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Abstract 

Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-

hard combinatorial optimization problem. Each amino acid in the protein sequence can 

be represented by as many as six codons, and the process of selecting the combination 

that maximizes probability of expression is termed codon optimization. This work 

investigates the potential impact of leveraging quantum computing technology for codon 

optimization. An adiabatic quantum computer (AQC) is compared to a standard genetic 

algorithm (GA) programmed with the same objective function. The AQC is found to be 

competitive in identifying optimal solutions and future generations of AQCs may be able 

to outperform classical GAs. The utility of gate-based systems is also evaluated using a 

simulator resulting in the finding that while current generations of devices lack the 

hardware requirements, in terms of both qubit count and connectivity, to solve realistic 

problems, future generation devices may be highly efficient.   
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Introduction 

Protein sequences can be encoded by an enormous multitude of possible 

nucleotide sequences. The degenerate mapping between amino acids and synonymous 

codons entails an exponential relationship between the number of potential nucleotide 

sequences and the length of the polypeptide chain. However, different nucleotide 

sequences encoding the same protein may exhibit dramatically different outcomes in 

expression systems.1–4 Furthermore, recent studies have shown that codon selection 

can impact downstream processes such as protein folding and function,1–3 which is 

particularly important for use-cases such as recombinant protein therapies.5 

Codon optimization is a procedure designed to increase gene expression based 

on a heuristic scoring function6 with many scoring functions having been proposed.7–10 

Some of the more common scoring functions seek to optimize the fraction of G and C 

bases,11–15 match the codon usage bias of the host expression system,16–21 and/or 

attempt to disrupt the formation of mRNA secondary structure.7,17,22 The vast solution 

space is most commonly sampled using genetic algorithms (GA) that seek to evolve 

solutions by introducing synonymous codon mutations and propagating favorable 

substitutions through generations.12,16,20,23–25 However, other methods have been 

proposed.18,26,27 While classical approaches such as GAs can be highly performant, the 

fraction of solution space that is sampled in a fixed number of iterations decreases 

exponentially as the polypeptide chain length grows. Thorough sampling of the solutions 

space is therefore often intractable with biologically relevant use-cases. In this study we 
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investigate the viability of programming quantum computers to efficiently identify high-

quality solutions scored with arbitrary objective functions. 

 Recent advances in quantum information science and technology have 

elucidated the potential for quantum devices to outperform classical devices in a narrow 

range of applications.28,29 Among these, certain types of combinatorial optimization 

problems are among the most promising for near-term advantage.30 The field of 

quantum computing is developing rapidly in terms of both hardware and algorithms. 

Each type of quantum computing technology offers a unique set of strengths and 

weaknesses, and applications are often tailored to compliment the strengths of each 

device. While there are many physical realizations of quantum technologies, we focus 

on two markedly different models; adiabatic quantum computers (AQC) and gate-based 

quantum computers. 

 AQCs, sometimes referred to as quantum annealers, are most commonly used to 

solve high-dimensional combinatorial optimization problems.31–33 For example, a recent 

study showed that protein design, which requires combinatorial optimization of 

rotomeric states, can be accelerated with an AQC.34 Current implementations of AQCs 

offer nearly two orders of magnitude more qubits than state of the art gate-based 

devices, offering the potential to address realistic sized problems. The general class of 

AQC algorithms are classified as metaheuristic methods for solving local optimization 

problems in multivariate spaces.31 These approaches are similar to simulated annealing 

but exploit the phenomena of quantum tunneling, instead of thermal activation, to hop 

out of local energetic minima.35  
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An alternative quantum computing technology, and the technology that was 

recently used to demonstrate quantum supremacy,28,29 centers on gate-based 

instructions. Current generations of non-error corrected hardware, termed Noisy 

Intermediate Scale Quantum (NISQ),36 can be programmed to solve combinatorial 

optimization problems using variational methods such as the Quantum Approximate 

Optimization Algorithm (QAOA).37 Gate based quantum computers are presently, 

however, less mature than AQCs and even the most capable devices to date lack the 

number of qubits and connections between qubits needed to solve realistic 

combinatorial optimization problems. As the technology matures however there is an 

expectation that qubit count and connections between qubits will improve substantially. 

