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Abstract

One should assume that in silico experiments in systems biology are less susceptible to
reproducibility issues than their wet-lab counterparts, because they are free from
natural biological variations and their environment can be fully controlled. However,
recent studies show that only half of the published mathematical models of biological
systems can be reproduced without substantial effort. In this article we examine the
potential causes for failed or cumbersome reproductions in a case study of a
one-dimensional mathematical model of the atrioventricular node, which took us four
months to reproduce. The model demonstrates that even otherwise rigorous studies can
be hard to reproduce due to missing information, errors in equations and parameters, a
lack in available data files, non-executable code, missing or incomplete experiment
protocols, and missing rationales behind equations. Many of these issues seem similar to
problems that have been solved in software engineering using techniques such as unit
testing, regression tests, continuous integration, version control, archival services, and a
thorough modular design with extensive documentation. Applying these techniques, we
reimplement the examined model using the modeling language Modelica. The resulting
workflow is independent of the model and can be translated to SBML, CellML, and
other languages. It guarantees methods reproducibility by executing automated tests in
a virtual machine on a server that is physically separated from the development
environment. Additionally, it facilitates results reproducibility, because the model is
more understandable and because the complete model code, experiment protocols, and
simulation data are published and can be accessed in the exact version that was used in
this article. We found the additional design and documentation effort well justified,
even just considering the immediate benefits during development such as easier and
faster debugging, increased understandability of equations, and a reduced requirement
for looking up details from the literature.

Author summary

Reproducibility is one of the cornerstones of the scientific method. In order to draw
reliable conclusions, an experiment must yield the same results when it is repeated
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using the same methods. However, biological systems are complex, which makes
experiments cumbersome. It is therefore desirable to build a mathematical
representation of the biological system, which captures its essential behavior in a set of
variables and equations and allows for easier and faster experimentation. Unfortunately,
recent studies have shown that half of the published mathematical models are not
immediately reproducible due to missing information, mathematical errors, and
incomplete documentation. These issues are similar to those faced in software
engineering: A single missing file or a buggy line of code can render any kind of
software useless. Software engineering has turned to rigorous software testing,
automated development pipelines, and version control systems to overcome these
challenges, but these techniques are not yet widely applied to mathematical modeling.
In this paper we demonstrate their benefit for the reproducibility of a large
mathematical model of the atrioventricular node. The software engineering solutions
that we employ can be applied to any mathematical model and could therefore facilitate
scientific progress by encouraging and simplifying model reuse.

1 Introduction 1

Mathematical modeling in systems biology, along with many other fields, is facing a 2

reproducibility crisis [1, 2]. According to Stodden et al. [3], only an estimated 26% of 3

204 randomly selected computational articles in the journal Science were 4

reproducible—despite the journal’s policy that requires researchers to provide their data 5

upon request. Curators of the BioModels database recently found that of 455 ordinary 6

differential equation (ODE) models, only 51% were directly reproducible and even after 7

contacting the authors and manual corrections by experts, 37% remained 8

non-reproducible [4]. As a single extreme case, Topalidou et al. [5] reported requiring 9

three months to reproduce a neuroscientific model of the basal ganglia. The situation is 10

similar to the reproducibility issues in wet-lab experiments, but it is less understandable, 11

since in silico experiments only involving mathematical models are inherently free of the 12

biological variations that complicate their wet-lab counterparts. 13

When talking about reproducibility, it is important to clearly define this term [6]. 14

We follow the terminology of Goodman et al. [7], with the following modeling-specific 15

adaptations: Methods reproducibility is achieved if the same code can be used with the 16

same simulation tools and settings to produce the same results as the original study. 17

Results reproducibility is achieved if the model can be rebuilt in a different language, 18

with a different architectural structure, or simulated with different simulation tools 19

using the same experiment protocol to achieve results that closely match those of the 20

original study. Inferential reproducibility does not concern the reproduction of 21

simulation data, but the reproduction of the conclusions drawn from the analysis of that 22

data and the properties of the model. For the most part of this article we will not talk 23

about inferential reproducibility, as our focus lies on model design and not on biological 24

findings. 25

A lack in methods and results reproducibility can have direct consequences for the 26

usefulness of a model. One example of this is the one-dimensional mathematical model 27

of the atrioventricular (AV) node by Inada et al. [8]. It has been labeled as 28

“ground-breaking” [9], because it was the first detailed model of the AV node, and it is 29

still the only AV node model among over 600 models in the Physiome Model 30

Repository [10]. We chose it for our research, because it is able to simulate many 31

important phenomena of the cardiac conduction system including AV nodal reentry 32

while still remaining manageable in its own complexity. Moreover, the article comes 33

with a supplement that contains not only simulation results of the full model but also a 34

set of figures that show the characteristics of the individual ion channel and ion pump 35
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models with up to eight individual plots for a single channel. Despite these indicators 36

for a high quality article, the methods of Inada et al. are unfortunately not 37

reproducible as there is no executable code available that can produce the results of the 38

original study and reproducing the results with a reimplementation in another language 39

took us more than four months. It seems intuitive that such difficulties in 40

reproducibility may lead to fewer reproduction attempts and therefore less scientific 41

impact. The issues we encountered with the Inada model may have prevented its 42

widespread application, and thus, to some extent, hindered scientific progress in 43

cardiovascular modeling. Given the number of such cases, we believe that it is unlikely 44

that they arise out of a lack of scientific rigor. In contrast, it seems that the inherent 45

complexity of such models inevitably opens the door to human error and that new tools 46

and workflows are required to manage this complexity. 47

Researchers have already proposed several approaches to increase reproducibility in 48

mathematical modeling. The most pressing and obvious suggestion is to publish the full 49

simulation code, including executable scripts that produce the simulation results and 50

plots that appear in the corresponding article [1–3,11–16]. Many also advocate the use 51

of literate programming in the form of electronic notebooks that mix textual 52

descriptions and code as publication format [1, 5, 11–14,17]. However, Medley et al. [17] 53

also note that electronic notebooks can be too rigid for the creation of large and 54

complex models and pose some difficulties for version control. Along with the code, 55

data used for plots in the article should also be published, including the simulation 56

output of the published model [1–3,11,15]. Both data and code could be stored in 57

specialized model databases that allow model discovery via semantic 58

information [1, 2, 13]. Workflow systems such as Galaxy [18] or KNIME [19] can be used 59

to publish simulation procedures in a format that ensures methods reproducibility 60

through the use of standardized components [1, 11,17]. 61

Other suggestions concern the role that academic journals can play in ensuring and 62

promoting reproducibility. Publication checklists [1, 12] or a “seal of 63

approval” [1, 12,15,16] could provide missing incentives for researchers to put more 64

focus on all forms of reproducibility. A few journals even already experiment with 65

publication workflows that aim to guarantee methods reproducibility of published 66

models. PLOS Computational Biology recently started a promising pilot project in 67

collaboration with the Center for Reproducible Biomedical Modeling [20], which extends 68

the peer review with an additional step in which reviewers specifically evaluate the 69

methods reproducibility of the computational modeling aspects of a submission [16]. 70

The journal Physiome takes a similar approach by publishing articles that demonstrate 71

the consistency and reproducibility of mathematical models already described in other 72

publications. Here, too, the actual methods reproducibility is assessed by independent 73

Physiome curators. 74

Apart from these suggestions, which are specific for mathematical modeling and/or 75

systems biology, researchers also advocate for the application of common best practices 76

from software engineering. This includes structured documentation [1, 3, 12, 13], version 77

control [11–14,17], unit testing [2, 13,14,17], the use of open standards [1, 2, 13,15], 78

human-readable code with style guides [2, 14], modularity [12,14], 79

object-orientation [13,14], the use of virtual machine specifications [1, 11,12], and the 80

long-term archival of code [2]. 81

Borrowing software engineering concepts for improving the methods and results 82

reproducibility of mathematical models seems natural, since these models are, after all, 83

software. As models grow in size and complexity towards examples such as the 84

Mycoplasma genitalium whole-cell model by Karr et al. [21] or the central metabolism 85

of E. coli by Millard et al. [22], they face the same kind of issues that software faces 86

when it evolves from a single script of a few lines of code to a complex system with 87
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thousands or millions of lines of code. While these issues started to appear only fairly 88

recently in systems biology, they are known for decades in software engineering and 89

efficient solutions have been and are still being developed. Hellerstein et al. [14], 90

therefore, argue that modelers should rethink their work as “model engineering” by 91

applying software engineering techniques to the domain of mathematical modeling. 92

In our attempt to make the Inada model more reproducible, we build on the ideas of 93

model engineering and our own previous work. Most importantly, we found that 94

languages that are modular, descriptive, human-readable, open, graphical, and 95

hybrid (MoDROGH) can help to increase both methods and results reproducibilty as 96

well as reusability, extensibility and understandability [23]. We verified the effectiveness 97

of the consistent use of these characteristics by creating and analyzing a modular 98

version of the Hodgkin-Huxley (HH) model of the squid giant axon [24]. Since the Inada 99

model mainly consists of HH-type ion channels, it is highly likely that this model can 100

also benefit from our design approach. While implementing the HH model, we also 101

developed a workflow with unit tests that are run automatically on an online server 102

every time the code is updated. This concept is called continuous integration (CI) in 103

software engineering and was developed precisely to ensure that software can be 104

installed and run in an environment that is completely separate from the development 105

environment [25]. It is already used, for example, in the bioinformatics framework 106

NF-CORE [26], and in the OpenWorm project, which aims to model Caenorhabditis 107

elegans [27]. We expect that this, combined with a model architecture that follows the 108

MoDROGH guidelines, and regression tests, which ensure that changes to a model do 109

not affect the simulation output, can solve many if not all the reproducibility issues 110

present in the Inada model. 111

We believe that results from this case study will be applicable to a large set of 112

systems biology models for several reasons: The Inada model is a good example of the 113

range of difficulties and pitfalls one faces when trying to ensure the reproducibility of 114

methods and results of an in silico study. Inada et al. certainly tried to make their work 115

as transparent as possible. Yet still, the model exhibits all the common reproducibility 116

issues identified by the BioModels reproducibility study [4]—“recoverable” issues like 117

sign errors, missing equations, order of magnitude, and unit errors, as well as 118

“non-recoverable” issues such as missing parameter values, missing initial values and 119

errors in equations. It is also a representative example for challenges in reproducing 120

models in a multi-scale context. On the one hand, the full one-dimensional model of the 121

AV node is in itself a multi-scale model, since it covers cell and organ scales with 122

observed effects ranging from milliseconds to seconds. On the other hand, all 6 123

published reproductions of the results of Inada et al. include the single AV cell model 124

in a larger multi-scale context, be it a 3D heart model [28–30], the cardiac conduction 125

system [31], or a one-dimensional ring model of the sinoatrial (SA) node [32,33]. Finally, 126

none of the techniques and guidelines that we apply are specific to the Inada model or 127

electrophysiological models in general. The MoDROGH criteria were already applied to 128

an organ-level model of the human baroreflex [23] and both CI and regression tests are 129

concepts borrowed from software engineering, which are applicable to any piece of 130

software. This should also allow to transfer our results to other MoDROGH languages 131

like the Systems Biology Markup Language (SBML) [34] or CellML [35]. 132

We therefore address the following research questions: 133

RQ1 What are the factors that hinder the reproduction of the methods and results of 134

the Inada model? 135

RQ2 Are software engineering techniques (in particular a MoDROGH design, 136

regression tests, and CI) suited to overcome the issues identified in RQ1? 137

We will answer these questions by first giving an overview of the Inada model, the 138
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resources available for reproduction, and our design philosophy for the reimplementation 139

in Section 2. We then describe all reproducibility issues along with our solutions in 140

Section 3. In Section 4 we discuss the answers to our research questions as well as the 141

general applicability of the techniques that we presented and their limitations. Finally, 142

we draw our conclusion in Section 5. 143

2 Materials and Methods 144

2.1 The Inada model 145

The one-dimensional mathematical model of the atrioventricular node (AV node) by 146

