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Abstract 7 

The majority of the genome is shared between the sexes, and it is expected that the genetic architecture of most 8 

traits is shared as well. This common architecture has been viewed as a major source of constraint on the 9 

evolution of sexual dimorphism (SD).  SD is nonetheless common in nature, leading to assumptions that it results 10 

from differential regulation of shared genetic architecture. Here, we study the effect of thousands of gene knock-11 

out mutations on 202 mouse phenotypes to explore how regulatory variation affects SD. We show that many traits 12 

are dimorphic to some extent, and that a surprising proportion of knock-outs have sex-specific phenotypic effects. 13 

Many traits, regardless whether they are monomorphic or dimorphic, harbor cryptic differences in genetic 14 

architecture between the sexes, resulting in sexually discordant phenotypic effects from sexually concordant 15 

regulatory changes. This provides an alternative route to dimorphism through sex-specific genetic architecture, 16 

rather than differential regulation of shared architecture.  17 
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Introduction 20 

In organisms with separate sexes, different 21 

evolutionary interests of males and females can lead to 22 

divergent trait optima, which can be realized through the 23 

evolution of sexual dimorphism. For traits to change from 24 

monomorphic to dimorphic, the underlying genetic 25 

mechanisms need to be decoupled between males and 26 

females. However, even in species with sex chromosomes, 27 

males and females share the vast majority of their genome 28 

(Bachtrog et al., 2014), leading to the expectation that 29 

traits are controlled by the same loci in both sexes (Lande, 30 

1980). This shared genomic architecture is typically 31 

considered a source of significant constraint on the 32 

evolution of dimorphism (Stewart & Rice, 2018), as traits 33 

would need to first become genetically decoupled 34 

between females and males before divergence can occur 35 

(Lande, 1980; Poissant et al., 2010; Hermansen et al., 36 

2018). Shared trait architecture can lead to intra-locus 37 

sexual conflict (Rice & Chippindale, 2001), where alleles at 38 

a locus have different fitness effects in males and females, 39 

and is this assumed to limit the degree to which the sexes 40 

can achieve their respective fitness optima (Hansen, 2006). 41 

Indeed, the constraints on the evolution of sexual 42 

dimorphism (SD) are often considered both pervasive and 43 

persistent, resulting in enduring sexually antagonistic 44 

selection on many traits (Rice & Chippindale, 2001; 45 

Chenoweth et al., 2008; Poissant et al., 2010; Ruzicka et 46 

al., 2019). This persistent constraint is however difficult to 47 

reconcile with the fact that sexual dimorphism evolves 48 

rapidly (Stewart & Rice, 2018), is seen in a broad array of 49 

traits, and differs markedly among related species (Owens 50 

& Hartley, 1998). 51 

It has been suggested that sexual dimorphism arises 52 

from regulatory differences between males and females 53 

(Ellegren & Parsch, 2007; Mank, 2017), and there are good 54 

examples of this (e.g. Galouzis & Prud’homme, 2021). 55 

Indeed, recent genome-wide scans in fruit flies have 56 

shown that protein coding sequence differences are 57 

overrepresented among evolutionarily persistent variants 58 

thought to be maintained by sexual antagonism (Ruzicka 59 

et al., 2019). This might suggest that conflict over coding 60 

sequence variation is much harder to resolve compared to 61 

conflict over gene expression.  However,  functional 62 

studies have revealed that the genes underlying some 63 

dimorphisms are not expressed differently between the 64 

sexes (Khila et al., 2012). This indicates that sex-biased 65 

expression alone cannot explain all dimorphism, and other 66 

mechanisms may exist. 67 

Another perspective on the genetics of sexually 68 

dimorphic traits stems from investigations grounded in 69 

quantitative genetic theory (Lande, 1980). By comparing 70 

the phenotypes of individuals of known relatedness, 71 

usually through breeding designs or pedigrees, one can 72 

estimate the between-sex genetic correlation (𝑟𝑓𝑚) for a 73 

trait of interest. This correlation describes the extent to 74 

which a particular genotype affects both male and female 75 

phenotypes in the same way. If 𝑟𝑓𝑚 ≈ 1, genotypes affect 76 

males and females similarly (i.e. brothers and sisters look 77 

alike), while if 𝑟𝑓𝑚 ≈ 0, male and female phenotypes vary 78 

independently (Lande, 1980). This estimate of 𝑟𝑓𝑚 is based 79 

on autosomal additive standing genetic variation and 80 

measures the additive effects of the many genetic variants 81 

that exist in that population at that time. It can therefore 82 

be used to predict the extent to which a population can 83 

respond to sexually divergent selection. Since this 𝑟𝑓𝑚  84 

estimate is based on the additive genetic variance, we will 85 

denote it here as 𝑟𝑓𝑚
𝐴

 for clarity. 86 

Average estimates of 𝑟𝑓𝑚
𝐴

 are often  close to one 87 

(Poissant et al., 2010), suggesting that there is little 88 

standing sex-specific genetic variation. However, these 89 
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estimates are also interpreted by many to reflect the 90 

