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Abstract 14 

Reconstructing EEG sources involves a complex pipeline, with the inverse problem being the most 15 

challenging. Multiple inversion algorithms are being continuously developed, aiming to tackle the non-16 

uniqueness of this problem, which has been shown to be partially circumvented by also including fMRI-17 

derived spatial priors in the inverse models. However, only task activation maps and resting-state networks 18 

(RSNs) have been explored so far, overlooking the recent, but already accepted, notion that brain networks 19 

exhibit dynamic functional connectivity (dFC) fluctuations. Moreover, there is no consensus regarding the 20 

inversion algorithm of choice, nor a systematic comparison between different sets of spatial priors. Using 21 

simultaneous EEG-fMRI data, here we compared four different inversion algorithms (MN, LORETA, EBB 22 

and MSP) under a Bayesian framework, each with three different sets of priors consisting of: 1) those 23 

specific to the algorithm (S1); 2) S1 plus fMRI task activation maps and RSNs (S2); and 3) S2 plus network 24 

modules of task-related dFC states estimated from the dFC fluctuations (S3). The quality of the reconstructed 25 

EEG sources was quantified in terms of model-based metrics, namely the free-energy and variance 26 

explained of the inversion models, and the overlap/proportion of brain regions known to be involved in the 27 

visual perception tasks that the participants were submitted to, and RSN templates, with/within EEG source 28 

components. Model-based metrics suggested that model parsimony is preferred, with the combination 29 

MSP+S1 exhibiting the best performance. However, optimal overlap/proportion values were found using 30 

EBB+S2 or MSP+S3, respectively, indicating that fMRI spatial priors, including dFC state modules, are 31 

crucial for the EEG source components to reflect neuronal activity of interest. Our results pave the way 32 

towards a more informative selection of the optimal EEG source reconstruction approach, which may be 33 

crucial in future studies.  34 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431976doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431976
http://creativecommons.org/licenses/by-nd/4.0/


Rodolfo Abreu 3 

1 Introduction 35 

Electroencephalography (EEG) measures the electrical potential differences between electrodes 36 

placed at different scalp sites that are generated by an ensemble of brain cells acting in synchrony. Because 37 

of its fairly direct relationship with neuronal activity and its remarkable temporal resolution at the sub-38 

millisecond scale, EEG has proven pivotal for studying both healthy and abnormal human brain function in 39 

general, and particularly brain functional connectivity and its dynamics (Niedermeyer and Lopes Da Silva, 40 

2005). However, the spatial identification and characterization of the brain networks underlying the 41 

electrical potentials measured at the scalp are not possible from these scalp signals alone, given the poor 42 

spatial resolution of the EEG at the centimeter scale (Michel et al., 2004). Fortunately, the continuous 43 

technological advances of EEG hardware and signal processing techniques now permit a reliable 44 

reconstruction of those brain networks (Abreu et al., 2020b), by localizing and estimating the strength of 45 

the neural generators responsible for the scalp EEG signals – the so-called EEG source reconstruction 46 

(Michel and Murray, 2012). 47 

Reconstructing EEG sources involves a complex pipeline that can be divided into the forward and 48 

the inverse problems. The forward problem relates with the estimation of the impact of a given source in 49 

the brain on the scalp electrical potentials, and is typically solved by building realistic and subject-specific 50 

head models from individual structural magnetic resonance images (MRI) using well-defined processing 51 

pipelines. By incorporating the 3D localization of the scalp electrodes on these head models, a lead field 52 

can then be computed, establishing the relationship between the activity of the different sources in the brain 53 

and the signal measured at each electrode (Michel and Brunet, 2019). Conversely, the inverse problem 54 

relates with determining the sources in the brain that generate a given scalp distribution of electrical 55 

potential differences (i.e, EEG topography). Because of the non-uniqueness of its solution, the inverse 56 

problem is considered the most challenging, with a plethora of inversion algorithms being available for 57 

solving it (Michel et al., 2004). These can be roughly divided into current source density (CSD) estimates 58 

and beamformers (Grech et al., 2008; He et al., 2018). Despite the choice between the two types being 59 
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application-dependent to some extent (Halder et al., 2019), CSD-based algorithms are the most commonly 60 

used in the literature; within these, the more recent distributed source localization algorithms are preferable 61 

over dipole source localization algorithms, as the latter require prior knowledge regarding the number of 62 

sources to be estimated. Several distributed source localization algorithms have been developed, the most 63 

common being the minimum norm (MN) solutions (Hämäläinen and Ilmoniemi, 1994) and their variations: 64 

weighted minimum norm (WMN; De Peralta-Menendez and Gonzalez-Andino, 1998), low resolution 65 

electromagnetic tomography (LORETA; Pascual-Marqui et al., 1994), local autoregressive average 66 

(LAURA; De Peralta-Menendez et al., 2004), among others (Michel and Brunet, 2019). However, there is 67 

no consensus regarding which algorithm yields the most accurate source reconstructions, and only a few 68 

studies have dedicated to systematically compare their performance. Motivated by the challenging task of 69 

defining a ground truth, most of these studies used simulations and reported inconclusive results, with the 70 

selection of the best algorithm highly depending on the simulated conditions (Bradley et al., 2016; Grova 71 

et al., 2006; Halder et al., 2019; Yao and Dewald, 2005). Similarly, the optimal inversion algorithm for 72 

reconstructing real EEG data has not been found yet (Hedrich et al., 2017); moreover, the associated results 73 

have not been appropriately validated based on the brain activity of interest, but rather using unspecific 74 

measures, typically the localization error, spatial spread and percentage of false positives, as well as the free 75 

energy and variance explained of the inversion model used when considering Bayesian frameworks (Michel 76 

and Brunet, 2019). Importantly, no study has focused on determining the extent at which the effects of 77 

different source reconstruction algorithms differ between groups in clinical studies. This is especially 78 

relevant in task-related fMRI studies, which are rapidly increasing in clinical research (Marinazzo et al., 79 

2019). 80 

In order to tackle the non-uniqueness of the inverse problem, assumptions and constraints need to 81 

be considered, which are reflected differently on each inversion algorithm. Their incorporation can be 82 

performed using two different approaches: by imposing penalty functions (Valdés-Sosa et al., 2009), or 83 

using a Bayesian framework (Friston et al., 2008; Trujillo-Barreto et al., 2004), particularly the parametric 84 

empirical Bayesian (PEB; Henson et al., 2010; Phillips et al., 2005). Although less popular, the PEB 85 
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framework allows to describe a given assumption or constraint explicitly through appropriate postulated 86 

prior distributions, which can range from one as in the MN solutions (the identity matrix) to hundreds as in 87 

the multiple sparse priors (MSP) algorithm (Friston et al., 2008). This framework is thus extremely flexible 88 

for incorporating additional priors obtained from other imaging modalities, which has proved to be crucial 89 

for more efficiently circumventing the non-uniqueness of the inverse problem (Lei et al., 2015). The first 90 

studies used brain activation maps obtained from the analyses of task-based functional MRI (fMRI) data 91 

(Henson et al., 2010; Lei et al., 2012, 2011, 2010). More recently, the well-known brain networks that 92 

emerge from temporally correlated spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) 93 

fMRI signal (the so-called resting-state networks, RSNs) have also been used as spatial priors (Lei, 2012). 94 

In these studies, the spatial priors were derived from separately acquired fMRI data, which may scale down 95 

their potential for guiding the reconstruction of EEG, especially when focusing on spontaneous activity 96 

(Abreu et al., 2018). Additionally, task-based and resting-state functional networks are now known to 97 

continuously reorganize in response to both internal and external stimuli at multiple time-scales, resulting 98 

in temporal fluctuations of their connectivity – the so-called dynamic functional connectivity (dFC) 99 

(Hutchison et al., 2013). From dFC fluctuations, a limited, but variable, number of dFC states have been 100 

recurrently identified in the literature as the building blocks of brain functional connectivity (dynamics) 101 

