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An Interpretable Deep Learning Approach for
Biomarker Detection in LC-MS Proteomics Data
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Abstract—Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the
high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into
medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address
these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying
complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural
networks. Based on the trained neural networks, we show how biomarkers can be identified using layer-wise relevance propagation. This
enables detecting discriminating regions of the data and the design of more robust networks. One of the main advantages over other
established methods is that no explicit preprocessing step is needed in our DLearnMS framework.
Our evaluation shows that DLearnMS outperforms conventional LC-MS biomarker detection approaches in identifying fewer false
positive peaks while maintaining a comparable amount of true positives peaks.

Code availability: The code is available from the following GIT repository: https://github.com/SaharIravani/DlearnMS

Index Terms—Biomarker Detection, Mass Spectrometry, LC-MS Proteomics, Deep Learning Interpretation, Layer-Wise Relevance
Propagation
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1 Introduction

L IQUID chromatography-mass spectrometry (LC-MS)
based proteomics allows analysis and quantification

of complex protein mixtures. This technique quantifies the
components based on their physio-chemical properties and
their molecular mass which yields a LC-MS map with
two orthogonal dimensions chromatographic retention time
(RT) and mass to charge ratio m/z. Due to the precise
and fast analysis, the LC-MS technique has been widely
used in high-throughput proteomics applications, such as
biomarker detection, disease diagnosis/prognosis, or drug
target identification [1], [2], [3]. The main difficulties of
analysing LC-MS maps, however, lies in their properties:
they are high-dimensional, typically highly complex, and
contain a high level of noise. This makes it for example
very challenging to detect biomarkers from raw LC-MS
maps of proteins [1], [4]. The idea of biomarker detection -
sometimes also called feature selection - is to identify proteins
by which a specific medical condition can be determined.
Thus, biomarkers are differentially abundant single peaks
specified by m/z and RT on a raw LC-MS map.

1.1 Related work
Many of the well established tools for LC-MS biomarker dis-
covery – such as MsInspect [5], MZmine 2 [6] or Progenesis
[7] – are organized in multiple (often three) main stages. They
usually begin with a pre-processing stage that commonly
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includes noise reduction, RT alignment [8], [9], [10], data
normalization [11], data filtering [12], baseline correction,
and peak grouping. This is followed by a second stage that
involves peak detection. Here, informative areas within the
LC-MS maps are extracted. This is done in multiple ways
– MsInspect, for example, identifies peaks using wavelet
decomposition, MZmine 2 applies a deconvolution algorithm
on each chromatogram to detect peaks, and Progenesis uses a
wavelet-based approach, but this time in such a way that all
relevant quantitation and positional information are retained.
Other well known frameworks include: XCMS [13] where
the peak detection step is addressed by a pattern matching
approach on overlaid extracted ion chromatograms with
Gaussian kernels; AB3D [14] which iteratively takes the
highest intensity peak candidates and heuristically keeps or
removes neighboring peaks to form peptide features; MSight
[15] which adapts an image-based peak detection on the
generated images from LC-MS maps; and MaxQuant [16]
in which a correlation analysis involving a fit to a Gaussian
peak shape is applied. A common design in all these methods
is that they all dependent on some kind of pre-defined model
for signal detection. One of the main benefits of the Deep
Learning approaches is that the model is not pre-defined,
but rather learned from the input data through the training
phase. We will show later that this is indeed beneficial if it is
combined with an interpretation phase.

After this second stage an analysis of the detected peaks
is done to identify the actual biomarkers. However, two
main problems that arise often during the aforementioned
steps are (1) that low-intensity peaks are lost and (2) many
parameters need to be tuned for these methods to perform
well, e.g. by adjusting them for new data sources.

In this paper, we present a novel approach for biomarker
detection in LC-MS maps that does not need explicit
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preprocessing steps. Our deep learning based approach
implicitly learns the needed transformations and can identify
biomarkers with an overall improved performance compared
to the mentioned traditional approaches.

1.2 Deep Learning for Proteomics Analysis
The success of deep learning (DL)-based methods, which
have been replacing state-of-the-art methods in many fields
[17], [18], [19], have also entered the field of proteomics
data analysis already some time ago. Notable examples
are: DeepIso [20], which combines a convolutional neural
network (CNN) with a recurrent neural network (RNN)
to detect peptide features; DeepNovo [21] and DeepNovo-
DIA [22] that use DL-based approach (CNN coupled with
RNN) for peptide sequencing on data-dependent acquisition
(tandem mass spectra) and data-independent acquisition MS
data, respectively; pDeep [23] adapts the bidirectional long
short term memory for the spectrum prediction of peptides;
and DeepRT [24] employs a capsule network to predict RT
by learning features of embedded amino acids in peptides.

Despite the current successful approaches, most of these
studies are empirically driven, and are lacking a justifiable
interpretation foundation [25]. Moreover, as machine learn-
ing (ML) and DL have been rapidly growing also for real-
world applications, a concern has emerged that the high
precision accuracy may not be enough in practice [26]. Rather,
interpretation and understanding of the made decisions is
important for robustness, reliability, and enhancement of a
system. On top of it all, supervised data-driven biomarker
detection models require annotated data at the peak level
which is in most cases rather expensive or even infeasible
to acquire. To address these challenges, in this paper we
leverage deep learning interpretability to understand and
analyze LC-MS proteomics data which requires just the
instances class labels for training, rather than expensive peak
annotations.

