to the precise and fast quantification process, it is widely
used in high-throughput proteomics applications [1]–[3],
such as disease diagnosis (or prognosis), biomarker detection,
or drug target identification. LC-MS first differentiates the
protein components based on their physio-chemical proper-
ties, and then separates the ionized components based on
their molecular mass and charge, the mass-to-charge ratio
(m/z). This process results in a so-called LC-MS map that has
two orthogonal dimensions of separation – chromatographic
retention time (RT) and m/z.

Expressed proteins on the LC-MS map are large in
abundance range, typically highly complex, and contain
a high level of noise. These factors make biomarker detection
from raw LC-MS data challenging [1], [4]. The idea of
biomarker detection - also known as feature selection - is
to discover the identification of proteins by which a specific
medical condition can be determined. Biomarkers in this
study are differentially abundant single peaks specified
by m/z and RT on raw LC-MS map. As an advantage of
biomarker detection a medical condition can be determined
particularly by just focusing on the biomarker related areas,
which leads to reduce computational cost and conserve time.

Conventional LC-MS biomarker discovery tools [5]–[8]
often start with a peak detection step to extract interesting
and informative areas due to the difficulties of processing
noisy, sparse, and high-throughput raw LC-MS samples.
Some well-known examples for peak detection are the MsIn-
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spect Software [5] which identifies peaks using a wavelet
additive decomposition, the MZmine 2 software [6] which
applies a deconvolution algorithm on each chromatogram
to detect peaks, and the Progenesis LC-MS software [8]
that uses a wavelet-based approach in such a way that
all relevant quantitation and positional information are
retained. Other frameworks include XCMS [7] in which the
peak detection step is addressed by developing a pattern
matching approach on overlaid extracted ion chromatograms
with Gaussian kernels; AB3D [9] which iteratively takes the
highest intensity peak candidates and heuristically keeps or
removes neighboring peaks to form peptide features; MSight
[10] which adapts an image-based peak detection on the
generated images from LC-MS maps; and MaxQuant [11]
in which a correlation analysis involving a fit to a Gaussian
peak shape is applied.

Subsequently, the detected peaks are used for biomarker
detection through a combination of several steps, including
noise reduction, RT alignment [12]–[14], data normalization
[15], data filtering [16], baseline correction, and peak group-
ing. It is likely, however, to miss low-intensity peaks through
different levels of processing. Moreover, the tuned parame-
ters may need to be adjusted again for any data from new
sources. In this muniscript, we present a biomarker detection
approach which reaches overall better performance than
mentioned conventional biomarker approaches independent
to the aforementioned preprocessing steps.

The success of deep learning (DL)-based methods, often
replacing state-of-the-art classical model-based methods, in
many fields such as medical imaging [17], biomedicine
[18], and healthcare [19], has also encouraged the use of
DL models for LC-MS proteomics analysis. To name a few,
DeepIso [20] that combines a convolutional neural network
(CNN) with a recurrent neural network (RNN) to detect
peptide features; DeepNovo [21] and DeepNovo-DIA [22],
which use DL-based approach (CNN coupled with RNN) for
peptide sequencing on data-dependent acquisition (tandem
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mass spectra) and data-independent acquisition MS data,
respectively; pDeep [23] that adapt the bidirectional long
short term memory for the spectrum prediction of peptides;
and DeepRT [24] that employs a capsule network to predict
RT by learning features of embedded amino acids in peptides.
Despite the current successful DL approaches on analyzing
LC-MS proteomics, most of the studies are empirically driven,
and having a justifiable interpretation foundation is largely
missing [25]. Moreover, as machine learning (ML) and DL
have been rapidly growing in real-world applications, a
concern has emerged that the high precision accuracy may
not be enough in practice [26], and interpreting the decisions
is important for robustness, reliability, and enhancement of
a system. To address this challenge our first contribution
consist of leveraging DL interpretability to analyze LC-MS
proteomics data.

DNN explanation provides information about what
makes a network arrive at a certain decision. Practical post-
hoc explanation methods can be divided into four categories:
(1) the function analysis explains DL model itself through gra-
dient and can show how much changes in input pixel affect
the output [27], [28], (2) the attribution method interprets the
output of the model and explain which features and to what
extent contribute to the model’s output [29], [29]–[31], (3) the
signal method tries to find patterns in inputs on which the
decision is based [32]–[34], and (4) the perturbation analysis
that can also be employed for interpreting ML methods
calculate the importance of features through measuring the
effect of perturbing the elements of inputs on the output
[35]–[37]. The perturbation can be a simple occlusion [35],
an inpainting occluded pattern using generative models [36],
or a meaningful perturbation that is synthesized [37]. An
application of DNN explanation employing perturbation
analysis has previously studied in metabolomics [38]. How-
ever, permutation analysis is not computationally feasible
for high-throughput LC-MS analysis. Instead, we employ
layer-wise relevance propagation (LRP) [31] in the attribution
analysis category. The outperformance of LRP against other
categories has been demonstrated in our previous work
[25] on MALDI-TOF MS data. LRP method propagates back
the value of the decision neuron to the input layer, and
weights each element based on its contrition. This approach
benefits from calculating the weights at once, which makes
interpretation fast in appose to perturbation analysis.