There is also the expectation that error rates will decrease, and general-purpose error 

correction may become possible. Developing and testing suitable algorithms ahead of 

the technology development curve is thus a worthwhile endeavor and it is therefore 

common practice to utilize simulators, running on classical computing hardware, to 

permit evaluation of quantum algorithmic functions in the absence of real-world 

hardware to evaluate performance on. 

Designing novel algorithms to execute on quantum devices requires deep expert 

knowledge of the devices, quantum information science, and quantum software stacks. 

However, there are a few classes of ubiquitous problems that are readily solvable using 

tools built into many widely available software packages. The Binary Quadratic Model 

(BQM) is perhaps the most archetypal example and can be found at the core of many 
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familiar problems such as the Ising model.38,39 The energy of a BQM can be described 

by a Hamiltonian with the general form 

 

ℋ =#h!q!
!

+##J"#q"q#			(1)
#$""

 

 

where qi, qj, and qk represent the values of the qubits, which can either be {0, 1} or {-1, 

1} for binary or spin representations, respectively, hi are the one-body terms, and Jjk are 

the two-body interactions. For the Ising model, h represents the physical spins and J 

represents the energy of the interactions between the spins. 

The methods section below shows that the codon optimization problem can be 

mathematically formulated as a BQM and thus implemented on a variety of competing 

quantum computing platforms. This representation requires translating the scoring 

function used in traditional approaches into a quadratic Hamiltonian where the 

eigenstates represent nucleotide sequences and the eigenenergies represent the 

scores. Implementing this program on the D-Wave Advantage 1.1 AQC shows that it 

identifies high quality solutions that are competitive with a basic implementation of a 

genetic algorithm programmed with an equivalent scoring function. Implementing a 

version of this program for IBM Q devices, while successful, shows that modelling 

practical systems requires too many qubits to be run on even the most advanced gate-

based devices available (e.g. IBM’s 65-qubit Hummingbird device).40 However, 

executing the model on an IBM noisy simulator41 demonstrates the potential of the 
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algorithm. Finally, we comment on the potential usability of the BQM approach on 

current and future generations of quantum computers. 

 

Results 

Codon optimization was implemented as a BQM on quantum devices with a 

Hamiltonian designed to optimize GC-content, minimize sequentially repeated 

nucleotides, and optimize codon-usage bias (see equation (15) in Methods for details). 

Quantum devices use qubits to store data, which decode digitally to 0’s and 1’s upon 

measurement, but which also may be in a superposition of 0 and 1 during the 

calculation. To encode classical genetic data into a quantum device, every possible 

codon that can map to the target polypeptide sequence is required to be explicitly 

represented by a physical qubit. The qubits which return “1” upon measurement 

represent the codons selected at each position in the polypeptide sequence. Therefore, 

only 1 qubit (codon) for each position in the polypeptide sequence can be in a “1” state, 

and the rest must return “0” upon measurement (Figure 1a). This scheme is enforced by 

constructing a 2-body penalty matrix which adds infinite energy to pairs of codons that 

map to the same position in the polypeptide sequence (Figure 1b). The final sequence 

is determined by recording the values of the qubits and concatenating the 

corresponding codons of the qubits in the “1” state (Figure 1c). 
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Figure 1. (a) Example mapping of each possible codon for the amino acid Glycine (gray oval labeled “G”) 

to qubits. Gray boxes represent qubits labeled q0…q3, and the codon assigned to each qubit is shown 

next to the qubit label. (b) A penalty matrix is constructed to add infinite energy to cases where more than 

one codon is in the “1” state. In this example, qubit q2 is in the “1” state and the rest are in the “0” state, 

which returns an energetic penalty equal to 0. (c) Example mapping of codons for protein sequence 

GSK… to qubits. One codon is selected for each position in the sequence, highlighted in orange.  