Inada et al. [8], which we simply call the Inada model in the following, consists of a 147

one-dimensional chain of different cell types: For the sinoatrial node cells and the atrial 148

cells, preexisting models are used, but for the atrionodal (AN), nodal (N), and 149

nodal-His (NH) cells, the authors developed own formulations. In total these three new 150

cell types are composed of eight ion channels, two ionic pumps, and four compartments 151

with variable Ca2+ concentrations: 152

• ion channels 153

– background channel (Ib) 154

– L-type calcium channel (ICa,L) 155

– rapid delayed rectifier channel (IK,r) 156

– inward rectifier channel (IK,1) 157

– sodium channel (INa) 158

– transient outward channel (Ito) 159

– hyperpolarization-activated channel (If ) 160

– sustained outward channel (Ist) 161

• ion pumps 162

– sodium calcium exchanger (INaCa) 163

– sodium potassium pump (Ip) 164

• compartments containing variable Ca2+ concentrations 165

– cytoplasm ([Ca2+]i) 166

– junctional sarcoplasmic reticulum (JSR) ([Ca2+]jsr) 167

– network sarcoplasmic reticulum (NSR) ([Ca2+]nsr) 168

– “fuzzy” subspace ([Ca2+]sub), which is the “functionally restricted 169

intracellular space accessible to the Na+/Ca2+ exchanger as well as to the 170

L-type Ca2+ channel and the Ca2+-gated Ca2+ channel in the SR” [8,36] 171

• concentrations assumed to be constant 172

– extracellular calcium concentration ([Ca2+]o) 173

– intra- and extracellular sodium concentrations ([Na+]i, [Na+]o) 174

– intra- and extracellular potassium concentrations ([K+]i, [K+]o) 175
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2.2 Available material 176

In the first stages of our reimplementation of the Inada model, we relied only on 177

publicly available data. This included the article by Inada et al. , the supplementary 178

data for this article in PDF format, and the CellML version of the model, which was 179

created by Lloyd [37] and published in the Physiome Model Repository [10]. The 180

CellML implementation contained code that was not in the paper and did not produce 181

simulation output that resembled any of the plots in the original article. We therefore 182

used it as a reference, but did not rely on its correctness. We supervised two Bachelor’s 183

theses that reimplemented the CellML model in Octave and in Modelica. Both projects 184

were able to reproduce some but not all the reference plots in [8]. Before we 185

implemented the current version, we therefore attempted to obtain the original C++ 186

implementation of Inada et al. by contacting the authors themselves and the editors of 187

the Biophysical Journal. Unfortunately, we did not receive an answer and our attempt 188

to contact Lloyd for comments on the CellML model was equally unsuccessful. In a 189

second attempt at a later stage of the development, we reached out to the production 190

team of the Biophysical Journal and to the general help address of the Physiome Model 191

Repository. The former finally allowed us to obtain the C++ code and the latter 192

clarified some questions about the CellML implementation and improved our confidence 193

in this code. 194

2.3 Implementation process 195

Due to the discrepancies between the article, the CellML code, and the C++ code, we 196

decided to implement the components of the Inada model one by one, testing each 197

component before moving on to the next. In order to obtain reference plots, experiment 198

protocols and parameter values as well as to understand the equations deeply enough to 199

bring them into a modular structure, we needed to examine a total of nine additional 200

articles that were cited directly or indirectly in the Inada model. The full tree of 201

references can be seen in Figure 1. Additionally, an estimation of the time spent on 202

research, implementation, testing, bug fixing, and refactoring and documentation can be 203

seen in Figure 1 in S1 Text. 204

2.4 Model design 205

Our design philosophy was based on our own guidelines established for using the 206

MoDROGH criteria of suitable modeling languages for systems biology, which can 207

improve the methods and results reproducibility, understandability, reusability, and 208

extensibility of models [23,24]. In short, this includes the following design goals: The 209

model should follow a modular design with small self-contained modules with clearly 210

defined, minimal interfaces. Each module should only represent a single physiological 211

compartment or effect. The code should be DRY (for “don’t repeat yourself”), meaning 212

that parts of the code that have similar structure are only implemented once and then 213

reused at the respective position. Equations structure and variable names should convey 214

their meaning, and should not be adjusted for brevity or perceived ease of 215

implementation. All variables and parameters should have International System of 216

Units (SI) units and should be documented with at least a short sentence that explains 217

what they represent. The model should also have a graphical representation that 218

explains the modeled system using symbols that reflect the biological appearance or 219

function of components. This representation should be adjusted manually for 220

understandability, and it should be tied to the model equations to guarantee correctness 221

and completeness. Additionally, the model code should be available in an online 222

repository. In our case the repositories are GitHub 223
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Matsuoka et al. , 1992
INaCa (SR)

Demir et al. , 1994
Ip (R∗)

Luo and Rudy, 1994
[Ca2+] handling (S)

Dokos et al. , 1996
[Ca2+] handling (S)

Lindblad et al. , 1996
Atrial cell, INa (R∗), IK,1
(R∗)

Convery et al. , 2000
INaCa (X)

Kurata et al. , 2002
Ist (PER), [Ca2+] han-
dling (PS), INaCa (R)

Zhang et al. , 2000
SAN cell, Ip (P)

Inada et al. , 2009
ICa,L, Ito, IK,r, If , Ib

Only in C++ code
IACh, [Ca2+] handling (P),
full cells (X)

Non-existent
IACh (PXR*)

Wendt et al. , 1992
INa (X)

Figure 1. Tree of references that we traversed to obtain all relevant information to
understand and test the model. Arrows between nodes indicate that the article at the
beginning of the arrow cites the article at the end of the arrow. Each node contains a
list of model parts that could only be reproduced by using this reference. This is further
specified by distinguishing if the reference was needed to determine parameter values
(P), correct errors (E), untangle equation semantics for modularization (S), obtain an
additional (R) or the only available (R∗) reference plot, or to reproduce the experiment
protocol (X).
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(https://github.com/CSchoel/inamo), Zenodo [38], and BioModels 224

(https://www.ebi.ac.uk/biomodels/MODEL2102090002). 225

We use the same basic model structure as in a previous work, where we tested the 226

viability and benefits of building an electrophysiological model with these guidelines by 227

implementing the Hodgkin-Huxley model [24]. The cell models consist of a model of the 228

lipid bilayer, a number of ion channels with a common base class, and separate models 229

for voltage or current clamp experiment protocols. The ion channel models again 230

contain smaller modules that represent individual gating variables. All parts of the 231

model are connected with a basic interface for components in an electrical circuit 232

diagram with the convention that the positive pin resides on the outside of the cell 233

while the negative pin is on the inside. An example of the full composition structure of 234

the AN cell model can be found in Figure 2. Like in the HH model, we also used the 235

modeling language Modelica [39], since it implements the MoDROGH criteria to a large 236

extent and lends itself well to the application of software engineering techniques because 237

it is an established industry standard. However, similar results could also be achieved 238

using, for example, SBML [34], CellML [35], or Antimony [40]. 239

2.5 Software versions 240

For our implementation we used OpenModelica version 1.16.0 [41] as Modelica compiler 241

and integrated development environment (IDE) and also version 0.7.2 of Mo—E [42] 242

with the corresponding plugin for Atom version 1.49.0. For our test scripts we used 243

Julia version 1.4.2 [43] with version 1.1.0-alpha.3 of our own library 244

ModelicaScriptingTools.jl [44]. We keep the code under version control using Git [45] 245

version 2.28.0 in a repository hosted on GitHub [46]. We also use GitHub Actions [47] 246

to run our CI scripts. The plots were produced using Python 3.8.3 [48] with the 247

plotting library matplotlib version 3.1.2 [49,50]. Icons were created using Inkscape 248

version 1.0 [51] with our extension MoNK version 0.2.0 that converts the Inkscape 249

vector graphics to Modelica annotation format [52]. The CellML model was analyzed 250

using OpenCOR version 0.6 [53]. 251

3 Results 252

This section is structured according to the issues that hindered our reproduction of the 253

results of the Inada model. For each issue we first explain the problem in detail and 254

then show how it is solved in our Modelica reimplementation, which we will call InaMo 255

in the following. 256

3.1 Missing equations and parameters 257

Problem description 258

The first and most obvious issue with results reproducibility of the Inada Model are 259

parameter values and equations that are missing in the article, which are listed in Table 260

1. An example is the acetylcholine-sensitive potassium channel. The whole channel 261

equations, as well as the influence of acetylcholine on If and ICa,L, only exist in the 262

C++ code. Neither the equations nor the parameters are mentioned in the article, and 263

we are not aware of any description in subsequent articles of the authors. The C++ 264

code also does not give a value for [ACh]i, which is set to zero in the CellML version. It 265

is possible that this was a planned extension, which was never realized and not used for 266

the plots in the article, but with the available material it is impossible to tell whether 267

that is the case. Other parameters are missing in the article, but could be recovered 268

from cited literature or the C++ code. There were also parameters that were hard to 269
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find due to naming confusions. One example that caused severe errors for us was that 270

the value given for gNa, the conductivity of INa, is actually the value for the 271

permeability PNa that is used to calculate gNa. As a last minor piece of missing 272

information, the article does not specify how the avoidable discontinuities in equations 1 273

and 14 of INa in table S3 should be handled. 274

Component Affected part Recoverable from
IACh all equations C++ code
IACh parameter [ACh]i not recoverable
If ACh-sensitive term in equation C++ code
ICa,L ACh-sensitive term in equation C++ code
ICa,L parameter ach l not recoverable
[Ca2+] handling equation for Vcell w.r.t. Cm C++ code
[Ca2+] handling parameter SLtot C++ code
[Ca2+] handling all parameters but SLtot and Vcell [54]
Ist parameter Est [54]
IK,r/IK,1/Ito parameter EK calculated from [K+]i, [K+]o
Ip parameters Km,Na, Km,K [55]
Ip parameter Īp called Ip,max in [8, S15]
INa parameter PNa called gNa in [8, S15]
Ito starting values r, qfast, qslow called q, rfast, rslow in [8, S16]
INaCa parameters Kx

1and Qy
2 [56, 57]

1 x = ci, cni, 1ni, 2ni, 3ni, co, 1no, 2no, 3no
2 y = ci, co, n

Table 1. Missing information in the Inada model including all parameters, equations and
starting values that cannot be found in the original article.

275

Solution 1: Continuous integration 276

To ensure that such omissions do not hinder reproduction of simulation results, it is not 277

enough to rely on human diligence. With a total of 85 parameter values, there is a 278

statistical argument to be made about the expected percentage of errors that a single 279

author or reviewer might be able to spot. Regardless of how the actual numbers would 280

turn out, it does not seem reasonable to expect or demand 100% accuracy on either side. 281

Such a guarantee is only possible, if the complete code that is required to run the 282

simulation on a different machine is published alongside with the model. Inada et al. 283

did publish parts of their code, but not the full version, which left us with some open 284

questions regarding the acetylcholine-sensitive potassium channel. In contrast, the 285

CellML model is complete, but based on errors that we found in the code one must 286

assume that simulations were only performed with the N cell model and not with the 287

other two cell types. 288

For the new implementation, we therefore not only publish the full model definition 289

but also the scripts that we used for simulation and plotting. To ensure that the 290

published code is complete and does also work on other machines, we used the CI 291

service GitHub Actions [47], which is free for public open source projects. For each 292

update of the code, a build in a fresh virtual machine is started on the GitHub servers, 293

which downloads the new release and runs the simulation script. The current build 294

status can be indicated to users with a small badge in the repository, and if a build fails, 295

the programmer is informed via e-mail. This mechanism guarantees that the repository 296

contains everything that is required to perform simulations on a machine that is 297

physically separated from the original development environment, i.e. it guarantees 298

methods reproducibility. The build scripts for CI services such as GitHub Actions are 299

easy to write and provide the additional benefit that they have to contain a full 300

description of the development environment including installation scripts and 301
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Listing 1. CI script for InaMo version 1.4.3 using GitHub Actions. The script creates
a virtual machine running the Ubuntu operating system, installs Julia, OpenModelica,
the Modelica Standard Library, and required Julia packages, and runs the unit tests
defined in the file scripts/unittests.jl. It runs automatically whenever a new
commit is pushed to the main branch of the Git repository.