We propose DLeanMS, a biomarker detection approach
that adapts LRP interpretation strategy to analyze and
understand LC-MS data. Given two groups of healthy
and diseased LC-MS samples, a CNN is trained , and the
decisions are interpreted through LRP. The interpretation
highlights the parts of the input on which the network relies
to differentiate the two groups. We employ this information
to verify the robustness of the network and detect the defer-
entially abundant peaks. Due to the lack of sufficient labeled
datasets, we tune the architecture of the network along with
training hyper-parameters on a synthetically generated data
through performing systematic series of experiments and
quantitatively measuring the interpretations. We evaluate
the proposed model on a previously published benchmark
dataset. We demonstrate the outperformance of DLearnMS
against conventional biomarker detection frameworks with-
out depending on the otherwise necessary preprocessing

Fig. 1. The schematic of DLearnMS model for discovery of disease related
biomarkers.

steps. Nevertheless, LC-MS preprocessing approaches e.g.,
[39], [40], could be potentially added to our DLearnMS
framework that could even further improve the performance
results. The stability of the biomarker detection is justified
through cross-validation on synthetic data that could hinder
disentangling the model errors from interpretation errors. We
also discuss the shortcomings of conventional ML models for
analysing raw LC-MS data classification and feature selection.

Summarizing, our contribution in this paper lies in the
combination of the following triad:

(A) Develop an interpretable DL model for raw LC-
MS data feature selection to cover the lack of an
explainable DL approach in this field: A local post-hoc
explanation method, LRP, is adapted for interpreting
a CNN with high inference accuracy for LC-MS
classification.

(B) Refine CNN structure to design a robust classification
network according to the interpretation outcome: In
addition to check the inference accuracy, the robust-
ness is verified if the interpretations are aligned with
the ground truth discriminating features.

(c) Detect biomarkers of real LC-MS proteomics data
with small sample size: We tackle the insufficient
labeled dataset at the class level and biomarker level
by adjusting the parameters of the whole proposed
pipeline on a synthetically generated data.

2 Designing the Model
Let In ∈ R2 for n = 1, ..., N be a series of LC-MS maps,
which take On ∈ {0, 1} as the medical condition labels.
Each (x, y) pair on I where x = m/z and y = RT, contains
ion-count demonstrating features on LC-MS map. The aim
of biomarker detection is to find the smallest subset of
(x̂, ŷ) pairs whose ion-counts are differentially abundant
between conditions 0 and 1. Our strategy is to design a
CNN architecture, modeled as function f , to classify LC-
MS samples into two classes, and learn from the prediction
behavior to detect (x̂, ŷ) pairs. Mathematically speaking, a
CNN with L layers can be abstracted as f (I) = fL ◦ ... ◦ f1(I)
where each layer is a linear function followed by an element-
wise non-linear activation, such as the rectified linear unit
function (Relu [41]). The power of CNN prediction comes
from combining many layers, which at the same time makes
it complex and consequently difficult to interpret. Layer-wise
relevance propagation technology [31] suggests the use of
the layered structure of the neural network to interpret the
predictions. The network is assumed to be fully trained and

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.19.431935doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431935
http://creativecommons.org/licenses/by/4.0/


3

the predictions are redistributed backward layer by layer to
give a score to all the input features. A feature (x̂, ŷ) will
be attributed strong relevance if the function f is sensitive
to the presence of that feature. The relevance value of all
(x, y) pairs forms the matrix of relevances, R1

i , known as a
heatmap. The goal is to adapt this information for verifying
the predicted medical condition and finding most relevant
attributions associated with this condition.

2.1 Classification Model and Interpretation
The first step is to design a robust classification CNN on
the LC-MS samples of two classes that we are interested
in the differences. CNN is characterized by the depth and
width of the layers. Depth refers to the number of layers, and
width determines the number of filters. We train networks
with different width and depth from standard structures like
variants of ResNet [42] to customized structures. We observe
that training very deep networks like ResNet32 on the LC-
MS data (both synthetic and real data) leads to overfitting,
while a network with few number of layers fits with high
accuracy. The outperformance of the customize network over
very deep networks can intuitively be explained by the local
dependent characterization of the peaks on the LC-MS map.
Very deep networks capture both the local -gained by reach
feature representation- and global dependencies -gained by
large receptive fields. Therefore, very deep networks may
learn some global patterns irrelevant to the data information
but relevant to the noise, such as quantification calibration
error in data acquisition.

Besides, we observe that by changing a few layers on
the architecture of the customized network the training and
testing accuracy and loss remain steady. One may select a
network with fewer learnable parameters to decrease the
computational cost. Whereas, one my select a network with
more learnable parameter to increase the capacity in order
to achieve a better generalization accuracy. Our strategy
to select a proper network is however to leverage CNN
interpretation. We quantitatively compare the interpretations
of the trained network with different architecture, and select
the one whose predictions are the most sensitive to the actual
differences between the two groups. DLearnMS employ LRP
method using Eq. (1) as the interpretation analysis. Applying
LRP on the network’s prediction of given input In highlights
the important parts of In through redistributing the neuron
score backwards and assigns a relevance to each element
of the input. Eq. (1) shows a rule for redistributing the
relevances known as LRP.ε.

