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Summary 
Methylation on CpG residues is one of the most important epigenetic modifications of nuclear 

DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been 

studied using whole genome bisulfite sequencing (WGBS), but recent evidence has 

uncovered major technical issues which introduce a potential bias during methylation 

quantification. Here, we validate the technical concerns with WGBS, and then develop and 

assess the accuracy of a protocol for variant-specific methylation identification using long-read 

Oxford Nanopore Sequencing. Our approach circumvents mtDNA-specific confounders, while 

enriching for native full-length molecules over nuclear DNA. Variant calling analysis against 

Illumina deep re-sequencing showed that all expected mtDNA variants can be reliably 

identified. Methylation calling revealed negligible mtDNA methylation levels in multiple human 

primary and cancer cell lines. In conclusion, our protocol enables the reliable analysis of 

epigenetic modifications of mtDNA at single-molecule level at single base resolution, with 

potential applications beyond methylation.  
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Motivation 
Although whole genome bisulfite sequencing (WGBS) is the gold-standard approach to 

determine base-level CpG methylation in the nuclear genome, emerging technical issues raise 

questions about its reliability for evaluating mitochondrial DNA (mtDNA) methylation. 

Concerns include mtDNA strand asymmetry rendering the C-rich light strand disproportionately   

vulnerable the chemical modifications introduced with WGBS. Also, short-read sequencing can 

result in a co-amplification of nuclear sequences originating from ancestral mtDNA with a high 

nucleotide similarity. Lastly, calling mtDNA alleles with varying proportions (heteroplasmy) is 

complicated by the C-to-T conversion introduced by WGBS on unmethylated CpGs. Here, we 

propose an alternative protocol to quantify methyl-CpGs in mtDNA, at single-molecule level, using 
Oxford Nanopore Sequencing (ONS). By optimizing the standard ONS library preparation, we 

achieved selective enrichment of native mtDNA and accurate single nucleotide variant and CpG 
methylation calling, thus overcoming previous limitations.  
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Introduction 
Cytosine methylation is an epigenetic modification of nuclear DNA (nDNA) that can 

regulate gene expression during development (Smith and Meissner, 2013) and throughout life 

(Siegfried and Simon, 2010), but the presence of CpG methylation of the mitochondrial 

genome (mtDNA) is a matter of debate. This is an important issue to resolve given the pivotal 

role of mtDNA in cellular metabolism (Suomalainen and Battersby, 2018). 
Whole genome bisulfite sequencing (WGBS) is the gold standard technique for 

detecting methylation across the nuclear genome (nDNA) (Krueger et al., 2012; Wolters et al., 

2017; Sirard, 2019), where sequencing before and after the chemical conversion of 

unmethylated cytosine to uracil allows the degree of methylation to be measured at single-

base resolution. WGBS studies have reported methylation patterns across the mtDNA 

molecule in different biological contexts (Devall et al., 2017). However, recent studies suggest 

that these are influenced by technical artefacts (Hong et al., 2013; Liu et al., 2016; Mechta et 

al., 2017). MtDNA has a purine-rich “Heavy”(H-) and a pyrimidine-rich “Light”(L-) strand 

(Anderson et al., 1981), leading to a disproportionate fragmentation of the cytosine-rich L-

strand by bisulfite treatment (Olova et al., 2018). Moreover, the presence of multiple mtDNA 

genotypes within mitochondria of the same cell (heteroplasmy (Stewart and Chinnery, 2020)), 

and nuclear sequences originated from the mtDNA (NUMTs (Hazkani-Covo, Zeller and Martin, 

2010; Dayama et al., 2014)) are potential confounders for mtDNA methylation detection.  

To overcome these limitations we set out to quantify CpG methylation of native mtDNA 

using long-read based Oxford Nanopore Sequencing (ONS) technology (Jain et al., 2016). 

The core of our protocol is an enzymatic digestion of genomic DNA (gDNA) followed by 

selective enrichment of the longer fragments, in order to retain linearised, full-length native 

mtDNA molecules in this fraction. Given recent evidence that ONS can be used to measure 

differentially methylated nuclear imprinted genes (Gigante et al., 2019), and that long-read 

sequencing enables the detection of NUMTs breakpoints in the nucleus (Wei et al., 2020), our 

approach represent an improvement of the standard ONS library preparation protocol based 

on random fragmentation of the gDNA. We further improve methylation detection by studying 

the accuracy of the methylation calling on mtDNA, using negative and positive controls, while 

simultaneously assessing the validity of the variant calling by comparing our results with 

Illumina sequencing.  
Finally, we investigated the presence of base-level mtDNA methylation in 

human  cancer and primary cell lines, showing negligible levels of mtDNA CpG methylation. 

