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ABSTRACT 

In the last 12,000 years, human societies have scaled up from small bands to large states of millions 

and even billions. Many modern societies and even groups of societies cooperate on large-scale 

projects with relatively low levels of conflict, but the scale and intensity of cooperation varies 

dramatically between societies. Here we attempt to formalize dynamics that may be driving this rapid 

increase in cooperation and the differences we see between societies. Our model extends an N-person 

stag hunt to include population growth dynamics, “stags” with different sized payoffs, and 

competition for these stags. An increasing number of cooperators is required to access larger stags. 

The payoff from these stags in turn increases carrying capacity, which increases competition for the 

stag. As population size increases, new cooperative thresholds are attainable, and as population size 

shrinks, previously attainable thresholds fall out of reach. Among other predictions, we show that 

when a new threshold is accessible to a population, the level of cooperation will increase to reach this 

threshold. However, when the next threshold is out of reach, cooperation decreases as individuals 

refrain from costly cooperation, preferring a smaller stag. This model offers a framework for 

understanding the rapid increase in the scale of human cooperation and decline of violence, 

differences between societies, and challenges to future cooperation.  

INTRODUCTION 

The evolution of cooperation and its role in human cultural evolution is a widely investigated topic 

(reviewed in Henrich & Muthukrishna, 2021). We theoretically explore how resource availability 

impacts the cooperation among individuals and make predictions about when to expect increasing 

and decreasing levels of cooperation. This work is connected to previous theoretical and empirical 

approaches that explore topics related to cooperation and competition (Ito & Doebeli, 2019; Pacheco 

et al., 2009). Here we investigate a setting in which individuals cooperatively produce rewards, in a N-

person stag hunt cooperation game. In the game, each individual can decide to either cooperate or 

defect. If they chose to cooperate, then they pay a personal cost but help the community to come 
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closer to receiving a communal reward. If they defect, then they do not pay any cost, but they still 

receive the communal reward if the cooperators are successful A communal reward is achieved if the 

number of individuals choosing to cooperate (𝑘) meets a selected threshold (𝑀). This threshold is the 

number of individuals required to access a resource. As an example, consider the increasing manpower 

and infrastructure needed to land a whale, mine coal or refine oil. If this threshold is reached then all 

members of the community receive an equal share of the communal reward, even those who choose 

to defect. In the model we present, the returns for cooperating grow exponentially with more 

cooperators. The exponential growth relationship models characteristic of various energy revolution 

humanity has gone through, for example hunter-gatherers mainly using fire over the systematic use of 

solar energy among horticulturalists and modern humans nuclear energy (Smil, 2015, 2017). Each of 

these energy revolutions lead to an exponential increase in energy returned on energy invested (EROI). 

However, to access these new energy technologies more cooperators than before working together 

on these technologies. This means that the returns for cooperating exponentially increase as the 

number of cooperators increases. In terms of animals, this is equivalent of saying that if you have 

enough hunters you can cooperate and catch a stag, such as is described in the classic stag hunt. 

However, if even more people cooperated you could hunt for a larger animal, such as a bear, and the 

meat from that bear would be twice as much as from a stag, and so on growing exponentially with 

more cooperators, or hunters in this example.  

The chosen approach differs from the classic 𝑁-person stag hunt model (Pacheco et al., 2009) in the 

following ways:  

1. There are multiple thresholds for the number of required cooperators to yield a reward. These 

thresholds increase in size and as larger thresholds are reached a larger reward is provided.  

2. The size of the communal return is not scaled based on the number of cooperators. In the 

classic model this feature helps to incorporate the benefit of having more cooperators than 

needed to surpass the threshold. In our model, this benefit is included in the ability to reach a 

larger threshold.  

3. The model population growth dynamics whereas in the classic 𝑁-person stag hunt model, 

population size is held constant. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.432029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.432029
http://creativecommons.org/licenses/by-nc-nd/4.0/


Size of Stag Determines Level of Cooperation   Schnell, Schimmelpfennig, Muthukrishna 

3 
 

MODEL 

Parameters and Variables 

The parameters of our model are 𝐹, a multiplication factor which controls the size of the communal 

return (“the size of the stag”) as a multiple of 𝑐, the cost of cooperating. 𝑀, the threshold values for 

cooperators required to reach the communal rewards. 𝑘 , the number of cooperators in the 

community. 𝑁0, the initial population size of the community. 𝑟𝑚𝑎𝑥, the maximum growth rate of the 

population. 𝛼 the strength of average utility in determining carrying capacity. 𝛽, the factor by which 

communal returns increase, or how many times larger the current return is the return for reaching the 

next threshold. 

The variables of our model are 𝑥, the likelihood of an individual to cooperate, and 𝑁, the population 

size. 𝑥’s value is dependent on the difference between the utility of cooperators and defectors, where 

𝑥 is at equilibrium when cooperators and defectors have equal utility. 𝑁’s rate of change is determined 

by 𝑟𝑚𝑎𝑥 and the carrying capacity of the population. The carrying capacity is in turn dependent on the 

average utility in the community, where a larger average utility means a higher carrying capacity (see 

Section: Change in population size). 

 

Parameter Role Range 

F Multiplication factor controlling the size of the communal return (1, ∞) 

K Number of cooperators in the population Integer, k < N 

M Number of cooperators required to achieve a communal reward Integer, M > 0 

rmax Maximum population growth rate rmax > 0 

N0 Initial population size Integer, N0 > 0 

α Control for the strength of average utility in determining carrying 

capacity 

0 < α < 
𝑁0𝑁

𝑐(1−𝐹)
 

β The factor by which communal rewards increase (how many times 

larger than the previous reward is the current one) 

β ≥ 1 

c Cost of cooperating, or value of a hare c > 0 

Table 1: Parameters of the model 
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Variable Role Dependent Upon 

x Cooperation rate Expected cooperator and defector utility 

N Population size rmax, α, average utility 

Table 2: Variables of the model 

General Idea 

We specify the utility of an individual in the following way, separating the utility of defectors (𝑈𝐷) and 

cooperators (𝑈𝐶). 