 

AQC accuracy and quality of scores 

The goal of the optimization is to find the combination of codons that minimizes 

the Hamiltonian (or the objective function for the GA). In theory, AQCs should be able to 

find the ground state of the input Hamiltonian. However, due to thermal fluctuations and 

limited quantum processing unit (QPU) time, low energy solutions that are near, but not 

equal to the ground state are expected. Furthermore, as the size of the problem 

increases, the probability of annealing to an optimal eigenvalue decreases. See the 

“BQM challenges and limitations” section in the Supplementary Information for further 

discussion of technical challenges specific to heavily constrained problems such as 

codon optimization. 
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While it is not possible to calculate the true ground state for large problems, 

comparisons can be made to other approximate methods, e.g., GA approaches, to 

contextualize the results and performance of the AQC approach. Additionally, D-Wave 

offers hybrid solvers that augment the AQC with classical methods to optimize the 

results. Direct programming of the AQC yielded excessively noisy results with high 

variance in the estimation of the ground state. The hybrid solver was thus selected to 

more reliably optimize the input Hamiltonian.  

 

Peptides of length 20 

The baseline performance of the AQC implementation of codon optimization was 

evaluated using 63 peptide fragments of length 20 derived from the human severe 

acute respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) spike 

glycoprotein sequence (UniProtKB–P0DTC2) and compared with a conventional single-

threaded GA implementation. See the Genetic Algorithm Validation section in the 

Supplementary Information for performance metrics. The results of running the AQC 

and the GA 20 times each are reported in Figure 2. There is an approximately linear 

relationship between the optimization scores, with an average ratio close to 1:1. The 

minimum eigenvalue identified by the AQC matched the minimum score obtained by the 

GA to machine precision in 77% of the peptide fragments that were considered. In the 

remaining cases, the GA identified a lower score than the AQC. The AQC was 

programmed to run for a total of 6.0 s including preprocessing and communication 
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between the classical and quantum components. The average execution time for the 

GA was 1.09 s with a standard deviation of 0.06 s.  

 

Figure 2. Eigenvalues measured by AQC vs GA scores. Lower scores indicate higher probability of 

expression. Dashed line represents y=x. Error bars represent the standard deviation of 20 trials and are 

shown in blue. 

 

Full-length proteins 

The Leap Hybrid solver is capable of solving codon optimization problems 

expressed as a BQM with up to ~1,000 amino acids. A selection of full-length 

sequences (see Test Applications in Methods) was run on both the AQC and the GA 

(Figure 3). Each sequence was allotted 50 s of compute time on the AQC. The GA was 

run for 6000 generations, determined through testing to be the point at which the 
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systems asymptotically converged to a solution (see Genetic Algorithm Validation in the 

Supplementary Information). The average execution time for the GA was 10.6 minutes 

with a standard deviation of 0.9 minutes. 

 

Figure 3. AQC vs GA for 10 full-length proteins. Dashed line represents y=x. Lower scores indicate higher 

probability of expression. Point labels indicate number of amino acids. 

 

Relationship between scoring function and scalability on quantum hardware 

The choice of scoring function can have a dramatic impact on the size of the 

model. For example, the Hamiltonian representing GC-content requires explicit 

calculation of all off-diagonal elements of the two-body interaction matrix. In other 

words, all logical qubits must be fully connected. The D-Wave Advantage system is 

state-of-the-art in terms of number of qubits and connectivity, described by a P16 
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Pegasus graph,42 and the best minor embedding scheme for a fully connected graph of 

logical qubits was heuristically found to support a maximum of 180 nodes when 

interfacing directly with the QPU. However, there are two-body Hamiltonians that do not 

require couplers between all logical qubits. The Hamiltonian penalizing sequentially 

repeated nucleotides only requires couplers between qubits mapping to neighboring 

sequence positions. In this case, the task of minor embedding is straightforward and 

would only require a few additional physical qubits to represent the required logical 

qubits on the D-Wave Advantage system.  