 
Results  
CpG methylation analysis of mtDNA with WGBS  
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We sought independent evidence that WGBS has limitations for mtDNA by analysing 

data from 67 human cell lines and tissues from the NIH Human Epigenome Roadmap Project 

(Roadmap Epigenomics Consortium et al., 2015). Fifty-five passed quality control (Methods) 

and were aligned to the human genome build GRCh38 (Data S1). Analysis of the mtDNA-

aligned reads revealed a pronounced per-strand mapping and coverage bias observed in 

58.2% (N= 32) samples (here termed the “Biased” group, BG, Figure 1A-B, Figure S1A). The 

majority of reads in the BG mapped to the mitochondrial H-strand (≥ 55% reads;  P = ≤ 0.0001, 

Figure 1A, Figure S1A) and samples showed a more pronounced per-strand coverage bias 

on the L-strand (L-strand coverageBG = 6.2%-88.3%; H-strand coverageBG = 83.5%-91.7%, 

Figure 1B top panel). The remaining data (N = 23, “Low Bias” group), showed a milder 

mapping bias on the H-strand (between 51%-55% reads; P = ≤ 0.0001, Figure 1A, Figure 
S1A) but no coverage bias (Figure 1B bottom panel). We observed differences (Mann-

Whitney test: P = ≤ 0.0001) in the average read depth per position calculated in the two 

groups: 66.32 ± 28.84x BG versus 148.77 ± 55.45x LBG (mean ± sd; Figure 1C). We hence 

performed methylation analysis in both groups and found higher apparent methylation levels 

in the L-strand compared to the H in all samples analyzed (L-strandBG= 4.97% ± 8.79 vs H-

strandBG= 2.01% ± 1.92 (mean methylation ± sd); L-strandLBG= 1.43% ± 0.77 vs H-strandLBG= 

1.39% ± 0.7 (mean methylation ± sd); P = ≤ 0.001;  Figure 1D, Figure S1B). This is explained 

by a significant inverse correlation with the read depth per position (Spearman’s rank test P < 

2.2e-16; average rho coefficient = -0.78, Figure 1E), leading to the appearance of higher 

methylation levels where read depth is low. This holds true also for the Low Bias group (with 

a milder alignment bias), where local fluctuations in the read depth alter CpG methylation 

levels (Figure S1C-D). This is consistent with previous observations indicating a bisulfite-

related selective loss of the cytosine-rich L-strand (Olova et al., 2018). 

 
Design and assessment of an ONS-based protocol for mtDNA CpG methylation 
analysis 

To overcome the problems intrinsic to the WGBS methylation determination, we set 

out to quantify mtDNA CpG methylation using ONS on native human genomic DNA. We first 

established the accuracy of the methylation calling on mtDNA by sequencing a near complete 

PCR amplicon of human mtDNA (negative control, NC, 0% methylated) and a corresponding 

positive control generated in vitro with a recombinant CpG methyltransferase (= PC, 100% 

methylated) (Figure S2A-B). We used Nanopolish software (Simpson et al., 2017) to call 

methylation on PC and NC, which generated log-likelihood ratio (LLR) values of CpG 

methylation (Figure 2A). A site is considered methylated when its LLR is above a certain 

threshold. To choose the most accurate methylation calling threshold for mtDNA, we 
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determined the ratios of true and false positives by varying LLR thresholds values, following 

previous procedures (Simpson et al., 2017) (Methods). We therefore calculated a receiving 

operating characteristic (ROC) and methylation calling accuracy (intended as proportion of 

true calls) (Figure 2B-C). The ability to distinguish between mtDNA unmethylated and 

methylated sites was measured by area under the ROC curve (AUC), which was equal to 0.97 

(Figure 2B). With the default Nanopolish LLR threshold (≥2.5), an accuracy of 97.7% could 

be achieved (Figure 2C). Hence, we chose a more stringent methylation calling threshold 

(LLR ≥ 5) yielding an accuracy of 99% (Figure 2C). Also, by looking at methylation profiles of 

NC, we identified 13 false positive methylated residues (Table S1, Figure S2B), that were 

further removed in downstream analyses of biological samples (Methods).  
Next, we developed a custom-made library preparation protocol (Figure 2D) based on 

the simultaneous linearisation and enrichment of the native full-length mtDNA molecule 

(Figure 2E) through BamHI restriction enzyme digestion (which usually cuts the mtDNA once). 

We tested the efficiency of our modified protocol over the standard ONS library preparation, 

based on random fragmentation, by performing ONS on biological replicates of human DNA 

(N = 3 different gDNA, 5 technical replicates each, 15 in total). We further performed a strict 

filtering on read lengths (selecting between 4000 and 17000 bp) and per read quality (Phred 

≥ 9) before the alignment (Figure S3A-B), followed by supplementary alignments removal. 

While not altering quality parameters (Figure S3C-D), our filtering enriched for full length 

mtDNA sequences in all BamHI-treated samples and reduced NUMT contamination. This was 

determined by sequencing rho0 cells lacking mtDNA (King and Attardi, 1989), where we 

identified only 4 mtDNA-aligned reads with mapping quality of 0 (Figure 2F-G).  
Under these conditions, the fragmentation-based method showed an L-strand bias (L-

strandFRAG= 46.12% ± 5.13, H-strandFRAG= 53.87% ± 5.13, mean methylation ± sd; Anova one-

way test P ≤ 0.001, Figure 3A, Figure S4A) with 6 samples having < 100% coverage (Figure 
3B). On the contrary, the BamHI-based protocol did not show any alignment bias (L-strandBAMHI 

= 50.67% ± 4.07, H-strandBAMHI =  49.32% ± 4.07, mean methylation ± sd;  P = 0.36, Figure 3A) 

or coverage bias (Figure 3B). Average mtDNA read depth was higher in the samples 

processed with the BamHI-based protocol (Frag. = 23.83x ± 4.33, BamHI = 131.73x ± 8.15, 

mean ± sd;  P = ≤ 0.0001, Figure 3C, Figure S4B), with almost half of the mitochondrial reads 

mapped as full-length molecules (≥ 15,000 bp; 42% ± 12 of BamHI reads Vs 2% ± 2 of Frag. 

reads, Figure 2G). 
Samples sequenced using a fragmentation-based protocol showed a greater range 

in  average methylation levels (MinFrag : 5% - MaxFrag : 33%) at low read depths levels (MinFrag 

:  9.16x - MaxFrag : 55.62x) (Figure 3D), while BamHI-based protocol samples achieved similar 

methylation levels (MinBamHI : 2% - MinBamHI: 8%) at higher read depths (MinBamHI : 40.6x - MinBamHI : 

306.2x) (Figure 3D). Overall, these results suggest that our custom-made ONS protocol is 
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more efficient in achieving full-length mtDNA sequences enrichment and higher mtDNA read 

depths than the standard Nanopore library preparation, with low risk of NUMTs co-

amplification. 