𝑈𝐷(𝑘) =
𝐹 ∙ 𝑐

𝑁
𝛽
⌊
𝑘
𝑀
⌋

⏟      
𝐶𝑜𝑚𝑚𝑢𝑛𝑎𝑙
𝑟𝑒𝑡𝑢𝑟𝑛

 
(1) 

𝑈𝐶(𝑘) =
𝐹 ∙ 𝑐

𝑁
𝛽⌊
𝑘
𝑀
⌋

⏟      
𝐶𝑜𝑚𝑚𝑢𝑛𝑎𝑙
𝑟𝑒𝑡𝑢𝑟𝑛

−𝑐⏟
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑜𝑠𝑡

= 𝑈𝐷(𝑘)⏟  
𝐶𝑜𝑚𝑚𝑢𝑛𝑎𝑙
𝑟𝑒𝑡𝑢𝑟𝑛

−𝑐⏟
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑜𝑠𝑡

 
(2) 

 

Equation 1 and equation 2 both share a common portion, 
𝐹∙𝑐

𝑁
𝛽⌊

𝑘

𝑀
⌋
, which we call the communal return. 

Every member of the community receives this return. However, as shown in equation 2, cooperators 

also pay an additional cost 𝑐 to their utility. By cooperating in the stag hunt, cooperators miss the 

opportunity for an individual reward and thus pay a cost of 𝑐, for example for the lost hare.  

The communal return can be separated into two parts: 
𝐹∙𝑐

𝑁
 and 𝛽⌊

𝑘

𝑀
⌋
. The term  

𝐹∙𝑐

𝑁
 represents the size 

of the communal return for a given induvial in the population. Again, in terms of stags and hares, 𝐹 ∙

𝑐 states that the utility of a stag is 𝐹 times larger than the utility of a hare (𝑐 as stated above). This stag 

(𝐹 ∙ 𝑐) is then equally split across the entire population of 𝑁 people, and so the utility of the stag is 

divided by 𝑁, or 
𝐹∙𝑐

𝑁
. As F is a parameter of our model, we manipulate the utility ratio of cooperating 

vs. defecting.  The term 𝛽⌊
𝑘

𝑀
⌋
, in turn, specifies the level of communal return, which was reached, or 

the size of the animal caught in the cooperative hunt. That is, the stag is 𝐹 times larger than the hare 

but then subsequent animals are 𝛽 times larger than the previous animal. Thus, 𝑀 is the threshold for 

the number of cooperators required to succeed at a hunt. For every 𝑀 cooperators the next level of 

communal return is reached, with the size of the return increasing for each reached threshold. 𝛽 

represents how much larger the communal return gets for each new threshold reached. So for every 
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𝑀 cooperators, the size of the communal return grows exponentially by some rate 𝛽. This dynamic is 

achieved in the floor function ⌊
𝑘

𝑀
⌋, which is the division 

𝑘

𝑀
 rounded down to the next smaller integer.  

Summarising the dynamics for the communal return we can describe: 

•  
𝐹∙𝑐

𝑁
 as the size of a communal return for one person  

• 𝛽⌊
𝑘

𝑀
⌋
 as the level of the communal return based on which threshold is reached. 

Overall,  
𝐹∙𝑐

𝑁
𝛽⌊

𝑘

𝑀
⌋
 describes the communal return for one individual based on the current number of 

cooperators 𝑘. Notice, when 𝛽 = 1, then the communal return does not increase with subsequent 

surpassing of the threshold, and so we return to a classic N-person stag hunt utility structure. 

Using this formulation, we seek to answer the following research questions: 

1. How does the current level of cooperation influence the future level of cooperation?  

2. How does the cooperation level change when population size changes, if carrying capacity is 

a function of accessed resources?  

To study these questions, we specify how the variables in our model change in the next section. 

Variable cooperation rate 

The cooperation rate 𝑥, so the likelihood of any given individuals in the population to cooperate, is 

specified by the replicator function in equation 3: 

𝑥̇ = 𝑥(1 − 𝑥)(𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁)) (3) 

  

Equation 3 includes two other equations which we must still specify, 𝑓𝐶(𝑥, 𝑁) and 𝑓𝐷(𝑥, 𝑁). 𝑓𝐶(𝑥, 𝑁) 

and 𝑓𝐷(𝑥, 𝑁) represent the expected utility of cooperators and defectors respectively. They are both 

dependent on 𝑥, the cooperation rate of the society, as the communal return will vary with 𝑥. In 

equation 3, we can observe that the cooperation rate changes in such a way that the average utility of 

cooperators and defectors is the same. 
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𝑓𝐶(𝑥, 𝑁) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘

⏟                  
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 

𝑘 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

∙ 𝑈𝐶(𝑘 + 1)⏟      
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

𝑤𝑖𝑡ℎ 𝑘 𝑜𝑡ℎ𝑒𝑟𝑠

𝑁−1

𝑘=0

 
(4) 

𝑓𝐷(𝑥, 𝑁) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘

⏟                  
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 

𝑘 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

∙ 𝑈𝐷(𝑘)⏟  
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑛𝑔 
𝑤𝑖𝑡ℎ 𝑘 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑁−1

𝑘=0

 
(5) 

 

To determine the expected utility of cooperators and defectors, we calculate how likely it is to have 𝑘 

cooperators in the community for every possible value of 𝑘 , given a population size of 𝑁 and a 

cooperation rate of 𝑥 , and multiply it by the utility of cooperating or defecting given those 𝑘 

cooperators (see equation 4 and equation 5). The likelihood is captured in (𝑁−1
𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘. 