on:
push:

branches: [ main ]
tags: ’v*’

pull_request:
branches: [ main ]

jobs:
build:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2

with:
submodules: true

- uses: julia-actions/setup-julia@v1
with:

version: 1.6
- uses: THM-MoTE/setup-openmodelica@v1

with:
version: 1.17.0

- name: Install Modelica standard library
run: sudo apt-get install omlib-modelica-3 .2.3

- name: Install Julia requirements
run: |

export PYTHON =""
julia --project =. -e ’using Pkg; Pkg.instantiate ()’

- name: Run unit tests
run: julia --project =. scripts/unittests.jl

non-standard software dependencies. The build script that we used for our 302

implementation of the Inada model can be found in Listing 1. 303

Solution 2: Version control 304

Even if the complete code of a model is published, an exact reproduction of methods 305

might still fail, because of changes that have been added to the code after the model 306

was published. It might even be the case that a figure in an article was created with a 307

newer or older version of the code than other figures. One such uncertainty about code 308

versions is the question if the current IACh was included and activated in the simulations 309

performed by Inada et al. . The C++ code gives some clues as it contains a list of major 310

changes with the date of the change. According to this information, IACh was added on 311

11/04/2008, which is before the initial submission to Biophysical Journal on 27/02/2009. 312

However, this is still not enough to be sure that IACh was used for simulations, because 313

another change—a rescue effect for ICa,L—was added on 23/10/2008, but the current 314

parameter values used in the published version clearly disable it. If the code was under 315

version control and the history was published, it would be possible to answer this 316

question at least with some confidence by tracking the changes through time. 317

We therefore publish our reimplementation on GitHub [46], which uses the version 318

control software Git [45]. Additionally, we keep a human-readable log of major changes 319

in a Markdown-formatted [58] text file called CHANGELOG.md in the repository. The 320

simulation results in Figures S2–S32 are tagged with the actual version used for the 321

simulation. 322

Version control also has several other benefits beyond understanding when, how, and 323

why a model has been changed. Most prominently, it allows researchers to work on a 324

model collaboratively and to merge changes made by different authors, which will 325
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become more important in systems biology as models grow in size and models by 326

different groups have to be integrated into a single project. Additionally, version control 327

facilitates debugging by allowing to effortlessly roll back changes to identify the exact 328

edit that introduced an error in the code. Finally, changes that may have to be reverted, 329

like the rescue effect for ICa,L, can be developed on separate branches, which can then 330

either be abandoned or merged into the main branch, depending on whether the feature 331

was deemed beneficial or not. 332

3.2 Errors in equations and parameters 333

Apart from missing information there are also errors both in equations and parameter 334

values, which can be seen in Table 2. These are typical oversights including sign errors 335

and order of magnitude errors related to unit conversion. An example of a sign error is 336

the erroneous negative sign for Qn in equation 5 of INaCa in table S10. Order of 337

magnitude errors can, for example, be found in the parameters kx and kbx where 338

x = fTC , fTMC , ... in the equations for [Ca2+] handling, which all have the unit ms−1 339

in [54] but need to be multiplied by 1000 since [8] uses seconds as unit of time. 340

Component Affected part Kind of error/correction
[Ca2+] handling table S12, eq. 5 fCMi and fTC must have negative sign
INaCa table S10, eq. 5 Qn must have positive sign
Ist table S8, eq. 2 second occurrence of V must be negative
[Ca2+] handling parameters1 kx, kbx must be multiplied by 1000 (ms−1 → s−1)
Ist variables τqa, τqi must be divided by 1000 (ms→ s)
Ito variable τqfast

constant 0.1266 must be 0.01266 instead
1 x = fCM , fCQ, fTC , fTMC , fTMM

Table 2. Errors in the published equations of the Inada model including wrong signs,
shifted floating points, and missing unit conversions.

341

As a second type of errors, there are inconsistencies between parameter values in the 342

article and in the C++ and CellML implementations, which can be found in Table 3. 343

Some of them, like the value used for Prel, seem to be undocumented changes that do 344

have a large qualitative effect on simulations. Others, like the value of 227700 instead of 345

222700 for kfTMC
, seem to be simple typing errors and oversights. Of these, it is notable 346

that in the CellML model, the value of Cm is switched between the NH and the N cell 347

model, which should have stood out if the model was verified in simulations. 348

These inconsistencies are even more pronounced in the initial values. Due to the 349

large number of initial values to keep track of, we do not show them here but only in 350

Tables 1–3 in S1 Text. It seems as though the initial states were chosen to resemble the 351

near-steady state achieved right before a pulse during a long-term simulation with a 352

current pulse protocol. However, this information is missing in the article. We only 353

found this pattern through trial and error and by a hint in the version history of the 354

CellML model. Even with this knowledge, still large inconsistencies remain between the 355

article, the C++ model, and the CellML model with some open questions. For example, 356

we suspect that there is an order of magnitude error in the reported initial value for the 357

parameter fTC in the N cell model in the article. While these errors do affect 358

simulations for up to 20 seconds, all variables that need an initial value do gravitate 359

towards a steady state, meaning that these issues should not affect results or inferential 360

reproduction. 361

Solution 1: Testing 362

Again, it becomes clear that neither authors nor reviewers can be expected to find every 363

single oversight within well over a hundred equations and parameters. Like with missing 364

information, automated tests are the only way to reliably ensure that a piece of code of 365
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Parameter Cell type Unit Value in article Value in C++ Value in CellML
Prel AN, NH s−1 5000 1805.6 1805.6
Prel N s−1 5000 1500.0 1500.0
Vcell AN, NH m3 3.500 · 10−15 4.398 · 10−15 4.400 · 10−15

Vcell N m3 3.500 · 10−15 3.189 · 10−15 3.190 · 10−15

Cm AN F 4.0 · 10−11 4.0 · 10−11 4.0 · 10−11

Cm N F 2.9 · 10−11 2.9 · 10−11 4.0 · 10−11

Cm NH F 4.0 · 10−11 4.0 · 10−11 2.9 · 10−11

kfTC
all 1

mM·s 534 534 543
kfTMC

all 1
mM·s 227700 222700 227700

Est N mV 37.4 37.4 -37.4

Table 3. Parameter values that differ between the published article and the C++ and
CellML implementations. For Cm the reference article is [8], for all other parameters it
is [54].

the size of the Inada model is free of errors. These tests can be run in a CI environment, 366

as described above, which means that each version of a model will be automatically 367

evaluated for errors that may have been introduced accidentally. For InaMo, we use 368

three kinds of automated tests, which are common in software engineering: unit tests, 369

integration tests and regression tests. 370

Unit tests are fine-grained tests for small software modules. In order to create unit 371

tests, these modules must be independent of the rest of the code. They are designed to 372

pin down errors to a single module and therefore increase the confidence in the 373

correctness of these modules. In mathematical modeling this is important, because often 374

researchers do not want to reproduce the results of the full model but only a part of it. 375

This becomes considerably easier if there is an existing test case for the part that should 376

be reused. InaMo contains unit tests for each individual current and gating variable in 377

the model as well as for the diffusion reactions, ryanodine receptor, SERCA pump, and 378

buffer components in the [Ca2+] handling. Each of the experiment models used for this 379

test import the exact same components used for the full cell model in an isolated 380

environment where all external variables that influence the behavior of the component 381

are carefully controlled. Almost all of these experiments correspond to plots in the 382

original article or cited references (see Table 4). The only exception are the individual 383

components of the [Ca2+] handling, because neither Inada et al. [8] nor Kurata et 384

al. [54] provide plots at this level of detail. 385

Moving to the next category, integration tests help to ensure that there is no error in 386

the connection between modules when they are combined to a larger system. They work 387

much in the same way as unit tests, but are applied to the whole software instead of 388

only individual modules. This helps to spot errors that only emerge from the interaction 389

between the individual modules. In InaMo, there are integration tests for each cell type 390

(AN, N, and NH cells) as well as both for constant and for varying [Ca2+]i. This 391

prevents issues like in the CellML model, where probably only N cells were tested. 392

The third category of tests are regression tests, which ensure that the output 393

produced by a piece of code does not change accidentally. They are typically used, when 394

the output is large and has a complex structure that is otherwise hard to incorporate in 395

unit tests. In mathematical modeling, these kinds of tests can serve three purposes. 396

First, they ensure that changes to a part of a model do not have unforeseen 397

consequences in other parts of the model. Second, they highlight these changes during 398

the development process, which increases the probability that plots and formulas in the 399

corresponding article will be changed accordingly. Third, the mere fact that regression 400

tests require keeping reference output data in the repository helps to preserve results 401

reproducibility in the future, when the software that produces the simulation results may 402
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not be available anymore. The repository for InaMo contains a separate sub-repository 403

with reference data for all models used in unit and integration tests and the GitHub 404

Actions script performs regression tests for them. If changes are found, the plotting 405

script can be configured to output additional plots from the reference data so that these 406

changes can be inspected visually. Since Modelica is a human-readable language and the 407

reference data is stored in the human-readable CSV format, researchers in the far future 408

will only need a simple text editor to reproduce the results in this article. 409

Solution 2: Unit consistency checks 410

As another category of tests, which is specific to mathematical models, automated unit 411

consistency checks can help to avoid order of magnitude errors. In declarative languages 412

like Modelica, SBML, or CellML, variables can be annotated with unit definitions and 413

software tools can track the conversion between units in an equation with symbolic 414

mathematics. A unit consistency check then produces an error or a warning if an 415

equation is found, where the right-hand side has a different unit than the left-hand side. 416

In InaMo, variables have unit definitions according to the SI wherever possible and the 417

tests in the CI script contain consistency checks, which are performed when loading the 418

individual models. 419

Solution 3: Modular model structure using object orientation 420

Unit tests require model components to be defined in an independent modular structure. 421

It must be possible to run a simulation using only a single component and a minimal 422

experiment setup surrounding it. At the same time, the code of that component must 423

be exactly the same code in the same file that is used in the full cell model, because 424

otherwise the unit test cannot make assertions about the correctness of the full model. 425

With InaMo, we therefore consequently follow a modular design structure with 426

minimal interfaces between components. Each component is defined in its own file, 427

which is imported both in the unit test of that component and in the full cell model. 428

The full hierarchical composition of the AN cell model can be seen in Figure 2. An 429

example that shows how the component SodiumChannel is used both in the unit test 430

SodiumChannelIV and in the full cell model ANCell is presented in Listing 2. 431

A modular, object-oriented design is not only beneficial because it allows defining 432

unit tests, but it also in itself can help to reduce possible sources of errors by reducing 433

redundancy in the code. For example, the CellML implementation of the Inada model is 434

split into three separate files for the AN, N and NH cells. This means that every error 435

that is found in the model has to be corrected in all three files, leaving the opportunity 436

open for additional oversights. Conversely, the C++ implementation handles all model 437

types in a single file, but this also creates a problem. The code that sets parameter 438

values uses conditional branches based on which cell type should be simulated. Because 439

of the monolithic structure, values need to be defined for each current, even for those 440

currents which are not present in the selected cell type. This led to an error that the 441

parameter Est for the current Ist had a wrong sign in the AN and NH cell setup. For 442

the C++ implementation, this is no issue, since Ist is only used in the N cell model, 443

where the sign was corrected. However, it appears that this error was accidentally 444

transmitted to the CellML model, where all three cell types have the wrong sign for Est. 445

In InaMo, we follow the DRY (don’t repeat yourself) principle of software 446

engineering: Each component and parameter is defined exactly once in the code, reusing 447

common structures as much as possible to reduce redundancies. In an object-oriented 448

language like Modelica, this can be achieved in two ways: First, components can be 449

instantiated, which means that their code is imported into a model under a chosen 450

name. Two instances of a component can have different parameter settings, allowing, 451
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ReversibleAssociation
LTypeCalciumChannel

act: GateTS
inact_fast: GateTS
inact_slow: GateTS

InstantGate

GateTS

GateAB

Buffer2

assoc_a: ReversibleAssociation
assoc_b: ReversibleAssociation
free: Compartment
occupied_a: Compartment
occupied_b: Compartment

Buffer

assoc: ReversibleAssociation
free: Compartment
occupied: Compartment

SERCAPump
RyanodineReceptor

Diffusion

ConstantConcentration

Compartment

LipidBilayer

SodiumPotassiumPump

SodiumCalciumExchanger

TransientOutwardChannel

act: GateTS
inact_fast: GateTS
inact_slow: GateTS

InwardRectifier

voltage_act: InstantGate
voltage_inact: InstantGate

RapidDelayedRectifierChannel

act_fast: GateTS
act_slow: GateTS
inact: GateTS

SodiumChannel

act: GateAB
inact_fast: GateTS
inact_slow: GateTS

BackgroundChannel

CaHandling

mg: ConstantConcentration
sub: Compartment
cyto: Compartment
jsr: Compartment
nsr: Compartment
sub_cyto: Diffusion
cyto_nsr: SERCAPump
nsr_jsr: Diffusion
jsr_sub: RyanodineReceptor
tc: Buffer
tm: Buffer2
cm_cyto: Buffer
cm_sub: Buffer
cm_sl: Buffer
cq: Buffer

ANCell

l2: LipidBilayer
ca: CaHandling
bg: BackgroundChannel
na: SodiumChannel
cal: LTypeCalciumChannel
kr: RapidDelayedRectifierChannel
kir: InwardRectifier
to: TransientOutwardChannel
naca: SodiumCalciumExchanger
nak: SodiumPotassiumPump

Figure 2. Hierarchical composition of AN cell model in InaMo as UML diagram. The
composition arrow indicates that the model at the beginning of the line is a part
of the model at the end of the line, where the diamond shape is located.

