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Abstract

Motivation: The Polygenic Score (PGS) Catalog is a recently established open
database of published polygenic scores that, to date, has collected, curated, and made
available 721 polygenic scores from over 133 publications. The PGS Catalog REST API
is the only method allowing programmatic access to this resource.
Results: Here, we describe quincunx, an R package that provides the first client
interface to the PGS Catalog REST API. quincunx enables users to query and quickly
retrieve, filter and integrate metadata associated with polygenic scores, as well as
polygenic scoring files in tidy table format.
Availability: quincunx is freely available under an MIT License, and can be accessed
from https://github.com/maialab/quincunx.
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Introduction 1

For two decades, GWAS identified individual variants associated with risk for complex 2

diseases, raising the hopes of a polygenic approach for disease prevention. However, 3

until recently, integration of these results was challenging delaying its prompt 4

application to the clinical setting. In 2020 alone, over 1,400 publications on polygenic 5

risk scores (PGS) appeared in PubMed, raising the need for a standardised distribution 6

of studies’ key data, assuring their wide evaluation and accurate use. 7

The Polygenic Score (PGS) Catalog, created in 2019, is a publicly available, 8

manually curated, open database of PGS and relevant metadata, that responds to this 9

need [1]. Its current release [date 2021-02-03] includes manually curated data from 133 10

publications and 721 PGS associated with 194 traits. Currently, there are three 11

alternative ways to access the data: (i) the web graphical user interface (GUI); (ii) by 12
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downloading database dumps; and (iii) the recently implemented PGS Catalog 13

representational state transfer (REST) application programming interface (API), 14

released in [date 2020-06-03], which provides direct programmatic access to the 15

database, being this the preferred method for batch analyses. 16

We developed quincunx, the first R package [2] to programmatically access the PGS 17

Catalog REST API. This package provides a simple user-friendly interface for querying 18

the most updated Catalog data, retrieve and map it to in-memory relational databases 19

of tidy data tables, allowing its prompt integration with tidyverse packages for 20

subsequent data transformation, visualisation and modelling [3, 4]. 21

Results 22

Retrieving data from the PGS Catalog REST API 23

The PGS Catalog REST API is an EBI service hosted at 24

https://www.pgscatalog.org/rest/. The REST API uses hypermedia with resource 25

responses following the OpenAPI Specification 26

(https://swagger.io/docs/specification/about/). Response data is provided as 27

hierarchical data in JSON format and can be paginated, i.e., split into multiple 28

responses (https://www.pgscatalog.org/rest/). 29

To ease the conversion from the hierarchical to the relational tabular format — the 30

preferred format for data analysis in R [4] — we developed a set of retrieval functions 31

(Fig. 1A). Since the REST API data is organised around five core data entities — 32

Polygenic Scores, PGS Publications, PGS Sample Sets, PGS Performance Metrics and 33

EFO traits— we implemented five corresponding retrieval functions that encapsulate 34

the technical aspects of resource querying and format conversion: get scores(), 35

get publications(), get sample sets(), get performance metrics and get traits() 36

(Fig. 1A). These functions simplify the querying of PGS Catalog entities, by providing a 37

complete and consistent interface to the Catalog. For example, to query for scores, the 38

user needs only to know the function get scores(), whereas the REST API itself 39

exposes three separate resource URL endpoints for scores with different querying 40

parameters. Moreover, the user can choose directly the arguments of the retrieval 41

functions from any number of available search criteria exposed by the REST API 42

(Fig. 1B). All arguments are vectorised, meaning that multiple queries are promptly 43

available from a single function call. Results obtained from multiple queries can be 44

combined with the logical operators OR or AND using the set operation parameter. If 45

set operation is set to OR (default behaviour), results are collated while removing 46

duplicates, if any. If set operation is set to AND, only entities that concomitantly 47

match all search criteria are returned. If finer control is needed on combining results, 48

the following functions can be used: bind(), union(), intersect(), setdiff(), and 49

setequal(). These are S4 methods that work with the S4 classes created in quincunx. 50

An example of a case study (in tutorial style) can be found in Additional file 1. 51

Representation of PGS Catalog entities 52

All S4 classes share the same design principles that make them relational databases: (i) 53

each slot corresponds to a table (dataframe in R); (ii) the first slot corresponds to the 54

main table that lists observations of the respective PGS Catalog entity, e.g., scores; and 55