(Preti et al., 2017), which are hypothesized to be associated with different cognitive, vigilance or 102 

pathological brain states (Thompson, 2018); however, they have not been considered as potential spatial 103 

priors for EEG source reconstruction so far. 104 

Given the increasing relevance of EEG as a brain imaging tool, accurately estimating the underlying 105 

brain sources is critical in the study of both healthy and clinical populations. Considering the present 106 

limitations described in this section, here we compared four different inversion algorithms (MN, LORETA, 107 

empirical Bayes beamformer, EBB; and MSP), each with two different sets of additional fMRI-derived 108 

spatial priors (activation maps and RSNs, with and without including dFC states) on EEG data collected 109 

concurrently with fMRI at 3T from 6 multiple sclerosis (MS) patients and 7 healthy subjects performing 110 

visual perception tasks and during rest. The quality of the reconstructions was quantified through the free-111 
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energy and variance explained of the associated models, and in terms of the overlap between EEG source 112 

components and brain regions of interest associated with the tasks and RSN templates. 113 

2 Materials and Methods 114 

 Participants 115 

Six MS patients (mean age: 30±8 years; 2 males) and seven demographically matched healthy 116 

subjects (mean age: 30±6 years; 3 males) were recruited. The patients were selected by the clinical team at 117 

the Neurology Department of the University Hospital of Coimbra, and met the criteria for MS diagnosis 118 

according to McDonald Criteria (Thompson et al., 2018). All participants had normal or corrected-to-normal 119 

vision. The study was approved by the Ethics Commission of the Faculty of Medicine of the University of 120 

Coimbra, and was conducted in accordance with the declaration of Helsinki. All participants provided 121 

written informed consent to participate in the study. 122 

 Experimental protocol 123 

The imaging session was performed at the Portuguese Brain Imaging Network (Coimbra, Portugal) 124 

and consisted of four functional runs: first, a functional localizer of the human middle temporal area 125 

(hMT+/V5, a low level visual area well-known to respond to simple motion patterns), followed by two runs 126 

of biological motion (BM) perception, and one final resting-state run. 127 

The localizer run consisted of 10 blocks of 18 seconds, with each block comprising three periods: 128 

the first was a fixation period marked by a red cross positioned at the center of the screen for 6 seconds. 129 

During the second period, a 6 second pattern of stationary dots was shown, followed by the third (and final) 130 

period during which the dots were moving towards and away from a central fixation cross at a constant 131 

speed (5 deg/sec) for 6 seconds. 132 
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Biological motion stimuli were built based on human motion capture data collected at 60 Hz, 133 

comprising 12 point-lights placed at the main joints of a male walker. Each BM perception run consisted of 134 

12 blocks of 40 seconds: 4 or 5 blocks (depending on the starting block) of the point-light walker facing 135 

rightwards or leftwards (body blocks), 4 or 5 blocks showing only the point-light located at the right ankle 136 

and moving rightwards of leftwards (foot blocks), and 3 blocks of the original 12 point-lights randomly 137 

positioned across the y axis, while maintaining their true trajectory across the x axis (random blocks). A 138 

total of 9 body, 9 foot and 6 random blocks were then collected during the two BM perception runs. 139 

During the resting-state run, the participants were instructed to relax and only fixate a red cross 140 

positioned at the center of the screen. 141 

 EEG-fMRI data acquisition 142 

Imaging was performed on a 3T Siemens MAGNETOM Prisma Fit MRI scanner (Siemens, 143 

Erlangen) using a 64-channel RF receive coil. In order to minimize head motion and scanner noise related 144 

discomfort, foam cushions and earplugs were used, respectively. The functional images were acquired using 145 

a 2D simultaneous multi-slice (SMS) gradient-echo echo-planar imaging (GE-EPI) sequence (6× SMS and 146 

2× in-plane GRAPPA accelerations), with the following parameters: TR/TE = 1000/37 ms, voxel size = 147 

2.0×2.0×2.0 mm3, 72 axial slices (whole-brain coverage), FOV = 200×200 mm2, FA = 68°, and phase 148 

encoding in the anterior-posterior direction. The start of each trial was synchronized with the acquisition of 149 

the functional images. A short EPI acquisition (10 volumes) with reversed phase encoding direction 150 

(posterior-anterior) was also performed prior to each fMRI run, for image distortion correction. Whole-151 

brain, 1 mm isotropic structural images were acquired using a T1-weighted 3D gradient-echo MP2RAGE 152 

sequence. 153 

The EEG signal was recorded using the MR-compatible 64-channel NeuroScan SynAmps2 system 154 

and the MaglinkTM software, with a cap containing 64 Ag/AgCl non-magnetic electrodes positioned 155 

according to the 10/10 coordinate system, a dedicated electrode for referencing placed close to the Cz 156 

position, and two electrodes placed on the back for electrocardiogram (EKG) recording. Electrode 157 
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impedances were kept below 25 kΩ. EEG, EKG and fMRI data were acquired simultaneously in a 158 

continuous way, and synchronized by means of a Syncbox (NordicNeuroLab, USA) device. EEG and EKG 159 

signals were recorded at a sampling rate of 10 kHz, synchronized with the scanner’s 10 MHz clock. No 160 

filters were applied during the recordings. The helium cooling system was not turned off, as it may carry 161 

the associated risk of helium boil-off in certain systems (Mullinger et al., 2008), and thus is not permitted 162 

in some clinical sites as the one used in this study. Respiratory traces were recorded at 50 Hz with a 163 

respiratory cushion from the physiological monitoring unit of the MRI system. 164 

For each participant, 192 fMRI volumes were acquired during the localizer run, yielding 3.20 165 

minutes of duration. The two BM runs had approximately 8.37 minutes, thus comprising 507 volumes each. 166 

The final resting-state run had approximately 8.08 minutes, corresponding to 485 volumes. 167 

 MRI data analysis 168 

The main steps of the processing pipeline for deriving fMRI spatial priors (described here) and 169 

subsequently use them in EEG source reconstruction (described in the next section), as well as the metrics 170 

proposed for quantifying the quality of the source reconstruction, are depicted in Fig. 1. 171 

2.4.1 Pre-processing 172 

The first 10 s of data were discarded to allow the signal to reach steady-state. Subsequently, slice 173 

timing and motion correction were performed using FSL tool MCFLIRT (Jenkinson et al., 2002), followed 174 

by a B0-unwarping step with FSL tool TOPUP (Andersson et al., 2003) using the reversed-phase encoding 175 

acquisition, to reduce EPI distortions. The distortion-corrected images were then corrected for the bias field 176 

using FSL tool FAST (Zhang et al., 2001) , and non-brain tissue was removed using FSL tool BET (Smith, 177 

2002). Nuisance fluctuations (including physiological noise) were then removed by linear regression using 178 

the following regressors (Abreu et al., 2017): 1) quasi-periodic BOLD fluctuations related to cardiac and 179 

respiratory cycles were modeled by a fourth order Fourier series using RETROICOR (Glover et al., 2000); 180 

2) aperiodic BOLD fluctuations associated with changes in the heart rate as well as in the depth and rate of 181 
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respiration were modeled by convolution with the respective impulse response functions (as described in 182 

Chang et al., 2009); 3) the average BOLD fluctuations measured in white matter (WM) and cerebrospinal 183 

fluid (CSF) masks (obtained as described below); 4) the six motion parameters (MPs) estimated by 184 

MCFLIRT; and 5) scan nulling regressors (motion scrubbing) associated with volumes acquired during 185 
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periods of large head motion; these were determined using the FSL utility 186 