1.3 Interpretation of Deep Neural Networks
Methods for interpreting Deep Neural Networks (DNNs)
provide information about what makes a network arrive at
a certain decision. These methods can roughly be divided
into four categories: (1) the function analysis that explains DL
model itself through gradient and shows how much changes
in input pixels affect the output [27], [28], (2) the attribution
method that interprets the output of the model and explain
which features and to what extent contribute to the model’s
output [29], [30], [31], (3) the signal method that tries to find
patterns in inputs on which the decision is based on [32],
[33], [34], and (4) the perturbation analysis that calculates
the importance of features through measuring the effect of
perturbing the elements of inputs on the output [35], [36], [37].
The application of DNN explanation employing perturbation
analysis has previously studied in metabolomics [38]. How-
ever, permutation analysis is not computationally feasible
for high-throughput LC-MS analysis. Among three other
interpretation categories the out-performances of attribution
analysis has been demonstrated in [25] on MALDI-TOF MS
data. In this study, therefore, one of the methods in attribution
category called layer-wise relevance propagation (LRP) [31]
is employed for interpretation of the model predictions of

Fig. 1. Overview of our DLearnMS approach foTr discovery of disease
related biomarkers.

LC-MS proteomics. To guarantee the trustworthiness of the
LRP explanation in our feature selection task we analyse the
sensitivity of the interpretations in terms of their repeatability,
reproducibility, and their robustness.

1.4 DLearnMS: a novel approach for biomarker detection
In this paper we present DLearnMS, a biomarker detection
approach based on interpretable deep learning to allow
analyzing and – ultimately – understanding LC-MS data.
The basic idea is as follows: Given two groups of LC-MS
samples (say, healthy and diseased), a convolutional neural
network (CNN) is trained, and the learned configuration is
interpreted through the layer-wise relevance propagation
(LRP) technique. We use the result from the interpretation
step to identify the areas in the input-data that play a crucial
role for differentiating the two groups. This is analysed
further to firstly verify the robustness of the network and
improve the network architecture and secondly detect the
differentially abundant peaks as biomarkers. Our biomarker
detection model benefits from optimizing on class labels
rather than expensive annotations at peak levels. Since
high-quality labeled datasets are not widely available, we
suggest a method to tune the network architecture using
synthetically generated data through performing systematic
series of experiments and quantitatively measuring the
interpretations. We evaluate the proposed model also on real-
world data and demonstrate the superiority of DLearnMS
compared to conventional biomarker detection frameworks.
One of the major advantages here is that our method does
not depend on the otherwise necessary preprocessing steps.
Nevertheless, LC-MS preprocessing approaches e.g., [39],
[40], could be potentially added to DLearnMS framework
for further improvement. The stability of the detected
biomarkers including the reproducibility and robustness
are examined through cross-validation strategies. Finally, we
discuss the shortcomings of conventional ML models for
analysing raw LC-MS data classification and interpretations.
Our contributions in this paper lies in the combination of the
following triad:

(A) We present an interpretable Deep Learning (DL)-
based approach that can identify biomarker candi-
dates from high-throughput LC-MS proteomics data.
One of the main advantages is that the method
does not need (potentially) expensive peak level
annotations.

(B) We show how to use layer-wise relevance propagation
as an interpretation technique for deep learning
networks and how this can be used for feature
identification in this context.
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(c) We demonstrate how to tackle the scarcity and spar-
sity of labeled LC-MS data by using synthetically
generated data and evaluate the improvements com-
pared to only using experimental data.

2 Designing the Model
Let In ∈ R2 for n = 1, ..., N be a set of LC-MS maps with
On ∈ {0, 1} as the assigned class labels (e.g. the respective
medical conditions). Each (x, y) pair on I where x = m/z
and y = RT, contains the ion-counts of the LC-MS map. The
aim of biomarker detection is to find the smallest subset of
(x̂, ŷ) pairs where the ion-counts are differentially abundant
between conditions 0 and 1. Our strategy is to design a
CNN architecture, modeled as a function f , to classify LC-
MS samples into two classes, and learn from the prediction
behavior to detect (x̂, ŷ) pairs. Mathematically speaking, a
CNN with L layers can be abstracted as f (I) = fL ◦ ... ◦ f1(I)
where each layer is a linear function followed by an element-
wise non-linear activation, such as the rectified linear unit
function (ReLu [41]). The power of CNN prediction comes
from combining many layers, which at the same time makes
it complex and consequently difficult to interpret. The layer-
wise relevance propagation (LRP) method [31] uses the
layered structure of the neural network to interpret the
predictions. The network is assumed to be fully trained
in order to use LRP, and the predictions are redistributed
backward layer-by-layer to give a score to all the input
features. A feature (x̂, ŷ) will be attributed with strong
relevance, if the function f is sensitive to the presence of
that feature. The relevance values of all (x, y) pairs form the
matrix of relevances R1

i is known as a heatmap. The goal is to
adapt this information for verifying the network predictions
of medical conditions and learn form the network behaviour
to find the most relevant attributions associated with this
these condition.

2.1 Classification Model and Interpretation
The first step is to design a robust classification CNN for
the LC-MS samples of two classes where we are interested
in the differences. A CNN is usually characterized by the
depth and width of the layers. Depth refers to the number of
layers, and width determines the number of filters. We train
multiple types of networks with different width and depth
based on standard structures like variants of ResNet [42]
and also tailored (or customized) structures. We observe that
training very deep networks like ResNet32 on the LC-MS
data (both synthetic and real data) leads to overfitting. The
better performance of our shallower network compared to
the very deep networks can intuitively be explained by the
local dependent characterization of the peaks on the LC-MS
map. Very deep networks capture both the local - gained
by reach feature representation - and global dependencies
- gained by large receptive fields. Therefore, very deep
networks may learn some global patterns irrelevant to
the data information but relevant to the noise, such as
quantification calibration error in the data acquisition. Apart
from the depth of the network, we observe that changing
a few layers on the architecture of the customized network
has not change the training and testing accuracy and loss.