Listing 2. Example for construction of unit tests and full cell model out of the same
components. The component SodiumChannel is used both in SodiumChannelIV, which defines a
voltage clamp experiment to test the current-voltage relationship of INa that is used as
a unit test, and in ANCellBase, which is the base for the full AN cell model. In both cases,
an instance of SodiumChannel with the name na is defined and then connected to other
components in the model using connect() equations. Additionally, in ANCellBase, the initial
values of gating variables are adjusted. The ellipses (...) denote code that is not shown
including inheritance from base classes, additional components and connections, and
graphical annotations.

model SodiumChannelIV "IV relationship of I_Na (Lindblad 1996, Fig. 2b)"
...
InaMo.Currents.Atrioventricular.SodiumChannel na annotation (...);
...

equation
connect(vc.p, na.p) annotation (...);
connect(vc.n, na.n) annotation (...);
...

end SodiumChannelIV;

model ANCellBase "base model for AN cell type"
...
InaMo.Currents.Atrioventricular.SodiumChannel na(

act.n.start =0.01227,
inact_slow.n.start =0.6162,
inact_fast.n.start =0.7170

) annotation (...);
...

equation
...
connect(na.p, p) annotation (...);
connect(na.n, n) annotation (...);
...

end ANCellBase;
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Listing 3. Example for composition via instantiation in InaMo. The gating model
GateTS implements the generic Hodgkin-Huxley equation. The ion channel model
SodiumChannel uses two instances of GateTS with different names inact_fast and inact_slow for
fast and slow inactivation. Both instances use different fitting functions to replace the
generic placeholder function ftau for the time constant of the gating variable. This
reduces both the need to redundantly define the Hodgkin-Huxley equations and fitting
functions like genLogistic and therefore keeps the code DRY.

model GateTS
import InaMo.Functions.Fitting. *;
...
replaceable function ftau = genLogistic;
replaceable function fsteady = genLogistic;
Real n(start=fsteady (0), fixed=true) "ratio of molecules in open conformation";
outer SI.ElectricPotential v_gate "membrane potential of enclosing component";
...

equation
der(n) = (fsteady(v_gate) - n) / ftau(v_gate);

annotation (...);
end GateTS;

model SodiumChannel
...
GateAB act (...);
function inact_steady = pseudoABSteady (...);
GateTS inact_fast(

redeclare function fsteady = inact_steady,
redeclare function ftau = genLogistic(

y_min =0.00035, y_max =0.03+0.00035, x0 =-0.040, sx =-1000/6.0)
);
GateTS inact_slow(

redeclare function fsteady = inact_steady,
redeclare function ftau = genLogistic(

y_min =0.00295, y_max =0.12+0.00295, x0 =-0.060, sx =-1000/2.0)
);
Real inact_total = 0.635 * inact_fast.n + 0.365 * inact_slow.n;

equation
open_ratio = act.n ^3 * inact_total;

end SodiumChannel;

for example, to use the same component GateTS both for the activation and 452

inactivation gate of an ion channel as shown in Listing 3. Second, models can also 453

inherit components, parameters, and equations from common base classes. This is 454

similar to composition via instantiation, but has the added benefit that the inherited 455

parts directly become a part of the model without the need to access them through a 456

component name. For example, this is very useful for the ion channels in the Inada 457

model, which almost all follow an electric analog. The base class IonChannelElectric 458

defines the basic behavior of an ion channel as voltage-dependent resistor with an 459

attached voltage source and can be reused for Ib, IACh, If , IK,1, ICa,L, IK,r, Ist, and 460

Ito. This is shown in Listing 4. 461

Solution 4: Specialized testing library for Modelica models 462

There are currently not many solutions for automated tests that are specifically 463

designed for mathematical models. To facilitate the creation of such tests as much as 464

possible, new tools are required. One promising approach is to use libraries that can run 465

simulations from within general purpose programming languages such as Python or 466

Julia and to then use the existing capabilities for automated testing that exist in these 467

languages. 468

We therefore developed the Julia library ModelicaScriptingTools.jl (MoST.jl) [44], 469

which uses the library OMJulia.jl [59] developed by the OpenModelica project [41]. 470

With essentially three relevant lines of code, which can be seen in Listing 5 and 7, the 471
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Listing 4. Example for ion channel in InaMo. Most ion channels share a base class
IonChannelElectric that implements the base equations for the electrical analogy to a
conductor coupled to a voltage source. Full ion channel models such as
SustainedInwardChannel then only have to define the open_ratio that determines the opening
and closing of the channel in dependence of the gating variables.

partial model IonChannelElectric "ion channel based on electrical analog"
extends Modelica.Electrical.Analog.Interfaces.OnePort;
parameter SI.ElectricPotential v_eq "equilibrium potential";
parameter SI.Conductance g_max "maximum conductance";
SI.Conductance g = open_ratio * g_max "ion conductance";
Real open_ratio "ratio between 0 (fully closed) and 1 (fully open)";

equation
i = open_ratio * g_max * (v - v_eq);

end IonChannelElectric;

model SustainedInwardChannel "I_st"
extends IonChannelElectric(g_max =0.1 e-9, v_eq =-37.4 e-3);
GateTS act (...);
GateAB inact (...);

equation
open_ratio = act.n * inact.n;

end SustainedInwardChannel;

Listing 5. ModelicaScriptingTools.jl (MoST.jl) script that loads the model file
src/InaMo/Examples/FullCell/AllCells.mo, performs simulations according to the simulation
parameters read from that file (see Listing 7), places the outputs in the folder out, and
performs regression tests if it finds reference data in the directory regRefData.

using ModelicaScriptingTools
using Test

withOMC("out", "src") do omc
@testset "Example" begin

testmodel(omc , "InaMo.Examples.FullCell.AllCells"; refDir="regRefData")
end

end

library establishes communication with the OpenModelica compiler (OMC), and then 472

loads a given model, runs a simulation with it and performs a regression test. During 473

model loading and simulation, checks for unit consistency as well as for compiler errors 474

and warnings are performed and any issues are reported with human-readable error 475

messages that include the original compiler message if possible. This means that 476

modelers do not need an in-depth knowledge of the Julia language, or any other 477

programming language, to benefit from thorough automated testing. As shown in 478

Listing 1, they can also set up a CI pipeline for their Modelica project with just two 479

calls to the julia executable. If required, however, more fine-grained tests and separate 480

simulation scripts can be defined using the application programmer interfaces (APIs) of 481

MoST.jl and OMJulia.jl for model inspection and simulation and the testing capabilities 482

of Julia. 483

An experimental feature of MoST.jl also aims to solve the problem of errors 484

occurring in equation and parameter lists in articles by automatically generating a 485

human-readable documentation of a model. This is based on the function dumpXMLDAE 486

in the OpenModelica scripting API, which generates an eXtensible Markup 487

Language (XML) file containing a flat list of all parameters, variables, functions, and 488

equations in a composite model. The equations are not only listed as code but 489

additionally as content Mathematical Markup Language (MathML), which allows to 490

automatically translate them to presentation MathML, which can be, e.g., rendered in a 491

web browser. Since MoST.jl is written in Julia, we can use the highly extensible 492
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Listing 6. Markdown-formatted text file that is used to generate a HTML
documentation of InaMo including the HTML string from the model file itself, a list of
all equations rendered as MathML, a list of all functions in Modelica syntax, and a
table with all variables and parameters.

# InaMo

Documentation for InaMo.

‘‘‘@modelica
%outdir=out
InaMo.Examples.FullCell.AllCells
‘‘‘

Listing 7. Experiment annotation of the AllCells model, which contains full cell tests
for all three model types (AN, N, and NH cells). The parameters StartTime, StopTime,
Tolerance, and Interval are part of the Modelica language specification, the parameter s for
the solver selection is a vendor-specific annotation of OpenModelica and the
variableFilter, which controls which variables occur in the output file, is a vendor-specific
annotation of MoST.jl.

model AllCells
FullCellCurrentPulses an(redeclare ANCell cell);
FullCellSpon n(redeclare NCell cell);
FullCellCurrentPulses nh(redeclare NHCell cell);

annotation(
experiment(StartTime = 0, StopTime = 2.5, Tolerance = 1e-12, Interval = 1e-4),
__OpenModelica_simulationFlags(s = "dassl"),
__MoST_experiment(variableFilter="(an|n|nh)\\. cell \\.(v|ca\\.( sub|cyto)\\.c\\.c)

")
);
end AllCells;

documentation generator Documenter.jl to generate an HTML documentation of a 493

model by simply inserting an annotated code-block in a Markdown-formatted text file 494

as shown in Listing 6. This can, again, happen in a CI pipeline, ensuring that there is 495

an accurate human-readable documentation for each version of the model. However, 496

automatic generation of such a documentation from a composite model is not trivial, as 497

variables and functions can have multiple aliases, which introduce clutter that has to be 498

reduced. Additionally, variables have to be grouped to keep the list of equations clear 499

and the variable names in the equations short enough for a visually pleasing 500

presentation. The current implementation state of this feature is enough to give an idea 501

what is possible, but does not yet produce output that can be used as a supplement in 502

an academic journal. An example for InaMo can be seen at 503

https://cschoel.github.io/inamo/v1.4/models/examples/#Tests-for-I_{K,1}. 504

3.3 Availability of data files 505

Problem description 506

Inada et al. did originally upload their C++ code to the Biophysical Journal with the 507

intent to make it available for download, which is to be commended. However, some 508

unknown issue—maybe an update of the publishing platform—seems to have buried this 509

information as there is currently no download link on the journal website. Only after 510

multiple attempts of contacting both the authors and the journal, we were able to 511

obtain the code from the production team of the journal. We asked them to add a 512

download link to the article page so that other researchers would have easier access to 513

the files but received no answer to our request. As mentioned above, information was 514
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missing from the article and some errors in equations and parameters were ultimately 515

only recoverable from the C++ code. Without the code we might therefore not have 516

been able to recreate the full cell models at all. Earlier access to the model code could 517

also have reduced the time that was spent fixing bugs in the code. 518

Solution: Services for long-term archival of code and data 519

We believe that while the management of supplemental data is the responsibility of 520

scientific journals, researchers should not solely rely on this system. Journals and their 521

archival systems are more focused on text content than on data and—as this case 522

shows—can fail to preserve this relevant information or to make it accessible for future 523

research. 524

With InaMo, we therefore used multiple fail-safe options. First, we publish our code 525

on GitHub, which has adopted a “pace layers” strategy [60] for archiving code in 526

multiple redundant databases with the extreme of the GitHub Arctic Code Vault that is 527

designed to store code for a thousand years [61]. Second, to make our code citable and 528

more easily accessible for research purposes, we also use Zenodo, which assigns 529

document object identifiers (DOIs) to archived code and data and stores it in the 530

CERN Data Centre [62]. Although it does not extend to the same time spans as the 531