 187 

Figure 1: Schematic diagram of the processing pipeline. The pre-processed fMRI data is submitted to three different 188 
analyses in order to derive three types of fMRI spatial priors for EEG source reconstruction: 1) identification of RSNs 189 
through spatial ICA; 2) mapping of the task-related activity through GLM; and 3) by estimating the dFC fluctuations 190 
with phase coherence and the associated dFC states with dictionary learning, dFC state modules were obtained using 191 
the Louvain modularity algorithm. The covariance components (CCs) associated with these spatial priors were then 192 
included in several inversion algorithms, whose reconstruction quality was assessed by the free energy and variance 193 
explained of the associated models, and by the overlap of EEG source components (obtained through spatial ICA 194 
applied to the source reconstructed EEG) with ROIs and RSN templates. 195 

fsl_motion_outliers, whereby the DVARS metric proposed in (Power et al., 2012) is first computed, and 196 

then thresholded at the 75th percentile plus 1.5 times the inter-quartile range. Finally, a high-pass temporal 197 
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filtering with a cut-off period of 100 s was applied, and spatial smoothing using a Gaussian kernel with full 198 

width at half-maximum (FWHM) of 3 mm was performed. 199 

For each subject, WM and CSF masks were obtained from the respective T1-weighted structural 200 

image by segmentation into gray matter, WM and CSF using FSL tool FAST (Zhang et al., 2001). The 201 

functional images were co-registered with the respective T1-weighted structural images using FSL tool 202 

FLIRT, and subsequently with the Montreal Neurological Institute (MNI) (Collins et al., 1994) template, 203 

using FSL tool FNIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001). Both WM and CSF masks were 204 

transformed into functional space and were then eroded using a 3 mm spherical kernel in order to minimize 205 

partial volume effects (Jo et al., 2010). Additionally, the eroded CSF mask was intersected with a mask of 206 

the large ventricles from the MNI space, following the rationale described in (Chang and Glover, 2009). 207 

Each participant’s structural image was parceled into 𝑁 = 90 non-overlapping regions of the 208 

cerebrum according to the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). 209 

These parcels were co-registered to the participant’s functional space, and the pre-processed BOLD data 210 

were then averaged within each parcel. 211 

2.4.2 fMRI priors for EEG source reconstruction 212 

From the pre-processed fMRI data, several potential priors for EEG source reconstruction were 213 

subsequently extracted (procedures described next), namely: resting-state networks for all runs, and task-214 

related activity maps and dynamic functional connectivity (dFC) states for the task runs only. 215 

Identification of resting-state networks 216 

The pre-processed fMRI data were submitted to a group-level probabilistic spatial ICA (sICA) 217 

decomposition using the FSL tool MELODIC (Beckmann and Smith, 2004), whereby the data of each run 218 

for all participants is temporally concatenated prior to the sICA step, as recommended in the MELODIC’s 219 

guide for the identification of RSNs (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). The optimal number 220 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431976doi: bioRxiv preprint 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
https://doi.org/10.1101/2021.02.19.431976
http://creativecommons.org/licenses/by-nd/4.0/


Rodolfo Abreu 12 

of independent components (ICs) was automatically estimated based on the eigenspectrum of its covariance 221 

matrix (Beckmann and Smith, 2004), with an average of approximately 40 ICs across runs. 222 

An automatic procedure for the identification of well-known RSNs was then applied, in which the 223 

spatial maps of the ICs (thresholded at Z = 3.0) were compared with those of the 10 RSN templates described 224 

in (Smith et al., 2009), in terms of spatial overlap computed as the Dice coefficient (Dice, 1945). For each 225 

template, the IC map yielding the highest Dice coefficient was determined as the corresponding RSN. In 226 

the cases of non-mutually exclusive assignments, the optimal assignment was determined by randomizing 227 

the order of the RSN templates (a maximum of 10000 possible combinations were considered, for 228 

computational purposes), and then sequentially, and mutually exclusively, assigning them to the IC maps 229 

based on their Dice coefficient. The assignment with the highest average Dice coefficient across all RSN 230 

templates was then deemed optimal, yielding the final set of RSNs: three visual networks (RSN 1-3), the 231 

default mode network (DMN, RSN4), a cerebellum network (RSN5), a motor network (RSN6), an auditory 232 

network (RSN7), the salience network (RSN8), a right language network (RSN9) and a left language 233 

network (RSN10). 234 

These 10 RSNs were then used as spatial priors for the reconstruction of sources of EEG collected 235 

on all four runs. RSNs were considered in the task runs because these have been shown to be also present 236 

in task-based studies (Cole et al., 2016; Di et al., 2013). 237 

hMT+ and BM-related activity mapping 238 

For the purpose of mapping hMT+/V5 from the localizer run, and the regions involved in the BM 239 

perception task from the other two runs, a general linear model (GLM) framework was used. For the 240 

localizer, two regressors representing the periods showing dots (stationary and moving) were considered. 241 

These regressors were built based on unit boxcar functions with ones during the respective periods, and 242 

zeros elsewhere. Similarly, three regressors representing the body, foot and random blocks of the BM runs 243 

were built for analyzing the BM runs, with the regressors also based on unit boxcar functions. All regressors 244 

were convolved with a canonical, double-gamma hemodynamic response function (HRF). The run-specific, 245 
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HRF-convolved regressors were then included in a GLM that was subsequently fitted to the associated fMRI 246 

data using FSL tool FILM (Woolrich et al., 2001). The hMT+/V5 regions were identified from the localizer 247 

run by contrasting the moving and the stationary dots periods, whereas the areas associated with BM 248 

perception were mapped according to the following contrasts: body – random, foot – random, and body – 249 

foot. Voxels exhibiting significant changes within these contrasts were identified by cluster thresholding 250 

(voxel Z > 2.5, cluster p < 0.05). 251 

In this way, a single spatial prior is obtained for reconstructing the sources of the EEG collected 252 

during the localizer run. In contrast, three spatial priors (one for each contrast) are made available for each 253 

of the two BM runs. 254 

Dynamic functional connectivity analysis 255 

The dFC analysis described here was only performed on the fMRI data collected during the task 256 

runs (localizer and two BM runs), since its purpose was to objectively identify a small set of dFC states 257 

associated with the tasks, and to use them as spatial priors in the subsequent reconstruction of EEG sources. 258 

The dFC was estimated using the phase coherence (PC) method, which allows to compute the dFC for each 259 

fMRI sample; the loss in temporal resolution and the ambiguous selection of a window size, both inevitable 260 

in conventional sliding-window correlation approaches (Preti et al., 2017), are thus avoided (Glerean et al., 261 

2012). For the PC method, a second-order Butterworth band-pass filter in the range of 0.01–0.1 Hz was first 262 

applied to the parcel-averaged BOLD signals. The instantaneous phase, θ, of the filtered signal, n, was then 263 

estimated using the Hilbert transform (Cabral et al., 2017; Figueroa et al., 2019). For each participant, the 264 

dFC matrix 𝐂 ∈ ℝ𝑁×𝑁×𝑇 (N = 90 brain regions from the AAL atlas, and T is the number of fMRI samples, 265 

which depends on the run under analysis) was computed for each pair of parcels, n and p, and at each fMRI 266 

sample t, using the equation: 267 

 𝐂(𝑛, 𝑝, 𝑡) = cos(𝜃(𝑛, 𝑡) − 𝜃(𝑝, 𝑡)) (1) 
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For each run and participant individually, the matrix C was then submitted to the leading 268 

eigenvector dynamics analysis (LEiDA) (Cabral et al., 2017; Figueroa et al., 2019; Lord et al., 2019), with 269 

the purpose of reducing the dimension of each temporal entry of C (N×N) by only considering the associated 270 

leading eigenvector (of dimension N), while nonetheless explaining most of the variance (> 50% in all cases, 271 

and up to 90%) (Lord et al., 2019). This step yielded the reduced dFC matrix 𝐂𝐑 ∈ ℝ𝑁×𝑇, with the columns 272 