 
ONS-based mtDNA sequencing and CpG methylated sites identification in different 
human cell lines 

Next, we tested the efficacy of the BamHI-based library preparation protocol on 2 

groups of human biological samples. First, we sequenced DNA from 3 trans-mitochondrial 

osteosarcoma cybrids with known mtDNAs belonging to different mtDNA human populations 

(haplogroups) (Gómez-Durán et al., 2012) with an identical nuclear background (Chomyn et 

al., 1994) (Group 1, N = 5 biological replicates of 3 independent DNA from the mitochondrial 

haplogroup H1, J1c and J2, respectively) (Data S2). Then, we sequenced mtDNA from 

primary fibroblasts including healthy control subjects, and patients carrying heteroplasmic 

mutation m.8344A>G (MT-TK) and m.3243A>G (MT-TL1), known to cause mitochondrial 

respiratory chain enzyme defects at high levels of heteroplasmy (Shoffner et al., 1990; Flierl, 

Reichmann and Seibel, 1997) (Group 2, N = 3 biological replicates, Data S2). 
First, we applied ONS to detect mtDNA variants and quantify their heteroplasmy. For 

this, we identified mtDNA variants in ONS-sequenced samples and used high depth Illumina 

MiSeq sequencing of mtDNA (mean = 2,769x, min = 318x, max = 5,559x) for validation (Data 
S3). Variant calling analysis confirmed ONS haplogroup predictions of Group 1 samples and 

the detection of the known single nucleotide heteroplasmic variants in Group 2 (Data S3, 

Figure S5). On average, we found 60 mtDNA variants with ≥ 10% heteroplasmy per sample 

with ONS, of which 28 (~47%) were confirmed with Illumina Miseq (Figure 4A right plot). 

These were mostly highly heteroplasmic or homoplasmic variants (heteroplasmyONS = 93% 

±  17%; heteroplasmyMiseq = 96% ±  15%; mean ± sd, Figure 4A left plot, Figure S5). The 

remaining unconfirmed mtDNA variants were mostly low heteroplasmic (heteroplasmyONS = 

16% ± 11%, mean ± sd; Figure 4A eft plot, Figure S5). Heteroplasmies calculated with ONS 

overall tended to correlate better with Illumina at higher read depths (Figure S6). This 

suggests that adjustments to the ONS protocol aimed at reaching higher read depths (e.g. 

longer sequencing times, higher starting sample material, etc) can improve heteroplasmic 

mtDNA variants identification.  
Next, we performed differential methylation (DM) analysis (Gigante et al., 2019), which 

revealed 3 DM-CpGs in Group 1: one found only in the haplogroup J2 (m.16360) cells, and 

two found in both J cell lines (m.10400 and m.16128) (Figure 4B top figure, Data S4). We 

also found 5 DM-CpGs in all Group 2 cells (m.4919, m.9195, m.10400, m.15925, m.16128) 

(Data S4). However, a close scrutiny revealed that an haplogroup-defining variant always fell 

within a ± 5 bp window from a DM-CpG, prompting us to hypothesize that these variants may 
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alter the Nanopolish methylation calling (Methods). To test this, we generated a new reference 

for methylation calling based on a mtDNA consensus sequence built on major mtDNA alleles 

identified with Illumina MiSeq sequencing. DM analysis based on consensus sequence 

returned no significant differences in methylation levels between the samples, indicating that 

the previously identified possible DM-CpGs were artefacts of the Nanopolish calling algorithm 

(Figure 4B bottom figure, Data S4). Using a sample-specific mtDNA reference sequence for 

methylation calling, we measured an average of 195 ± 8 (33.3%) methylated CpGs in Group 

1 and 141 ± 20 (20%) CpGs in Group 2 with 18 CpG found methylated in both Group 1 and 

Group 2 samples (Data S4). Methylation levels were overall low (Figure 4C-D, 

methylationGROUP_1= 0.4%-9.4%, 2%; methylationGROUP_2= 0.4%-8.8%, 1.5%; min-max, mean), with 

only a minority of methylated CpGs shared within groups (27.8% in Group 1 and 9.2% in 

Group 2; Figure S7). Thus, we concluded that neither subtle differences in mitochondrial 

function linked to population variants (Gómez-Durán et al., 2012) nor severe defects caused 

by heteroplasmic pathological tRNA variants (Shoffner et al., 1990; Flierl, Reichmann and 

Seibel, 1997) differentially affect the levels of mtDNA methylation in human cell lines. 