 

Gate-based simulator results 

 The gate-based approach was simulated using the IBM Qasm noisy simulator, 

which can simulate up to 24 fully connected qubits. The BQM implementation was 

identical to the scheme described by the AQC (Figure 1), and the optimization was 

carried out using QAOA.37 The codon optimization simulation was run on 313 peptides 

of length four and one peptide of length three, each requiring between 7-24 logical 

qubits with full connectivity. In the most resource-intensive scenario, there could be four 

amino acids in a row that each map to six qubits, and the algorithm is tasked with 

finding the ground state out of 64 = 1296 possible states using 24 qubits (the maximum 

supported by the simulator). The task is therefore small enough to compute the exact 

result with the NumPyMinimumEigensolver exact solver as a comparison to the 

simulation. 
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The simulated scores vs the exact scores are shown in Figure 4a. The quantum 

algorithm identified the exact solution for 59 peptides, and overall, 84% of the trials 

yielded valid results. However, there were 51 cases where the quantum algorithm 

returned results which had an invalid mapping between codons and qubits. In each of 

the invalid trials there was at least one amino acid position lacking a selected codon. 

This type of error was more common in cases where more qubits were required to run 

the simulation (minimum 16 qubits), and therefore the optimization task was more 

difficult. The success of the calculation was dependent on the random seed used for the 

noisy simulator; rerunning trials that failed to return valid results with different random 

seeds changed the outcome and, in each case, a valid result was eventually found. The 

instability of the simulation and its dependence on the number of qubits required to run 

the simulation is an artifact not just of the simulated noise but also an inherent 

consequence of the variational algorithm employed by the simulator, which is not 

guaranteed to converge every time. See the “BQM challenges and limitations” section in 

the Supplementary Information for discussion about the exponentially small subset of 

valid solutions in the total possible solution space as the number of required qubits is 

increased. These results imply that it may be impossible to effectively optimize 

polypeptides of biological relevance on NISQ devices. Further studies are required to 

determine if this behavior could be improved by making use of alternative variational 

optimization algorithms or whether fundamental improvements in error correction are 

needed at the hardware level.  
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Figure 4. (a) QAOA simulated scores vs exact scores. Each point represents a single run of the simulator 

for each peptide fragment. Lower scores indicate higher quality results. Trials that returned solutions with 

invalid mapping between codons and amino acids were excluded. Line of best fit, displayed in blue, 

shows on average scores from the quantum algorithm are 33% higher than the classical algorithm. (b) 

Number of qubits required to simulate each of the 313 peptide fragments of length 4. 

Discussion 

 Codon optimization is a classic example of a biological problem with exponential 

scaling in solution space. While there exist classical machine learning and artificial 

intelligence methods that improve sampling, quantum technology may offer an 

alternative or complimentary approach to enhance the ability to identify optimal samples 

from these distributions. Current generations of quantum hardware are mature enough 

to test ideas for novel algorithmic approaches to problems in life sciences but are not 

yet capable of outperforming classical devices. In this study codon optimization is 

reformulated to be readily implementable on quantum devices and the viability of the 

method is demonstrated on both adiabatic and gate-based quantum computers. 
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 The D-Wave Systems Advantage 1.1 system was heuristically determined to be 

capable of solving codon optimization problems programmed directly into the QPU up to 

approximately 180 codons with scoring functions requiring all logical qubits to be fully 

connected, which maps to 30 amino acids in the most resource intensive cases. If a 

scoring function is selected that does not require full connectivity, such as the 

Hamiltonian describing repeated nucleotides, then nearly all of the logical qubits could 

map directly to physical qubits and the system size could theoretically be scaled to 

accommodate sequences of up to ~1,000 amino acids. There is likely significant room 

for performance improvements in the quantum, hybrid, and classical methods. As AQC 

hardware matures it will be possible to address questions of scalability for larger 

sequences and critically assess the potential for quantum technology to surpass 

classical techniques. 

 The IBM Experience provides free access to small quantum devices and noisy 

simulators. The largest quantum device freely available, Melbourne, contains 15 qubits 

with 2-3 couplers between them. The BQM presented in this study requires full 

connectivity between the logical qubits. Melbourne is therefore able to represent a 

select set of 2-amino acid systems in which each amino acid maps to one or two 

codons. Meanwhile the IBM Qasm simulator allows up to 24 fully connected simulated 

qubits, which is generally limited to 4 amino acids. This simulation approach is sufficient 

to use QAOA to solve small proof of concept problems, but realistically thousands of 

qubits with high connectivity are required to run biologically relevant sequences. Given 

IBM’s current public Roadmap for Scaling Quantum Technology,40 devices with this 
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capacity are not expected to be available to the public before 2024. Utilizing the 

simulator, the QAOA algorithm had variable performance, identifying the true ground 

state solution in nearly 20% of the trials, and failing to identify a valid solution in 16% of 

the trials. As noted above the success of the calculation was dependent on the random 

seed used for the noisy simulator; valid results for each failed run can be obtained by 

rerunning with different random seeds until a valid result is found. Further investigation 

on physical devices is required to determine the limit of the accuracy and precision of 

the method. 