To decide keeping or removing these layers, one may select
a network with fewer learnable parameters to decrease the
computational cost. Whereas, one my select a network with
more learnable parameters to increase the capacity and
a better generalization accuracy. Our strategy to select a
proper network architecture is however to leverage CNN
interpretation. We quantitatively compare the interpretations
of the network predictions with different architectures, and
select the one whose predictions are aligned the most with
the actual differences between the two groups. To obtain
the interpretations we employ LRP method using Eq. (1).
Applying LRP on the network’s prediction of given input In
highlights the important parts of In through redistributing
the neuron score backwards through the layers until the
input layer and assigns a relevance to each element of the
input. Eq. (1) shows a rule for redistributing the relevances
known as LRP.ε.

R(l,l+1)
i←j =


zij

zj+ε .R(l+1)
j , if zj ≥ 0

zij
zj−ε .R(l+1)

j , otherwise
(1)

where zij = Oiwij, zj = ∑
i

zij + bj, and Oj = g(zj). g is a

non-linear activation function, and wij defines the weight
that connect the neuron j in layer l to the neuron i in layer
l + 1. Other redistribution rules to control the flow of positive
and negative relevances include LRP.αβ and LRP.z [31]. All
rules at each step must hold such that ∑ R(l,l+1)

i←j = R(l+1)
j ,

which means all relevance values that flow into a neuron
at layer l + 1 flow out towards the neurons of the layer l.
All Relevances, Rl

i , are calculated for l = 1, ..., num_layers
progressively from last layer, layer after layer, until the
input layer is reached and yield R1

i . Please see [31] for more
details. R1

i for i = (x, y) demonstrates how much pixel (x, y) -
representing m/z and RT - contributes to the decision making.
We choose a network whose R1

i highlight the differences
between the classes the most. As quantitatively assessing the
interpretations requires the annotations at the peak levels,
this experiment is performed on large synthetically gener-
ate data. The detail explanation on selecting the network
architecture is delayed to Section 3.

2.2 Feature Selection
Once the network architecture has been selected, we em-
ployed the network to learn representation of real data
and to discover the discriminating peaks from its inter-
pretation. Our assumptions to use the interpretation for
biomarker discovery is the reproducibility and robustness
of the interpretations, which are justified later in Section 3.5.
Considering offsets, the presence of noise, and different peak
indices on the samples, we are interested in interpreting the
decisions on statistics of the whole training-set. We take the
mean of LC-MS samples belonged to the diseased class D
and healthy class H, separately. Each mean is given to the
trained network f and the predictions are interpreted by LRP
function. This results in two matrices of diseased relevance
values R1

d and healthy relevance values R1
h.

R1
d = LRP( f (

1
Nd

∑
n∈D

In)), R1
h = LRP( f (

1
Nh

∑
n∈H

In))
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where Nd and Nh are the number of samples in diseased
and healthy classes, respectively. The spatial location of
peaks, however, on LC-MS map are widely distributed,
where we estimate the exact location of peaks by finding
their index with maximum intensity within a predefined
window. To this end, first select the peak with strongest
relevances on R1

d. Then, the neighbor’s relevances in the
window are set to zero. We iterate this process until all the
high-intensity relevances are covered. The selected peaks are
distinguished as biomarkers if corresponding indices on R1

h
are attributed non-negative relevances. We will discuss the
effect of incorporating R1

h along with R1
d in Section 3.3.

To extract the biomarkers of a test sample, the sample is
fed to the trained network to be classified. The peaks are se-
lected locally from LRP interpretation similar to selecting the
peaks from training samples. These peaks are distinguished
as biomarkers if corresponding indices on R1

h are existed and
attributed non-negative on R1

h.

3 Model Parameter Tuning
As our DLearnMS feature selection is built on top of a
trained deep convolutional classifier, our aim in this section
is to select a network architecture that is more reliable
and robust to be the basis of our feature selection model.
To this end, we interpret different trained architectures as
heatmaps and assess which heatmap is aligned more with
the discriminating regions of the data. We will show that
although the variation in some layers results in very small
differences in accuracy, their interpretation focus towards
discriminating peaks differ. To assess the interpretation,
however, we need the annotations at the peak level. Since the
annotation at the peak level in large amount is too expensive
or infeasible to acquire, this experiment is performed on a
synthetically generated dataset. In the following, we first
introduce how the synthetic LC-MS dataset is generated, and
then describe how the network architecture is tuned through
assessing their interpretation quantitatively.

3.1 LC-MS Data Simulation
LC-MS consists of two levels of separations. First, a protein
solute (mobile phase) passes through a chromatography
column (stationary phase), which effectively separates the
components based on the chemical affinity and weight. RT
measures the time taken from the injection of the solvent to
the detection of the components. Second, each component
is ionized and scanned through a mass spectrometer that
generates a mass spectrum (MS). Each MS scan measures
m/z values of charged particles and peak intensities. Stacking
all MS scans on top of each other forms a three-dimensional
data whose x, y, and z axes are m/z values, RT, and ion-count
intensities, respectively.

To generate the synthetic LC-MS dataset, two groups
of samples representing healthy and diseased classes are
simulated using UniPort human proteome dataset [43]. The
healthy class contains 20 peptides. Two peptides that are
independent from the peptides in the healthy samples are
added to the peptides in healthy group to form the diseased
group. As a results, there are 20 and 22 peptides in healthy
and diseased group. The two extra peptides in diseased

group define the biomarkers (discriminating features) that
we intend to detect on LC-MS map. Investigating such
differences is the basis of diagnosis of different biological
conditions and disease treatment, e.g., measuring the concen-
tration level of cardiac troponin that enters in the blood soon
after a heart attack, or measuring thyroglobulin, a protein
made by cells in the thyroid, which is used as a tumor marker
test to help guide thyroid cancer treatment.