R(l,l+1)
i←j =


zij

zj+ε .R(l+1)
j , if zj ≥ 0

zij
zj−ε .R(l+1)

j , otherwise
(1)

where zij = Oiwij, zj = ∑
i

zij + bj, and Oj = g(zj). g is a

non-linear activation function, and wij defines the weight
that connect the neuron j in layer l to the neuron i in layer
l + 1. Other redistribution rules to control the flow of positive
and negative relevances include LRP.αβ and LRP.z [31]. All
rules at each step must hold such that ∑ R(l,l+1)

i←j = R(l+1)
j ,

which means all relevance values that flow into a neuron
at layer l + 1 flow out towards the neurons of the layer l.
All Relevances, Rl

i , are calculated for l = 1, ..., num_layers

progressively from last layer, layer after layer, until the
input layer is reached and yield R1

i . Please see [31] for
more details. R1

i for i = (x, y) demonstrates how much
pixel (x, y) - representing m/z and RT - contributes to the
decision making. We choose a network whose R1

i highlight
the differences between the classes the most. The detail
explanation on detecting the network architecture tuning
is delayed to Section 3.The verified network is then used for
feature selection.

2.2 Feature Selection

DLearnMS select the location of important features based
on their relevance intensities, R1

i . Considering offsets, the
presence of noise, and different peak indices on the samples,
we are interested in interpreting the decision on statistics of
the whole training-set. We take the mean of LC-MS samples
belonged to the diseased class, D, and healthy class, H,
separately. Each mean is given to the trained network, f , and
the predictions are interpreted by LRP function. This results
in two matrices of diseased relevance values, R1

d, and healthy
group’s relevance values, R1

h.

R1
d = LRP( f (

1
Nd

∑
n∈D

In)), R1
h = LRP( f (

1
Nh

∑
n∈H

In))

where Nd and Nh are the number of samples in diseased and
healthy classes, respectively. The spatial location of peaks on
LC-MS map are widely distributed, and the exact location of
peaks can be estimated by finding the index with maximum
intensity in a predefined window. To this end, DLearnMS
first select the peak with strongest relevances on R1

d. Then,
the neighbor’s relevances in the window are set to zero. We
iterate this process until all the high-intensity relevances are
covered. The selected peaks are distinguished as biomarkers
if corresponding indices on R1

h are attributed non-negative
relevances. We will discuss the effect of incorporating R1

h
along with R1

d in Section 3.3.
To extract the biomarker from an unknown sample,

the sample is fed to the network to be classified. The
peaks are selected locally from LRP interpretation similar to
selecting the peaks from training samples. These peaks are
distinguished as biomarkers if corresponding indices on R1

h
are existed and attributed non-negative on R1

h.

3 Optimizing the Model Parameters on Synthetic
Data

In this section, we elucidate how we verify the classification
network robustness according to the reliance of the prediction
on true discriminating region of the data. We study the
influence of varying one or two fully connected layers
(FCL), convolutional layers (CL), and max-pooling layers
(MPL). Although variation of these settings results in slight
differences on the classification performances, this study
highlights major improvement in their interpretations. Due
to the shortage of annotated real datasets at the biomarker
level, the proposed model is developed and tuned on a
synthetically generated dataset.
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3.1 LC-MS Data Simulation
LC-MS consists of two levels of separations. First, a protein
solute (mobile phase) passes through a chromatography
column (stationary phase), which effectively separates the
components based on the chemical affinity and weight. RT
measures the time taken from the injection of the solvent to
the detection of the components. Second, each component
is ionized and scanned through a mass spectrometer that
generates a mass spectrum (MS). Each MS scan measures
m/z values of charged particles and peak intensities. Stacking
all MS scans on top of each other forms a three-dimensional
data whose x, y, and z axes are m/z values, RT, and ion-count
intensities, respectively.

To generate the synthetic LC-MS dataset, two groups
of samples representing healthy and diseased classes are
simulated using UniPort human proteome dataset [43]. The
healthy class contains 20 peptides. Two peptides that are
independent from the peptides in the healthy samples are
added to the peptides in healthy group to form the diseased
group. As a results, there are 20 and 22 peptides in healthy
and diseased group. The two extra peptides in diseased
group define the biomarkers (discriminating features) that
we intend to detect on LC-MS map. Investigating such
differences is the basis of diagnosis of different biological
conditions and disease treatment, e.g., measuring the concen-
tration level of cardiac troponin that enters in the blood soon
after a heart attack, or measuring thyroglobulin, a protein
made by cells in the thyroid, which is used as a tumor marker
test to help guide thyroid cancer treatment.