 There is a vast body of literature discussing codon optimization techniques for 

protein expression. This study contributes to the field by offering a novel approach to 

sampling the vast solution space with an emerging technology. The considerations that 

went into the construction of the Hamiltonian were designed to highlight some of the 

implementational nuances associated with common scoring functions. For example, the 

expression for measuring optimality of GC-content requires full connectivity between 

qubits. However, counting repeated nucleotides between neighbors only requires some 

qubits to be coupled. Codon usage bias can be factored into the Hamiltonian using one-

body terms, but one could imagine a more thorough approach which compares the 

distribution of codons selected in the sequence compared to the reference distribution, 

which would require two-body terms. Similarly, implementing the popular “one amino 

acid-one codon” strategy would require codons from each type of amino acid to be 

coupled,18,21,43 adding many two-body terms but not as many as optimization of GC-
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content. Thus, the particular Hamiltonian studied here serves as a demonstration of the 

efficacy of the method at evaluating a realistically complicated objective function. 

Further studies are required to evaluate these samples beyond simple numerical 

scores to determine the value this approach could add to the field of protein expression 

using future generations of quantum hardware. Current quantum hardware is subject to 

high levels of noise and is therefore not competitive with classical techniques in most 

practical applications. However, quantum hardware and techniques are advancing 

exponentially in terms of both scale and tolerance to noise. This rapid advancement 

coupled with the expectation that scaling with problem size is significantly reduced on 

quantum hardware compared with classical methods implies that future quantum 

approaches could provide a significant performance advantage for optimization of NP 

problems in life sciences. 

Methods 

Codon optimization algorithm 

Classical scoring functions can be reinterpreted as a Hamiltonian by separating 

one- and two-body interaction terms. There is considerable research and ongoing 

debate of the proper way to score nucleotide sequences for expression,5,8,18–21,24–27,43,10–

17 as well as arguments against the use of codon optimization in some cases.5 The 

purpose of this study is not to contribute to the discussion of whether or not codon 

optimization is an appropriate tool for any given context or the optimal way in which it 

should be performed but rather to investigate a novel method of sampling the vast 

solution space. The optimization task is therefore restricted to three considerations that 
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capture simple countable properties from the sequences themselves. This includes 

discussion of how to formulate energetic terms in the Hamiltonian that serve to 

minimize: 

 

1. Codon usage bias. 

2. The difference between GC-content and a target value. 

3. The number of sequentially repeated nucleotides. 

 

Energetic terms can be combined into one Hamiltonian or used on their own, just 

like a scoring function in a GA. Furthermore, the Hamiltonian could be extended using 

any type of scoring function that can be broken down into one- and two- body 

interaction terms. The following sections outline the mathematical representations of 

these optimization tasks and show how they naturally map to a Hamiltonian with a form 

compatible with a BQM. 

Two additional constraints are imposed to add energetic penalties to 

combinations of codons that do not translate to the query sequence. The first constraint 

adds a small linear shift to the one-body term of each qubit. Shifting the potentials 

increases the energetic favorability of including more codons in the sequence. Similarly, 

the other constraint adds a significant energetic penalty to codons mapping to the same 

position in the amino acid sequence. The combination of these two potentials optimizes 

the energetic score of valid combinations of codons compared to invalid combinations. 
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Incorporating codon usage bias 