This is the product of the possible permutations of 𝑘  cooperators in the population of 𝑁 − 1 

individuals. How likely given the cooperation rate of 𝑥 is it to have 𝑘 cooperators, and how likely 

given a defection rate of 1 − 𝑥  is it to have 𝑁 − 1 − 𝑘  defectors (everyone not cooperating is 

defecting). The reason for only considering 𝑁 − 1 members of the population, rather than all 𝑁, is 

that we are interested in the payoff from cooperating or defecting given the actions of the other 𝑁 −

1 members of the population. The portion relating to the utility of cooperating or defecting is 𝑈𝐶(𝑘 +

1)  and 𝑈𝐷(𝑘) . 𝑈𝐶(𝑘 + 1)  is the payout for cooperating with 𝑘 + 1  cooperators, the other 𝑘 

cooperators in your population plus yourself. 𝑈𝐷(𝑘) is the payout for defecting given that 𝑘 other 

members of the population are cooperating. Combining both terms, we can calculate the expected 

utility of cooperating or defecting for a given cooperation rate of 𝑥 and population size of 𝑁 (see 

equation 4 and equation 5). 

Variable population size 

The change in population size is operationalized by a carrying capacity growth function. The carrying 

capacity is the largest population size that can be maintained by available resources.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.432029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.432029
http://creativecommons.org/licenses/by-nc-nd/4.0/


Size of Stag Determines Level of Cooperation   Schnell, Schimmelpfennig, Muthukrishna 

7 
 

𝑑𝑁

𝑑𝑡
= 𝑟𝑚𝑎𝑥 ∙ 𝑁⏟    

𝐺𝑟𝑜𝑤𝑡ℎ 
𝑟𝑎𝑡𝑒

∙
𝑔(𝑈(𝑥, 𝑁)) − 𝑁

𝑔(𝑈(𝑥, 𝑁))⏟          
𝐶𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟

 
(6) 

𝑔(𝑈(𝑥, 𝑁)) = 𝑁0⏟
𝐵𝑎𝑠𝑒 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

+𝛼 ∙ 𝑈(𝑥, 𝑁)⏟        
𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 

𝑜𝑛 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

 
(7) 

𝑈(𝑥,𝑁) = 𝑥 ∙ 𝑓𝐶(𝑥, 𝑁) + (1 − 𝑥) ∙ 𝑓𝐷(𝑥, 𝑁) (8) 

 

Equation 6 describes how the population size changes with time. It is the product of three different 

terms which influences the growth rate of the population. 𝑟𝑚𝑎𝑥 is a parameter of the model which 

dictates the maximum possible growth rate of the population. 𝑁 is the current population size. The 

population parameter 𝑁  𝑁  s is included in the growth rate function because growth in larger 

populations is faster as there are more individuals who are able to reproduce and increase the 

population. Vice versa if the population is shrinking there are more people who can die and shrink 

the population faster. The final term, 
𝑔(𝑈(𝑥,𝑁))−𝑁

𝑔(𝑈(𝑥,𝑁))
, establishes the carrying capacity of the population 

size. Here, 𝑔(𝑈(𝑥, 𝑁)) specifies the carrying capacity, or the largest possible size of the population. 

When 𝑔(𝑈(𝑥, 𝑁)) > 𝑁  the carrying capacity is larger than the current population and so the 

community could support a growth in the population. In this case the population will increase until it 

reaches the carrying capacity. When 𝑔(𝑈(𝑥, 𝑁)) < 𝑁 , the population shrinks until the carrying 

capacity is reached, as there are more people in the community than can be sustained by the available 

resources. This carrying capacity is itself detailed in equation 7. The carrying capacity can 

accommodate the initial population size 𝑁0 plus some factor of the average utility in the community, 

as described by 𝑈(𝑥,𝑁) in equation 8. Thus, the carrying capacity is directly related to the utility in 

the population. When the larger, cooperative hunt, there is more food to be shared, and the 

community can in turn accommodate a larger population. The carrying capacity increases.  

A negative carrying capacity, in turn, is both intuitively and mathematically not sound. To ensure that 

the carrying capacity remains positive, we place an upper bound on 𝛼 at 𝛼 <
𝑁0𝑁

𝑐(1−𝐹)
. Notice that the 

smallest possible value of the average utility 𝑈(𝑥,𝑁) is 
−𝑐

𝑁
(1 − 𝐹). This is the case when 𝑥 = 1, 

meaning everyone in the population is cooperating. If 𝑀 > 𝑁, so a successful hunt is impossible, then 

everyone pays the cooperation cost of 𝑐 and receives the minimum cooperative reward of 
𝐹∙𝑐

𝑁
. So 
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𝑈(1,𝑁) =
−𝑐

𝑁
(1 − 𝐹). This is the smallest possible value for 𝑈(𝑥,𝑁) because if there were any 

defectors they would yield a larger return than the cooperators and so the average utility would be 

larger. In this case if 𝛼 ≥
𝑁0𝑁

𝑐(1−𝐹)
, then 𝛼 ∙ 𝑈(1, 𝑁) ≥

𝑁0𝑁

𝑐(1−𝐹)
(
−𝑐

𝑁
(1 − 𝐹)) = −𝑁0 . And so 

𝑔(𝑈(1,𝑁)) = 𝑁0 + 𝛼 ∙ 𝑈 ≤ 𝑁0 − 𝑁0 = 0, or 𝑔(𝑈(1,𝑁)) ≤ 0. To ensure that this does not occur 

and that our carrying capacity is always positive we require 𝛼 <
𝑁0𝑁

𝑐(1−𝐹)
. 