𝐜𝑡 ∈ ℝ𝑁×1 (t = 1, …, T) representing the leading eigenvectors, and the rows indicating the parcels. Each 273 

eigenvector is composed by elements with positive and/or negative signs; if all positive, a global mode is 274 

governing the parcel-averaged BOLD signals where all the associated phases point in the same direction 275 

with respect to the orientation defined by the eigenvector (Figueroa et al., 2019). If the elements of the 276 

eigenvector have different signs, the parcels can be grouped into two networks according to their sign 277 

(positive or negative) in the eigenvector. The magnitude of the elements indicates how strongly the 278 

associated parcel belongs to its assigned network (Newman, 2006). 279 

For the identification of dFC states, an l1-norm regularized dictionary learning (DL) approach was 280 

employed, following the methodology proposed in (Abreu et al., 2019). Briefly, this can be formulated as 281 

the matrix factorization problem 𝐂𝐑 = 𝐃𝐀, where 𝐃 = [𝐝1, … , 𝐝𝑘] ∈ ℝ𝑁×𝑘and 𝐀 = [𝐚1, … , 𝐚𝑇] ∈ ℝ𝑘×𝑇 282 

represent the dFC states and associated weight time-courses (i.e. contribution of each dFC state to 283 

reconstruct CR at each time point), respectively; and k is the number of dFC states. These are estimated by 284 

solving the optimization problem given by: 285 

 argmin
D,A

‖𝐂 − 𝐃𝐀‖𝐹
2  (2) 

so that the reconstruction error of CR, 𝐸 = ‖𝐂𝐑 − 𝐃𝐀‖𝐹
2 , is minimized; ‖∙‖𝐹 denotes the Frobenius norm 286 

of a matrix. The estimation of D and A was performed using the algorithms implemented in the MATLAB® 287 

toolbox SPArse Modeling Software (SPAMS, Mairal et al., 2010). The sparsity of the solutions was 288 

controlled by a non-negative parameter λ on an l1-norm regularization framework. The number of dFC states 289 

k was varied between from 5 to 10 in unit steps, and λ between ten values from 1 to 0.1259 in decreasing 290 

exponential steps. 291 
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The optimal k and λ values were jointly determined with the dFC states to be considered as spatial 292 

priors in the EEG source reconstruction. This was achieved by first computing the Pearson correlation 293 

between the contrasts defined for identifying the activation maps (one for the localizer run, and three for 294 

the BM runs) and the dFC weight time-courses in A, for all possible combinations of k and λ. For the 295 

localizer run, the dFC state exhibiting the highest correlation across dFC states, and combinations of k and 296 

λ, was deemed as task-related. For the BM runs, the dFC state exhibiting the highest correlation across 297 

contrasts, dFC states and combinations of k and λ was first identified. For the optimal combination of k and 298 

λ, the most correlated dFC states associated with the remaining contrasts were then determined. In cases 299 

where multiple contrasts were associated with the same dFC state, only that state was considered for the 300 

subsequent analyses. 301 

The dFC states of interest were then finally submitted to a modularity analysis, with the purpose of 302 

identifying modular (or community) structure in those states. Because the dFC states are column vectors, 303 

rather than square matrices representing a connectivity matrix as required for the modularity analysis, such 304 

connectivity matrix of a given dFC state 𝐝𝑖 ∈ ℝ𝑁×1 was first reconstructed by computing the outer product 305 

of the dFC state, 𝐝𝑖𝐝𝑖
⊤ ∈ ℝ𝑁×𝑁 (Cabral et al., 2017). The Louvain algorithm as implemented in the Brain 306 

Connectivity Toolbox was then applied to the reconstructed connectivity matrices of the dFC states of 307 

interest (Rubinov and Sporns, 2010). This algorithm considers both the positive and negative weights of the 308 

unthresholded connectivity matrix, thus avoiding the ambiguous selection of a threshold as required in 309 

conventional modularity algorithms. Each of the N parcels is then assigned a label indicating which module 310 

the parcel belongs to. The network modules were then projected into binary 3D spatial maps to be used as 311 

spatial priors in the EEG source reconstruction, by identifying the voxels belonging to parcels (according 312 

to the AAL atlas used for parceling the brain) assigned to the same modules. The number of modules 313 

automatically identified by the Louvain algorithm was between 2 and 4 in all cases; in this way, the number 314 

of spatial priors built from this analysis varied according to the number of contrasts (run) and modules 315 

identified, with a maximum of 1 [contrast] × 4 [modules] = 4 for the localizer run, and 3 [contrasts] × 4 316 

[modules] = 12 for the BM runs. 317 
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 EEG data analysis 318 

2.5.1 Pre-processing 319 

EEG data underwent gradient artifact correction on a volume-wise basis using a standard artifact 320 

template subtraction (AAS) approach (Allen et al., 2000) using the FMRIB tools implemented as a plug-in 321 

of the EEGLAB toolbox (Delorme and Makeig, 2004). The pulse artifact was removed using the method 322 

presented in (Abreu et al., 2016), whereby the EEG data is first decomposed using independent component 323 

analysis (ICA), followed by AAS to remove the artifact occurrences from the independent components (ICs) 324 

associated with the artifact. The corrected EEG data is then obtained by reconstructing the signal using the 325 

artifact-corrected ICs together with the original non-artifact-related ICs. 326 

After the removal of the MR-induced artifacts, EEG data was then submitted to some of the routines 327 

of the automatic pipeline (APP) for EEG pre-processing described in (da Cruz et al., 2018), namely: 1) re-328 

referencing to a robust estimate of the mean of all channels; 2) removal and interpolation of bad channels; 329 

and 3) removal of bad epochs of 1 second (matching the TR of the fMRI data). An additional ICA step was 330 

then performed with the purpose of removing additional sources of EEG artifacts; these were identified 331 

using the ICLabel algorithm (Pion-Tonachini et al., 2019), implemented as a plug-in of the EEGLAB 332 

toolbox (Delorme and Makeig, 2004). The classification provided by ICLabel is based on a previously 333 

trained model with a large EEG dataset collected outside the MR scanner, rendering this algorithm sub-334 

optimal for our dataset. To cope with this, all ICs were visually inspected in order to validate, and eventually 335 

correct (for both false positives and negatives), the classification outputs of ICLabel. Finally, the EEG data 336 

was down-sampled to 500 Hz and band-pass filtered to 1–30 Hz. 337 

2.5.2 Source reconstruction 338 

The pre-processed EEG data from all runs was then submitted to several EEG source reconstruction 339 

procedures implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). To reduce the computational load, 340 
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the EEG data was further downsampled to a sampling rate of 60 Hz, two times the highest frequency 341 

component of the data. 342 

The forward problem 343 

A realistic head model was built by first segmenting each participant’s structural image into 3 tissue 344 

labels (brain, scalp and skull), and computing the deformation field needed to co-register the structural 345 

images into an MNI template. The individual meshes were then obtained by applying the inverse of this 346 

deformation field to the canonical meshes derived from the MNI template; meshes with 8196 vertices were 347 

considered. The electrode positions were co-registered to the scalp compartment by first considering their 348 

standard positions (in the 10/10 coordinate system), and then manually adjusting them to match the 349 

distortions clearly observed on the structural images. A realistically shaped volume conduction model was 350 

estimated using a boundary element model (BEM) with 3 layers (scalp, inner skull and outer skull). 8196 351 

source dipoles were placed at the vertices of a cortical surface also derived from the MNI template and 352 

transformed into the structural image. The leadfield matrix was then estimated, mapping each possible 353 

dipole configuration onto a scalp potential distribution. 354 

The inverse problem 355 

The inverse problem was solved using a Parametric Empirical Bayesian (PEB) framework as 356 

implemented in SPM12, which can be formulated as (López et al., 2014): 357 

 

𝐘 = 𝐋 · 𝐒 + 𝛆1, 𝛆1~𝒩(0, 𝐓, 𝐂C) 