We use OpenMs [44] and TOPPAS [45] to generate LC-MS
samples and convert them into images. The width, height,
and pixel intensities of images present m/z, RT, and ion-
count intensity, respectively. It should be noted that the
images still represent the raw data. The only difference
between the matrix of raw data and the converted images
is that the ion-count intensity range in raw data is scaled
to [0,255]. The dataset contains 4000 samples of each group.
10% of each group is left out for testing, and the rest is used
for training and validation.

3.2 Feature Selection Metrics
Here, we introduce selected metrics to evaluate the capability
of interpretation heatmap, R1

i , on reflecting the biomarkers.
The metrics should be representative of the percentage of
true-positive (TP) and false-positive (FP) peaks. Therefore,
we consider intersection over union (IOU), precision, and
recall metrics defined as follows:

IOU =
relevant peaks∩ selected peaks
relevant peaks∪ selected peaks

Precision =
relevant peaks∩ selected peaks

selected peaks

Recall =
relevant peaks∩ selected peaks

relevant peaks
(2)

where the relevant peaks and selected peaks are ground-
truth and predicted peptides peaks. To extract the ground
truth on synthetic data, the mean of the images in the
diseased group is subtracted from the mean of images in
the healthy group and the absolute value of the resulting
is taken. The result contains all biomarker peaks and is

TABLE 1
Tune the number of fully connected layer (FCL), convolutional layers
(CL), max-pooling layers (MPL), and the effect of adding healthy class
interpretation information to the biomarker detection analysis. The
parameters are tuned according to the intersection over union (IOU),
precision, and recall. The effect of incorporating the interpretation of
diseased samples’ mean (Rd) and the interpretation of healthy samples’

mean (Rh) on peak detection is also measured.

# CL # MPL #FCL Samples IOU Precision Recall
6 4 2 Rd 0.3975 0.3814 0.4149
6 4 1 Rd 0.5006 0.4513 0.5621
6 4 1 Rd, Rh 0.6177 0.6188 0.616
4 3 1 Rd 0.6599 0.5985 0.7353
4 3 1 Rd, Rh 0.7008 0.6756 0.7281
4 1 1 Rd 0.7165 0.6171 0.8441
4 1 1 Rd, Rh 0.8501 0.8554 0.8448

referred to as ground-truth image (GTI). This is identical to
alternatively simulate several replicants of the extra peptide
of diseased samples (using OpenMs, and TOPPAS) and take
the mean of the replications. We apply a threshold, γgt, on
the GTI to ignore small perturbation generated by LC-MS
quantification error. As previously described in Section 2.2
since the spatial location of peaks is distributed widely, we
restrict our attention to the peaks with the highest intensities
and set to zero a box window with a size of [w, h]. To this
end, first the index of the highest intensity value on GTI is
selected. Second, the surrounding peaks in the window of
w and h are set to zero. Next, we iterate this process until
all the high-intensity regions are covered. We refer to the
resulting as ground truth peak map (GTPM). The selected
peaks in Eq. (2) are extracted similar to GTPM from the LRP
relevances and form prediction peak map (PPM). The metrics
of Eq. (2) can be rewritten as follows:

IOU = 2(∑(x,y)∈I GTPM(x,y).PPM(x,y))/∑(x,y)∈I (GTPM(x,y)+PPM(x,y))

Precision = ∑(x,y)∈I GTPM(x,y).PPM(x,y)/∑(x,y)∈I PPM(x,y)

Recall = ∑(x,y)∈I GTPM(x,y).PPM(x,y)/∑(x,y)∈I GTPM(x,y) ,

where I covers the entire range of (m/z,RT) values.

3.3 Parameter Tuning
Up to this point in this section, we have introduced the
synthetic dataset, and the metrics for network verification
and feature selection on this dataset. We explained opti-
mizing the network’s architecture (e.g., depth, width, and
kernel size) and hyperparameters (e.g., type of optimizer,
learning rate, and batch size) with respect to classification
loss and accuracy in Section 2.1. We will now discuss how
we tune parameters of the network including number of
FCL, CL, and MPL. These parameters have not changed the
classification accuracy in the variations presented in Table 1;
however, significantly had an impact on the focus of the
network on the discriminating features for making decisions.
This effect is measured through feature selection metrics.
The networks that are build by varying aforementioned
parameters are trained, interpreted and compared to select
a set of parameters that leads to the best IOU, Pr, and Re as
feature selection metrics.

We report the effect of the number of FCL, CL and
MPL in Table 1. According to recent research in DL field
exploiting deeper networks (more CL) are recommended as
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they offer richer representation. But it is also important to
gain understanding of model’s behaviour to check whether
the network make decisions according to the regions that
we have expected the network to learn. In this study, this
regions are the differentially abundant peaks. We measure
feature selection metrics by varying the number of FCL, CL
and MPL. As a result, among the networks with the same
accuracy performance, the one with four CL and one MPL
reach the best feature selection performance. This indicate
the reliance of the network reflects on diferentially abundant
peaks to make classification decisions.