We use OpenMs [44] and TOPPAS [45] to generate LC-MS
samples and convert them into images. The width, height,
and pixel intensities of images present m/z, RT, and ion-
count intensity, respectively. It should be noted that the
images still represent the raw data. The only difference
between the matrix of raw data and the converted images
is that the ion-count intensity range in raw data is scaled
to [0,255]. The dataset contains 4000 samples of each group.
10% of each group is left out for testing, and the rest is used
for training and validation.

3.2 Interpretation Assessment Metrics
Lets now introduce the metrics we selected to evaluate the
capability of interpretation heatmap R1

i on reflecting the
discriminating regions. The metrics should be representative
of the percentage of true-positive (TP) and false-positive (FP)
peaks. Therefore, we consider intersection over union (IOU),
precision, and recall metrics defined as follows:

IOU =
relevant peaks∩ selected peaks
relevant peaks∪ selected peaks

Precision =
relevant peaks∩ selected peaks

selected peaks

Recall =
relevant peaks∩ selected peaks

relevant peaks
(2)

where the relevant peaks and selected peaks are ground-truth
and predicted peptides peaks. To extract the ground truth
on synthetic data, the mean of the images in the diseased
group is subtracted from the mean of the images in the
healthy group and the absolute value of the resulting is
taken. The result contains all discriminating peaks and is
referred to as ground-truth image (GTI). This is identical to
average of several replicas of the spike-in peptides. We apply
a threshold, γgt, on the GTI to ignore small perturbation
generated by LC-MS quantification error. As previously
described in Section 2.2 since the spatial location of peaks
is distributed widely, we restrict our attention to the peaks
with the highest intensities in local region. To this end, first
the index of the highest intensity value on GTI is selected.
Then, the surrounding peaks in the window of w and h
are set to zero. Next, this process is iterated until all the
high-intensity peaks are covered. We refer to the resulting as
ground truth peak map (GTPM). The selected peaks in Eq. (2)
are extracted similar to GTPM from the LRP relevances and
form prediction peak map (PPM). The metrics of Eq. (2) can
be rewritten as follows:

IOU = 2(∑(x,y)∈I GTPM(x,y).PPM(x,y))/∑(x,y)∈I (GTPM(x,y)+PPM(x,y))

Precision = ∑(x,y)∈I GTPM(x,y).PPM(x,y)/∑(x,y)∈I PPM(x,y)

Recall = ∑(x,y)∈I GTPM(x,y).PPM(x,y)/∑(x,y)∈I GTPM(x,y) ,

where I covers the entire range of (m/z,RT) values.
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TABLE 1
Network architecture selection through interpretation assessment. This

table shows the effect of adding fully connected layers (FCLs),
convolutional layers (CLs), max-pooling layers (MPLs) on focusing of
the network on the discriminating peaks for decision making. The

parameters are tuned according to the intersection over union (IOU),
precision, and recall. The effect of incorporating the interpretation of
diseased samples’ mean (Rd) and the interpretation of healthy samples’

mean (Rh) on peak detection is also demonstrated.

# CL # MPL #FCL Samples IOU Precision Recall
6 4 2 Rd 0.3975 0.3814 0.4149
6 4 1 Rd 0.5006 0.4513 0.5621
6 4 1 Rd, Rh 0.6177 0.6188 0.616
4 3 1 Rd 0.6599 0.5985 0.7353
4 3 1 Rd, Rh 0.7008 0.6756 0.7281
4 1 1 Rd 0.7165 0.6171 0.8441
4 1 1 Rd, Rh 0.8501 0.8554 0.8448

3.3 Network Architecture Selection
Up to this point, we explained the specification of the
synthetic data, and introduced the metrics for interpretation
assessment. We will now discuss how we choose and
improve the network architectures including the number
of FCL, CL, and MPL through interpretation assessment on
synthetic data. Our experiment on the synthetic data shows
that changing these parameters in a variation presented in
Table 1 does not change the classification accuracy while their
interpretation move significantly towards the discriminating
peaks for making decisions. To show this effect, these
networks are separately trained, and their interpretations
are assessed using IOU, Precision, and Recall in Table 1.

We see in our experiments that networks with higher
values of interpretation assessment metrics - IOU, precision,
and recall- are more generalized due to the fact that these
networks know on which part of the data look for the reason
of distinguishing a sample in one class from others and
less biased toward irrelevant regions; therefore, it is more
likely to act as the same on an unseen data. According to
the research in DL field, exploiting deeper networks are
recommended for better generalization as they offer richer
representation. Contrary to our results (see Table 1), the
deeper networks (more CL and FCL layers) show less reliance
on the discriminating peaks. As a result, among the networks
with the same accuracy performance, the one with four
CL, one FCL, and one MPL reach the best interpretation
performance. Hence, with more confidence we can say that
the network distinguishes the samples according to the
regions of the data that are truly discriminating. This is
also the way how we as human would make classification
decisions. Therefore, we can hope for more generalization
performance for the real world instances where sometime
strong perturbations are possible and clearly hard to predict.
(The classification performances of designed network on
simulated LC-MS data and real LC-MS data are depicted in
supplementary material).