 Codon usage frequency varies by host system.44 Therefore, the scoring function 

is tailored to match the expression system. For this study, codon usage frequencies for 

e. coli are imported from the python-codon-tables 0.1.10 library.45 Let Ci represent the 

frequency of finding codon C at position i. The potential is thus designed to return a 

large penalty for rare codons (where Ci is small) and incur a negligible penalty for 

codons readily available to the system (where Ci is large). One such function is the log 

of the inverse multiplied by -1. This function yields the desired behavior of adding large 

penalties to rare codons and adding small penalties to accessible codons. However, the 

function is undefined at Ci = 0. If a host system truly does not have access to a given 

codon, then any sequence containing the codon is not expressible, and the probability 

of expression would be zero. However, the scoring function must be restricted to finite 

decimal values, so an infinitesimal value, εf, is added to the denominator to avoid 

undefined values. For a system containing N possible codons, the Hamiltonian is given 

by: 

 

ℋ% = −𝑐%#log 1
1

𝐶& + 𝜀%
4 𝑞&

'

&

= 𝑐%#𝜍&𝑞&

'

&

			(2), 

 

where cf is a tunable constant, qi ∈ {0,1} is the value of the qubit, and ζ is a vector 

containing the values of the log inverse codon usage frequencies. Given the binary qi 

values, the Hamiltonian only penalizes codons that are “selected”, represented by 

qubits with value qi = 1.  
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Optimize target GC concentration 

To optimize the GC concentration of a nucleotide sequence, rGC, a cost function 

∆ must be introduced to minimize the difference between rGC and the target GC 

concentration, rT. The simplest objective function satisfying this constraint is a quadratic 

function, 

 

∆= 𝑐()(𝜌() − 𝜌*)+,			(3) 

 

where cGC is a tunable constant. The GC content is calculated by summing the number 

of G’s and C’s in the sequence of length N and normalizing by the number of 

nucleotides in the sequence 

 

𝜌() =
1
𝑁#𝑠&𝑞&

'

&

			(4),	 

 

where si is an integer representing the number of G’s and C’s in codon i, and qi 

represents the value of qubit i. By expanding equation (3), a form similar to a Binary 

Quadratic Model (BQM) formulation becomes apparent:  

 

ℋ() ∝ (𝜌() − 𝜌*)+ =
1
𝑁+##(𝑠⨂𝑠)&,𝑞&𝑞, −

2𝜌*
𝑁 #𝑠&𝑞&

'

&

+ 𝜌*+
'

,

'

&

			(5) 
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The matrix represented in the double sum needs to be restricted to a sum over the 

upper triangular elements, consistent with equation (1). By decomposing the sum into 

the trace and a term that sums the contributions of the off-diagonal elements, the sum 

can be restricted to the upper triangular elements. The trace requires a single 

summation over si2. Since qubits map to binary values, they are idempotent with 

themselves and therefore qi2 = qi.  

 

𝑇𝑟 E##(𝑠⨂𝑠)&,𝑞&𝑞,)	
'

,

'

&

F =#𝑠&+𝑞&

'

&

		(6) 

 

Since the matrix is symmetric, all off-diagonal terms are accounted for in a upper 

triangular form by multiplying by 2. Thus, 

 

ℋ() =
2𝑐()
𝑁+ ##𝑠&𝑠,𝑞&𝑞, +

𝑐()
𝑁+ #𝑠&+𝑞&

'

&

−
2𝜌*𝑐()
𝑁 #𝑠&𝑞&

'

&

+ 𝑐()𝜌*+ 		(7)
'

,$&

'

&

 

 

recapitulates the quadratic cost function (equation (3)) in a form consistent with a BQM 

(equation (1)). See the GC-Content Derivation section in the Supplementary Information 

for a full derivation. 
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Minimize sequentially repeated nucleotides 

To minimize the number of repeated nucleotides in a sequence, all codons 

mapping to sequential positions in the amino acid sequence are compared. Let r(Ci, Cj) 

represent a quadratic function that returns the maximum number of repeated sequential 

nucleotides between codons Ci and Cj, shifted to the origin for null cases by subtracting 

one. For example, 

 

𝑟(𝐴𝑇𝐴, 𝑇𝐶𝐺) = 1+ − 1 = 0 

𝑟(𝐴𝑇𝑨, 𝑨𝐶𝐺) = 2+ − 1 = 3 

𝑟(𝐶𝑮𝑮, 𝑮𝑮𝑮) = 5+ − 1 = 24 

 

Repeated nucleotide penalties are stored in a matrix R, 

 

𝑅&, = 𝑟O𝐶& , 𝐶,P𝛿&, 			(8), 

 

where the delta-function returns 1 if the codons map to sequential positions and 0 

otherwise. 

