New Results
An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data
View ORCID ProfileSahar Iravani, View ORCID ProfileTim O.F. Conrad
doi: https://doi.org/10.1101/2021.02.19.431935
Sahar Iravani
1department of Visual and Data-centric Computing, Zuse Institute of Berlin, Germany
Tim O.F. Conrad
2department of Visual and Data-centric Computing, Zuse Institute of Berlin, Germany and department of Mathematics and Computer Science in Freie Universität Berlin, Germany. E-mail:

Article usage
Posted June 13, 2021.
An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data
Sahar Iravani, Tim O.F. Conrad
bioRxiv 2021.02.19.431935; doi: https://doi.org/10.1101/2021.02.19.431935
Subject Area
Subject Areas
- Biochemistry (13881)
- Bioengineering (10578)
- Bioinformatics (33617)
- Biophysics (17321)
- Cancer Biology (14390)
- Cell Biology (20382)
- Clinical Trials (138)
- Developmental Biology (10994)
- Ecology (16221)
- Epidemiology (2067)
- Evolutionary Biology (20527)
- Genetics (13524)
- Genomics (18821)
- Immunology (13947)
- Microbiology (32531)
- Molecular Biology (13545)
- Neuroscience (70933)
- Paleontology (533)
- Pathology (2222)
- Pharmacology and Toxicology (3780)
- Physiology (5961)
- Plant Biology (12169)
- Synthetic Biology (3406)
- Systems Biology (8246)
- Zoology (1874)