GitHub Archive Program, Zenodo might be the most suitable solution for data uploads 532

such as reference data for regression tests, as those are not fully covered by GitHub’s 533

program. With this setup, the availability of our data does not depend on a single 534

academic journal but is in the hands of multiple institutions that specialize in keeping 535

code and data available for future generations of researchers. 536

3.4 Non-executable code 537

Problem description 538

Even with both the C++ and CellML implementations of the Inada model available, we 539

could not obtain reference simulation results that we could have used for debugging. 540

The C++ code does not include any file with an executable main() function, but only 541

function and variable definitions for the equations and variables of the model. The 542

CellML code is executable using OpenCOR, but only the N cell model does produce an 543

action potential with the settings given in the model file. As mentioned in Section 3.2, 544

the N cell model has significant errors in the parameter values of Cm and Est, which 545

does not increase our confidence that the model is in a state that allows it to be used as 546

a reference. 547

This already means that the methods of Inada et al. are not reproducible. Without 548

executable code, there is no way to obtain simulation results in the same way as the 549

authors did. Additionally, this also limits the results reproducibility of the model as 550

there is no reference implementation or simulation data against which we could compare 551

our reimplementation for testing and debugging purposes. We could use the plots as 552

data source, but this is more error-prone as we will explain in the following subsection. 553

Solution: Continuous delivery 554

In software engineering, CI pipelines often also include a distribution stage that compiles 555

an artifact which can be distributed to end users if and only if the testing stage did not 556

produce any errors. This process is called continuous delivery (CD), and it can be used 557

in mathematical modeling to ensure that the code that is submitted to a journal or 558

stored in an archive is indeed both complete and correct. GitHub already automatically 559

adds a ZIP archive including the whole repository content to each tagged version of a 560

repository, which can be enough for small projects. In our case, however, we need an 561
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Listing 8. GitHub Actions script to automatically draft a GitHub release each time a
new tag is encountered in the repository. After downloading the source code with the
checkout action, the version number is saved in the RELEASE VERSION variable, and a
ZIP archive is created with the zip tool. Then, the create-release action is used to
create the release draft on the GitHub website and the ZIP archive is attached to this
draft with the upload-release-asset action. This version uses the whole content of
the file README.md as body text for the release. The full script for InaMo version 1.4.3
parses only the recent changes from the CHANGELOG.md file and also contains additional
code to attach an Functional Mock-up Unit (FMU) export of the model
InaMo.Examples.FullCell.AllCells to the release, which is not shown here.

on:
push:

tags:
- ’v*’ # Push events to matching v*, i.e. v1.0, v20 .15.10

jobs:
release:

runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v2
with:

submodules: true
- run: echo "RELEASE_VERSION=${ GITHUB_REF #refs /*/}" >> $GITHUB_ENV
- run: |

zip -r inamo-${ RELEASE_VERSION }.zip . -x \*.git/\* \*. git
- uses: actions/create-release@v1

id: create_release
env:

GITHUB_TOKEN: ${{ secrets. GITHUB_TOKEN }}
with:

tag_name: ${{ github.ref }}
release_name: Release ${{ github.ref }}
body_path: README.md
draft: true

- uses: actions/upload-release-asset@v1
env:

GITHUB_TOKEN: ${{ secrets. GITHUB_TOKEN }}
with:

upload_url: ${{ steps. create_release .outputs. upload_url }} # reference
previous output

asset_path: ./ inamo-${{ env. RELEASE_VERSION }}.zip
asset_name: inamo-${{ env. RELEASE_VERSION }}.zip
asset_content_type: application/zip

additional step, since the ZIP archive generated by GitHub by default does not include 562

the content of submodules, which we use to store the data files for the regression tests. 563

The additional work that is required to generate a distribution of a model, is 564

performed by a CI script. In our case, this involves a call to the zip tool on the 565

command line and the use of the predefined actions create-release and 566

upload-release-asset as can be seen in Listing 8. 567

CD also provides the opportunity to distribute models not only as source code but 568

also in dedicated exchange formats. Since version 1.4.3, InaMo releases contain an 569

export of the main model AllCells as Functional Mock-up Unit (FMU). The FMU 570

format is used in the Modelica ecosystem to increase the interoperability of models and 571

to make models available across tool and language barriers. This means that the release 572

version of the AllCells model is not only executable in OpenModelica, but also in any 573

of the over 100 tools that support the Functional Mock-up Interface (FMI) [63]. 574
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3.5 Missing reference plots and experiment protocols 575

In order to use unit tests, as suggested in Section 3.2, reference data or plots are 576

required that capture the behavior of a single part of the model and therefore provide 577

target results, which can be reproduced. The data supplement of [8] does contain 578

reference plots for ICa,L, Ito, IK,r, If , Ist, and INaCa as well as voltage and [Ca2+]i 579

curves for the full cell models. However, reference plots for IK,1, INa, Ip, and IACh as 580

well as for the [Ca2+] handling are missing. As shown in Figure 1, reference plots for 581

IK,1, INa and Ip could be obtained from the sources that are cited in [8]. This still 582

leaves the [Ca2+] handling and IACh without reference. 583

As shown in Table 4, a complete and error-free experiment protocol was only 584

available for IK,1. All other experiments required some form of adjustments and in 585

roughly half of the cases no exact agreement with the original plots could be achieved. A 586

common reason for this is that current-voltage relationships of ion channels are usually 587

determined with a test pulse protocol, of which not all parameters were reported in the 588

articles. In this protocol, the voltage is held at a holding potential Vhold for a period 589

Thold, after which it is immediately set to a pulse potential Vpulse for a duration Tpulse 590

followed by another holding period and so on. Vhold is gradually increased after each 591

pulse and then plotted against the maximum current obtained in the cycle duration. 592

Inada et al. give values for Vhold, Vpulse and Tpulse, but not for Thold. This is relevant, 593

because due to the high time constants of slow activation and inactivation gates, some 594

currents only arrive at a steady state after 20 seconds. If Thold is smaller than this time 595

period, the current during a cycle will also be affected by the previous cycle. 596

In other cases, reported parameters had to be adjusted manually to obtain a good 597

agreement with the original plots. This includes simple oversights like wrong units, but 598

also cases where it seems that different values were used than those that were reported, 599

as for Figure S1 in [8], where Vhold is given as −40 mV, but we achieve much better 600

results with a value of −70 mV. It also seems that Inada et al. used the parameter 601

settings of the NH cell model for plots of ICa,L and Ito, even though the article states 602

that parameters of the AN cell model were used. Another example are the plots for 603

INaCa by Matsuoka et al. , where it is stated that a scaling parameter was used for each 604

of the individual plots, but the value of the scaling parameter is not given in the article. 605

As a final issue, we could not obtain isolated reference plots for some of the 606

components as they were only used and reported in combination with other components: 607

The only reference that we had for Ip reports the sum of Ip and three background 608

channels, which are different from the background channel used in the Inada model [64]. 609

Also, [Ca2+]i was only reported in the context of the full cell model by Inada et al. . 610

While our simulations are mostly in qualitative agreement with the reference plots, 611

we could not always achieve an exact match. We assume that this is due to further 612

unreported changes in parameter values. For example, for the current density time 613

course of Ist in Figure S5B we had to set the parameter gst to 0.27 nS instead of 0.1 nS 614

as reported in [8]; the differences for INaCa in Figures S6A and S6B vanish when the 615

current densities are multiplied by a scaling factor 1.18, which can be achieved by 616

adjusting kNaCa accordingly; and for Ito the current in Figure S2E is slightly lower than 617

in our model, which could be explained if Thold was too small to allow a full recovery to 618

the steady state in [8]. Finally, the differences in the full cell models might be explained 619

if IACh was actually used for simulations. There are only two instances of qualitative 620

differences for If in Figure S4C, and for Ist in Figure S5C. We have no good 621

explanations for these differences, but it is unlikely that they are due to an error on our 622

side, since they exist only in the I-V-plots, but not in other plots using the same data or 623

reference plots from other sources. 624
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Part Figure Exact Issues/Required changes
ICa,L [8, S1] (3) Thold = 5s, Vhold ← -70 mV, NH parameters, S1H: refer-

ence timescale must be multiplied by 0.75
Ito [8, S2] 5 Thold = 20s, NH parameters, S2E: current too high, S2D:

higher minimum in reference
IK,r [8, S3] 5 Thold = 5s, S3C: reference shifted towards higher voltages
If [8, S4] 5 Thold = 20s, S4C: qualitative differences
Ist [8, S5] 5 Thold = 15s, gst ← 0.27 nS, S5C: qualitative differences
Ist [54, 4] 3 Thold = 15s
INaCa [8, S6] (3) [Ca2+]o ← 2.5 mM, [Ca2+]sub = 0.00015 mM

INaCa [54, 17] 3 kNaCa given as pA
pF ⇒ multiply by Cm

INaCa [57, 19] (3) 0.25 nA < kNaCa < 1 nA chosen to fit plots

INa [65, 2] 3 Thold = 2 s, Tpulse = 50 ms, nap ← 2.1pl
s

Ib - trivial, no need for test
IACh - no description or plot available
IK,1 [65, 2] 3
Ip [64, 12] 5 reference mixes Ip with background currents
[Ca2+]i [8, S7] 5 only as part of full cell simulation (see row below)
Cell [8, S7] 5 Thold = 300 ms, Tpulse = 1 ms, Ipulse = −1.2 nA (AN),

Ipulse = −0.95 nA (AN), AN, NH: resting potential too
high and action potential slightly too short, N: [Ca2+]i
too high

Table 4. Summary of individual experiments that were reproduced with InaMo listing
the part of the model that is tested with the experiment, a reference to the original
figure, the information whether the plot could be reproduced exactly, and a list of issues
and changes that were required to obtain a good agreement with the original plot. For a
visual comparison of plots, see Figures 2–33 in S1 Text. For the exactness, 3 means a
near perfect reproduction was possible with minimal adjustments, (3) means that
significant changes or manual parameter tuning were required, and 5 means that even
after adjustments only qualitative agreement was achieved while some visible differences
remain. In the last column, an equals sign (=) means that a parameter value was not
given in the original article and had to be determined by us, whereas an arrow (←)
means that the parameter value was given, but had to be changed. The entry “NH
parameters” means that we had to use the parameters given for the NH cell model,
while Inada et al. report that they used parameter settings of the AN cell model.
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Solution 1: Run experiments in continuous integration 625

The hurdles to results reproducibility posed by missing and erroneous information about 626

reference plots and by missing plots themselves can also be solved by employing 627

automated testing. The test cases in InaMo directly produce the simulation data 628

required for a specific reference plot. The model code contains the full experiment 629

protocol including all relevant simulation settings such as the solver and the step size. 630

An example can be seen in Listing 7. The repository also contains a plotting script that 631

reads the simulation output produced by the test script and generates plots for all 632

examples. In consequence, reproduction of the methods of this article becomes possible 633

with a few simple steps: Researchers have to install OpenModelica, the Python 634

distribution Anaconda, and Julia with the single additional package 635

ModelicaScriptingTools. Then they can download our code from GitHub and type 636

the following two commands in a command prompt: 637

julia --project="." scripts/unittests.jl 638

python scripts/plot_validation.py 639

This should result in the creation of a directory called plots which contains a 640

reproduction of all the reference plots listed in 4. Only IACh remains untested in InaMo, 641

because we do not have any reference for the equations used in the C++ code of Inada 642

et al. . 643

Solution 2: Use dummy components in unit tests 644

While we did not have a reference plot for the [Ca2+] handling, we still wanted to 645

create a unit test of the component as it was quite difficult to implement, and we 646

wanted to isolate it from any feedback loops to facilitate bug fixing. In software 647

engineering, it is a common issue that a piece of code that should be tested depends on 648

a fairly complex and not fully predictable environment, such as a database or a web 649

service. In these cases, dummy components are used, which provide the same interface 650

as the required service, but actually contain no logic whatsoever and only return the 651

results that are expected and needed for the unit test. 652

This technique can also be applied to mathematical modeling. For the unit test of 653

the [Ca2+] handling, we approximated the time course of the currents ICa,L, and INaCa 654

throughout an action potential in the full cell example very roughly with a sum of 655