extent to which the autosomal genetic architecture 91 

underlying the trait is shared between the sexes 92 

(Chenoweth et al., 2008; Poissant et al., 2010; Griffin et al., 93 

2013; e.g. Stewart & Rice, 2018). In other words, a strongly 94 

positive 𝑟𝑓𝑚
𝐴

 is interpreted to mean that the gene network 95 

that produces the phenotypic trait value is largely identical 96 

between the sexes, suggesting that genetic architecture 97 

needs to be decoupled before SD can evolve. Furthermore, 98 

if 𝑟𝑓𝑚
𝐴  is an evolutionary important constraint, one would 99 

expect those traits with weak 𝑟𝑓𝑚
𝐴  to be more likely to 100 

evolve SD, resulting in a negative relationship 101 

(Bonduriansky & Rowe, 2005; Fairbairn & Roff, 2006; 102 

Poissant et al., 2010). Alternatively, selection in favor of SD 103 

may drive reductions in 𝑟𝑓𝑚
𝐴 , leading to the same 104 

prediction. This negative association is supported by the 105 

prevailing evidence (Poissant et al., 2010), however the 106 

correlation varies widely between studies, and 𝑟𝑓𝑚
𝐴  is 107 

generally a poor predictor of SD. Furthermore, 𝑟𝑓𝑚
𝐴  has 108 

been shown to be quickly eroded under artificial selection 109 

(Delph et al., 2011). 110 

𝑟𝑓𝑚
𝐴  estimates provide a high-level statistical 111 

description of genotype to phenotype mapping across the 112 

sexes and are an aggregate across standing genetic 113 

variation in the population. However, we know very little 114 

about the loci that underlie this statistic. In particular, we 115 

do not know whether variation in protein coding sequence 116 

is more or less likely to cause sexually discordant 117 

phenotypic effects than expression variation. Here, we use 118 

high-throughput phenotype data from a genome-wide 119 

panel of gene knock-outs in mice to reveal unexpected 120 

differences in the gene expression architecture between 121 

the sexes (The International Mouse Phenotyping 122 

Consortium et al., 2016; International Mouse Phenotyping 123 

Consortium et al., 2017). We find that although most 124 

phenotypic traits are dimorphic, even many monomorphic 125 

Figure 1: (a) Estimates and 

associated uncertainty for sexual 

dimorphism for each trait analyzed. 

Each horizontal line displays the 

credible intervals for one trait, where 

traits have been arranged by the 

posterior median. Shaded regions 

indicated the credible intervals of 

50%, 80% and 95% of the posterior 

densities from a multilevel model. 

Sexual dimorphism is averaged 

across the wild-type genotypes, and 

defined as the ratio of female and 

male means. (b) As in (a), but 

depicting the between-sex genetic 

correlation 𝑟𝑓𝑚
𝐾 . Note that the traits 

have been arranged independently 

in each panel. 
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traits harbor sex-dependent architectures, suggesting that 126 