3.4 Interpretation Importance Across Different Classes
After selecting the network architecture, we now explain
the effect of incorporating the interpretation of the healthy
predictions along with the interpretation of the diseased
predictions on reducing the FP peaks. In Section 3.2, we

described in detail how prediction peak map (PPM) is calcu-
lated through LRP relevance values. As a recap, to estimate
relevance values on the training set, we calculate the mean
of the diseased samples, run the trained network on this
mean, and calculate the relevances. By convention, positive
relevance values are the evidence of existing relevant peaks
that are belong to the respected class. Therefore, in our study,
positive relevance values on the interpretation of diseased
class have been associated with the discriminating peaks. We
now aim to experimentally show that with the information
from interpretation of healthy instances we can reduce the
FP peaks that are highlighted with the interpretation of the
diseased instances. This is because the positive relevances in
the interpretation of the healthy instances can be explained as
the absence of diseased relevant peaks, or presence of healthy
relevant peaks. In our study, since all the discriminating
peaks are appeared in diseased class, the positive relevances
of healthy group is just explained as the absence of diseased
relevant peaks. Accordingly, in our feature selection pipeline,
the indices of high-ranked relevances in the diseased group
are selected as biomarkers only if the corresponding indices
in the healthy group attribute non-negative relevances. The
results of this study are shown in Table 1, in which the
interpretation column is assigned with Rd, Rh. As it is
apparent, IOU and Precision that are both directly affected
by FP in their denominator, have considerably improved.

As a result of architecture selection and parameter tuning,
the feature selection performance has been improved from
40% to 85% shown in Table 1. Hence, our verified DL network
architecture has four CL, one MPL after the second CL, and
one FCL on top of the network as the prediction layer. We use
the interpretation of this network for biomarker detection as
it has been described in Section 2.2.

3.5 Interpretation Sensitivity analysis using Cross-
Validation
The sensitivity analysis of deep learning interpretation
methods has recently gained attentions with the aim of
addressing this question that how much we can trust on the
outcome of interpretations. For example, [46] discussed that
it is important to examine the utility and robustness of the ex-
planation in the context of medical imaging data. They posit
that the explanation trustworthiness require repeatability
and reproducibility. In addition, in the context of MS feature
importance discovery we also posit that the explanations
need to be consistent from one sample to other samples
of the same group in order to guarantee the robustness of
the results. We assess this assumptions by comparing the
IOUs when the network is run in cross-validation mode.
This experiment specifically run on the synthetic data in
order to avoid problems of disentangling errors made by
the model from errors made by the explanation. First, 10%
of the data is left out for testing, and the rest is used for
training and validation sets in five-fold cross-validation split.
On every run of cross validation, network is trained on the
training set, then inference is run for testing and validation
set, and finally LRP interpretation is run on the predictions.
The interpretations of the test set, which are generated five
times over five-fold cross-validation reaches almost 99%
IOU. The high level of overlapped regions demonstrate
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TABLE 2
Specification of the real data spike-in peptides. Base peak chromatograms of the group with spike-in peptides are presented based on their

mass-to-charge ration (m/z), retention time (RT), and ion charge.

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b
m/z 501.25 450.23 530.78 354.19 523.77 648.84 432.89 586.98 624.99 630.35 943.43 712.43 570.15
Charge 2 2 2 3 2 2 3 3 3 3 3 4 5
RT(min) start-end 4-8 45-49 53-56 53-56 59-62 63-67 63-67 73-77 77-81 82-86 79-83 103- 107 103-107

the reproducibility and repeatability of the interpretations.
Likewise, the interpretations of the five validation sets over
training using five-fold cross-validation reaches almost 98%
IOU. This results shows the robustness of the interpretations
with respect to changing the samples in the data.

These results not only justify the stability of the interpre-
tations and the designed classification but also imply the
robustness of feature selection performance.

4 Biomarker Detection results on Real Dataset
In this section, the performance of the proposed method is
assessed on a published benchmark LC-MS dataset [4] which
we refer to as real dataset. Many other Mass spectrometry
datasets are available at repositories such as PRIDE or
CompMS. However, the focus of this paper is to assess the
feature selection on a raw LC-MS map of samples from two
conditions (healthy and control) with known biomarkers
presented by their m/z and RT, which is perfectly met in the
selected dataset. All the parameters and hyperparameters
of the model including the classification, interpretation, and
feature selection parts are maintained as they were tuned on
the synthetic dataset.

4.1 Real-Data Description
The real LC-MS dataset, consists of two groups. The first
group was derived from five serum samples of healthy indi-
viduals that have been spiked with a known concentration
of spike-in peptides. The second group was obtained from
the serum samples only. We refer to the first and second
groups as diseased and healthy, respectively. The added
peptides to the diseased group are the selection of nine
peptides with different concentrations to be representative
of real datasets. They have predictable retention behavior
and elution order that let the ground truth available in m/z
and RT [4]. LC-MS acquisition yields 13 peaks from nine
peptides due to the different charges. The specifications of
these peaks are presented in Table 2. The concentration of
1 pmol/µL was selected for spike-in peptides. It is common
to deplete serum of high abundant proteins such that low
abundant proteins can be detected. Hence, in preparation of
this data, 60 µL of human serum of Immunoglobulin G (IgG)
and Albumin was depleted. While different concentrations of
spike-in peptides (0.05, 0.1, and 0.5 pmol/µL) were evaluated,
a concentration of 1 pmol/µL showed the minimal intensity
that would not swamp the MS signals of serum peptides in
LC-MS acquisition [4] (Please see supplementary material
for visualization of the spike-in peaks). We quantize the
raw data and form chromatograms matrices, which are then
converted into images whose width and height are m/z and
RT, respectively. Each RT bin on the y-axis presents seven
seconds of the MS level-1 scan, and x-axis covers ions of

m/z 350 to m/z 2000. Pixel intensities are demonstrating the
ion-counts. LC was run for 240 minutes, however, similar
to the benchmark methods, we filter the samples to retain
features within 150 minutes because there is no significant
peak out of this range. We remove the features with the ion-
count intensities less than two as the only noise reduction on
the samples.