𝐒 = 𝟎 + 𝛆2, 𝛆2~𝒩(0, 𝐓, 𝐂D) 
(3) 

where 𝐘 ∈ ℝ𝐶×𝑇 is the EEG data with C channels (64 in this case) and T time samples (depends on the run 358 

under analysis); 𝐋 ∈ ℝ𝐶×𝐷 is the leadfield matrix (D is the number of dipoles, 8196 in this case); and 359 

𝐒 ∈ ℝ𝐷×𝑇  is the unknown source dynamics at each dipole. 𝒩(∙) represents the multivariate Gaussian 360 

probability distribution, and T the known and fixed temporal correlations. The terms 𝛆1 and 𝛆2 denote 361 

the noise at the channel and source spaces, with covariance matrices 𝐂C ∈ ℝ𝐶×𝐶  and 𝐂D ∈ ℝ𝐷×𝐷 , 362 
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respectively. Channel noise is typically assumed to be uniform across channels, and therefore can be defined 363 

as 𝐂C = ℎC𝐈C, with hC the channel noise variance and 𝐈C ∈ ℝ𝐶×𝐶 the identity matrix. The source space 364 

covariance matrix CD assumes the form: 365 

 𝐂D = ∑𝛾𝑝𝐕𝑝

𝑃

𝑝=1

 (4) 

where 𝐕𝑝 ∈ ℝ𝐷×𝐷 represents different types of covariance components (CCs) reflecting prior knowledge 366 

on the sources to be reconstructed, and 𝛾𝑝 the unknown hyperparameter denoting its relative importance. 367 

These hyperparameters work as regularization parameters in ill-posed problems such as the EEG inverse 368 

problem, and were estimated using a restricted maximum likelihood (ReML) algorithm that uses as cost 369 

function the free-energy of the model. Commonly used source inversion algorithms can then be derived 370 

from Eq. 3 by defining the CCs that appropriately reflect their assumptions. For instance, MN solutions 371 

assume that all dipoles have the same variance and no covariance; therefore, only one CC is defined as 372 

𝐕1 = ℎD𝐈D, with hD the source noise variance and 𝐈D ∈ ℝ𝐷×𝐷 the identity matrix. 373 

In this work, we tested four source inversion algorithms: MN, LORETA, EBB and MSP; their 374 

derivations from Eq. 3 and associated CCs are thoroughly presented in (López et al., 2014). Additionally to 375 

those specific to a given algorithm, other CCs estimated from the fMRI-derived spatial priors (RSNs, 376 

activation maps and task-based dFC states) were considered (the procedures for their estimation are briefly 377 

described below). Specifically, all four inversion algorithms were tested using three different sets of CCs: 378 

the simplest set S1, with only CCs specific to the algorithm: 2) a larger set S2 comprising S1 and CCs from 379 

RSNs and activation maps (the latter for task runs only); and 3) the largest set S3 comprising S2 and CCs 380 

from the modules of the task-related dFC states (hence only tested on EEG collected from task runs). A 381 

total of 4 [inversion algorithms] × 3 [sets of CCs] = 12 reconstructions of EEG sources S were then 382 

performed for each subject and run (only 8 for the resting-state runs). 383 
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Estimation of covariance components from fMRI-derived spatial priors 384 

CCs were estimated from the fMRI-derived spatial priors by first transforming them into binary 385 

priors. These 3D binary spatial priors were then projected onto the 2D cortical surface using nearest-386 

neighbor interpolation (Henson et al., 2010), and smoothed using the Green’s function G of the cortical 387 

mesh adjacency matrix 𝐌 ∈ ℝ𝐷×𝐷, 𝐆 = 𝜎𝐌 (Harrison et al., 2007). The entries of M, mij, are 1 if vertices 388 

i and j of the cortical surface are neighbors (within a defined radius) and 0 otherwise; here, a radius of 8 389 

vertices and a smoothing parameter of 𝜎 = 0.6 were selected according to (Friston et al., 2008). The CCs 390 

of the smoothed (and projected) spatial priors are then obtained by computing their covariance matrices, 391 

i.e., their outer product. These procedures are illustrated in Fig. 2. 392 

 Source reconstruction quality 393 

2.6.1 EEG source components 394 

Following the rationale of previous studies (Abreu et al., 2020b; Liu et al., 2018, 2017), a spatial 395 

ICA step similar to that applied to the fMRI data for identifying RSNs was then performed on the 396 

reconstructed source dynamics S, with the purpose of separating those potentially associated with RSNs 397 

and/or other regions of interest in our tasks. This can be formulated as: 398 

 𝐒⊤ = 𝐔 · 𝐒IC (5) 

where 𝐔 ∈ ℝ𝑇×𝐼  is the mixing matrix, with each column 𝐮𝑖 ∈ ℝ𝑇×1  the time-course of the source 399 

component (SC) i; and 𝐒IC ∈ ℝ𝐼×𝐷 represents the spatial maps in the source space associated to each of 400 

the I SCs. Because the EEG data is submitted to a temporal reduction step prior to solving the inverse 401 

problem in order to reduce noise while guaranteeing a temporally continuous estimation of sources (López 402 

et al., 2014), the rank of S is reduced accordingly, being then defined an upper bound on the number of SCs 403 
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to be estimated. Such maximum allowed number of SCs was then estimated, which was between 50 and 60 404 

 405 

Figure 2: Deriving covariance components (CCs) from fMRI spatial priors. The 3D fMRI spatial priors are first 406 
binarized, projected onto the 2D cortical surface using nearest-neighbor interpolation and smoothed using the Green’s 407 
function. The associated CCs are then obtained by computing the outter product. For visualization purposes, the 408 
temporally reduced CCs are illustrated, by applying the same temporal projector considered when reducing the EEG 409 
data prior to its reconstruction. 410 
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in all cases. Finally, the SCs were converted into z-scores, and the deformation field estimated while solving 411 

the forward problem was applied to transform them from the source space into the MNI space. 412 

2.6.2 Quality metrics 413 

Besides the free-energy (FE) of the inversion model and the variance explained (VE) of the 414 

reconstructed EEG data 𝐘 = 𝐋 ∙ 𝐒 relative to the actual EEG data Y (see Eq. 3), other quality metrics 415 

reflecting more directly the presence of neuronal activity of interest in the SCs were considered. 416 

First, because the perception of motion in general, and of biological motion in particular, is known 417 

to elicit certain brain regions, the following four spherical regions of interest (ROIs) of 10 mm centered at 418 

specific MNI coordinates (indicated in square brackets) were considered (Chang et al., 2018): anterior insula 419 

(aINS) at [±36, 24, 2], extrastriate body area (EBA) at [left –46, –75, –4; right 47, –71, –4], fusiform body 420 

area (FBA) at [left –38, –38, –27; right 43, –43, –28], and fusiform gyrus (FFG) at [±42, –56, –14]. Four 421 

additional task-related brain regions were obtained from FSL atlases (threshold applied to the probability 422 

maps is indicated in square brackets), namely (Chang et al., 2018): inferior frontal gyrus (IFG) [0.25], 423 

posterior superior temporal sulcus (pSTS) [0.25], visual area V3 [0.25] and visual area hMT+/V5 [0.10]. 424 