RESULTS 

Level of cooperation when population size is fixed 

We attempt to answer research question 1 by examining how the current level of cooperation 

influences future levels of cooperation. We do so by fixing the population size at 𝑁 individuals, in 

effect treating it like a parameter. We then study the behaviour of 𝑥̇ as described in equation 3. We 

observe a decrease in cooperation when 𝑥̇ < 0, and an increase in cooperation when 𝑥̇ > 0. We are 

interested in knowing under what conditions cooperation will either increase, decrease, or stay stable. 

From our definition of 𝑥 being the cooperation rate, its value must be between 0 and 1 .The first two 

terms in equation 3 have no effect on the sign of 𝑥̇ and 𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) dictates the sign of 𝑥̇. If 

𝑓𝐶(𝑥, 𝑁) > 𝑓𝐷(𝑥, 𝑁)  then 𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) > 0  and cooperation is increasing, if 𝑓𝐶(𝑥, 𝑁) <

𝑓𝐷(𝑥, 𝑁)  then 𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) < 0  and cooperation is decreasing. If the average utility of 

cooperators is larger than the average utility of defectors, then cooperation will increase, and vice 

versa. To study the relationship between 𝑓𝐶(𝑥, 𝑁) and 𝑓𝐷(𝑥, 𝑁), we will be rewriting 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) 

(see Rewriting 𝒇𝑪(𝒙,𝑵) − 𝒇𝑫(𝒙,𝑵)): 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = 𝑐 (−1 +
𝐹

𝑁
𝑄(𝑥)) (9) 

𝑄(𝑥) = ∑ (
𝑁 − 1

𝑙 ∙ 𝑀 − 1
) ∙ 𝑥𝑙∙𝑀−1 ∙ (1 − 𝑥)𝑁−𝑙∙𝑀 ∙ 𝛽𝑙−1(𝛽 − 1)

⌊𝑁 𝑀⁄ ⌋

𝑙=1

 (10) 

 

By this we know that 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) = 0, and in turn 𝑥̇ = 0, for 𝑥0 such that 𝑄(𝑥0) =
𝑁

𝐹
. 

Next, we explore conditions that will fix the cooperation rate. We fix the values for 𝑁, 𝑀, and 𝛽 and 

then study the relationship between the cooperation rate 𝑥 and the multiplication factor 𝐹 which fixes 
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cooperation (Figure 1). We are studying the function 𝐹 =
𝑁

𝑄(𝑥)
 where 𝑥 is the variable. In other words, 

for a certain population which cooperates at a rate of 𝑥, how large would the stag need to be for both 

cooperators and defectors to be equally satisfied and not want to switch sides? This is an interesting 

question, as it will enable us to give us the value for the multiplication factor𝐹 , which fixes the 

cooperation rate. This it provides insights into the level of cooperation relative to the size of the 

cooperative reward.  

 

Figure 1. The F value needed to stabalize the cooperation rate (N=20, β=2). 

Extreme levels of cooperation (𝑥 approaching 0 or 1) are only sustainable for very large cooperative 

rewards. This is explained in lim
𝑥→0,1

𝑄(𝑥) = 0, so lim
𝑥→0,1

𝐹 =
𝐹

𝑄(𝑥)
= ∞. Intuitively, when cooperation 

is very low, near 0, then a successful hunt is extremely unlikely .The only reason to cooperate in that 

scenario is if the size of the stag is large enough to increase the expected utility albeit the low odds of 

a successful hunt. Similarly, when cooperation is very high, near 1, a successful hunt is nearly 

guaranteed. In this scenario, individuals are incentivized to defect and free-ride on the cooperative 

reward. However, if the stag is extremely large, then cooperating becomes viable as the added security 

of having an extra cooperator for such a large reward is more valuable than defecting to catch the 

hare. This way of thinking does not apply if having everyone cooperate is its own threshold, thus 

cooperating is still viable for a smaller stag (ex: the case of 𝑀 = 10 with 𝑁 = 20 in Figure 1).  
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In general, the optimal value of the multiplicator factor 𝐹 is at its lowest near cooperation rates equal 

to a multiple of 
𝑀

𝑁
, or when the cooperation rate is such that it is likely to have just enough cooperators 

to reach a new threshold. For values of 𝑥 slightly below or above a multiple of 
𝑀

𝑁
 , a larger stag is 

required to stabilize the cooperation rate. When the cooperation rate is below 
𝑀

𝑁
, cooperators will want 

to defect as their cooperation is wasted seeing as they are unlikely to reach the next threshold while 

also comfortably remaining in the previous threshold even upon defecting. However, if the stag is 

slightly bigger then they are willing to remain cooperators because the payout from successfully 

reaching the next threshold is increasingly rewarding. Similarly, when the cooperation rate is above 
𝑀

𝑁
, 

cooperators will want to defect as their cooperation is likely to be wasted effort. However, in this case 

the larger stag keeps cooperators as the security of remaining at a threshold is that much more 

important as the reward for doing so is larger. We can furthermore observe that the required F of the 

cooperative reward is generally decreasing. This is because with each new threshold reached, the 

communal return becomes exponentially larger and so the difference between cooperating and 

defecting is less relevant, as the cooperation cost c is fixed. Individuals are still satisfied even with a 

smaller multiplication factor 𝐹. As seen in Figure 1, if M is sufficiently small, in this case M=3, this 

pattern disappears. Instead the optimal value of F is always decreasing except at the very high extreme 

(for the same reasons explained above). When reaching the next threshold is within reach, cooperation 

should be always optimal.  