many traits may harbor cryptic sex-specific variation. 127 

Changes in both sexes to these loci through expression 128 

may provide a way for SD to rapidly evolve, as traits are 129 

already partially decoupled and the phenotypic effect 130 

differs between males and females. These findings imply 131 

that the evolutionary constraint in SD may be more easily 132 

overcome than previously thought and explain the broad 133 

diversity of sexual dimorphism observed in nature, as well 134 

as the apparent rapid evolution of many sexually 135 

dimorphic traits. 136 

Results 137 

We evaluated the sex-specific effects of alterations to 138 

gene expression, by leveraging data from large-scale high-139 

throughput phenotyping of gene knock-out lines from the 140 

International Mouse Phenotyping Consortium (IMPC) (The 141 

International Mouse Phenotyping Consortium et al., 142 

2016). We obtained data for all continuous traits from the 143 

main IMPC pipeline for which at least 100 genotypes were 144 

available. The IMPC uses highly standardized phenotyping 145 

assays on C57BL/6 inbred mice. Both control mice and 146 

phenotype knock-out lines are tested continuously, with 147 

the eventual goal of knocking out each gene in the mouse 148 

genome. This immense scientific effort provides an 149 

unprecedented opportunity to quantify the between-sex 150 

genetic correlation across many traits and many genotypes 151 

in highly standardized conditions.  152 

Sexual dimorphism and 𝑟𝑓𝑚
𝐾  of mouse traits 153 

If males and females share the genetic architecture of 154 

traits, knock-outs should affect the phenotype of both 155 

sexes similarly, and as architectures diverge the knock-out 156 

effects should diverge as well. We estimated the genetic 157 

correlation between males and females analogous to the 158 

conventional approach outlined above (𝑟𝑓𝑚
𝐴 ). However, to 159 

delineate the knock-out lines from the traditional 160 

approach, we denote these estimates as 𝑟𝑓𝑚
𝐾 , where K 161 

denotes the genetic variance-covariance matrix between 162 

knock-out genotypes (Figure S1). Note that 𝑟𝑓𝑚
𝐾  measures 163 

the correlation between the phenotypic effects of genetic 164 

knock-outs, while 𝑟𝑓𝑚
𝐴  measures the correlation for 165 

genome-wide additive genetic variance. 166 

For each of 260 traits, we obtained all available 167 

observations. On average, traits were measured in 8,069 168 

control mice, as well as in 21,513 mice across 1,713 169 

different knock-out genotypes. Per knock-out line, seven 170 

females and seven males were typically phenotyped. 171 

For each trait we obtained posterior distributions for 172 

SD and the between-sex genetic correlation (𝑟𝑓𝑚
𝐾 ) by fitting 173 

a Bayesian multilevel model. SD was expressed as the ratio 174 

of means (for Figure 1) and as the “sexual dimorphism 175 

index”: 
�̅�𝑙𝑎𝑟𝑔𝑒𝑟 𝑠𝑒𝑥

�̅�𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑠𝑒𝑥
− 1  (for downstream analyses). Since 176 

mice are sexually dimorphic for body size and many traits 177 

scale with body size, we included a standardized 178 

population level effect of body weight in the model. 179 

Models without body size adjustment produced 180 

qualitatively similar results (see supplementary material). 181 

Additionally, we added group level intercepts for known 182 

sources of variance, this included the phenotyping center, 183 

the date of testing, as well as variation in testing conditions 184 

indicated by the IMPC. Using a Bayesian approach allowed 185 

us to evaluate and propagate the uncertainty in the 186 

estimate of 𝑟𝑓𝑚
𝐾  in downstream analyses. This can be 187 

important since this correlation can be biased towards 0 if 188 

it is difficult to estimate (Griffin et al., 2013). Out of 260 189 

traits tested, 202 traits passed our model evaluation 190 

procedure and were used for further inference. 191 
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Many of the measured traits showed substantial SD 192 