 

𝛿&, = S
1	𝑖𝑓	𝑖	𝑎𝑛𝑑	𝑗	𝑚𝑎𝑝	𝑡𝑜	𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																			

		(9) 
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Supplementary Figure S1 shows the result of applying this function to the system in 

Figure 1. The total repeated nucleotide penalty for a given nucleotide sequence is given 

by 

 

ℋ- =##𝑅&,𝑞&𝑞,

'

,

'

&

			(10).	 

 

Matrix R is upper triangular, so the pairwise sum can be restricted to upper triangular 

elements without changing the result, making it compatible with the BQM model 

(equation (1)). A tunable constant, cR, is introduced to weight the contribution in the 

Hamiltonian, resulting in the form: 

 

ℋ- = 𝑐-##𝑟O𝐶& , 𝐶,P𝛿&,𝑞&𝑞, 			(11).
'

,$&

'

&

	 

 

Additional constraints to the Hamiltonian 

 The energetic terms described above are designed to add penalties to particular 

sequence properties. The ground state energy of this type of objective function is zero 

since introducing codons increases the score. To counteract this tendency, a constant 

factor, ε, is subtracted from the one-body term of each codon, thereby increasing the 

energetic favorability of introducing codons to the system. The absolute value of the 

constant must exceed the largest value in the one-body vector h (equation (1)). 
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To negate the possibility of assigning more than one codon to a given position, a 

site-specific delta-function is introduced that applies an effectively infinite penalty to 

pairs of codons assigned to the same position. 

 

𝛿.&, = S
∞	𝑖𝑓	𝑖	𝑎𝑛𝑑	𝑗	𝑚𝑎𝑝	𝑡𝑜	𝑠𝑎𝑚𝑒
	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑖𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																										
	(12) 

 

Supplementary Figure S2 shows the result of applying equation (12) to the example 

system referenced in Figure 1. For a system with N possible codons, the Hamiltonian is 

modified by adding the following terms: 

 

ℋ/ = −#𝜀
'

&

+##𝛿.&,𝑞&𝑞,

'

,$&

			(13).		
'

&

 

 

Implementation of objective function 

The Hamiltonian representing the total “energy” of a nucleotide sequence is 

computed by summing the contributions of the expressions defined in the previous 

sections.  

 

ℋ = ℋ% +ℋ() +ℋ- +ℋ/			(14). 

 

Expanding and rearranging the terms gives the form in equation (15): 
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ℋ =#[𝑐%𝜍& −
2𝜌*𝑐()
𝑁 𝑠& +

𝑐()
𝑁+ 𝑠&

+
'

&

−ε]𝑞&

+##i
2𝑐()
𝑁+ 𝜎&, + 𝑐-𝑟O𝐶& , 𝐶,P𝛿&, + 𝛿.&,k 𝑞&𝑞, + 𝑐()𝜌*+

'

,$&

'

&

		(15). 

This form is consistent with the BQM formalism (equation (1)) and can be directly 

implemented into BQM frameworks. 

 

Algorithm implementations 

 The current approach to performing calculations on quantum devices requires 

the interaction terms to be precomputed on classical devices and read into the quantum 

devices via specialized APIs. The one- and two-body interaction terms from equation 

(15) were precomputed in python 3.7 using standard libraries and numpy46 arrays. The 

numpy arrays were converted to dictionaries in accordance with the expected input for 

the quantum device libraries.  

The execution of the BQM was carried out using libraries described in the 

following sections. Each calculation was run 20 times for small peptide fragments (<100 

residues), and full-length proteins were only run one time due to QPU resource 

constraints. Table 1 provides the values of the constants used in the objective function. 

The eigenstate returned by the quantum devices was converted back to a nucleotide 

sequence and translated to a polypeptide sequence to verify the validity of the result. 