We can derive two conclusions from these results. Firstly, people cooperate because it yields larger 

utility than defecting. When the likelihood of successfully cooperating is very low, individuals are only 

cooperative if the size of the reward offsets the low probability. If the returns from cooperating aren’t 

sufficient for the risk involved, then individuals will defect instead. Secondly, when the current level 

of communal reward is larger, individuals are more willing to take a risk on cooperation.  

Next, we consider how the current level of cooperation effects the future change in cooperation. We 

do so by once again fixing our population size N and studying the behaviour of 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) with 

respect to 𝑥. We plot 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) for multiple values of 𝑀, as 𝑀 influences the general shape of 

this plot. We set 𝐹 =
𝑁

𝑄(𝑥0)
, where 𝑥0  is the smallest number in (0, 1) such that 𝑄′(𝑥0) = 0 and 

𝑄′′(𝑥0) < 0 (Figure 2). As explained above, this value for 𝐹 will ensure that 𝑓𝐶(𝑥0) − 𝑓𝐷(𝑥0) = 0 

and by our selection of 𝑥0, this stable level of cooperation will occur at the first spike in cooperation. 
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We observe different patterns for 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) depending on the relationship between 𝑀 and 𝑁. 

Recall that cooperation is increasing when 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) > 0  and decreasing when 𝑓𝐶(𝑥) −

𝑓𝐷(𝑥) < 0. If 𝑀 ≤
1

2
𝑁, we observe multiple spikes and drops in the change of cooperation. This case 

shows how the level of cooperation may fluctuate between increases and decreases depending on the 

current level of cooperation. We note that the behaviour depicted in the graphs does not in fact depict 

how cooperation levels change across time, but rather depicts a snapshot of how the current level of 

cooperation will affect future levels of cooperation. Second, when the line in Figure 2 intersects the 

x-axis then 𝑓𝐶(𝑥) − 𝑓𝐷(𝑥) = 0 and that level of cooperation is fixed. As such this figure does not 

state that the level of cooperation will go through phases of rising and falling cooperation, but rather 

suggests that rises and falls in cooperation are finite. If 𝑀 >
1

2
𝑁 then there is only one possible 

threshold to be reached and so the behaviour mimics that of the original 𝑁-person stag hunt. In both 

cases, spikes in cooperation occur near values of 𝑥 equal to a multiple of 
𝑀

𝑁
. More specifically they 

occur at 𝑥0𝜖(0, 1) such that 𝑄′(𝑥0) = 0 and 𝑄′′(𝑥0) < 0.  

Intuitively, this behaviour of spikes and dips occurs because when a new cooperation threshold is 

within reach, individuals are most likely to switch from defecting to cooperating. As such, the change 

in cooperation rate is highest near this threshold. Similarly, the change in cooperation rate is lowest 

when directly between two thresholds when furthest from either one. This is because the increase in 

cooperation is driven by the reward of successfully reaching a threshold. If there is no threshold to be 

met realistically, there is no incentive to pay the cooperation cost c is low. Value is also placed on 

continuing to cooperate, when one threshold has just been met to add security to the cooperation and 

not accidentally fall below a threshold. We also see a general increase in future cooperation given an 

increase in current cooperation. This is because as the benefit of cooperation increases with new 

thresholds reached, then the comparative benefit of defecting is comparatively less valuable. 

Furthermore, the benefit of reaching an even further level, or of not falling below the current level, is 

itself larger and more valuable. 

Similar to in Figure 1, there is a different behaviour when 𝑀 is sufficiently small. Here we find that 

the change in cooperation is always increasing, until it becomes impossible to reach another threshold. 

The reason for this behaviour is that, when 𝑀 is small enough, even after one threshold is successfully 

reached the next threshold is already within reach. Typically, after the rate of cooperators reaches a 

point such that one threshold is comfortably met, it becomes comparatively more worthwhile to defect 
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as defectors can be confident in receiving the communal reward whereas there is no benefit for there 

being more cooperators. This behaviour continues until the next threshold is within reach, and then 

the payout for cooperating increases as there is now an added benefit for cooperating. However, in 

the case of a sufficiently small 𝑀, the next threshold is always close enough to be within reach and the 

utility for cooperators is increasing comparatively to the utility of defectors. 

 

Figure 2. The effect of the current cooperation rate on 

 future cooperation change (N=30, c=1, F=N/Q(x0), β=2). 

When the size of the population is fixed the change in cooperation generally increases, albeit with 

spikes and dips. In terms of the behaviour of 𝐹, this is seen in the fact that a stable population is 

available with a smaller 𝐹 value near thresholds before rising again. However, over time the value of 

𝐹 appears to be generally falling. When it comes to the way current cooperation influences future 

cooperation, we find that cooperation increases most near a threshold. This is because when a new 

threshold is within reach then people will start cooperating more to reach this new threshold. 

Otherwise people are likely to defect because it is more personally beneficial. 