Gaussians. This leaves us with current signals that have a physiologically plausible 656

shape and value and that do not depend on any other component. The resulting plot 657

therefore shows the behavior of the [Ca2+] handling component in isolation, allowing to 658

examine the effect of changes to this component in a controlled environment. 659

Solution 3: Publish simulation data used for regression tests 660

Since we only had plots as a reference, we initially only checked the exactness of our 661

experiment results by comparing the plotted values at prominent sample points like 662

extrema or zero crossings. For the full cell model, we invested the additional effort to 663

reconstruct the simulation data from the plots using the vector graphics editor Inkscape 664

and a small Python script. We then later extended this reconstruction procedure to all 665

other reference plots. This allowed us to immediately assess whether a parameter 666

change brought the simulation result closer to the original data or introduced additional 667

deviations. However, this process is both tedious and inexact. In a first attempt, we 668

underestimated the scale of the x-axis in the plot for the full cell model, which was only 669

given as a small ruler-like segment of 50 milliseconds width. Additionally, we first 670

assumed that the test pulse occurred exactly after 50 milliseconds for each cell type, but 671

later found out that the position differed by a few milliseconds between plots. These 672
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errors and the reconstruction effort could have been eliminated, if the simulation data 673

used for the original plots was available for download. 674

As mentioned above, we publish our simulation output for the regression tests, which 675

includes all data required to reconstruct our reference plots. We also make the 676

reconstructed simulation data from the plots in the original article available. 677

Additionally, our plotting script can be easily configured to produce plots from the 678

reference data instead of or in addition to the simulation output. Therefore, even if 679

there should be some unforeseen issues with running one of our scripts in the future, an 680

exact reproduction of the simulation results will still be possible, because the reference 681

data allows to reliably quantify the error in a reproduction attempt. 682

3.6 Semantics lost in the chain of references 683

Problem description 684

The last problem that we encountered in our reproduction of the results of the Inada 685

model was not so much concerned with correctness and completeness but with the 686

understandability of the model. In an attempt to reproduce simulation results, it is 687

unlikely that the goal is to reproduce the full code with the exact same structure as 688

before. This was also the case for us, as we wanted to include the model in a high-level 689

model of the human baroreflex [66,67]. For this task, we also wanted to adhere to our 690

MoDROGH guidelines [23]. This required us, among other changes, to bring the model 691

into a modular structure that follows the biological structure as much as possible. For 692

the HH-type ion channel formulations this was straightforward, although we sometimes 693

struggled to understand the reasoning behind the choice of fitting functions. 694

The INa formulation, however, follows the Goldman-Hodgkin-Katz (GHK) flux 695

equation, which—unless one is already familiar with this equation—only becomes 696

apparent when reading the reference by Lindblad et al. [65]. This posed a problem, 697

because understanding this equation was required for resolving an error in the article: 698

The permeability PNa was given in nl/s by Lindblad et al. , which is not a unit for 699

permeability and also has the wrong order of magnitude since it should be pl/(s ·m2). 700

This error can only be found and fixed, if one understands the semantics that PNa is 701

supposed to be the permeability term used in the GHK flux equation. 702

A similar but more severe problem occurred in the formulation for INaCa, where the 703

main set of equations that defines the current is the following: 704

x1 = k34k41(k23 + k21) + k21k32(k43 + k41) (1)

x2 = k43k32(k14 + k12) + k41k12(k34 + k32) (2)

x3 = k43k14(k23 + k21) + k12k23(k43 + k41) (3)

x4 = k34k23(k14 + k12) + k21k14(k34 + k32) (4)

INaCa = kNaCa(k21x2 − k12x1)/(x1 + x2 + x3 + x4); (5)

Without further explanation it is nearly impossible to see that this is an analytic 705

solution to the diffusion equations between four states of the sodium potassium pump, 706

of which only the state transitions between state 1 and 2 are electrogenic. Inada et al. 707

cite Kurata et al. as direct source for INaCa, but to obtain an explanation of the 708

rationale behind the equations, one has to go one step further to an article by Matsuoka 709

et al. [57]. This information was important for us since it meant that we could not 710

further modularize INaCa, because it would not have been possible to automatically 711

extract the analytic solution from individual diffusion models. 712

The last and most important example of lost semantics was the [Ca2+] handling. 713

Here, the equations describe the transport of Ca2+ cations between four compartments. 714
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Figure 3. [Ca2+] handling in the Inada model. Left: One of the 15 differential
equations that govern the intracellular calcium concentrations as presented in the
original article. This single equation mixes the following six physiological effects: the
transport of calcium cations through the L-type calcium channels (a) and the
sodium-calcium exchanger (b), the release of calcium from the JSR into the subspace
via ryanodine receptors (c), the diffusion from the subspace into the cytosol (d), and the
calcium buffer calmodulin in the subspace (e) and in the sarcolemma (f). Right:
Graphical representation of the [Ca2+] handling in InaMo version 1.4.1. Each
component represents a single physiological effect or quantity with intuitive icons for
concentrations (beaker), calcium buffers (stylized protein), diffusion reactions (arrow
from high to low concentration of circles), the ryanodine receptor (pore in lipid bilayer),
and the SERCA pump (scissor-like structure in lipid bilayer). Effects (c)–(f) of the
left-hand side equation are represented by the four components connected to the beaker
on the upper left (marked in red), while effects (a) and (b) are handled by the external
ion channel components when they are connected to the large calcium connector (blue
circle) on the center left. These external connections can be seen in Figure 6 (left).

This is not apparent in [8], but only in [54], which contains a graphical representation of 715

the model. However, Kurata et al. still do not couple this understandable graphical 716

representation with the actual equations. Instead of separating them into diffusion 717

reactions, the ryanodine receptor and the SERCA pump, they are only grouped by 718

compartments. Additionally, the effects of all ionic currents on the Ca2+ concentration 719

are lumped together in the same equations, which further complicates understanding. 720

An illustration of this problem can be seen in Figure 3. Even after disentangling the 721

equations into small components, we were still confused by the volume terms that were 722

applied to the “flux” variables jrel, jup, jtr, and jCa,diff in seemingly arbitrary fashion. 723

An example can be seen in Figure 4. The reason behind this confusing use of volume 724

terms is that the original equations only use concentrations, but the transport has to 725

conserve the amount of substance between both sides. This introduces the need to 726

convert from concentrations to amounts of substance (by multiplying with a volume 727

term) and then back to concentrations (by dividing by another volume term). Even 728

with this background knowledge, which is assumed by the articles about the [Ca2+] 729

handling, it is not trivial to infer the general rule from the equations in the article. This 730

is due to simplifications, which obscure the common equation structure, and the naming 731

of the flux variables, which does not clearly indicate source and destination of the 732

corresponding transport effect. 733
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General rule:

d
[
Ca2+

]
src

dt
= ...−

min(Vsrc, Vdst)

Vsrc

jsrc,dst + ...

d
[
Ca2+

]
dst

dt
= ...+

min(Vsrc, Vdst)

Vdst

jsrc,dst + ...

Equations in article:

d
[
Ca2+

]
up

dt
= ...− jtr

Vrel

Vup

+ ...

d
[
Ca2+

]
rel

dt
= ...+ jtr + ...

Figure 4. Comparison between general rule for inactive transport equations (left) and
actual equations occurring in the article by Inada et al. (right). The right-hand side is
the result of substituting src = up and dst = rel in the left-hand side and then
simplifying due to min(Vup, Vrel) = Vrel. If only the right-hand side is given, it is not
trivial to trace back these steps to arrive at the general rule, which is required to
understand the meaning of the equation. The name “tr” does not immediately make it
apparent what are the source (src) and destination (dst) concentrations affected by jtr
and since Vrel/Vrel cancels out in the second equation, the structure is also lost.

Solution 1: Model design utilizing MoDROGH criteria 734

The software engineering equivalent of these unclear, entangled and undocumented 735

model semantics is termed “spaghetti code”, which is code that is hard to maintain, 736

because the program flow is hard to follow. The solution to this problem is a 737

combination of modularization, documentation and clear design patterns for the code. 738

As mentioned in Section 2.4, InaMo follows the guidelines associated for building models 739

with a language that is modular, descriptive, human-readable, open, graphical, and 740

hybrid (MoDROGH), which can increase the understandability as well as the methods 741

and results reproducibility of a model [23]. 742

The issue with non-transparent fitting functions is solved by defining a set of fitting 743

functions with understandable names and a common structure for gate components. As 744

Figure 5 shows, this allows to understand the gate equations without having to untangle 745

the structure of the fitting functions in memory. For example, the most common fitting 746

function genLogistic can be quickly identified as a sigmoid function, whose parameter 747

x0 defines the point of maximum steepness, while y_min and y_max define the minimum 748

and maximum value that the function can assume. It also becomes apparent that 749

almost all gates use HH-type equations governed by a time constant and a steady state 750

function. 751

Similarly, the GHK flux equation is implemented in a separate component that 752

features both a detailed documentation in HTML format and explicit unit definitions, 753

including the custom type PermeabilityFM that is used to document the unusual unit 754

used for PNa. This also fixes a minor issue mentioned in Section 3.1, as the 755

documentation also explains the handling of the avoidable discontinuity in the function. 756

As mentioned above, the equations for the sodium calcium exchanger unfortunately 757

could not be modularized to make more explicit that they are intended to model 758

diffusion reactions between four states. However, we added a documentation string to 759

each variable explaining its physiological interpretation. We also added the variables 760

E1–E4 from Matsuoka et al. , which represent the actual ratio of molecules in each of the 761

four states and therefore facilitate the interpretation of the behavior of the component. 762

Finally, we already showed the effect that modularization has on the [Ca2+] 763

handling in Figure 3. By separating the model into modules that each only represent a 764

single physiological effect, these individual effects become more understandable. 765

Readers can focus on understanding one module at a time, grouping the equations and 766

parameters in memory to form a concept that can easily be recalled. With these 767

concepts in mind, understanding the whole component becomes possible by inspecting 768

its graphical representation, which shows how the individual effects are connected. This 769
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h1∞ = ...

τh1
=

0.03

1 + exp ((V + 40)/6)
+ 0.00035

dh1

dt
=
h1∞ − h1

τh1

GateTS inact_fast(
redeclare function fsteady = ...,
redeclare function ftau =

genLogistic(
y_min =0.00035, y_max =0.03+0.00035,
x0 =-0.040, sx =-1000/6.0

)
) "inactivation gate (type1/h1)";

Figure 5. Equations for the fast inactivation gate of INa in the original article (left)
and in InaMo (right). The equations on the left-hand side constitute a typical
description of an HH-type ion channel using a steady state h1∞ and a time constant τh1

to define the time course of the gating variable h1 via a differential equation. The
equation for τh1

was found by fitting a generalized logistic function to experimental
data. It has a declining sigmoid shape with an inflection point at 40 mV, a minimum of
0.35 ms, and a maximum of 30.35 ms. This may be apparent for an expert modeler,
who is familiar with similar models, but not to novices or biologists without a deep
mathematical background. The InaMo code on the right-hand side therefore aims to
make this expert view of the equations available to non-experts by capturing common
equation structures in named and documented components. GateTS defines a HH-type
gating variable based on the two replaceable functions fsteady for the steady state and
ftau for the time constant. genLogistic is a fitting function, whose parameters are
explained in its documentation: y_min is the minimum, y_max is the maximum, x0 is
the inflection point, and sx determines the steepness and direction (sx < 0 yields a
declining sigmoid shape).

is facilitated by the fact that the graphical representation is neither a separate biological 770

drawing, nor an automatically generated graph, but rather an accurate representation of 771

the model defined with Modelica constructs similar to a circuit diagram. An example 772

showing the definition of the graphical representation in the Modelica code can be seen 773

in Figure 6. On the code and equation level, InaMo uses amounts of substance instead 774

of concentrations as interface. This leads to a more natural representation of active and 775

inactive transport components, which explicitly ensure conservation of mass. The 776

diffusion reactions and the ryanodine receptor use a common base class 777

InactiveChemicalTransport, which clearly explains the use of volume terms and 778

presents the gradient-based transport equations in their general, more understandable 779

form. Additionally, we change the naming of the individual concentrations from [Ca2+]i, 780