After tuning and designing the structure, we now explain
the effect of incorporating the interpretation of healthy
predictions along with the interpretation of diseased pre-
dictions on feature selection performance. In Section 3.2, we
have described in detail how prediction peak map (PPM)
is calculated through LRP relevance values. As a recap, To
estimate relevance values on the training set, we calculate the
mean of the diseased samples, run the trained network on the
mean, and calculate the relevances. By convention, positive
relevance values are the evidence of existing relevant peaks
belong to the respected class. Therefore, in our study, positive
relevance values on the interpretation of diseased class are
associated with the biomarkers. The feature selection results
of utilizing diseased class relevances are presented in Table 1,
in which the interpretation column is assigned with Rd. We
observe that FP peaks can be reduced by incorporating the
interpretation of healthy samples along with the diseased
samples. The positive relevances of the interpretation of the
healthy group can be explained as the absence of diseased
relevant peak, or presence of healthy relevant peaks. Because
all the peaks in healthy samples are presented in diseased
samples, the positive relevances of this group is just ex-
plained as the absence of diseased relevant peak. Accordingly,
the indices of high-ranked relevances of the diseased group
are selected as biomarkers if the corresponding indices of the
interpretation of the healthy group attribute non-negative
relevances. The feature selection results are shown in Table 1,
in which the interpretation column is assigned with Rd, Rh.
As it is apparent, IOU and Pr that are both directly affected
by FP in the denominator, considerably improved.

As a result of parameter tuning, the feature selection
performance has been improved from 40% to 85% shown in
Table 1. Hence, our verified DL network architecture has four
CL, one MPL after the second CL, and one FCL on top of the
network as the prediction layer. We use the interpretation of
this network for biomarker detection as it has been described
in Section 2.2.

3.4 Measure Feature Selection Stability using Cross-
Validation
Here in this section, we aim at measuring the stability of
the detected features which is equivalent to measure the
sensitivity of LRP interpretation of similar instances. To
this end, the overlaps of selected features using the model
trained using cross-validation are measured. The stability of
explanation is measured on the synthetic data so that we can
avoid problems of disentangling errors made by the model
from errors made by the explanation. We allocate 10% of
samples for the test set and use five-fold cross-validation on

the rest of the samples. The network is trained on training
samples and evaluated on the validation set as well as the test
set. Hence, the feature selection is evaluated five times on the
test set, and once on every validation fold. The intersection of
selected features from the test set is shown 99% overlapped
features on average. On the validation set, the overlap of
selected features between every two folds is calculated and
averaged, which result in 98% overlapped features. These
results not only justify the stability of the interpretations and
the feature selection approach but also imply the robustness
of the classification network whose interpretation leads to
the features.

4 Results on Real Dataset
In this section, the performance of the proposed method is
assessed on a published benchmark LC-MS dataset [4] which
we refer to as real dataset. Many other Mass spectrometry
datasets are available at repositories such as PRIDE or
CompMS. However, the focus of this paper is to assess the
feature selection on a raw LC-MS map of samples from two
conditions (healthy and control) with known biomarkers
presented by their m/z and RT, which is perfectly met in the
selected dataset. All the parameters and hyperparameters
of the model including the classification, interpretation, and
feature selection parts are maintained as they were tuned on
the synthetic dataset.

4.1 Real-Data Description
The real LC-MS dataset, consists of two groups. The first
group was derived from five serum samples of healthy indi-
viduals that have been spiked with a known concentration of
spike-in peptides. The second group was obtained from the
serum samples only. We refer to the first and second groups
as diseased and healthy, respectively. The added peptides to
the diseased group are the selection of nine peptides with
different concentrations to be representative of real datasets.
They have predictable retention behavior and elution order
that let the ground truth available in m/z and RT [4]. LC-
MS acquisition yields 13 peaks from nine peptides due to
the different charges. The specifications of these peaks are
presented in Table 2. Please see [4] for more description and
visualization of the peaks. The proposed method is intended
to detect differentially abundant spike-peaks as biomarkers
and to keep detected FP peaks low. The evaluation will
be reported as the exact number of TP and FP peaks. We
quantize the raw data and form chromatograms matrices.
This outcome is then converted into images whose width
and height are m/z and RT, respectively. Each RT bin on the
y-axis presents seven seconds of the MS level-1 scan, and x-
axis covers ions of m/z 350 to m/z 2000. Pixel intensities are
demonstrating the ion-counts. LC was run for 240 minutes,
however, similar to the benchmark methods, we filter the
samples to retain features within 150 minutes because there is
no significant peak out of this range. We remove the features
with the ion-count intensities less than two as the only noise
reduction on the samples.

4.2 Results
Table 3 compares the feature selection of our proposed
method on the described real dataset with the benchmark
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TABLE 2
Specification of the real data spike-in peptides. Base peak chromatograms of the group with spike-in peptides are presented based on their

mass-to-charge ration (m/z), retention time (RT), and ion charge.