After binarizing the ROIs and the SC maps, the Dice coefficient d, and the proportion of the ROIs contained 425 

in the SC maps pRS, were then quantified according to (Dice, 1945): 426 

 𝑑 =
2 × 𝑁𝑜𝑣

𝑁𝑅𝑂𝐼 +𝑁𝑆𝐶
and𝑝𝑅𝑆 =

𝑁𝑜𝑣
𝑁𝑅𝑂𝐼

 (6) 

where NROI and NSC denote the number of non-zero voxels in the ROIs and SC maps, respectively, and Nov 427 

the number of overlapping non-zero voxels between the two images; both measures range from 0 (no 428 

overlap) to 1. These same two measures, d and pRS, were also computed between the SC maps and 10 RSN 429 

templates described in (Smith et al., 2009), in order to assess which, if any, SCs represented RSNs (similar 430 

to the identification of RSNs on fMRI data described previously). 431 

All these measures were computed for each subject, run, inversion algorithm, set of covariance 432 

components (CCs), SC maps and maps of interest (8 ROIs and 10 RSN templates). Because only a subset 433 
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of the SC maps is expected to be associated with those maps of interest, the SC map yielding the highest 434 

dice coefficient for each map was identified, and the associated 𝑑∗ and 𝑝𝑅𝑆
∗  maximum values kept for 435 

subsequent analyses. The 𝑑∗ and 𝑝𝑅𝑆
∗  values were further summarized by computing their average within 436 

each map type (ROIs and RSN templates), thus yielding the final set of 13 [subjects] × 4 [runs] × 4 437 

[inversions] × 3 [sets of CCs] × 2 [map types] = 1440 values of 𝑑∗ and 𝑝𝑅𝑆
∗ . 438 

2.6.3 Statistical analysis 439 

The main effects of the population group (MS patients and healthy subjects), inversion algorithm, 440 

the set of CCs and the type of map of interest, as well as interaction effects, were evaluated by means of a 441 

4-way repeated measures Analysis of Variance (ANOVA) for the FE, VE, 𝑑∗ and 𝑝𝑅𝑆
∗  measures treated 442 

separately as the dependent variables. Multiple comparisons between the inversion algorithms, sets of CCs 443 

and interactions between the two were performed by means of a post-hoc statistical test with the Tukey-444 

Kramer correction. A level of statistical significance p<0.05 was considered. 445 

3 Results 446 

In this work, the quality of EEG source reconstruction provided by the different combinations of 447 

(four) inversion algorithms and (three) sets of CCs, was first evaluated in terms of the FE and VE of the 448 

associated models, which are commonly considered in PEB frameworks. Because no significant differences 449 

were observed between population groups (healthy subjects and MS patients) the FE and VE values shown 450 

in Table 1 were averaged across participants; the values associated with the three visual perception task 451 

runs (hMT+/V5 functional localizer and two BM runs) were also averaged. The combination MSP+S1 (with 452 

S1 containing only CCs specifically associated with the inversion algorithm) yielded the lowest FE (the 453 

lower, the better) and the highest VE, only followed by LORETA+S2 and LORETA+S3. The ANOVA of 454 

the FE and VE values revealed significant main effects of the inversion algorithms and sets of CCs, as well 455 
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as a significant interaction. The post-hoc tests on both FE and VE values showed no statistically significant 456 

differences between inversion algorithms, and 457 

Sets of CCs 
Inversion 

algorithms 

Task runs (Localizer+BMs) Resting-state runs 

FE×104 (±std) VE [%] (±std) FE×104 (±std) VE [%] (±std) 

S1 

MN 1.14±0.10 79.7±14.6 1.10±0.15 84.1±11.2 

LORETA 1.13±0.10 79.5±14.5 1.10±0.15 83.9±11.3 

EBB 1.13±0.11 79.4±14.6 1.09±0.15 83.2±11.8 

MSP 1.10±0.11 84.5±10.5 1.06±0.15 87.6±8.3 

S2 

MN 1.13±0.11 81.8±13.7 1.09±0.15 85.6±10.6 

LORETA 1.12±0.11 81.9±13.7 1.09±0.15 85.5±10.6 

EBB 1.13±0.11 79.4±14.7 1.09±0.15 83.2±11.8 

MSP 1.15±0.11 63.9±20.4 1.10±0.16 74.9±19.5 

S3 

MN 1.12±0.12 80.7±13.7 NA NA 
LORETA 1.12±0.12 80.7±13.7 NA NA 

EBB 1.13±0.12 78.2±14.8 NA NA 
MSP 1.16±0.12 60.3±15.5 NA NA 

Table 1: Average FE and VE values across participants, and across three visual perception task runs, for all 458 
combinations of inversion algorithms and sets of covariance components. Values in bold represent the best across 459 
inversion algorithms for each CC set, and values in red represent the overall best (across inversion algorithms and CC 460 
sets). 461 

the set S1 was significantly better than the sets S2 and S3; as expected, the combination MSP+S1 performed 462 

significantly better than other five combinations using the MN or EBB as inversion algorithms, and sets S2 463 

or S3. 464 

In order to directly reflect the presence of neuronal activity of interest in the SCs, the source 465 

reconstruction quality was then quantified in terms of the overlap of SCs with the 8 ROIs and the 10 RSN 466 

templates. This is illustrated in Fig. 3, showing a considerable overlap (in terms of 𝑑∗ and 𝑝𝑅𝑆
∗ ) of two 467 

SCs with the EBA mask and the visual RSN1 template, for the first BM run of a given healthy subject. 468 

Consistently with the FE and VE values, the 𝑑∗  and 𝑝𝑅𝑆
∗  values were not statistically significantly 469 

different between population groups, and thus were averaged across participants and across task runs; these 470 

are depicted in Table 2. When considering only the CCs specific to the inversion algorithms (set S1), EBB 471 

yields the best results in all cases, and is the overall best (across sets of CCs) in terms of 𝑝𝑅𝑆
∗  for the resting-472 

state run. However, by combining S1 with RSNs and activation maps (set S2), MN achieves the highest 𝑑∗ 473 

and 𝑝𝑅𝑆
∗  values for both types of runs, and the overall highest values (across sets of CCs) in terms of 𝑑∗ 474 
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for the resting-state run. For the task runs, the largest set of CCs including the dFC state modules (set S3) 475 

exhibits the overall best source reconstruction. Similarly to the statistical analysis of FE and VE, the 476 

ANOVA of the 𝑑∗ and 𝑝𝑅𝑆
∗  values revealed significant main effects of the inversion algorithms and sets 477 

 478 

Figure 3: Illustration of the overlap between two EEG SCs(in red-yellow) and (A) the EBA mask (in blue) and (B) a 479 
visual RSN (in blue-light blue) from (Smith et al., 2009). The dice coefficient d and the proportion of the ROIs 480 
contained in the respective SCs are also depicted. 481 

of CCs, as well as a significant interaction. For the 𝑑∗ values, the post-hoc statistical tests showed that MN 482 

and EBB inversion algorithms performed significantly better than LORETA and MSP, and that using the 483 

sets S2 or S3 was significantly better than only considering the set S1. The latter observation was also true 484 

for the 𝑝𝑅𝑆
∗  values, although in this case it was the MN and MSP inversion algorithms that yielded 485 

significantly better results than LORETA and EBB. The combinations EBB+S2 and MSP+S3 exhibited 486 
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significantly higher 𝑑∗ and 𝑝𝑅𝑆
∗  values, respectively, than a subset of combinations including the MN and 487 

LORETA algorithms, and the set S1. 488 

Sets of CCs 
Inversion 

algorithms 

Task runs (Localizer+BMs) Resting-state runs 

d* (±std) 𝑝𝑅𝑆
∗  (±std) d* (±std) 𝑝𝑅𝑆

∗  (±std) 

S1 

MN 0.15±0.05 0.22±0.10 0.15±0.05 0.22±0.10 

LORETA 0.12±0.05 0.14±0.07 0.12±0.04 0.15±0.06 

EBB 0.15±0.05 0.24±0.11 0.16±0.06 0.25±0.11 

MSP 0.14±0.05 0.18±0.09 0.12±0.04 0.16±0.09 

S2 

MN 0.15±0.05 0.24±0.12 0.16±0.05 0.24±0.11 

LORETA 0.15±0.05 0.23±0.12 0.15±0.04 0.22±0.12 

EBB 0.15±0.05 0.21±0.10 0.15±0.05 0.23±0.11 

MSP 0.14±0.05 0.23±0.11 0.14±0.05 0.22±0.09 

S3 

MN 0.15±0.05 0.24±0.12 NA NA 

LORETA 0.16±0.05 0.24±0.12 NA NA 

EBB 0.15±0.05 0.23±0.11 NA NA 

MSP 0.12±0.07 0.35±0.10 NA NA 

Table 2: Average 𝑑∗  and 𝑝𝑅𝑆
∗  values across participants, and across three visual perception task runs, for all 489 

combinations of inversion algorithms and sets of covariance components. Values in bold represent the best across 490 
inversion algorithms for each CC set, and values in red represent the overall best (across inversion algorithms and CC 491 
sets). 492 