 
Discussion 

The discovery of mitochondrially-targeted methyltransferases (Shock et al., 2011; 

Wong et al., 2013; Patil et al., 2019) has prompted the suggestion that mtDNA CpG 

methylation can be a marker of a variety of diseases including ageing (D’Aquila et al., 2015), 

environmental exposure to tobacco smoke (Vos et al., 2020), cancer (Dong, Pu and Cui, 2020) 

and neurological disease (Blanch et al., 2016; Stoccoro et al., 2017). Currently, quantitative 

analysis of CpGs is mostly based either on mass spectrometry or on the bisulfite treatment of 

gDNA (bisulfite pyrosequencing and WGBS). While the first method is the most sensitive in 

determining the general CpG methylation level of a given sample, it lacks information about 

the position of individual methylated residues (Song et al., 2005). On the other hand, while 

bisulfite-based technologies resolve the CpG methylation at a single-base level, they are 

susceptible to the introduction of biases due to the selective degradation of cytosine-rich 

sequences (both nuclear and on the L-strand of mtDNA) (Ji et al., 2014; Olova et al., 2018). 

Despite this, there is still ample literature which considers WGBS the gold standard technology 

for the analysis of mtDNA methylation (Dou et al., 2019; Patil et al., 2019; Sirard, 2019). In an 

attempt to resolve this controversy, we leveraged 55 publicly available WGBS datasets part 

of the Roadmap Epigenome Project (Roadmap Epigenomics Consortium et al., 2015), 

focussing on describing per-strand sequencing metrics and how these affect the methylation 

profile of mtDNA. Our analysis confirmed that in 58% of the samples bisulfite treatment 

introduces a marked per-strand bias with an impact on global mtDNA CpG methylation levels 
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quantification. In the remaining samples the bias is milder (although present in all of them), 

influencing local stretches of the mtDNA molecule. 
To overcome these limitations, we developed an accurate and reproducible protocol 

to investigate mtDNA methylation using ONS. We tested our method against the standard 

ONS library preparation protocol, based on random fragmentation. Our protocol is based 

instead on selective restriction digestion by BamHI followed by selection of longer sequences, 

which results in an enrichment for native full-length mtDNA. Also, we demonstrated that 

selective exclusion of nuclear DNA combined with the in silico identification of supplementary 

alignments, reduces significantly the risk of NUMTs contamination. Comparing our results with 

Illumina sequencing, we found that our protocol allows the correct calling of the mtDNA 

nucleotide variants present in the samples, including heteroplasmic pathogenic mutations. 

Despite this, we also found a large number of unconfirmed low heteroplasmic single nucleotide 

mtDNA variants, likely due to the error rate intrinsic to ONS chemistry (Dohm et al., 

2020). Finally, our analysis also revealed that the methylation calling with Nanopolish is 

influenced by the presence of mtDNA variants surrounding the CpG residue. In light of this, 

we recommend a careful review of previously identified methylated positions and of differential 

methylation results (Goldsmith et al., 2020). 
Overall, our study indicates that, after removing the technical biases intrinsic to 

previously used techniques and to ONS, there is negligible mtDNA methylation in normal or 

cancer cell lines, at least in the conditions analysed. In conclusion, we recommend the use of 

our protocol for the analysis of epigenetic modifications of mtDNA at single-molecule level and 

that WGBS-based studies that show evidence of mtDNA methylation should be carefully re-

considered (Dou et al., 2019; Patil et al., 2019; Sirard, 2019). 

 

Limitations of Study 
To reproduce this protocol, we suggest starting with at least 2µg of DNA before the BamHI 

digestion. BamHI was specifically chosen because it usually cuts human DNA only once. 

Different restriction enzymes will be needed when extending this approach to other species. 

This protocol may be used to study different kinds of mtDNA epigenetic modifications (such 

as 6mA) at a single-molecule and nucleotide base resolution. 
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Figures Legends 
Figure 1. Quantification of WGBS alignment and coverage bias 
a) Percentage of reads aligned to the mtDNA reference per sample, identifying samples with 

a marked (Bias, N = 32) or low (Low Bias, N = 23) per-strand-bias. b) Percentage of mtDNA 

covered by at least 5 reads on the two mtDNA strands (H and L) in (top) Bias and (bottom) 

Low Bias sample groups. c) Distribution of the average read depth per mtDNA position in the 

two per-strand-bias groups. The red lines indicate the mean over all the data points (calculated 

using the “loess” geom_smooth R function). d)  Quantification of the average CpG methylation 

per strand (H and L), divided by per-strand-bias group. The lower and upper hinges of the 

boxplot correspond to the first and third quartile of the distribution, with median in the center 

and whiskers span no further than 1.5*interquartile range. Stars indicate significance (***: two-

sided P ≤ 0.001;  two-sided ****: P ≤ 0.0001, Wilcoxon test). e) Correlations between average 

read depth and average methylation percentage for every cytosine in CpG context, in the two 

groups of per-strand-bias groups  and mtDNA strands (H and L). Pearson correlation 

coefficient and two-sided P-values are shown. For all the plots in d-e), Average methylation is 

intended as the mean methylation value across all the WGBS samples analyzed.  

 
Figure 2. Overview of the proposed ONS-based protocol for mtDNA methylation calling  
a) Log-likelihood ratio values of methylation calculated by Nanopolish, using the positive and 

negative controls. The log-likelihood range between -20 and 20 (used to build the ROC curve) 

is shown. b) Receiver operating characteristic (ROC) curve calculated by changing the 

methylation call log-likelihood ratio threshold from a value of -20 to 20, with a step of 0.25. The 

dash lines are drawn at FPR (False Positive Rate) and TPR (True Positive Rate) values 

obtained by setting the ratio equal to 5. AUC = area under the curve. c) Methylation call 

accuracy calculated at increasing values of log-likelihood ratio (ranging between 0 and 10). 