Change in population size when cooperation rate is fixed 

Before we can answer research question 2, we must examine how population size changes when the 

cooperation rate is fixed, as described in equation 6. Recall that the behaviour of 
𝑑𝑁

𝑑𝑡
, and in turn how 

the population size changes, is dictated by 
𝑔(𝑈(𝑥,𝑁))−𝑁

𝑔(𝑈(𝑥,𝑁))
. As explained in the Variable population size 
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section, we have selected 𝛼 in such a way that 𝑔(𝑈(𝑥, 𝑁)) > 0 is always true. This means that the 

sign of 
𝑔(𝑈(𝑥,𝑁))−𝑁

𝑔(𝑈(𝑥,𝑁))
 is only controlled by 𝑔(𝑈(𝑥, 𝑁)) − 𝑁. If 𝑁 > 0 and 𝑟𝑚𝑎𝑥 > 0, then by equation 

6, the sign of 
𝑑𝑁

𝑑𝑡
  is only determined by  

𝑔(𝑈(𝑥,𝑁))−𝑁

𝑔(𝑈(𝑥,𝑁))
 and in turn the sign of 𝑔(𝑈(𝑥, 𝑁)) − 𝑁. Notice 

then that if 𝑔(𝑈(𝑥, 𝑁)) > 𝑁, then 
𝑑𝑁

𝑑𝑡
> 0, if 𝑔(𝑈(𝑥, 𝑁)) < 𝑁, then 

𝑑𝑁

𝑑𝑡
< 0, and if 𝑔(𝑈(𝑥, 𝑁)) =

𝑁, then 
𝑑𝑁

𝑑𝑡
= 0. This relationship between the current population size and the community’s carrying 

capacity determines how the population size changes. 

It is important to note that the current population size also influences the carrying capacity. As 

described in equation 7, carrying capacity is a function of 𝑈(𝑥,𝑁), the average utility of an individual 

in the community. This means that as the population size increases, each individuals’ share of the 

communal reward decreases, and so average utility and the carrying capacity decreases. However, as 

the population size increases with the cooperation rate fixed, a share of new individuals in the 

population will be cooperators. Thus, more possible cooperators are available to reach the next 

threshold of the communal reward. This would yield a large increase to the average utility and the 

carrying capacity. As such we predict to see the carrying capacity go through a steady decline, followed 

by a large increase when a new threshold is met. This prediction is mirrored in the results shown in 

Figure 3. In Figure 4 shows how the carrying capacity translates into population change. Here when 

population growth is above the x-axis then the population is growing and when population growth is 

below the x-axis then it is shrinking. We see that in some conditions the population size is actually 

larger than the carrying capacity. Even though the carrying capacity is steadily increasing, it does at a 

slower rate than the population size. As a result, for some values of population size, the carrying 

capacity has stable points which it cannot surpass. We do see, however, that the carrying capacity 

continues to grow faster than the population size. This is because as the communal rewards grow 

exponentially, having a larger population with more cooperators is more beneficial then the cost in a 

sharing amongst more people. 
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Figure 3. The effect of population size on carrying capacity 

(F=600, α=1, c=1, M=18, x=0.75, N0=20, β=2). 

 

Figure 4. The effect of population size on population growth 

(F=600, α=1, c=1, M=18, x=0.75, N0=20, β=2). 

We also look at how different cooperation rates impact the carrying capacity of the population (Figure 

5). To do so, we vary the cooperation rate and find the largest population size 𝑁 , such that 

𝑔(𝑈(𝑥, 𝑁)) > 𝑁. In this way we are considering how an increase in cooperation rate and an increase 

in population will influence the carrying capacity, with the later effect being described above. We find 

that as the level of cooperation increases, so does the carrying capacity. This increase is at first gradual 

but becomes steeper with time, because with a higher level of cooperation, more rewarding thresholds 

are reached. This provides larger increases to average utility and to the carrying capacity. There is the 

possibility that at some critical cooperation rate 𝑥0, the carrying capacity increases towards infinity. 

This occurs when the increase in carrying capacity from reaching a new threshold introduces enough 

new cooperators into the community that the following threshold is itself reached.  
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Figure 5. The effect of cooperation rate on the 

 carrying capacity (F=100, α=1, c=1, M=8, N0=20, β=2). 

Given a rising level of cooperation or a rising population size, the carrying capacity of the community 

rises allowing for the population size to further increases. This behaviour is driven by the fact that as 

the number of cooperators becomes large enough that a new threshold for a communal reward is 

possible, then the average utility of each member of the community receives a large increase. This, in 

turn, also produces a large increase in the carrying capacity. However, in between thresholds, there is 

a slight drop in average utility and carrying capacity, as there are more individuals with whom to share 

resources.  

Variable levels of cooperation rate and population size 

Finally, we consider how the change in population size influences the change in cooperation rate and 

vice-versa. There are a couple ways we can examine this relationship. Firstly, we have already examined 

how different cooperation rates influences the carrying capacity in Figure 5. We can also examine the 

stable points of both cooperation rate and population size, drawing from equation 3 and equation 6. 

Here we are left with the following equations for these stable points: 

(1) 𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = 0 

(2) 𝑔(𝑈(𝑥, 𝑁)) − 𝑁 = 0 

And with a substitution for 𝑔(𝑈(𝑥, 𝑁)) 

(2) 𝑁0 + 𝛼 ∙ 𝑈(𝑥, 𝑁) − 𝑁 = 0 

(2) 𝑁0 + 𝛼 ∙ (𝑥 ∙ 𝑓𝐶(𝑥, 𝑁) + (1 − 𝑥) ∙ 𝑓𝐷(𝑥, 𝑁)) − 𝑁 = 0 

To solve this, we first multiply (1) by 𝛼 ∙ (1 − 𝑥) and then add it to (2) 
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(3) 𝑁0 + 𝛼 ∙ 𝑥 ∙ 𝑓𝐶(𝑥, 𝑁) + 𝛼 ∙ (1 − 𝑥) ∙ 𝑓𝐷(𝑥, 𝑁) − 𝑁 + 𝛼 ∙ (1 − 𝑥) ∙ 𝑓𝐶(𝑥, 𝑁) − 𝛼 ∙ (1 − 𝑥) ∙