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b
m/z 501.25 450.23 530.78 354.19 523.77 648.84 432.89 586.98 624.99 630.35 943.43 712.43 570.15
Charge 2 2 2 3 2 2 3 3 3 3 3 4 5
RT(min) start-end 4-8 45-49 53-56 53-56 59-62 63-67 63-67 73-77 77-81 82-86 79-83 103- 107 103-107

TABLE 3
Feature selection comparison of the proposed method with MZmine 2 [6], Progenesis LC-MS [8], and XCMS [7], which all presented in [4]. The
total number of selected features is represented for all methods in the first row. Only features presented in at least two replicates in each group were

used for statistical analysis for the baseline methods. The third and forth rows are demonstrating the number of features satisfying two
representative criteria including t-test with multiple hypothesis testing (q-value< 0.05), and fold change (FC > 10). The plus sign denotes the
combination of different criteria. The numbers written in parentheses indicate the selected biomarker peaks. The effect of incorporating the
interpretation of diseased samples (R1

d) and the interpretation of healthy samples (R1
h) on peak detection are shown in the two last columns.

msInspect MZmine 2 Progenesis XCMS DLearnMS: R1
d DLearnMS: R1

d,R1
h

# All selected features 31168 (12) 12271 (12) 9267 (9) 21486 (13) 8044 (12) 6992(11)
# Features for statistical analysis 6525 (9) 12092 (9) 8415 (9) 8703 (10) 8044 (12) 6992(11)
t-test (q < 0.05) 4824 (9) 3505 (7) 4465 (9) 1896 (7) 3985 (11) 3499(11)
t-test (q < 0.05) + FC (> 10) 2099 (9) 539 (7) 467 (8) 66 (7) 222 (9) 195(9)

TABLE 4
Real data biomarker detection comparison according to the statistical analysis. Detected differential abundant spike-in peaks are shown by check

marks. Note that, our method detects all the features that are commonly selected by all other methods.

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b
msInspect X X X X X X X X - X - - -
MZmine 2 X X X X X X X - - - - - -
Progenesis X X X X X - X - - X - - X
XCMS. X X X X X - X - - X - -
DLearnMS X X X X X - X - - X - X X

methods including: msInspect, MZmine 2, Progenesis, and
XCMS [4]. The first row in Table 3 demonstrates that
our method outperform the other methods in terms of
detecting fewer FP peaks. Our analysis does not require the
preprocessing steps used in other workflows. We follow the
same statistical analysis on the selected peaks, similar to [4].
The t-test for p < 0.05 is calculated on each selected feature,
and multiple testing correction is applied. The features that
satisfy q < 0.05 are selected as the discriminating features
presented on the third row of Table 3. The fourth row shows
the number of selected features satisfied q < 0.05 and fold
change (FC) > 10. We detect nine biomarker peaks similar
to msInspect, while we achieve almost 10 times fewer FP
peaks, 195 in comparison with 2099 FP peaks in msInspect.
We also outperform MZmine 2 and Prognesis with respect
to both evaluation metrics, namely the number of biomarker
peaks (seven in MZmine 2 and eight in Prognesis) and FP
peaks (539 in MZmine 2 and 467 in Prognesis). Although
XCMS achieves the best results with respect to the number
of FP peaks, 66, which is the smallest number of FP peaks, its
performance concerning the number of detected biomarker
peaks, however, has dramatically dropped to seven. The
last two columns of the Table 3 demonstrate incorporating
healthy samples interpretation, R1

h, along with the diseased
interpretation , R1

d. The performances show that the number
of FP peaks is degraded, although it is not as pronounced as
the performance on the synthetic data.

The biomarker peaks that are selected according to the
statistical analysis are presented in Table 4. Six peaks that are
commonly selected by all four other methods as differentially

abundant [4] peaks have also been detected by our method.

5 Conventional Machine Learning Models for LC-
MS Proteomics Analysis
In this section, we discuss the challenges that hinder classical
ML methods for LC-MS data analysis. Table 5 shows the
classification comparison of ML methods including, support
vector machine (SVM) with linear kernel, decision tree (DT),
and Adaboost with our CNN model. The parameters of the
selected methods are tuned using grid search in scikit-learn
on synthetic data. We use five-fold and leave-on-out cross-
validation for training on the synthetic and real datasets,
respectively. As it is apparent from Table 5 there is a huge
gap in the classification performance of ML methods between
the synthetic data and the real data. One way to investigate
the reason is to interpret the results.

There are model agnostic methods that enable estimating
the importance of features for decision making by any trained
model regardless of the model’s complexity, e.g., permutation
feature importance, measured by randomly shuffling the
feature and tracking the drop in the model’s score. LIME
[46] is another model agnostic interpretation, which locally
interprets any model around a single prediction. Given a
trained model, LIME perturb each instance locally, calculates
the distance of the perturbed instance from the original
sample according to the trained model, and generate a new
dataset. A linear model is then fit on the new dataset. The
linear model coefficients determine which features are more
dominant. These methods, however, are computationally
infeasible for analyzing high-dimensional LC-MS data. On
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TABLE 5
Classification comparison of the convolutional neural network (CNN) with conventional machine learning methods including, decision tree (DT),
support vector machine (SVM), and adaboost. CNN shows significantly better classification performance on the real datasets. The interpretation is
not available for weak classifiers. On the synthetic dataset ML methods are as accurate as CNN. However, SVM interpretation demonstrates the

overfitting effect. Interpretation on the synthetic data is reported by intersection over union (IOU) between the selected and true peaks.
Interpretation on the real data is reported by the amount of true positive peaks from 13 spike-in peaks. ’-’ shows no interpretation is available for

the models.