4 Discussion 493 

In this work, we aimed at optimizing the reconstruction of EEG sources by considering spatial 494 

priors derived from concurrently acquired fMRI data when solving the inverse problem, coupled with a 495 

systematic comparison of different inversion algorithms and sets of covariance components (CCs) reflecting 496 

those spatial priors, on a parametric empirical Bayesian (PEB) framework. The quality of the source 497 

reconstructions was quantified in terms of PEB-based metrics (the free-energy, FE; and the variance 498 

explained of the respective inversion models, VE), and physiologically-based metrics (the overlap of EEG 499 

source components with ROIs and RSN templates representative of brain activity of interest), the latter 500 

directly reflecting the presence of neuronal activity. 501 

EEG source reconstruction quality 502 

Under a PEB framework, four inversion algorithms were tested here (MN, LORETA, EBB and 503 

MSP) for reconstructing sources from real EEG data collected from participants performing visual 504 
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perception tasks and during rest, and considering three different sets of CCs. We found that depending on 505 

the type of quality metric (PEB- or physiologically-based), different conclusions could be taken. In terms 506 

of the PEB-based metrics (FE and VE), using the set consisting only of CCs specific to the inversion 507 

algorithms (S1) always yielded significantly better results than the CC sets including fMRI spatial priors (S2 508 

and S3, comprising activation maps and RSNs, with or without dFC state modules, respectively). In contrast, 509 

by considering S2 and S3, the overlap of EEG source components (SCs) with the ROIs and RSN templates 510 

(measured by the dice coefficient d, and the proportion of the ROIs/RSNs contained in the SC maps, pRS) 511 

significantly surpassed that of S1. On the one hand, these contrasting results evidence the underlying 512 

optimization procedure used here, combining the PEB framework with the restricted maximum likelihood 513 

(ReML) algorithm for estimating the hyperparameters associated with each CC (Henson et al., 2010; 514 

Phillips et al., 2005). In fact, adding fMRI spatial priors drastically increases model complexity, which is 515 

penalized by ReML, and thus may explain the best PEB-based metrics when considering the more 516 

parsimonious inversion models (López et al., 2014). On the other hand, assessing the source reconstruction 517 

quality with metrics reflecting more directly the presence of neuronal activity of interest revealed that the 518 

information contained on the fMRI spatial priors is pivotal, suggesting that increasing model complexity in 519 

this way is needed for EEG SCs to contain such activity of interest, which is of the utmost interest for any 520 

subsequent analyses. Accordingly, the usefulness of fMRI spatial priors on EEG source reconstruction has 521 

already been shown in previous studies, with the addition of task-based activation maps (Henson et al., 522 

2010; Lei et al., 2012, 2011, 2010) or RSNs (Lei, 2012) similar to those considered here improving the 523 

reconstructions. These however have only been compared in terms of conventional quality metrics, without 524 

taking explicitly into account the neuronal activity of interest. These observations highlight the relevance 525 

of using multiple quality metrics expressing different aspects of the reconstructed sources for more 526 

appropriately characterizing them, and consequently better informing the selection of the optimal 527 

reconstruction approach. 528 

Regarding the optimal inversion algorithm, we found that no statistical differences were observed 529 

when comparing the FE and VE values, whereas MN and EBB yielded significantly higher d values than 530 
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LORETA and MSP; MN and MSP achieved significantly higher pRS values than EBB and LORETA. In 531 

contrast with the remaining inversion algorithms, LORETA is known for its low-resolution solutions 532 

(Michel and Brunet, 2019; Michel and Murray, 2012), which may render it inappropriate for localizing 533 

sources specifically associated with the limited number of rather small brain regions known to be involved 534 

in the tasks used in this study, and thus explaining its poorest performance (Halder et al., 2019). Concordant 535 

observations have been reported on previous comparison studies on simulated data (Bradley et al., 2016; 536 

Grova et al., 2006; Halder et al., 2019; Yao and Dewald, 2005), although no differences in performance 537 

were shown between MN and LORETA on real magnetoencephalography (MEG) or high-density EEG data 538 

(Hedrich et al., 2017). Similarly to MN, MSP has also been shown to provide solutions with high resolution 539 

(measured by the focal activation, for instance; Friston et al., 2008), despite potentially failing to fully 540 

recover the spatial extent of the sources (Grova et al., 2006). The same was observed for inversion 541 

algorithms of the family of beamformers as the EBB used here, namely the dynamic imaging of coherent 542 

sources (DICS) and linearly constrained minimum variance (LCMV), exhibiting higher focal activation and 543 

lower spatial extent than those of LORETA (Halder et al., 2019). Interestingly, our post-hoc interaction 544 

analyses showed that by combining EBB with S2 or MSP with S3, the best performance in terms of d and 545 

pRS, respectively, is achieved, suggesting that by coupling inversion algorithms designed for providing focal 546 

solutions with information derived from fMRI data, an optimal balance between specificity and sensitivity 547 

can be found. This recommendation is of particular relevance as it is drawn from the analysis of real EEG 548 

data (which contrasts with most studies in the literature that only focus on simulated data) that explicitly 549 

reflected the presence of neuronal activity in the reconstructed sources, rather than unspecific measures as 550 

those typically used in comparison studies. 551 

Localizing in the brain the sources responsible for generating scalp EEG signals has been critical 552 

for determining the underpinnings of brain function in general, and those associated with multiple 553 

neurological disorders. Here, we compared for the first time EEG source reconstruction methods within a 554 

group of healthy subjects and MS patients, and found that the quality of the associated sources was 555 
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irrespective of the presence of disease. This suggests that the recommendations made here may be 556 

extrapolated to future studies, regardless of the recruited population cohort. 557 

Reconstructing sources from EEG data collected simultaneously with fMRI 558 

The accurate reconstruction of EEG sources is not only related with the appropriateness of the 559 

inversion models used, but also with the overall quality of the EEG signal (Liu et al., 2018). EEG data 560 

simultaneously acquired with fMRI is known to suffer from severe artifact contamination (Abreu et al., 561 

2018), but state-of-the-art pre-processing pipelines as the one used here can now bring data quality to 562 

sufficiently high levels. Despite the potentially inevitable loss in data quality relative to EEG collected 563 

outside the MR scanner, the feasibility of reconstructing sources of EEG data acquired simultaneously with 564 

fMRI has already been demonstrated (Groening et al., 2009; Siniatchkin et al., 2010; Vulliemoz et al., 565 

2010a, 2010b, 2009), particularly using EEG caps with a conventional spatial coverage (32 or 64 channels) 566 

as the one used in this study. Moreover, a direct relationship between EEG sources and fMRI networks has 567 

already been established first for data collected separately (Liu et al., 2017), and then validated on data 568 

collected simultaneously (Abreu et al., 2020b), supporting the feasibility of these procedures on this more 569 

challenging scenario. More importantly, analyzing EEG and fMRI data collected simultaneously is 570 

especially critical when studying spontaneous brain activity as the one associated with RSNs, for instance 571 