4.2 Results
Our proposed method is intended to detect differentially
abundant spike-in peaks as biomarkers and to keep detected
FP peaks low. We aim to decrease the amount of the FP
candidates that saves lots of time for data analysis and for
further examinations, but at the same time, we deem to
avoid losing true positive peaks which make an important
role for example in early diagnosis of diseases The evaluation
will be reported as the exact number of TP and FP peaks.
Table 3 compares our proposed method on the described real
dataset with the benchmark methods including: msInspect,
MZmine 2, Progenesis, and XCMS [4]. The first row in
Table 3 demonstrates that our method outperforms the other
methods in terms of detecting fewer FP peaks without being
depended to the preprocessing steps used in other workflows.
We follow the same statistical analysis on the selected peaks,
similar to [4]. The t-test for p < 0.05 is calculated on each
selected feature, and multiple testing correction (Benjamini-
Hochberg method [47]) is applied. The features that satisfy
q < 0.05 are selected as the discriminating features presented
on the third row of Table 3. The fourth row shows the
number of selected features satisfied q < 0.05 and fold
change (FC) > 10. We detect nine biomarker peaks similar to
msInspect, while we achieve almost 10 times fewer FP peaks,
195 in comparison with 2099 FP peaks in msInspect. We also
outperform MZmine 2 and Prognesis with respect to both
evaluation metrics, namely the number of biomarker peaks
(seven in MZmine 2 and eight in Prognesis) and FP peaks
(539 in MZmine 2 and 467 in Prognesis). Our experiments
show that although XCMS finds fewer FP peaks, it looses
low intensity 9a and 9b peaks, while DLearnMS is able to
find them. Note that, as already emphasized FPs reduction
should not result in loosing TPs. Specially in medical domain
application, it is crucial to avoid loosing the peaks that are
deemed as potential candidate for disease biomarkers. The
last two columns of the Table 3 demonstrate incorporating
healthy samples interpretation, R1

h, along with the diseased
interpretation , R1

d. The performances show that the number
of FP peaks is degraded, although it is not as pronounced as
the performance on the synthetic data.

The biomarker peaks that are selected according to the
statistical analysis are presented in Table 4. Six peaks that are
commonly selected by all four other methods as differentially
abundant [4] peaks have also been detected by our method.
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TABLE 3
Feature selection comparison of the proposed method with MZmine 2 [6], Progenesis LC-MS [7], and XCMS [13], which all presented in [4]. The
total number of selected features is represented for all methods in the first row. Only features presented in at least two replicates in each group were

used for statistical analysis for the baseline methods. The third and forth rows are demonstrating the number of features satisfying two
representative criteria including t-test with multiple hypothesis testing (q-value< 0.05), and fold change (FC > 10). The plus sign denotes the
combination of different criteria. The numbers written in parentheses indicate the selected biomarker peaks. The effect of incorporating the
interpretation of diseased samples (R1

d) and the interpretation of healthy samples (R1
h) on peak detection are shown in the two last columns.

msInspect MZmine 2 Progenesis XCMS DLearnMS: R1
d DLearnMS: R1

d,R1
h

# All selected features 31168 (12) 12271 (12) 9267 (9) 21486 (13) 8044 (12) 6992(11)
# Features for statistical analysis 6525 (9) 12092 (9) 8415 (9) 8703 (10) 8044 (12) 6992(11)
t-test (q < 0.05) 4824 (9) 3505 (7) 4465 (9) 1896 (7) 3985 (11) 3499(11)
t-test (q < 0.05) + FC (> 10) 2099 (9) 539 (7) 467 (8) 66 (7) 222 (9) 195(9)

TABLE 4
Real data biomarker detection comparison according to the statistical analysis. Detected differential abundant spike-in peaks are shown by check

marks. Note that, our method detects all the features that are commonly selected by all other methods.

Features No. 1 2 3a 3b 4 5a 5b 6 7a 7b 8 9a 9b
msInspect X X X X X X X X - X - - -
MZmine 2 X X X X X X X - - - - - -
Progenesis X X X X X - X - - X - - X
XCMS. X X X X X - X - - X - -
DLearnMS X X X X X - X - - X - X X

5 Conventional Machine Learning Models for
high-throughput LC-MS Data Classification
In this section, we discuss the challenges that hinder classical
ML methods for LC-MS data classification and why we
rather use DL models in the first place. In this study, all
the experiments are carried out on raw data without any
dimension reduction to avoid loosing information. This
might, however, cause the model to overfit or at worst cause
the model performs well on training and testing but not after
deployment. This is where the model’s interpretation makes
roles, but not always all the ML models can be interpreted.
To examplify this shortcoming, we compare the classifica-
tion comparison of ML methods including, support vector
machine (SVM) with linear kernel, decision tree (DT), and
Adaboost with our CNN model in Table 5. The parameters
of the selected methods are tuned using grid search in scikit-
learn. We use five-fold and leave-on-out cross-validation
for training on the synthetic and real datasets, respectively.
As it is apparent from Table 5 in contrary to our designed
CNN which perform equally well across two datasets, there
are a huge gap in the classification performances of ML
methods between the synthetic data and the real data.
To investigate we tried to interpret the results and check
if model make decision based on relevant discriminating
features. There are model agnostic methods that enable
estimating the importance of features for decision making by
predictive models, such as permutation feature importance,
that measures importance of features by randomly shuffling
them and tracking the drop in the model’s score, or LIME
[48], which locally interprets any model around a single
prediction through perturbing instances and fit a linear
model on the perturbations. These methods, however, are
computationally infeasible for measuring the importance of
high-dimensional LC-MS instances that could have more
than 50000 features On the other hand, employing inherently
interpretable models that enable reliable explanations are
not capable of correctly classifying complex LC-MS data. For
example, linear models in which the weights of the variables