Synthetic dataset Accuracy Sensitivity Specificity Interpretation (IOU)
SVM 0.98 0.99 0.98 feature importance(< 0.1)
DT 1.0 1.0 1.0 -
Adaboost 0.99 1.0 0.99 -
CNN 1.0 1.0 1.0 LRP (0.85)
Real dataset Accuracy Sensitivity Specificity Interpretation (TP/13)
SVM <0.5 <0.5 <0.5 -
DT <0.5 <0.5 <0.5 -
Adaboost <0.5 <0.5 <0.5 -
CNN 0.8 0.8 0.8 12/13

the other hand, inherently interpretable models are not
capable of correctly classifying complex LC-MS data. For
example, linear models in which the weights of the variables
serve as the explanation or shallow decision trees in which
the normalized total reduction of the Gini index by every
feature yields the explanation.

In Table 5, despite Adaboost that is not inherently
interpretable and Decision tree (DT) that is not shallow
enough to be interpreted, linear SVM still can be explained by
the weights assigned to the features. According to this table,
SVM reaches comparable classification performance as the
CNN. However, the explanation results in a very poor IOU
- less than 10% - between the important features selected
by coefficient of SVM model and actual differences. This
effect - the high accuracy and weak explanation- resulted
by SVM can be explained by low fidelity of the model’s
interpretation or overfitting of the model caused by some
biases or pattern (comes with the simulation), unrelated to
actual differences. But, the overfitting effect is more likely
since SVM with the same parameter setting trained on the
synthetic data results in a very poor classification on the
real data. The overfitting effect can also be explained by the
Adaboost and DT classification gap between the real and
synthetic data as well.

6 Implementation Setup
The experiments in this study are implemented in Python
for data analysis, Scikit-learn library [47] for ML analyzes,
Keras [48] with Tensorflow backend [49] for DL analysis, and
“iNNvestigate” library [50] for DL interpretation analysis on
a machine with a 3.50 GHz Intel Xeon(R) E5-1650 v3 CPU
and a GTX 1080 graphics card with 8 GiB GPU memory.
The classification network is trained for 20 epochs and batch
size of two using Adam optimizer [51] with the learning
rate of 0.00001, and momentum of 0.9. We use binary cross-
entropy as the loss function. The kernel size in all layers
is set to 3×3 with the dropout rate of 0.3. The convolution
layers in the network are two dimension and contain the
following number of kernels: 32 in the first and second layers,
64 in the third layer, and two in the fourth layer. The fully
connected layer as the last layer has two neurons for binary
classification1.

1. The datasets and implementation are available upon request from
the first author.

7 Discussion
Identifying a set of biomarkers (proteins in this study) from
LC-MS data is a standard task in the context of precision
medicine. Performing this task on raw data is challenging
due to the high dimensionality, complexity, and high noise
level. Despite available tools, current workflows require
several preprocessing steps to address LC-MS biomarker
detection. Besides, the application of DL interpretation is
neglected in this area despite the importance of interpretable
explanation in biomedical settings. In this study, we intro-
duce a DL method backed by LRP interpretation to address
these issues. We design and train a CNN network on the LC-
MS map of the healthy and diseased samples in a way that
enables extracting biomarker peaks from the interpretation
of network decision.

The first challenge with any supervised DL method
is that it requires a large labeled dataset for parameter
tuning; otherwise, it overfits quickly, particularly on the
high dimensional and sparse LC-MS dataset. Due to the
insufficient real labeled LC-MS dataset for training, our
model was tuned and optimized on a large synthetically
generated dataset. Besides, we verified the model robustness
by measuring the dependency of the network’s decision on
true features. The second challenge is that the interpretation
of a DL model is not always informative when it comes to
very small discriminating peaks in the sparse LC-MS dataset.
Therefore, we run systematic experiments using feature
selection metrics to quantitatively measure the network’s
interpretation.

According to the results in Section 2.2, the interpretations
of different networks that share similar classification per-
formance - with almost 99% training and testing accuracy
- considerably differ. These differences consequently affect
biomarker detection. We selected an architecture that fits
the best according to the feature selection metrics. Then, we
built the biomarker detection on the interpretation of the
selected network. Building on this observation, we suggest
considering this property of the DL approach not only to
detect biomarkers but also to design robust DL networks
where measuring the interpretation is attainable. This concept
is especially important in the medical application where
human health is involved.

We assessed the biomarker detection of the proposed
tuned model on a real dataset with predictable spike-in
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peptides. We showed our model achieved overall better
performance results in comparison with the conventional
methods [4], [6]–[8] in terms of detecting fewer FP peaks.
Besides, our approach is end-to-end and does not require
otherwise necessary preprocessing steps.