(Abreu et al., 2018). This further motivates the procedures performed here, and suggest that deriving spatial 572 

priors from fMRI data separately acquired from EEG data may be suboptimal, which in turn could scale 573 

down their potential for guiding the reconstruction of EEG. Future studies would need to be conducted to 574 

confirm this observation. 575 

Spatial priors and their relationship with EEG (sources) 576 

In agreement with previous literature, in this work we found that including fMRI task activation 577 

maps and RSNs as additional CCs in the inversion models yielded significantly better EEG source 578 

reconstructions. This observation may be easily explained by the already known relationship between EEG 579 
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and fMRI task activation and resting-state networks. In fact, source-reconstructed EEG data has already 580 

been used for mapping task-related fluctuations (Custo et al., 2014; Gonçalves et al., 2014), as well as for 581 

identifying RSNs (Abreu et al., 2020b; Liu et al., 2018, 2017), with recent studies showing a substantial 582 

overlap between these EEG maps and those typically obtained from fMRI data (Abreu et al., 2020b). 583 

Additionally, a relationship between fMRI RSNs and EEG has also been demonstrated in the sensor space, 584 

considering particularly the EEG rhythms extracted from the frequency domain (Goldman et al., 2002; 585 

Laufs et al., 2006; Moosmann et al., 2003; Scheeringa et al., 2008), which further supports the hypothesis 586 

that EEG carries in fact information that is also mapped with fMRI. 587 

We then extended the exploration of fMRI spatial priors by also considering, for the first time, 588 

priors reflecting the fluctuations in the functional connectivity of task-related networks (dynamic functional 589 

connectivity, dFC). This was accomplished by estimating dFC fluctuations using phase coherence, followed 590 

by a dictionary learning step for finding the most recurrent dFC states, and a modularity analysis for 591 

identifying the network modules of the task-related dFC states. The rationale underlying our motivation for 592 

testing these spatial priors was based on recent literature showing that dFC fluctuations (Chang et al., 2013; 593 

Grooms et al., 2017; Korhonen et al., 2014; Omidvarnia et al., 2017; Preti et al., 2014; Tagliazucchi et al., 594 

2012; Tagliazucchi and Laufs, 2015), and dFC states in particular (Abreu et al., 2020a; Allen et al., 2018), 595 

have distinct EEG correlates, which could also be reflected on source reconstructed EEG data. Our results 596 

evidence this because by adding the task-related dFC state modules as spatial priors, the quality of the source 597 

reconstruction further increased for the task runs, in terms of the overlap with the ROIs and RSN templates. 598 

Noteworthy, other than task-related dFC states were not considered here, because otherwise all dFC states 599 

would have to be included given the lack of criteria for selecting a subset of them, which would be necessary 600 

to control for the potentially increasing complexity of the models. 601 

Importantly, spatial priors of different natures have already been suggested (Lei et al., 2015). 602 

Knowing the structural connectome by analyzing diffusion MRI (dMRI) data may inform functional 603 

connectivity measures in the EEG source space in terms of the strength of the underlying structural 604 

connections, by weighting those measures accordingly (Knösche et al., 2013). Moreover, the fiber tracking 605 
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between regions of interest allows to estimate the time lag between their functional connections, which is 606 

of particular interest when considering distantly located regions (Chu et al., 2015). Effective functional 607 

connectivity estimates obtained through Granger causality in the EEG source space can also be informed 608 

by connectivity priors also derived from Granger causality analyses of the fMRI data, despite its much lower 609 

temporal resolution compared to that of EEG (Roebroeck et al., 2005). Dynamic causal modeling (DCM) 610 

also estimates effective functional connectivity by incorporating information at the meso-scale (described 611 

by neural models whose parameters are typically defined based on animal studies) and the macro-scale 612 

(Friston et al., 2019). The latter has parameters reflecting forward, backward and lateral connections 613 

between sources, which can be defined from dMRI and/or structural MRI data. Similarly to Granger 614 

causality, DCM can also be applied to fMRI data, and the results used as connectivity priors for EEG source 615 

reconstruction (Lei et al., 2015). Naturally, these connectivity priors may be more crucial for studying EEG 616 

functional connectivity in the source space, which was not the case in the present study. 617 

An alternative to the PEB framework for incorporating priors is the use of penalty functions (Lei et 618 

al., 2015). These constraint the inverse solutions using different types of norms and weight matrices that 619 

indirectly reflect a given prior, from which the MN and LORETA algorithms used here can be defined. 620 

Penalty functions have the advantage of easily balancing between sparse and smooth solutions by simply 621 

adjusting the norm accordingly, or combining multiple terms with different norms for intermediate solutions 622 

(Valdés-Sosa et al., 2009). However, the ability of explicitly incorporating spatial priors as covariance 623 

components in the inversion models designed under a PEB framework render it more interpretable, and 624 

therefore potentially more suitable for testing different types of fMRI spatial priors as it was performed here 625 

(López et al., 2014). Regardless, extending the present study by also comparing these two frameworks 626 

would be interesting to further inform researchers on not only the best combination of inversion algorithms 627 

and sets of covariance components, but also on the optimal framework. 628 
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Conclusions 629 

In this study, we systematically compared the quality of the source reconstruction of EEG data 630 

performed using different combinations of four inversion algorithms and three sets of covariance 631 

components incorporating different types of spatial priors derived from concurrently acquired fMRI data. 632 

We found that according to the quality metrics reflecting the presence of neuronal activity, combining the 633 

EBB or MSP algorithms with CC sets including fMRI task activation maps and RSNs yields the overall 634 

best source reconstruction, and that by further including dFC state modules as spatial priors, the quality of 635 

EEG sources from the task runs is optimal. We show that incorporating fMRI spatial priors in general, and 636 

for the first time dFC state modules in particular, is thus crucial for optimizing the reconstruction of EEG 637 

sources (and consequently any subsequent analyses). By providing a clear recommendation on the best 638 

approach for tackling the challenging inverse problem supported by our comprehensive analyses, we believe 639 

that future studies, particularly using real EEG data, may then be more informatively guided on this intricate 640 

research field. 641 
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Figure and Table captions 648 

Figure 1: Schematic diagram of the processing pipeline. The pre-processed fMRI data is submitted to three 649 

different analyses in order to derive three types of fMRI spatial priors for EEG source reconstruction: 1) 650 

identification of RSNs through spatial ICA; 2) mapping of the task-related activity through GLM; and 3) 651 

by estimating the dFC fluctuations with phase coherence and the associated dFC states with dictionary 652 

learning, dFC state modules were obtained using the Louvain modularity algorithm. The covariance 653 

components (CCs) associated with these spatial priors were then included in several inversion algorithms, 654 

whose reconstruction quality was assessed by the free energy and variance explained of the associated 655 

models, and by the overlap of EEG source components (obtained through spatial ICA applied to the source 656 

reconstructed EEG) with ROIs and RSN templates. 657 

Figure 2: Deriving covariance components (CCs) from fMRI spatial priors. The 3D fMRI spatial priors are 658 

first binarized, projected onto the 2D cortical surface using nearest-neighbor interpolation and smoothed 659 

using the Green’s function. The associated CCs are then obtained by computing the outter product. For 660 

visualization purposes, the temporally reduced CCs are illustrated, by applying the same temporal projector 661 

considered when reducing the EEG data prior to its reconstruction. 662 

Figure 3: Illustration of the overlap between two EEG SCs(in red-yellow) and (A) the EBA mask (in blue) 663 

and (B) a visual RSN (in blue-light blue) from (Smith et al., 2009). The dice coefficient d and the proportion 664 

of the ROIs contained in the respective SCs are also depicted. 665 

Table 1: Average FE and VE values across participants, and across three visual perception task runs, for all 666 

combinations of inversion algorithms and sets of covariance components. Values in bold represent the best 667 

across inversion algorithms for each CC set, and values in red represent the overall best (across inversion 668 

algorithms and CC sets). 669 
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Table 2: Average 𝑑∗ and 𝑝𝑅𝑆
∗  values across participants, and across three visual perception task runs, for 670 

all combinations of inversion algorithms and sets of covariance components. Values in bold represent the 671 

best across inversion algorithms for each CC set, and values in red represent the overall best (across 672 

inversion algorithms and CC sets).  673 
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