(iii) all tables have a primary key, the identifier of the respective PGS Catalog entity: 56

pgs id, pgp id, pss id, ppm id or efo id. For easy consultation of the variables present 57

in the retrieved data tables, we provide a cheatsheet (Additional file 2); and for detailed 58

descriptions, the user can issue the following help commands to open the respective help 59
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Figure 1. quincunx retrieval functions. (A) Functions for retrieving data
from the PGS Catalog: get scores(), get publications(), get sample sets(),
get performance metrics() and get traits(). (B) quincunx search criteria (func-
tion parameters) to be used with retrieval functions. Coloured boxes indicate which
entities can be retrieved by each search criteria.

pages for each class: class?scores, class?publications, class?sample sets, 60

class?performance metrics or class?traits. 61

Improvements & Limitations 62

Compared to the exposed REST API, we have improved data accessibility in quincunx 63

in several ways. Firstly, we harmonised the nomenclature of the variables in tidy tables 64

with the nomenclature used by the GWAS Catalog [5], namely for the variables that are 65

also used by the R package gwasrapidd [6]: an analogous R package that provides access 66

to the GWAS Catalog REST API. This permits a frictionless wrangling of variables 67

between the two R packages, allowing crosstalk between the data from the two Catalogs. 68

Secondly, by recognising that in some cases the values of a variable are provided in its 69

name and not in its value (a case of untidy data), we decided to perform the required 70

refactoring to make those variables explicit columns in the relational tables, thus 71

making the data more analysis friendly. For example, the stage of a sample comes 72

implicitly coded in the JSON keys samples variants and samples training and are 73

mapped in quincunx to the variable stage, with values ‘‘discovery’’ and 74

‘‘training’’, respectively. Additionally, the PGS Catalog REST API does not offer 75

specific endpoints allowing direct mapping between the PGS entities, as this 76

information is deeply nested in the hierarchical structure of the JSON responses. 77

quincunx facilitates the retrieval of relationships between entities, by providing a set of 78

mapping functions based on the entities’ identifiers, e.g., pgs to pgp, pgp to ppm(), 79

ppm to pss(), including mapping (when applicable) from PGS scores to GWAS studies: 80

pgs to study() and study to pgs() (see online documentation for the complete list). 81

Finally, quincunx provides a set of helper functions to easily browse linked web 82

resources, such as PubMed (open in pubmed()), dbSNP (open in dbsnp()), and the 83

PGS Catalog Web interface itself (open in pgs catalog()). 84

Despite the availability of some R software packages, e.g. bigsnpr [7], RápidoPGS [8], 85

or SummaryLasso [9], that allow the application of polygenic scores to particular 86

datasets, i.e. for analyses downstream of quincunx data retrieval, the most popular 87

software tools for these calculations, e.g. PRSice [10,11], LDpred [12], PRS-CS [13], 88
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JAMPred [14], lassosum [15], PLINK [16, 17], do not run in R. This could present an 89

obstacle to pursuing a full PGS analysis within the same R framework (using the PGS 90

scoring files), therefore delaying the process of polygenic score application (for an 91

overview of the currently available methods, please see [18]). 92

Conclusion 93

We have developed the first R client for the PGS Catalog REST API, thus greatly 94

facilitating the programmatic access to the database. The main advantages of quincunx 95

are: (i) providing a simple user-friendly interface to the REST API, allowing the 96

programmatic querying of the most updated data from within R; (ii) the retrieval of the 97

data in an analysis friendly format, with tidy data representations of the PGS entities, 98

i.e., of scores, publications, sample sets, performance metrics and traits in the form of 99

in-memory relational databases; (iii) allowing the automatic retrieval of polygenic 100

scoring files from the PGS Catalog FTP server, making the data immediately available 101

for analysis in R (as an extra feature not available via the REST API); and (iv) 102

dedicated functions to export the retrieved objects to Excel (.xlsx) format for data 103

inspection and sharing outside of R. quincunx is a package that will greatly improve the 104

research community’s ability for data mining within R, therefore accelerating the 105

evaluation and subsequent application of published and manually curated polygenic 106

scores. 107

Availability and requirements 108

• Project name: quincunx. 109

• Project home page: https://github.com/maialab/quincunx. 110

• Operating system(s): Platform independent. 111

• Programming language: R. 112

• Other requirements: None. 113

• License: MIT. 114

• Any restrictions to use by non-academics: None. 115
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Additional Files 180

Additional file 1 — Example of a case study. 181

• File name: additional file 1.pdf. 182

• File format: Portable Document Format (PDF). 183

• Title: Example Study Case. 184

• Description: Example of a study case exploring the PGS scores by Mavaddat et 185

al. (2018). 186

Additional file 2 — quincunx cheatsheet. 187

• File name: additional file 2.pdf 188

• File format: Portable Document Format (PDF) 189

• Title: quincunx cheatsheet 190

• Description: Additional file 2 contains an infographics: quincunx cheatsheet. 191
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