𝑓𝐷(𝑥, 𝑁) = 0 

(3) 𝑁0 + 𝛼 ∙ 𝑥 ∙ 𝑓𝐶(𝑥, 𝑁) − 𝑁 + 𝛼 ∙ (1 − 𝑥) ∙ 𝑓𝐶(𝑥, 𝑁) = 0 

(3) 𝑁0 + 𝛼 ∙ 𝑓𝐶(𝑥, 𝑁) − 𝑁 = 0 

This means the relationship between 𝑥 and 𝑁 to fix both the cooperation rate and the population size 

is: 

𝑓𝐶(𝑥, 𝑁) =
𝑁 − 𝑁0
𝛼

 (11) 

 

Note that this equation cannot be easily solved as 𝑁 determines the upper limit of the sum in 𝑓𝐶(𝑥, 𝑁) 

and 𝑁 must be an integer. We can however plot the relationship between 𝑁 and 𝑥, however 𝑁 cannot 

be the dependent variable for these same issues. We then have 𝑁 as the independent variable and we 

plot the value of 𝑥 which solves equation 11 (Figure 6). Recall also that equation 11 represents the 

combination of 𝑁 and 𝑥 which fixes both change in cooperation rate and change in population size. 

We see that as population increases, there is at first a spike in cooperation before gradually decreasing. 

This tells us that to ensure that both the population size and the level of cooperation are stable, the 

larger the population size, the less cooperation there will be. This is likely since as population size 

increases there are more people competing over resources and so defecting becomes a better solution 

to ensure that you receive the highest payout possible. As such, in larger populations, where there is 

more resource scarcity, cooperation is punished as cooperating requires one to pay a personal cost 

which is relatively more costly now that there are more individuals with whom to share the communal 

reward. This can also be interpreted by saying that as the population size increases, it is possible to 

transfer the burden of producing cooperators from the cooperation rate onto the size of the 

population without lowering the total number of cooperators. In this way its still the same threshold 

being reached as before, but now more people are defecting. 
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Figure 6. The solution to Equation 11 with N as the  

independent variable (F=100, α=1, c=1, M=10, N0=20, β=2). 

We can also perform the same analysis as in Figure 6, seeing how increasing our population size 

changes the level of cooperation, but by basing the level of cooperation on our equation for 𝑥̇, rather 

than equation 11. Here we study how a change in population size impacts where cooperation is stable 

(Figure 7). This analysis does not take into account whether the population sizes are actually possible 

given our carrying capacity, which explains why the trend is different than in Figure 6, where the 

carrying capacity was a factor. Here we are simply interested in the way an increase in population size 

changes the cooperation rate. In Figure 7 we see that there are multiple stable levels of cooperation, 

which follow two trends. The first trend is a similar gradual decrease as is also depicted in Figure 6. 

The other trend is one of decrease followed by a return to total cooperation. This second trend always 

remains near a cooperation rate of 1. This suggests two equilibria for playing the game with an 

increasing population. One possibility is that as population size increases, cooperation drops as each 

individual’s share of the communal reward is now smaller. Thus, individuals will prioritize themselves 

over their community. The other possibility is that as population increases, cooperation decreases, for 

the same reasons as the first trend, until reaching a point where a higher threshold can be reached and 

so cooperation increases back to complete cooperation, or 𝑥 = 1.  
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Figure 7. The multiple stable cooperation rates at increasing  

population sizes (F=75, α=1, c=1, M=8, N0=20, β=2). 

Another point to consider is how changing population size effects the relationship between current 

cooperation levels and change in cooperation (see Figure 2). Instead of keeping population size fixed, 

as in Figure 2, we set the population size to be at the current carrying capacity for the selected level of 

cooperation (Figure 8). For this exercise it is important to select values for our parameters such that 

the carrying capacity does not approach infinity, as seen in Figure 5, otherwise it would be impossible 

to set the population size to the carrying capacity. Here we see the same general behaviour as in Figure 

2, but with more dramatic spikes and dips. The reason for the peaks being higher and the dips lower 

is explained by the fact that the population is at the carrying capacity and thus in a resource scarce 

environment. In the case where the next threshold is within reach, then increasing cooperation will 

create a large surplus of resources that will be able to maintain the large population. In the case where 

the next threshold is not within reach, we find a decrease in cooperation as the cost of cooperating is 

comparatively more expensive in a resource scarce environment. Furthermore, decreasing cooperation 

could also decrease the carrying capacity ensuring that there are less people with which to share 

resources. In all we see a pattern where, as cooperation increases, there is a general trend for 

cooperation to keep increasing in the future. However, this increase in cooperation is also surrounded 

by temporary decreases. 
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Figure 8. The effect of the current cooperation rate on future cooperation change 

 with a population size equal to the carrying capacity (F=75, c=1, α=0.2, N0=20, β=2). 

DISCUSSION 

Our model attempts to explain the mechanisms which drive cooperation. We build upon previous 

attempts to do so, namely the N-person stag hunt (Pacheco et al., 2009). We build our model upon 

the insight that that as more people cooperate, they are able to reach for larger rewards. Put differently, 

there is not only the option to defect and catch the hare or cooperate and catch the stag, but with a 

increasing group of cooperators even bears and whales can be caught. As such we see stages in 

cooperation. When there are enough cooperators to reach the next threshold, which would in turn 

greatly benefit the population, then cooperation increases. When the next threshold is out of reach 

then we see a decline in cooperation as it becomes beneficial to place oneself above others. When we 

consider the effects of a changing population size this behaviour becomes more dramatic. Larger 

populations place larger cooperative thresholds within reach, but there are also more people to share 

available resources with.  