The dash line indicates the accuracy achieved at the ratio equal to 5 (accuracy = 0.99). 

d)  Overview of the workflow used to process samples using (left) standard ONT fragmentation 

protocol and (right) BamHI-based protocol. e) Ratio of signal from the mitochondrial MT-ND1 

over RNASE P ddPCR probes in undigested genomic DNA and BamHI-digested genomic 

DNA. N = 4 for each protocol used. Star indicates significance (*: two-sided P = ≤ 0.05, 

Wilcoxon test).  f) Distributions of the total sequenced reads in 3 samples prepared with either 

fragmentation or BamHI-based protocols. Reads from Rho 0 cells (treated with BamHI) are 

highlighted in yellow. Blue dashed lines correspond to the chosen cutoff for read filtering at 

4000bp and 17000 bp. The red dashed line corresponds to the human mtDNA genome length 

(16.5 Kbp). g) Distribution of the aligned reads filtered by length (4000bp -17000 bp) on the 

human mtDNA reference sequence in 3 samples prepared with either fragmentation or 
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BamHI-based protocols. Reads from Rho 0 cells (treated with BamHI) are highlighted in 

yellow. 

 
Figure 3. BamHI-based protocol improves mtDNA reads alignment over the standard 
ONS library preparation 
a) Percentage of reads aligned to the mtDNA reference per strand and per protocol used (N 

= 15 samples per protocol). b) Percentage of mtDNA covered by at least 5 reads on the two 

mtDNA strands (H and L) per biological replicate (N = 15 samples per protocol), in samples 

processed with (top) fragmentation protocol and (bottom) BamHI-based protocol. c) 
Distribution of the average read depth per mtDNA position in samples processed with (top) 

fragmentation protocol and (bottom) BamHI-based protocol. The red lines indicate the 

mean over all the data points (calculated using the “loess” geom_smooth R function) 
. d) Correlation between average read depth and average methylation percentage in samples 

processed with fragmentation- and BamHI-based protocols. Each dot represents a sample 

sequenced with either one of the two protocols (N = 15 per protocol). Pearson correlation 

coefficient and two-sided P-values are shown.  

 

Figure 4. ONS-based variant calling and CpG methylation analysis of mtDNA 
a) Variant calling statistics per each cell line analyzed. Heteroplasmy (left) and percentage of 

single nucleotide mtDNA variants (right) identified with either Illumina Miseq and ONS or ONS 

only. Values are means calculated across all biological replicates per each cell line 

analyzed.  b) Example of how average methylation levels change when hg38 (including the 

mitochondrial reference sequence rCRS) (top) is used versus the sample-specific consensus 

sequence determined by direct Illumina sequencing (bottom). In green are highlighted the 

sample-specific differentially methylated positions which disappear upon reference correction. 

c-d) Circos plots showing the CpG methylation levels detected across the whole mitochondrial 

molecule in Group 1 (c) and Group2 (d) cell lines. Dashed lines indicate 30% (blue) and 10% 

(red) methylation levels.  

 

Data Legends 
Data S1: List and metrics of WGBS samples that passed quality control  
The table includes for each bias group (tabs “Bias” and “Low Bias”): sample IDs and 

descriptions, total sequenced throughput (in basepairs), average mitochondrial read depths 

measured with Samtools depth, number and percentage of reads aligned to each 

mitochondrial strand, coverage per strand. 
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Data S2. List and metrics of samples sequenced with ONS in this study. 
The table includes: sample IDs and descriptions, library preparation method used for 

sequencing with ONS (fragmentation/BamHI), total sequenced throughput (in basepairs), 

average mitochondrial read depths measured with Samtools depth, number and percentage 

of reads aligned to each mitochondrial strand, coverage per strand. 
  
Data S3. Illumina Miseq and ONS sequencing metrics and variant calling 
The table includes: Miseq and ONS sequencing read depth and coverage (percentage of 

mtDNA covered by at least one read) calculated by running the MToolBox pipeline (tab “Read 

depth, coverage, haplo predictions”); haplogroup predictions calculated with MToolBox and 

Haplogrep2 (tab “Read depth,coverage, haplo predictions”); list of mtDNA SNVs identified with 

ONS, with read depth ≥ 30 and variant allele fraction ≥ 10% and corresponding per-base read 

depth and allele fraction quantified with Illumina Miseq (tab “mtDNA variants”).   
  
Data S4: ONS methylation analysis results 
The table includes: average methylation values per position calculated on Group1 and Group2 

samples using the consensus sequence calculated on Illumina results (tabs “Group1 meth. 

values'' and “Group2 meth. values.”). The 18 methylated CpGs shared by the two groups are 

highlighted in bold; differential methylation analysis results performed on average methylation 

values calculated with rCRS (tab “Diff. meth. on rCRS) or the Illumina consensus sequence 

(tab “Diff. meth. on consensus). 

 
Methods 

 

Cell culture 
Cell lines used in this study are listed in the Key Resources Table. Cells were maintained in 

fibroblast medium [DMEM high glucose (Gibco) with 10% fetal bovine serum (Gibco) and no 

antibiotics] at 37oC in a humidified 5% CO2 atmosphere. Cells were grown until ~80% 

confluence. When ready, cells were washed with PBS (Gibco), then incubated with 0.05% 

trypsin (Gibco) for 5 minutes at 37oC. Cells were collected by centrifugation (1500 rcf for 5 

minutes) and pellets were washed once with PBS, before being snap frozen in liquid nitrogen 

and kept at -20oC until further use. 

