New Results
An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data
View ORCID ProfileSahar Iravani, View ORCID ProfileTim O.F. Conrad
doi: https://doi.org/10.1101/2021.02.19.431935
Sahar Iravani
1department of Visual and Data-centric Computing, Zuse Institute of Berlin, Germany
Tim O.F. Conrad
2department of Visual and Data-centric Computing, Zuse Institute of Berlin, Germany and department of Mathematics and Computer Science in Freie Universität Berlin, Germany. E-mail:

Article usage
Posted June 13, 2021.
An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data
Sahar Iravani, Tim O.F. Conrad
bioRxiv 2021.02.19.431935; doi: https://doi.org/10.1101/2021.02.19.431935
Subject Area
Subject Areas
- Biochemistry (10313)
- Bioengineering (7634)
- Bioinformatics (26240)
- Biophysics (13480)
- Cancer Biology (10648)
- Cell Biology (15359)
- Clinical Trials (138)
- Developmental Biology (8462)
- Ecology (12776)
- Epidemiology (2067)
- Evolutionary Biology (16792)
- Genetics (11371)
- Genomics (15428)
- Immunology (10578)
- Microbiology (25086)
- Molecular Biology (10172)
- Neuroscience (54229)
- Paleontology (398)
- Pathology (1660)
- Pharmacology and Toxicology (2883)
- Physiology (4326)
- Plant Biology (9210)
- Synthetic Biology (2544)
- Systems Biology (6761)
- Zoology (1457)