Something we notice in our model is that the trends tend to become weaker as higher cooperative 

thresholds are reached. In Figure 1 the multiplication factor 𝐹 for a stable cooperation rate generally 

decreases when cooperation is higher and in Figure 3 the cost of a higher population to the average 

utility is reduced with time. This is tied to our model prediction that cooperation will be high when 

resources are plentiful and low when resources are scarce. As cooperation increases, the returns from 

cooperation are exponentially larger. This means that the utility of the population is much higher in 
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these cases, and so even in situations where defection should be highest, between thresholds, resource 

scarcity is not so severe. Cooperation generally remains high. This same dynamic occurs when 

population increases. A larger population means larger cooperative returns, and so even though there 

are more people to share with, the population is generally better off. 

There are two things we have not yet fully considered yet. Firstly, population size does not increase 

all at once. In our analysis we do not consider how populations gradually grow in size, but rather we 

imagine scenarios where the population size immediately reaches the carrying capacity. In a future 

simulation of the model, we could capture a more dynamic population size which grows in a more 

realistic manner. Secondly, resources in our model are always evenly split. This leads to population 

increases being generally favourable in our model, as the benefits of having a larger population and 

thus reaching a larger threshold outweigh the cost of sharing resources amongst more people. A more 

realistic assumption is that resources are not evenly shared. In that scenario, the effects of population 

increases may not be so straightforward, and there may be more severe movements in terms of 

cooperation rates in between thresholds. 

There are 4 interactions to be studied in the model. How current cooperation effects future 

cooperation, how current cooperation effects future population, how current population effects future 

cooperation, and how current population effects future cooperation. The general trends are as follows: 

• As the current cooperation increases then future cooperation will generally increase with some 

spikes and dips 

• As the current cooperation increases then future population increases (through carrying 

capacity) with the possibility of a carrying capacity of infinity 

• As the current population increases then future cooperation can either decrease or generally 

stay at near full cooperation  

• As the current population increases then future population will generally increase with some 

spikes and dips  
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APPENDIX 

Rewriting 𝒇𝑪(𝒙,𝑵) − 𝒇𝑫(𝒙,𝑵) 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ 𝑈𝐶(𝑘 + 1)

𝑁−1

𝑘=0

−∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ 𝑈𝐷(𝑘)

𝑁−1

𝑘=0

 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ (𝑈𝐶(𝑘 + 1) − 𝑈𝐷(𝑘))

𝑁−1

𝑘=0

 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ (

𝐹𝑐

𝑁
𝛽⌊
𝑘+1
𝑀
⌋ − 𝑐 −

𝐹𝑐

𝑁
𝛽⌊
𝑘
𝑀
⌋)

𝑁−1

𝑘=0

 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ (

𝐹𝑐

𝑁
𝛽⌊
𝑘+1
𝑀
⌋ −

𝐹𝑐

𝑁
𝛽⌊
𝑘
𝑀
⌋)

𝑁−1

𝑘=0

− 𝑐∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘

𝑁−1

𝑘=0

 

With ∑ (𝑁−1
𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘𝑁−1

𝑘=0 = (𝑥 + (1 − 𝑥))
𝑁−1

= 1, we get: 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = −𝑐 +∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ (

𝐹𝑐

𝑁
𝛽⌊
𝑘+1
𝑀
⌋ −

𝐹𝑐

𝑁
𝛽⌊
𝑘
𝑀
⌋)

𝑁−1

𝑘=0

 

𝑓𝐶(𝑥, 𝑁) − 𝑓𝐷(𝑥, 𝑁) = 𝑐 (−1 +
𝐹

𝑁
∑ (

𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ (𝛽⌊

𝑘+1
𝑀
⌋ − 𝛽⌊

𝑘
𝑀
⌋)

𝑁−1

𝑘=0

) 

So, we can say: 

𝑄(𝑥) = ∑ (
𝑁 − 1

𝑘
) ∙ 𝑥𝑘 ∙ (1 − 𝑥)𝑁−1−𝑘 ∙ (𝛽⌊

𝑘+1
𝑀
⌋ − 𝛽⌊

𝑘
𝑀
⌋)

𝑁−1

𝑘=0
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Notice that because 𝑘 must be an integer 𝛽⌊
𝑘+1

𝑀
⌋ = 𝛽⌊

𝑘

𝑀
⌋
 unless 𝑘 = 𝑙𝑀 − 1 where 𝑙 ≥ 1 and 𝑙 is an 

integer. In cases where 𝛽⌊
𝑘+1

𝑀
⌋ = 𝛽⌊

𝑘

𝑀
⌋
, then 𝛽⌊

𝑘+1

𝑀
⌋ − 𝛽⌊

𝑘

𝑀
⌋ = 0 and so has no influence on the result 

of the sum. Thus, we only need to examine the terms of the sum where 𝑘 = 𝑙𝑀 − 1 . By this 

observation we can rewrite 𝑄(𝑥) as the following: 

𝑄(𝑥) = ∑ (
𝑁 − 1

𝑙𝑀 − 1
) ∙ 𝑥𝑙𝑀−1 ∙ (1 − 𝑥)𝑁−𝑙𝑀 ∙ (𝛽⌊

𝑙𝑀
𝑀
⌋ − 𝛽⌊

𝑙𝑀−1
𝑀

⌋)

⌊𝑁 𝑀⁄ ⌋

𝑙=1

 

𝑄(𝑥) = ∑ (
𝑁 − 1

𝑙𝑀 − 1
) ∙ 𝑥𝑙𝑀−1 ∙ (1 − 𝑥)𝑁−𝑙𝑀 ∙ 𝛽𝑙−1(𝛽 − 1)

⌊𝑁 𝑀⁄ ⌋

𝑙=1
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