 
DNA extraction and DNA quantification 
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All DNA used in this study was extracted from snap-frozen pellets using the QIAmp DNA mini 

kit (QIAGEN) following the manufacturer's instructions. DNA was quantified using the Qubit 

dsDNA kit (Invitrogen) following the manufacturer's instructions. 

 
Long-range polymerase reactions (LR-PCR)  
LR-PCR amplification reaction was performed using PrimeSTAR GXL DNA Polymerase kit 

(Takara) according to manufacturer’s instructions. The primers used are detailed in Table S2. 

Product length encompasses most part of the mtDNA sequence. Amplification reactions were 

performed using the following cycling conditions: 94oC for 1 minute, followed by 30 cycles of 

98oC for 10 seconds, 55oC for 15 seconds and 68oC for 10 minutes. 

 
Generation of negative and positive controls 
Untreated LR-PCR amplicons were used as negative controls for methylation. To generate 

positive controls, the same amplicons were treated in vitro with the recombinant CpG 

methyltransferase M.SssI (NEB). Briefly, 1µg of amplicon DNA per 50µl reaction was treated 

for 4 hours at 37oC with 50 units of M.SssI in the presence of 1x NEB buffer #2 and 160µM of 

S-adenosylmethionine (SAM). To test the efficiency of the M.SssI reaction, 10 units of 

methylation-sensitive restriction enzyme BstUI were added at the end of the incubation. This 

was followed by a further incubation at 60oC for 1 hour. 
Protection of the M.SssI-treated amplicons from BstUI digestion was assessed using the 

Genomic DNA ScreenTape System (Agilent) on an Agilent 2200 TapeStation platform 

following manufacturer’s instructions (data not shown). 

 
Mitochondrial DNA enrichment for single-molecule sequencing 
1 µg of genomic DNA (nuclear + mitochondrial DNA) per 50 µl reactions was digested with 40 

units of the recombinant restriction enzyme BamHI-HF (NEB) for 1 hour at 37oC in the 

presence of CutSmart buffer (NEB). To achieve combined DNA purification and selection of 

high molecular weight fragments, DNA was purified using Monarch® PCR & DNA Cleanup Kit 

(NEB), using the following recommended protocol modification: 20µl of elution buffer was 

heated to 50oC before the last elution step. 

 
Quantification of mtDNA levels using ddPCR 
ddPCR was used to quantify relative mtDNA enrichment following BamHI-HF (NEB) treatment 

of control DNA. To quantify relative mtDNA copy number (Krueger and Andrews, 2011), a 

mitochondrial and nuclear target (the genes MT-ND1 and RNASE P, respectively) were 

amplified and fluorescent signal was generated using the primers and probes detailed in the 
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Table S2. ddPCR protocol was performed following manufacturer’s instructions. Briefly, PCR 

reaction master mix was prepared in 1x (final concentration) ddPCR Supermix for Probes (No 

dUTP, BioRad), by adding 300nM of each primer and 200nM of each probe in 19µl final 

volume. 1 ng of sample DNA was then added to the mastermix. Droplets were generated using 

an Automated Droplet Generation instrument (BioRad) and were then subjected to PCR 

amplification, performed using the following cycling conditions: 95oC for 10 minutes, followed 

by 39 cycles of 94oC for 30 seconds and 58oC for 1 minute, followed by a final stabilisation 

step at 98oC for 10 minutes. Droplets were then loaded into a QX200 droplet reader (BioRad) 

and analysed using an absolute quantification protocol (ABS) to measure the absolute copy 

number of each probe. Droplet analysis was performed using the QuantaSoft analysis 

software (BioRad).  

 
ONS library preparation and sequencing on the MinION instrument 
Approximately 1 µg of native genomic DNA or purified LR-PCR amplicons were prepared for 

ONS sequencing on R9.4.1 flow cells using the Ligation Sequencing Kit SQK-LSK109 

(Nanoporetech), in combination with the Native Barcoding Expansion Kit EXP-NBD114 

(Nanoporetech). Genomic DNA was fragmented either through BamHI digestion (Methods) or 

sheared to 10 kbp using g-tubes (Covaris), following manufacturers’ instructions. 

Simultaneous DNA repairing, end-repairing and dA-tailing was achieved using the NEBNext 

FFPE Repair Mix (NEB) and the Ultra II end-repair module (NEB). Barcodes were ligated to 

individual samples using Blunt/TA Ligase Master Mix (NEB). Samples were then combined 

and AMII adapters containing the motor proteins needed for sequencing were ligated using 

NEBNext® Quick Ligation Module (NEB). AMPure XP beads (Beckman Coulter) at a 

concentration of 1x, 1x and 0.5x, respectively, were used to purify DNA between the library 

preparation steps. Final libraries were loaded onto R9.4.1 flow cells and samples were 

sequenced using a single MinION Mk 1B. To keep the sequencing throughput consistent, 6 

biological samples were always pooled together and sequenced for 24 hours. LR-PCR 

amplicons were pooled together and sequenced for 6 hours. 