Furthermore, the nucleotide sequence was scored using the classical scoring function 

used by the GA, and the result was compared to the eigenvalue returned by the 

quantum devices. Eigenvalues and classical scores agreed to 8 decimal places. 
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D-Wave Advantage 1.1 

The codon optimization BQM was implemented on the D-Wave Advantage 

System 1.1 utilizing the Leap Hybrid Solver1. This adiabatic quantum device contains 

more than 5,000 superconducting qubits. Each qubit is connected to 15 others 

described by a Pegasus P16 graph.42 The Advantage system was accessed through the 

D-Wave Leap web interface, which serves as an access point to QPU hardware as well 

as an integrated developer environment with built-in support for the full D-Wave API. 

The program was constructed and executed using python libraries provided by 

D-Wave systems. The BinaryQuadraticModel class in the dimod 0.9.10 python library 

was used to construct the model from the classically prepared data and convert it to a 

data structure compatible with the quantum device. The one- and two-body interaction 

terms were precomputed, stored in numpy arrays, and passed into the 

BinaryQuadraticModel instance along with an offset of 0.0 and the dimod.BINARY 

representation. The model was executed using the LeapHybridSampler classes in the 

dwave.system python library. The solver was allotted 6 s of execution time for small 

cases (< 100 qubits) and 50 s for larger cases (> 100 qubits). The eigenstate with the 

lowest associated eigenvalue was chosen to represent the result of the simulation. 

 

 
1 https://www.dwavesys.com/sites/default/files/Advantage_Datasheet_v9_0.pdf 
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Qiskit Qasm Simulator 

 The BQM was implemented in qiskit through the IBM Experience web interface. 

This interface provides access to IBM Q hardware and an integrated developer 

environment served by Jupyter Notebooks with all fundamental Qiskit 0.16.4 python 

libraries installed.41 The IBM Experience provides limited free access to quantum 

devices, but the available devices were too small (<= 15 qubits) to sample the codon 

optimization BQM problem, so a noisy simulator hosted by the IBM Experience on 

classical hardware was used in its place. 

 The program was constructed and executed using python libraries provided by 

IBM Qiskit. The core of the implementation builds on the QuadraticProgram base class 

from the qiskit.optimization library. The codons were appended to the model as binary 

variables, physically represented by qubits. The objective function was constructed as a 

minimization with the one- and two-body precomputed terms and an offset of 0.0. The 

model was simulated using the Aer class with the qasm_simulator backend and 

FakeVigo noise data, both from the Qiskit library, and the simulator was converted to an 

executable Quadratic Unconstrained Binary Optimization (QUBO) model with the 

MinimumEigenOptimizer from the qiskit.optimization.algorithms library. Finally, the 

combinatorial optimization was carried out with QAOA37 from the qiskit.aqua.algorithms 

library. The program was run with default values where possible. 
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Classic genetic algorithm 

 A basic single-threaded genetic algorithm with an objective function 

mathematically equivalent to equation (15) was implemented in Python 3.7 using 

standard libraries and BioPython 1.78.47 For polypeptide fragments (<= 20 residues), 

the simulations were run for 100 iterations (generations), with each generation 

procreating 50 times. For full-length sequences (> 100 residues), the number of 

iterations was increased to 6000. The calculations were run on the Leap web interface 

to provide an accurate execution time comparison to the AQC calculations. See the 

Genetic Algorithm Validation section in the Supplementary Information for performance 

metrics. 

 

Test applications 

 Sample peptide sequences were obtained by splitting the human severe acute 

respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) spike glycoprotein 

sequence (UniProtKB–P0DTC2) into shorter peptide fragments for simulation on the 

resource-constrained systems. The sample preparation for the D-Wave system yielded 

62 peptides of length 20 and one additional peptide of length 15. The IBM Qasm 

simulator was simulated with 313 peptides of length 4 and one additional peptide of 

length 3. Additionally, 10 full-length proteins associated with SARS-CoV-2 studies were 

scored using the AQC and the GA for comparison. See the Sequences section of the 

Supplementary Information for the full list. 
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Tables 

 
cf 0.1 
cGC 1 
cR 0.1 
ε 1 
rT 0.5 

 
Table 1. Constants used in equation (15). 
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