serve as the explanation or shallow decision trees in which
the normalized total reduction of the Gini index by every
feature yields the explanation. These models do not even
fit on synthetic data based on our experiments. Hence, in
Table 5, despite Adaboost that is not inherently interpretable
and Decision tree (DT) that is not shallow enough to be
interpreted, linear SVM can still be explained by the weights
assigned to the features. According to this table, SVM reaches
comparable classification performance as the CNN. However,
the explanation results in a very poor IOU - less than 10%
- between the important features selected by coefficient of
SVM model and actual differences. This effect - the high
accuracy and weak explanation- resulted by SVM can be
explained by low fidelity of the model’s interpretation or
overfitting of the model caused by some biases or pattern
(comes with the simulation), unrelated to actual differences.
But, the overfitting effect is more likely since SVM with the
same parameter setting, trained on the synthetic data, results
in a very poor accuracy on the real data. The overfitting effect
can also be explained by the Adaboost and DT classification
gap between the real and synthetic data as well.

Unreliability and poor performance of ML models on raw
high-throughput LC-MS proteomics demonstrate the reasons
that we choose DNN models for our analysis. We exemplify
not only DNNs enable reaching the high performance, but
also their interpretation is now more alleviated by the recent
interpretation technologies.

6 Implementation Setup
The experiments in this study are implemented in Python
for data analysis, Scikit-learn library [49] for ML analyzes,
Keras [50] with Tensorflow backend [51] for DL analysis, and
“iNNvestigate” library [52] for DL interpretation analysis on
a machine with a 3.50 GHz Intel Xeon(R) E5-1650 v3 CPU
and a GTX 1080 graphics card with 8 GiB GPU memory.
The classification network is trained for 20 epochs and batch
size of two using Adam optimizer [53] with the learning
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TABLE 5
Classification comparison of the convolutional neural network (CNN) with conventional machine learning methods including, decision tree (DT),
support vector machine (SVM), and adaboost. CNN shows significantly better classification performance on the real datasets. The interpretation is
not available for weak classifiers. On the synthetic dataset ML methods are as accurate as CNN. However, SVM interpretation demonstrates the

overfitting effect. Interpretation on the synthetic data is reported by intersection over union (IOU) between the selected and true peaks.
Interpretation on the real data is reported by the amount of true positive peaks from 13 spike-in peaks. ’-’ shows no interpretation is available for

the models.

Synthetic dataset Accuracy Sensitivity Specificity Interpretation (IOU)
SVM 0.98 0.99 0.98 feature importance(< 0.1)
DT 1.0 1.0 1.0 -
Adaboost 0.99 1.0 0.99 -
CNN 1.0 1.0 1.0 LRP (0.85)
Real dataset Accuracy Sensitivity Specificity Interpretation (TP/13)
SVM <0.5 <0.5 <0.5 -
DT <0.5 <0.5 <0.5 -
Adaboost <0.5 <0.5 <0.5 -
CNN 0.8 0.8 0.8 12/13

rate of 0.00001, and momentum of 0.9. We use binary cross-
entropy as the loss function. The kernel size in all layers
is set to 3×3 with the dropout rate of 0.3. The convolution
layers in the network are two dimensions and contain the
following number of kernels: 32 in the first and second layers,
64 in the third layer, and two in the fourth layer. The fully
connected layer as the last layer has two neurons for binary
classification1.

7 Discussion
Identifying a set of biomarkers (proteins in this study) from
LC-MS data is a standard task in the context of precision
medicine. Performing this task on raw data is challenging
due to the high dimensionality, complexity, and high noise
level. Despite available tools, current workflows require
several preprocessing steps to address LC-MS biomarker
detection. Moreover, learning biomarkers directly using
ML/DL models using supervised models require peak level
annotations which can be too expensive or even infeasible
to acquire. On top of it all, despite the importance of inter-
pretable explanation in biomedical settings the application
of ML/DL interpretation has been neglected in this area.
To address aforementioned challenges, we introduce a deep
learning (DL)-based method combined with an approach for
interpretation of the learned DL configuration using the layer-
wise relevance propagation (LRP) technique [31]. We showed
how to use the interpretation to identify potential biomarkers.
Our method only requires class labels for the given training
data – rather than expensive peak annotations – and is
independent of otherwise necessary preprocessing steps. We
trained a CNN network on the LC-MS map of the healthy and
diseased samples and then used LRP interpretation firstly
for network architecture selection and secondly for learning
from the trained network where to look for differentially
abundant peaks as biomarkers.

The first challenge with any supervised DL method
is that it requires a large labeled dataset for parameter
tuning; otherwise, it overfits quickly, particularly on the
high dimensional and sparse LC-MS dataset. Due to the
insufficient real labeled LC-MS dataset for training, our
model was tuned and optimized on a large synthetically

1. The datasets and implementation are available upon request from
the first author.

generated dataset. Besides, we verified the model robustness
by measuring the dependency of the network’s decision on
true features. The second challenge is that the interpretation
of a DL model is not always informative when it comes to
very small discriminating peaks in the sparse LC-MS dataset.
Therefore, we run systematic experiments using feature
selection metrics to quantitatively measure the network’s
interpretation.