[Ca2+]up and [Ca2+]rel to [Ca2+]cyto, [Ca2+]nsr and [Ca2+]jsr respectively, which allows 781

us to also assign intuitive names to the transport components. For example, the module 782

for the diffusion from the subspace to the cytosol is called sub_cyto. 783

Apart from these individual examples, InaMo uses the general MoDROGH 784

guidelines to ensure that the model code reflects the physiological semantics as much as 785

possible, making them transparent for the user. For example, the whole model only uses 786

two kinds of interfaces: an electrical interface for ion currents and a chemical interface 787

governing the changes in the amount of ions in a compartment. Following the 788

convention that outward currents are positive, each ionic current has a positive pin on 789

the extracellular side and a negative pin on the intracellular side. The electrical 790

interface is also compatible to electrical components of the Modelica standard library 791

Modelica.Electrical, allowing standard electrical components such as a ground or 792

current source to be used in InaMo. Both kinds of interfaces can be seen in Figure 6, 793

where electrical connections are represented by blue squares, which are filled for positive 794

pins, and chemical connections are represented by blue circles. It can also be seen that 795

no component has more than three of these connections, which keeps the cognitive effort 796

required to understand them at a low level. 797
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p

n

I_b

I_Ca,LI_K,r

I_NaCa I_NaK I_ACh

I_f I_st

NSRJSR

model NCell
BackgroundChannel bg

annotation(Placement(
transformation(

origin = {-51, 53},
extent = {{-17, -17}, {17,

17}}
)

));
...

equation
connect(bg.p, p) annotation(Line(

points = {{-50, 70}, {-50,
100}},

color = {0, 0, 255}
));
...

annotation(Diagram(graphics ={
Rectangle(

fillColor = {211, 211, 211},
pattern = LinePattern.None,
fillPattern = FillPattern.Solid,
extent = {{-100, 60}, {100, -60}}

)}));
end NCell;

Figure 6. Graphical representation of the N cell model. Left: Diagram resulting from
drag and drop composition of model components (InaMo version 1.4.1). Right:
Automatically generated embedding of graphical annotations in the model code showing
the placement of the background channel (annotation(Placement(...))), the
connection line to the positive pin (annotation(Line(...))) and the definition of the
gray rectangle in the background (annotation(Diagram(...))).

Listing 9. Interface for electrical connections between model components in the
Modelica standard library. The keyword flow establishes an acausal connection with the
conservation law that the sum of the i variables of all connected components must be
zero.

connector PositivePin "Positive pin of an electrical component"
SI.ElectricPotential v "Potential at the pin" annotation (...);
flow SI.Current i "Current flowing into the pin" annotation (...);
annotation (...);

end PositivePin;

One important aspect of these interfaces is that they are acausal, which means that 798

no prior assumption is made which variables are defined by input signals and which will 799

be observed as the output of an experiment. For example, this means the same model 800

code can be used for voltage- and current-clamp experiments. Modelica achieves this by 801

using connector variables with the flow keyword and automatically generating 802

conservation law equations representing Kirchhoff’s current law for the electrical 803

interfaces and the conservation of mass for the chemical interface. An example of such a 804

connector definition can be seen in Listing 9. The most important effect of this feature 805

for the design of the model is that adding or removing ion currents is as easy as adding 806

and removing the component and its connections in the graphical representation, which 807

automatically adds or removes the required term to the conservation law equations. 808

These two physical connectors ensure that the model structure in the code follows 809

the biological structure of the modeled system. The full cell is composed of models of 810

the lipid bilayer, ion channels, ionic pumps, and the [Ca2+] handling, which only 811

exposes [Ca2+]sub as the concentration that is relevant for the ion currents. The ion 812

channels, in turn, contain gate models which are composed of basic HH-type gates with 813

predefined or custom fitting functions. This structure closely ties the equations to their 814
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semantic meaning and therefore facilitates interpretation. 815

At the lowest hierarchical level, each variable and parameter in the model is 816

annotated with proper units following the SI and has both a human-readable name and 817

a documentation string explaining its physiological role. Models that are more involved 818

additionally contain a documentation text in HTML format with detailed information 819

about the model structure. This ensures that the model is understandable without 820

further literature research. 821

Solution 2: Annotation of sources and rationale for parameter values 822

To spare researchers that want to reproduce our model skimming through a large body 823

of literature as in Figure 1 and to make our parameter choices transparent, we 824

annotated the experiments with a literature source or rationale for each parameter 825

value. Currently, this is done within the HTML documentation string of the models 826

defining the experiments. However, Modelica also allows using so-called vendor-specific 827

annotations to add structured annotations with custom content. This feature could be 828

used to make these annotations not only human- but also machine-readable and, for 829

example, allow to automatically add this information to the table of parameters 830

generated by MoST.jl. 831

4 Discussion 832

4.1 Answer to RQ1 833

In research question RQ1, we asked which factors hindered the reproduction of the 834

methods and results of the Inada model. Despite the efforts of the authors to provide 835

detailed reference plots and publish their code, a considerable reverse engineering effort 836

was required to build our Modelica implementation InaMo. Figure 1 in S1 Text shows 837

an estimation of the distribution of the working time that went into InaMo. In total, 838

the development took us an estimated 86 work days (i.e. four months). Small errors in 839

published equations and parameter values required the debugging (19 working days) of 840

individual parts of the model. This debugging was hindered by missing information 841

about some model components and missing and incomplete reference code and 842

experiment protocols. This in turn required further literature research (33 working days) 843

to recapture the model components and the semantics of their equations, which revealed 844

several issues with the understandability of the equations, which were structured for 845

ease of implementation and not for ease of understanding. It is quite conceivable that 846

other researchers before us have encountered these issues and decided that the benefit of 847

including the Inada model in their research did not warrant the effort that would be 848

required to do so. This is especially unfortunate since it is a ground-breaking model 849

with several interesting properties, which deserves more attention. 850

4.2 Answer to RQ2 851

In our second research question RQ2, we wanted to know what can be done to overcome 852

or to avoid these reproducibility issues. With InaMo we have adopted a model 853

engineering strategy, that uses a suitable MoDROGH language to apply proved 854

techniques from software engineering to the problem. These approaches broadly fall into 855

three categories: First, we established an automated testing pipeline using CI and CD 856

techniques to guarantee completeness and methods reproducibility of the published 857

version of the model. This also includes automated unit consistency checks, performing 858

the actual simulations used for plots in the article in the CI pipeline, and publishing the 859

simulation data both for the reproduction of results and to use them in regression tests. 860
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Second, we paid special attention to the model design to increase the understandability 861

and reusability of the model code, using a MoDROGH language and building a 862

component hierarchy with two simple interfaces and small independent components, 863

which only represent a single physiological effect or compartment, and which can be 864

combined via drag and drop in an easily interpretable graphical representation. Third, 865

we provided extensive documentation both within the model in the form of unit 866

definitions, human-readable variable names, and embedded HTML documents and 867

through external services for version control and archival. 868

Both testing (11 working days) and refactoring and documentation (16 working 869

days) took considerable effort (see Figure 1 in S1 Text). However, we found that this 870

additional effort was well justified by the benefits gained during development, even if we 871

do not consider the benefits for other researchers who want to reproduce our methods or 872

results. For debugging, it was invaluable to have a CI pipeline performing regression 873

tests for individual components, because we would immediately notice when a change 874

accidentally introduced an error in other models than the one that was currently under 875

development. Utilizing the version control system, we could quickly identify and roll 876

back the changes that introduced bugs. As concrete example, we added unit and 877

regression tests for the individual components of the [Ca2+] handling precisely because 878

they helped us to ensure that our transformation of the model structure from a 879

concentration interface to an interface using amounts of substance did not change the 880

simulation output. Transforming the model into a modular structure that follows the 881

biological structure of the modeled system also helped us to notice some of the errors in 882

the original model, which we would otherwise have overlooked. Much like explaining a 883

concept to somebody else can reveal own misconceptions, making a model more 884

understandable can reveal potential error sources. Additionally, documenting the 885

meaning of variables and parameters as well as the source and rationale of parameter 886

values meant that we only had to look up such information once. This reduced the time 887

required to get an overview over a part of the code that we had to revisit a few weeks or 888

months after it was written. We are positive that without these measures, finding the 889

last errors that prevented us from obtaining reasonable simulation results with the full 890

cell models would have taken considerably more time, if we had achieved a working 891

reproduction at all. 892

It also has to be noted that the effort required for the solutions presented in this 893

article can and already has been reduced for other researchers. During the development 894

of InaMo, we created the Julia library MoST.jl, which allows setting up tests with only 895

three relevant lines of code (see Listing 5) and provides more and better readable error 896

messages than the OpenModelica compiler when used with default settings. Setting up 897

these tests on a CI service does not require much more effort. In fact, if the same folder 898

structure is used as in our project, it would be possible to simply copy the GitHub 899

Actions configuration script shown in Listing 1. 900

Furthermore, the systems biology community could choose to provide own CI/CD 901

pipelines using open source tools like Jenkins [68,69] or services like NF-CORE [26] or 902

FAIRDOMHub [70], which are already established in bioinformatics and systems 903

biology. This way, specific virtual machine images and/or pipelines for common 904

modeling languages could be provided, which already include all necessary tools for 905

simulation and plotting. This would further reduce both the size of the setup script and 906

the execution time required. 907

4.3 Generalization and Alternatives 908

While this work is only a case study of the Inada model, we believe that the issues that 909

we found here and the solutions that we presented can be highly relevant for 910

mathematical modeling in systems biology in general. For example, the aforementioned 911
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reproducibility study of models in the BioModels database found very similar errors and 912

reproducibility hurdles in half of the 455 examined models [4]. In summary, this study 913

lists the following reproducibility issues: sign errors, missing terms in equations, typing 914

errors in parameter values, unit errors, missing or incorrect parameter values, missing or 915

incorrect initial concentrations, errors in equations, ambiguous or inconsistent variable 916

names, and poor readability and lacking documentation in the code. Our case study of 917

the Inada model showcased concrete examples for each of these categories, which 918

indicates that it at least can be representative for these 455 other models. If the issues 919

are similar, it is reasonable to assume that the same or similar solutions like the ones 920

that we used here will also work for other models. 921

This is further backed by the fact that the software engineering techniques that we 922

applied, such as version control, CI and delivery, automated testing, modularization, 923

and documentation, are not limited to any specific property of the Inada model. They 924

can be, and in fact are, applied to all kinds of software solutions. There are some 925

adjustments required for mathematical modeling, such as the development of specialized 926

testing libraries like MoST.jl. However, there is no reason to believe that there is any 927

area of mathematical modeling that cannot benefit from these general techniques in 928

some way. 929

We also think that the Inada model is a fitting example to represent reproducibility 930

challenges in the development of multi-scale models, including a large number of 931

equations, the combination of different preexisting models, and the need to incorporate 932

the model into a larger multi-scale context. As mentioned in Section 1, the three groups 933

that did reproduce the results of Inada et al. , did so in a multi-scale context, and this 934

was also our original purpose. The model is in itself a combination of multiple existing 935

models for ionic currents and the [Ca2+] handling by the sarcoplasmic reticulum. With 936

its 116 equations, 79 parameters, and 27 initial values, which are only partly shared 937

between the three different cell types, it is large enough that it can no longer be handled 938

well in a classic monolithic structure that only lists all equations in a loosely grouped 939

fashion. The Inada model therefore shows that even a well-crafted and relevant model 940

can be subject to reproducibility issues, simply because of its inherent complexity. 941

Furthermore, our findings are not specific to the language Modelica. Integration for 942

scripting languages like Python or Julia also exist, for example, for SBML [71,72] and 943

CellML [73]. This is sufficient to utilize the unit testing features of these languages and 944

to build a simulation script that can be run in a CI pipeline. One remaining caveat is 945

the need to download and install all software necessary to run the script on the CI 946

server, which rules out proprietary solutions with expensive licenses such as 947

MATLAB/Simscape. Regarding the model design utilizing MoDROGH criteria, our 948

previous work shows that multiple languages exhibit MoDROGH criteria [23] and 949

illustrates trade-offs between different choices. We did use some Modelica features for 950

our design that do not exist in other languages like SBML and CellML. This includes 951

the graphical composition of models, object-oriented programming with multiple 952

inheritance, acausal connections between electrical and chemical components, the 953

grouping of interface variables to connectors, and the annotation of the experiment 954

setup within the model file itself. It is also interesting to note that unlike CellML and 955