 
Illumina Miseq library preparation and sequencing  
MiSeq libraries were prepared from genomic DNA by amplification of the mitochondrial DNA 

in two overlapping fragments (Weissensteiner et al., 2016), using the primers outlined in the 

Key Resources Table. Amplicons were individually purified, quantified, and then were pooled 

in equal amounts from each sample. Libraries were prepared using NEBNext Ultra library prep 

reagents (NEB) according to manufacturer's instructions and sequenced using a 2 × 250-cycle 

MiSeq Reagent kit v3.0 (Illumina, CA). 
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WGBS data analysis 
Raw WGBS experiments part of the Roadmap Epigenome Project (Roadmap Epigenomics 

Consortium et al., 2015) were downloaded from the GEO Database. Downloaded files from 

single-ended WGBS sequencing experiments were converted from SRA format to fastq files 

using fastq-dump (Key Resources Table) with the following options: --readids --skip-

technical -W --read-filter pass --gzip. Read quality of the converted fastq files 

was assessed with FastQC v0.11.5 (Andrews, 2015). All of the reports generated from FastQC 

were manually checked to determine whether a trimming of low-quality reads and/or adapters 

was needed. Where trimming was deemed necessary, TrimGalore! v0.4.5 (Krueger, 2016) 

was used. The software automatically trims adapter sequences from the reads (if present) and 

retains those with an average Phred quality score ≤ 20 (before and/or after trimming). Reads 

shorter than 45 bp after trimming were discarded using --length option. Upon quality check 

and trimming, both alignment of the WGBS fastq files to the reference human genome 

sequence (GRCh38) and extraction of the methylation information were carried out with 

bowtie2 v2.3.2 (Langmead and Salzberg, 2012) and Bismark v0.19.0 (Krueger and Andrews, 

2011), respectively. Coverage was calculated from BAM files using samtools depth. This 

was defined as the percentage of mtDNA genome in each strand covered by at least 5 reads. 

Methylation extraction was carried out using the bismark_methylation_extractor 

package with the following options: --comprehensive --merge_non_CpG --gzip --

bedGraph --CX_context, but only CpG residues were considered for further analyses. 

 
ONS data analysis 
Base-calling of fast5 files containing raw electric current information was performed by the 

guppy_basecaller package of Guppy v3.2.2+9fe0a78 (Nanoporetech). Base-called, 

barcoded reads were de-multiplexed into individual samples using the guppy_barcoder 

package of Guppy v3.2.2+9fe0a78 (Nanoporetech). In order to simultaneously enrich for linear 

full-length mitochondrial sequences, exclude ligation artifacts and minimise the presence of 

NUMTs, we applied a stringent filter on read sequence length (min: 4000 bp, max: 17000 bp) 

and quality (Phred quality score ≥ 9) using NanoFilt v2.2.0 (De Coster et al., 2018) on the 

barcoded fastq files (Figure 2F).  
Minimap2 v2.10-r761 (Li, 2018) with the -x map-ont option was used to perform the 

alignment of Nanopore reads onto the GRCh38 reference (which includes the mitochondrial 

rCRS reference sequence, NC_012920.1), and the option -secondary=no was used to 

exclude secondary alignments in the BAM output. Because minimap2 does not recognise 

circular reference sequences, reads spanning the D-loop are reported as supplementary 
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alignments in the output BAM files. For this reason, we included in the final set of aligned 

reads also supplementary alignments aligning onto the mtDNA reference and spanning the D-

loop, but only if they aligned in the same orientation on the same strand (H or L strand). Any 

other kind of supplementary alignment was excluded. Similarly, to avoid the same issue with 

reads spanning the BamHI cut site in the ND6 gene (base 14258-14259 of the mtDNA 

reference sequence), we created an alternative GRCh38 reference sequence with a modified 

mitochondrial reference starting at base 14259 instead of base 1. All of the experiments where 

the samples were fragmented using BamHI were aligned to this alternative sequence (gene 

annotations were adapted accordingly). Quality control plots and sequencing statistics were 

automatically generated using NanoPlot v1.13.0 (De Coster et al., 2018).  

 
ROC curve generation 
We calculated a ROC curve to assess the accuracy of our methylation calling, using a 

procedure previously adopted in (Simpson et al., 2017). Briefly, we randomly chose 50,000 

mtDNA CpG sites from positive and negative controls and classified each CpG call as true 

positive (TP) or false positive (FP), depending on which of the two controls each site came 

from and on whether methylation fell above or below a log-likelihood methylation threshold. 

We repeated the TP and FP calculation by varying log-likelihood threshold values within a 

range of -20 to 20 (to build the ROC curve) and 0 to 10 (to calculate accuracy, intended as 

the proportion of true calls, either TP or true negatives (TN)), with a step of 0.25, as explained 

in (Simpson et al., 2017).  

 

Mitochondrial variant calling of ONS samples  
Because Nanopore technology allows a simultaneous read of epigenetic modifications while 

sequencing the target DNA, we performed a mitochondrial variant calling on the fastq files 

filtered with NanoFilt v2.2.0 (De Coster et al., 2018). For this we used a modified version of 

the MToolBox pipeline (Calabrese et al., 2014), adapted to long-reads sequencing analysis 

(Key Resources Table). Briefly, the main changes integrated into the MToolBox workflow are 

1) the use of the Minimap2 aligner software (Li, 2018) for long-reads mapping and 2) additional 

parsing of SAM files to include reads uniquely mapped on the mtDNA reference and reads 

with supplementary alignments but only showing mtDNA mapping locations. These reads can 

be the results of the process of linearization of the circular molecule of mtDNA due to random 

fragmentation or to BamHI enzymatic cut. Reads with secondary or supplementary alignments 

on the nuclear genome were excluded and classified as possible NUMTs. For read mapping 

we used the GRCh38 human genome assembly (which includes rCRS as mitochondrial 

reference sequence). For variant calling, we set the quality score (QS) threshold to retain 
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variants to 10 (changing the -q option of the assemblyMTgenome.py script). Variants with 

a read depth per position ≥ 30 and variant allele fraction ≥ 10% were retained. Only single 

nucleotide variants (SNVs) were considered for comparison with Illumina Miseq sequencing. 