According to the results in Section 2.2, we showed the
interpretations of different network architectures that share
similar classification performance - with almost 99% training
and testing accuracy - differ considerably. These differences
consequently affect biomarker detection. To select network
architecture we quantitatively assessed interpretation of
these networks, and select the one whose interpretation is
aligned the most with discriminating regions of the data. We
examined the repeatability, reproducibility, and robustness
of the selected model interpretation through cross validation
on synthetic data in Section 3.5. Then, we built the biomarker
detection on the interpretation of the selected network.

We assessed the biomarker detection of the proposed
tuned model on a real dataset with predictable spike-in
peptides. We showed DLearnMS achieved overall better
performance in comparison with the conventional methods (
[4], [6], [7], [13]) in terms of detecting fewer FP peaks despite
being independent to otherwise necessary preprocessing
steps.

Training the DL model on small datasets is not often
recommended due to underfitting, overfitting effects, and
lack of sufficient evidence (labeled data) to show the model
robustness. We showed that a properly designed network
can still be reliable through its validation using a proper DL
interpretation.

On the synthetic data, we showed that exploiting the
interpretation of both classes can considerably improve the FP
in comparison with the setting when only the diseased class
were considered. This observation stressed the importance
of understanding the implications that are provided by
interpretation analyzes. Leveraging this valuable information
can foster more plausible network architectures resulting in
a more meaningful conclusion. Recent advances in the image
processing field confirm this important fact [26], [31], [54].

The improvement in the FP rate on the real dataset was
not as pronounced as the synthetic dataset. This behavior can
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be statistically explained by the number of samples in the
synthetic dataset (∼ 8000) that outnumber the real dataset
(∼ 10). We calculated the interpretation analysis on the mean
of the samples’ intensities. Therefore, the mean intensities on
the large set of data is a better representative of whole data
distribution than a small set. Consequently, the importance of
features belonging to the larger dataset, which are assigned
by the network’s decision, would be more precise.

According to Section 5, conventional ML models are
failed to correctly fit on LC-MS real dataset. Despite high
accuracy on the synthetic data, the poor interpretation of
linear SVM on synthetic data and the huge gap between clas-
sification performance of real and synthetic data demonstrate
the overfitting effect.

This study was assessed on the dataset whose biomarkers
have been spiked before LC-MS acquisition. To further
our research, we plan to apply our proposed method to
real diseased cases. This study can be extended to the
multi-subject localization of biomarkers. In this case, the
interpretation of a robust multi-class classification network
on the LC-MS map of samples would highlight the dominant
differences of each class from the others. These differences
are the potential position of biomarkers. We also consider
adapting different LRP rules to different layers of the network
due to their confirmed success in machine vision applications
[26].

8 Conclusion
We present DLearnMS, an interpretable deep learning ap-
proach for LC-MS biomarker detection. DLearnMS is built
on a generalized convolutional neural network combined
with an interpretation method to allow understanding of
the results. We successfully leverage the quantification
of deep learning prediction interpretations for biomarker
identification. Towards this end, the lack of labeled LC-
MS data is addressed by utilizing synthetically generated
data for model parameter tuning and optimization of the
network architecture. DLearnMS shows bette results com-
pared to conventional biomarker detection methods (such
as msInspect, MZmine 2, Progenesis, and XCMS) in terms
of detecting fewer false positive peaks and maintaining true
positives – while decreasing additional computational costs
by excluding commonly used preprocessing steps.

Acknowledgment
This work was supported by the German Ministry for
Education and Research (BMBF) as Berlin Big Data Center
(01IS14013A) and the Berlin Center for Machine Learning
(01IS18037I) and within the Forschungscampus MODAL
(project grant 3FO18501).

References
[1] H. Wang, T. Shi, W.-J. Qian, T. Liu, J. Kagan, S. Srivastava, R. D.

Smith, K. D. Rodland, and D. G. Camp, “The clinical impact of
recent advances in LC-MS for cancer biomarker discovery and
verification,” Expert review of proteomics, vol. 13, no. 1, pp. 99–114,
2016.

[2] F. Hoffmann, C. Umbreit, T. Krüger, D. Pelzel, G. Ernst,
O. Kniemeyer, O. Guntinas-Lichius, A. Berndt, and F. von Eggeling,
“Identification of proteomic markers in head and neck cancer
using maldi–ms imaging, lc–ms/ms, and immunohistochemistry,”
PROTEOMICS–Clinical Applications, vol. 13, no. 1, p. 1700173, 2019.

[3] G. H. M. F. Souza, P. C. Guest, and D. Martins-de Souza, “LC-MS
e, multiplex ms/ms, ion mobility, and label-free quantitation in
clinical proteomics,” in Multiplex Biomarker Techniques. Springer,
2017, pp. 57–73.

[4] L. Tuli, T.-H. Tsai, R. S. Varghese, J. F. Xiao, A. Cheema, and H. W.
Ressom, “Using a spike-in experiment to evaluate analysis of LC-
MS data,” Proteome science, vol. 10, no. 1, p. 13, 2012.

[5] M. Bellew, M. Coram, M. Fitzgibbon, M. Igra, T. Randolph, P. Wang,
D. May, J. Eng, R. Fang, C. Lin et al., “A suite of algorithms for the
comprehensive analysis of complex protein mixtures using high-
resolution LC-MS,” Bioinformatics, vol. 22, no. 15, pp. 1902–1909,
2006.

[6] T. Pluskal, S. Castillo, A. Villar-Briones, and M. Orešič, “MZmine
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