SBML, which are mainly designed as exchange formats, Modelica code focuses on 956

human-readability over machine-readability and is designed to be directly written by 957

humans. This removes tool-specific barriers between model designer and model user and 958

avoids clutter in version control systems [23]. However, Modelica also has downsides: A 959

CI/CD pipeline is only possible with the open source compiler from OpenModelica, and 960

not with the proprietary compiler for the IDE Dymola, which is more widespread in 961

industry and not fully compatible with OpenModelica, although both implement the 962

same language standard. Additionally, Modelica is a general purpose modeling language, 963
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which lacks biology-specific features and language constructs like annotation of 964

components with ontology terms, or the <kineticLaw> tag in SBML. 965

As an important implication, Modelica and SBML or CellML tools are not 966

interoperable. This is important, because interoperability allows model users to 967

reproduce results using the tools that they are familiar with and thus to easily combine 968

models. Modelica’s mechanism for interoperability is the FMI that allows to create 969

executable artifacts, so called FMU, from models, which can be reused even across 970

different languages. On the downside, these FMUs are mostly opaque boxes. They can 971

contain source files in C and a list of variables and equations in JavaScript Object 972

Notation (JSON), but they are not suitable for results replication with modifications 973

that go beyond changing parameter settings. In contrast, SBML and CellML are 974

directly designed as exchange formats, which is why they are based on XML. Both FMI 975

and SBML report support by over 100 tools [63,74], but crossing between the two 976

ecosystems is more difficult. SBML2Modelica allows to directly translate SBML models 977

to Modelica [75], but we are not aware of any tool that operates in the opposite 978

direction. The only tools used in systems biology that also support FMI currently are 979

MATLAB with the SimBiology and the FMI toolbox, and custom Python code using 980

appropriate libraries for both standards. As a first remedy, FMI support could be 981

added in SBML and CellML tools. Alternatively, the systems biology community could, 982

like Modelica, adopt the software engineering practice to distinguish between “source” 983

and “distribution” formats for models. In this analogy, SBML and CellML would be 984

used as distribution formats, which are used to make models easily accessible for 985

simulations by other researchers, but models would additionally be published in a more 986

human-readable and version control-friendly source language like Antimony [40] or 987

CellML Text [53], which can directly be used for model development. In the case of this 988

article, it would be ideal to have a Modelica2SBML tool, that compiles from the source 989

language Modelica to the distribution language SBML. This is not possible in general, 990

because Modelica supports more formalisms than SBML, but it might be possible for a 991

subset of the language. As a first compilation step, Modelica models are transformed 992

into a “flat” model that collects all variables, functions, events, and equations in a 993

single file without any hierarchy or modular structure. If the translation process is 994

restricted to a subset of the Modelica language, a translation of a “flat” model to SBML 995

code might be achievable. However, this would also mean that the benefit of the 996

modularity and understandability of Modelica models is largely lost in translation. It 997

becomes clear that further research is needed to bridge this gap. 998

Regarding alternatives, GitHub Actions is not the only choice to implement a 999

CI/CD pipeline. The open source project Jenkins [68, 69] can be used to set up a server 1000

that is controlled by a scientific institution, a journal, or a specific lab, alleviating 1001

privacy concerns when working with patient data. Additionally, other major open 1002

source repository hosting providers like BitBucket [76] and GitLab [77] also offer CI 1003

pipelines with varying amounts of free computing time for open source projects. Finally, 1004

modeling-specific solutions could be implemented in existing workflow environments like 1005

NF-CORE [26] or FAIRDOMHub [70]. 1006

Our findings can also be seen in a more general light with respect to the FAIR 1007

Guiding Principles for scientific data management and stewardship [78], since they 1008

contribute to making the model code findable, accessible, interoperable, and 1009

reproducible (FAIR). InaMo is findable in the Zenodo database [38], on GitHub 1010

(https://github.com/CSchoel/inamo), and in the BioModels database 1011

(https://www.ebi.ac.uk/biomodels/MODEL2102090002). Zenodo allows us to cite 1012

specific versions of the code with a unique DOI and GitHub provides a platform for 1013

discussing issues and open questions regarding the implementation. BioModels, Zenodo, 1014

and the GitHub Archive Program also contribute to making the code accessible for 1015
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future researchers. Interoperability is provided by the CI/CD pipeline, which ensures 1016

that the code runs on other machines. Additionally, the main model is exported as 1017

executable artifact using the FMI, which allows to incorporate it in other projects even 1018

across different modeling languages. The modular design utilizing MoDROGH criteria 1019

and the additional documentation effort for InaMo do not only facilitate reproduction 1020

but also reuse, because the model becomes more understandable and extensible. 1021

Additionally, each published version of the model uses an open license (MIT license for 1022

Zenodo and GitHub, and Creative Commons CC0 1.0 for BioModels). However, as 1023

mentioned before, Modelica does not directly support the annotation of model parts 1024

with ontology terms. For full compliance with the FAIR Guiding Principles, this has to 1025

be addressed either by using vendor-specific annotations and developing tools that can 1026

read and write ontology data in Modelica models, or by implementing common 1027

ontologies like the systems biology ontology (SBO) [79] as a type hierarchy in Modelica 1028

as outlined in [23]. 1029

4.4 Limitations 1030

There are some limitations to our approach regarding unit testing. First, unit tests are 1031

only meaningful, if the “unit” in question can be used in a simulation that does not 1032

involve other complex components. For example, for the [Ca2+] handling we had to 1033

create dummy components to mimic the time course of ICa,L and INaCa during an 1034

action potential in order to obtain a meaningful curve for [Ca2+]i. It is possible that 1035

other models may include components that require so many connections to other parts 1036

of the model that creating a unit test requires a lot of effort. However, it can be argued 1037

that such a component should then be investigated for possible design flaws, since the 1038

goal in a modular design is to minimize the interface of a component. 1039

Another problem can be the lack of reference data. Our current unit tests already 1040

can be criticized, because they do not follow the usual pattern of a test that has a 1041

defined input and an expected output. We only test that the simulations runs error-free 1042

and the output is only compared to the output of a previous iteration with the help of 1043

regression tests. Tying this output to the actual goal of approximating measured data 1044

from biological experiments is currently still performed by a human who has to inspect 1045

and compare the resulting plots. For InaMo, this was the only approach we could take, 1046

since most of the experimental data was only available as plots, and we would have to 1047

reconstruct the original data points by hand. We did this for the simulation output of 1048

the models, but not for the experimental data, because the latter is even harder to read 1049

from the plots. If the data were published and included in the repository, it would also 1050

be possible to define a new kind of test in MoST.jl, which tests the agreement between 1051

experimental data and simulation output by some metric such as the root-mean-square 1052

error. However, this is of course only possible if such data is available and this may not 1053

be the case at every level of detail, limiting the usefulness of unit testing. 1054

Additionally, it has to be considered that test suites like ours can become 1055

computationally demanding. We currently run the full simulations that we use to 1056

produce our result plots from within the test suite, because it is convenient to only need 1057

one script and because this ensures that the CI server reproduces our methods in every 1058

iteration. However, if we had included the full one-dimensional model by Inada et al. 1059

with hundreds of cells, this would mean that our test suite might not run in a few 1060

minutes but instead require hours. This prolongs the response time unduly, which limits 1061

the usability for quickly testing and debugging small changes to the models. One 1062

solution to this problem is to limit the length or size of the simulations in the test suite 1063

and to add a second script that is used to produce the actual simulation result. 1064

However, this then introduces a source for errors since the content of this new script 1065

cannot be tested using CI. For example, in another model, we encountered an error 1066
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related to the synchronization between two event sources that only occurred after 170 1067

seconds of simulated time. 1068

Apart from the computational effort, the human effort in designing a model with 1069

MoDROGH criteria can also be significant. Most modelers probably did not receive 1070

training in software engineering and therefore first have to learn to apply design 1071

patterns. This is especially difficult, because while guidelines can help, good software 1072

design ultimately arises from experience and experimentation. We argue that the 1073

benefits are worth the additional effort, but the initial barrier may be high for many 1074

systems biologists. 1075

Even if an understandable modular model structure is achieved during development, 1076

it is still likely that the model has to be translated to a grouped list of equations for 1077

presentation in a scientific article or even just to communicate some details to a 1078

researcher who is more familiar with this representation. Even though OpenModelica 1079

does allow to inspect a flattened version of arbitrarily complex models, this 1080

representation includes a lot of visual clutter due to alias variables that are introduced 1081

by the hierarchical structure. It is therefore not trivial to translate this code into a 1082

human-readable list of equations. This task can be facilitated by libraries producing 1083

automated documentation like MoST.jl, but this feature of MoST.jl is still in an 1084

experimental stage. At the same time, we are not aware of any other approaches that 1085

provide similar facilities for flattening highly modular model structures in an 1086

equation-based format while retaining the grouping information from the modular 1087

design. 1088

A similar argument can be made about documentation. In software engineering, 1089

there is little doubt that documentation is valuable and even essential for 1090

understandable and maintainable code, yet it is often lacking, even in large, successful 1091

projects. This is because writing good documentation requires a lot of time and does 1092

not generate its benefit at the time of writing, but only at a later stage in the project. 1093

For systems biology in particular, we see the concern that there is not much incentive to 1094

document code beyond ones own understanding. This would be different, if academic 1095

journals did not only require the code to be available but also had some requirements 1096

for understandability and documentation standards. 1097

5 Conclusion 1098

From our case study we can derive several suggestions for tackling reproducibility issues 1099

in mathematical modeling in systems biology. Using a CI service, like GitHub Actions, 1100

in conjunction with unit and regression tests that are as fine-grained as possible can 1101

guarantee methods reproducibility and the completeness of the published code and data. 1102

The more automated tests can be performed within such a system, the better the 1103

chances for the model to be reproducible and reusable in different ways. It might be 1104

worthwhile for the systems biology community to consider implementing or using a CI 1105

service with predefined virtual machine images for typical modeling workflows. These 1106

images could then be archived allowing not only the long-term storage of the model code 1107

but also of the software that was used to simulate it. Journals like PLOS Computational 1108

Biology and the Physiome Journal, which already employ rigorous testing of 1109

reproducibility standards by reviewers, might be able to host such a service to provide 1110

authors with a standardized mechanism to facilitate reproducibility and to reduce the 1111

burden placed on reviewers. Beyond methods reproducibility, results reproducibility 1112

cannot be guaranteed by automated tests. They do increase the likelihood that a 1113

reproduction attempt is successful, but it might still be complicated by missing 1114

documentation or poor understandability of the code. Here, the MoDROGH guidelines 1115

or similar “style guides” for model code, can help to make models approachable and 1116

June 10, 2021 33/39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.02.19.431951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431951
http://creativecommons.org/licenses/by/4.0/


reusable for other researchers. However, the only thing that truly guarantees results 1117

reproducibility is and remains an actual validation study. We therefore suggest that 1118

more of these studies should be performed and published and that there should be some 1119

way to indicate that the results of a model have been successfully reproduced in model 1120

repositories. In general, we find the philosophy of model engineering, i.e. the 1121

application of software engineering techniques to mathematical modeling, very 1122

promising. We think that building models with more care to design and engineering 1123

aspects will both benefit the scientific impact of a model and scientific progress in 1124

systems biology as a whole. In particular, we hope that InaMo, our understandable 1125

implementation of the Inada model with reproducible methods and results, can 1126

kick-start some new projects on the electrophysiological properties of the AV node. 1127

6 Supporting information 1128

S1 Text. Data supplement. 1129
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Controlled Vocabularies and Semantics in Systems Biology. Molecular Systems
Biology. 2011;7:543. doi:10.1038/msb.2011.77.

June 10, 2021 39/39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.02.19.431951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431951
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	The Inada model
	Available material
	Implementation process
	Model design
	Software versions

	Results
	Missing equations and parameters
	Errors in equations and parameters
	Availability of data files
	Non-executable code
	Missing reference plots and experiment protocols
	Semantics lost in the chain of references

	Discussion
	Answer to RQ1
	Answer to RQ2
	Generalization and Alternatives
	Limitations

	Conclusion
	Supporting information