Haplogroup predictions were performed using both MToolBox and Haplogrep 2 v.2.1.1 

(Weissensteiner et al., 2016). Haplogrep2 predictions were based on homoplasmic variants 

only (with variant allele fraction ≥  0.9). 

 

Mitochondrial variant calling of Illumina Miseq samples  
Fastq files generated with Illumina Miseq were checked for quality using FastQC v0.11.5 

(Andrews, 2015).  Illumina adapters and read ends showing poor per-base quality were 

trimmed using TrimGalore! v0.4.5 (Krueger, 2016), setting a minimum per-base QS = 20 and 

minimum read length after trimming = 35 bp. Mitochondrial variant calling was then performed 

with the standard MToolBox pipeline (Calabrese et al., 2014), which mapped reads to the 

human reference genome (GRCh38) with the two-mapping step protocol, to exclude possible 

NUMT. Single nucleotide variants with ≥ 5 reads of support (and at least 1 read of support on 

each strand) and minimum QS per base ≥25 were retained. Haplogroup predictions were 

performed using both MToolBox and Haplogrep 2 v.2.1.1 (Weissensteiner et al., 2016). 

Haplogrep2 predictions were based on homoplasmic variants only (with variant allele fraction 

≥  0.9).  

 

CpG methylation detection in ONS samples 
Detection of methylation in CpG context was carried out using Nanopolish v0.11.0 call-

methylation package (Simpson et al., 2017). Nanopolish utilises a trained Hidden Markov 

Model to detect modified bases by comparing raw electric signals of modified/unmodified 

cytosines with expected signal from a reference sequence. The methylation calling output is 

a log-likelihood ratio where a positive value indicates evidence supporting methylation. 

Nanopolish utilises fast5 files containing raw electric signal information, basecalled fastq 

files and BAM alignment files to generate an index file used by the algorithm to determine 

methylation Log-likelihood ratios. Minimap2 alignments to reference sequences were 

performed with the same parameters described in the Nanopore Data Analysis section. Log-

likelihood ratios were then converted to a binary methylated/unmethylated call for each read, 

then percentage of methylation was obtained by calculating the fraction of methylated reads, 

using the calculate_methylation_frequency.py script available in the package. The 

default calling threshold of ≥ 2.5 LLR was modified to a more stringent ≥ 5 LLR to increase the 

accuracy of the call. Since Nanopolish groups neighbouring CpG sites and calls them jointly, 
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CpG sites in the same group were separated and assigned the same methylation frequency 

using the -s option.  

 
CpG methylation analysis in ONS samples 
We applied a series of stringent quality filters to remove possible artefacts of the CpG 

methylation calling and errors introduced by the Nanopolish algorithm. We first removed CpGs 

calls with a methylation frequency greater than two standard deviations from the mean in 

negative controls (false positives, Table S1). We also removed: i) calls supported by less than 

60 reads; ii) calls with methylation frequency similar to the background (i.e. ≤ 0.5%, the 

average methylation frequency observed in the negative control) and iii) calls neighbouring 

any heteroplasmic nucleotide variant (heteroplasmy < 0.9) in a ± 5 nucleotides window. This 

last approach was deemed necessary after noticing that Nanopolish introduced a false 

methylation call every time a homoplasmic haplogroup-defining variant position fell within ± 5 

nucleotides from a CpG. As 11 nucleotides is the kmer size that Nanopolish considers to 

calculate CpG LLR, we hypothesized that the introduction of a nucleotide variant within ± 5 

nucleotides from the CpG altered the Nanopolish methylation determination, leading to an 

incorrect methylation call. To demonstrate this, we used MToolBox (Calabrese et al., 2014) to 

generate a consensus sequence from the Illumina data, carrying the major alleles at each 

position, and used this new sequence to perform the methylation calling again on ONS 

samples. As expected, this time no methylation was identified in the CpGs close to the 

haplogroup-defining variants (Figure 4B). Differential methylation analysis was performed 

using the R package DSS (Park and Wu, 2016), following the protocol detailed in (Gigante et 

al., 2019) using the H haplogroup and control fibroblasts as baseline in Group 1 and Group2, 

respectively. Differentially methylated mtDNA positions and regions (defined by overlapping 

tiles of 50nt) were deemed significant if False Discovery Rate was below 1%. 

 
Statistical test 
Unless stated otherwise, pairwise comparisons were tested for significance using Wilcoxon 

two-tailed test. 

 
Data and code availability 
Raw sequencing data will be made available upon publication on the SRA archive. The 

MToolBox pipeline used for mitochondrial variant calling and code for filtering VCF files are 

available as GitHub branch of the MToolBox repository: 

https://github.com/mitoNGS/MToolBox/tree/MToolBox_Nanopore. Code used for plotting and 

data analysis is available at https://github.com/ib361/scripts_paper.  
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