Training the DL model on small datasets is not often
recommended due to underfitting, overfitting effects, and
lack of sufficient evidence (labeled data) to show the model
robustness. We showed that a properly designed network
can still be reliable through its validation using a proper DL
interpretation.

On the synthetic data, we showed that exploiting the
interpretation of both classes can considerably improve the FP
in comparison with the setting when only the diseased class
were considered. This observation stressed the importance
of understanding the implications that are provided by
interpretation analyzes. Leveraging this valuable information
can foster more plausible network architectures resulting in
a more meaningful conclusion. Recent advances in the image
processing field confirm this important fact [26], [31], [52].

The improvement in the FP rate on the real dataset was
not as pronounced as the synthetic dataset. This behavior can
be statistically explained by the number of samples in the
synthetic dataset (∼ 8000) that outnumber the real dataset
(∼ 10). We calculated the interpretation analysis on the mean
of the samples’ intensities. Therefore, the mean intensities on
the large set of data is a better representative of whole data
distribution than a small set. Consequently, the importance of
features belonging to the larger dataset, which are assigned
by the network’s decision, would be more precise.

According to Section 5, conventional ML models are
failed to correctly fit on LC-MS real dataset. Despite high
accuracy on the synthetic data, the poor interpretation of
linear SVM on synthetic data and the huge gap between clas-
sification performance of real and synthetic data demonstrate
the overfitting effect.

This study was assessed on the dataset whose biomarkers
have been spiked before LC-MS acquisition. To further
our research, we plan to apply our proposed method to
real diseased cases. This study can be extended to the
multi-subject localization of biomarkers. In this case, the
interpretation of a robust multi-class classification network
on the LC-MS map of samples would highlight the dominant
differences of each class from the others. These differences
are the potential position of biomarkers. We also consider
adapting different LRP rules to different layers of the network
due to their confirmed success in machine vision applications
[26].

8 Conclusion
We present DLearnMS an interpretable deep learning ap-
proach for LC-MS biomarker detection. DLearnMS is built
on a generalized convolutional neural network backed by
LRP interpretation method. We demonstrate the leverage
of the quantification of deep learning interpretation for
designing a robust classification network. Towards this end,
the lack of labeled LC-MS data is addressed by utilizing
synthetically generated data for optimizing and tuning the
model. Next, we detect biomarkers on the real data through
adapting LRP. DLearnMS surpasses convectional method

including msInspect, MZmine 2, Progenesis, and XCMS in
terms of detecting fewer false positive peaks while cutting
the additional computation load by excluding commonly
used preprocessing steps.

Appendix A
Peptides in Synthetic dataset

TABLE 6
The accession number associated with diseased and healthy group in

the synthetic dataset.

Classes Peptide sequences

Healthy

Q9NYW0, Q9NYV9, P59538, P59539, Q96CE8, Q96A56,
O75478, Q86TJ2, Q15543, Q15573, Q9H5J8, O00268,

Q9UI15, Q9H2K8, Q17R31, P10636, P68366, A6NHL2,
Q13509, Q9NVG8

Diseased

Q9NYW0, Q9NYV9, P59538, P59539, Q96CE8, Q96A56,
O75478, Q86TJ2, Q15543, Q15573, Q9H5J8, O00268,

Q9UI15, Q9H2K8, Q17R31, P10636, P68366, A6NHL2,
Q13509, Q9NVG8, Q9HA65, Q9ULP9

TABLE 7
Real data spike-in peptide sequences

Peptide No. Peptide sequences charge
1 RGDSPASSKP 2
2 DRVYIHP 2
3a RPPGFSPFR 2
3b RPPGFSPFR 3
4 DRVYIHPF 2
5a DRVYIHPFHL 2
5b DRVYIHPFHL 3
6 DRVYIHPFHLLVYS 3
7a WLTGPQLADLYHSLMK 2
7b WLTGPQLADLYHSLMK 3
8 YPIVSIEDPFAEDDWEAWSHFFK 3
9a GIGAVLKVLTTGLPALISWIKRKRQQ 4
9b GIGAVLKVLTTGLPALISWIKRKRQQ 5

Appendix B
Visualize Convergence Distribution
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Fig. 2. Training on the simulated data. Training and validation classification accuracy are shown in purple dash line and back dash-doted line,
respectively. Training and validation losses are also shown along with the accuracies in red line and blue dotted line. In this plot, we demonstrate the
five fold cross-validation training curves for 10 epochs. However, for the classification comparison and continue with interpretation and feature
selection the early stopping has been considered. Therefore, training is stopped after five epochs which avoided the divergence on the forth fold.

Fig. 3. Training on the real data. Training and validation classification accuracies are shown in dash line and back dash-doted line, respectively.
Training and validation losses are also shown along with the accuracies in red line and blue dotted line. The trends are less smooth than simulated
data, because of smaller amount of data points in the real dataset than simulated dataset.
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