(Figure 1a), confirming a previous report on the IMPC data 193 

(International Mouse Phenotyping Consortium et al., 194 

2017), with an average SD index of 0.09 [0.08, 0.10] 195 

(posterior median [95% Credible Interval]). As the large 196 

sample size in this study makes it possible to distinguish 197 

small effects that have little biological relevance, we 198 

evaluated SD using equivalence testing (Wellek, 2010). We 199 

compared the 95% credible intervals (CI) of the SD index 200 

for each trait with a region of practical equivalence (ROPE) 201 

between 0 and 0.05 (Kruschke, 2018) (i.e. between 0 and 202 

5% difference in absolute magnitude). When the entire CI 203 

falls outside the ROPE, we can be confident the sexes differ 204 

by more than 5% and the trait is considered dimorphic. We 205 

consider a trait monomorphic if we are confident there is 206 

less than a 5% difference, so when the entire CI falls within 207 

the ROPE. Under this decision rule (Kruschke, 2018), 208 

dimorphic traits roughly equal monomorphic traits. 49 out 209 

of the 156 traits (31.4%) were found to be clearly 210 

dimorphic, while 47 traits (30.1%) to be monomorphic. and 211 

60 traits (38.5%) were not classified, as their credible 212 

interval overlapped the 5% threshold. Some of the most 213 

monomorphic traits include calcium levels in the blood and 214 

the time spent on the periphery of an open field. Strongly 215 

dimorphic traits include a variety of immune function 216 

related traits, such as spleen weight and counts of 217 

different T-cell types, as well as glucose tolerance (Table 218 

S1). 219 

Traits showed a wide variety of estimates for 𝑟𝑓𝑚
𝐾 , from 220 

a correlation close to 1 between the phenotypes of the 221 

sexes down to correlations indistinguishable from 0 (Figure 222 

1b). The average correlation was clearly positive, but not 223 

as strong as we expected (0.650 [0.622, 0.689]). 224 

Surprisingly, very few traits showed a strong concordance 225 

between male and female effects, with fewer than 5% of 226 

traits having an estimate above 0.9. Some of the traits with 227 

the highest correlation are body temperature and eye 228 

Figure 2: The between-sex genetic correlation does not depend on sexual dimorphism in the trait. Each point is a trait, 

with error bars indicating the 95% credible interval (CI) in the estimates. The red line represents the model fit of a linear 

model on the Fisher-transformed 𝑟𝑓𝑚
𝐾 , with the shaded region indicating the 95% credible interval, including propagation of 

trait level uncertainty. Sexual dimorphism is expressed as the SD ratio. 
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morphology, while several immune phenotypes have a 229 

correlation close to 0 (Table S1). 230 

To test the constraint that high 𝑟𝑓𝑚
𝐾

 places on the 231 

evolution of dimorphism, we assessed whether 𝑟𝑓𝑚
𝐾

 is 232 

lower for more dimorphic traits, which we would expect if 233 

dimorphism is more often associated with a reduced inter-234 

sexual correlation. We fitted a linear model with Fisher-235 

transformed 𝑟𝑚𝑓
𝐾

 values as the dependent variable and 236 

sexual dimorphism (expressed as the SD index), 237 

propagating the uncertainty in both variables from the 238 

trait-level models. Contrary to expectation, the between-239 

sex genetic correlation is not associated with sexual 240 

dimorphism (Figure 2, slope: -0.49 [-1.34, 0.35]). Although 241 

there is a trend in the expected direction, the relationship 242 

is non-significant, and 𝑟𝑓𝑚
𝐾  at monomorphism (i.e. the 243 

intercept) is only slightly higher than the overall average: 244 

0.630 [0.557, 0.698]. 245 

To investigate whether there were differences in the 246 

genetic architecture of dimorphism between trait types 247 

(Poissant et al., 2010), we assigned each of the traits one 248 

of four categories: behavior, morphology, physiology or 249 

immunity (Table S1). We repeated the linear model 250 

regressing 𝑟𝑚𝑓
𝐾  on SD, now including trait category and the 251 

SD:trait category interaction as additional parameters. 252 

There is no evidence that the relationship between 𝑟𝑚𝑓
𝐾  253 

and SD is different for different trait categories (Figure S2). 254 

The average 𝑟𝑚𝑓
𝐾  of trait categories, estimated at 255 

monomorphism, can also not clearly be distinguished 256 

(Figure S3). 257 

Male and female genetic variances were often 258 

unbalanced, and there was a clear tendency for male 259 

genetic variance to be larger (
𝑉𝐺(𝑚)

𝑉𝐺(𝑓)
 = 1.14 [1.04 , 1.23]). 260 

Thus, knock-out mutations have, on average, substantially 261 

larger phenotypic effects in males. It has been noted 262 

previously that mutations have larger fitness effects in 263 

male Drosophila (Sharp & Agrawal, 2013), and differences 264 

in genetic variance between the sexes may contribute 265 

toward the evolution of dimorphism, even under a strong 266 

between-sex genetic correlation (Wyman & Rowe, 2014). 267 

However, we found no relation between the imbalance of 268 

sex-specific variances and the level of SD (slope: 0.03 [-269 

0.26, 0.30]). 270 

Development of size dimorphism and 𝑟𝑓𝑚
𝐾  271 

Body size is dimorphic in many species, including the 272 

mouse, yet it has been found numerous times that 𝑟𝑓𝑚
𝐺  for 273 

this trait is close to 1 (Roff, 2012). Nonetheless, sexual size 274 

dimorphism can often be rapidly altered in response to the 275 

environment (Badyaev, 2002), making this an important 276 

trait to study in order to better understand the link 277 

between the evolution of SD and sex-specific 278 

architectures. As sexual size dimorphism (SSD) is 279 

established through variable development rates and 280 

times, it is especially useful to understand when in 281 

development the effect of body size loci diverges between 282 

the sexes. Unfortunately, there is very little data available 283 

for the development of 𝑟𝑓𝑚
𝐺 , with studies usually including 284 

only 2 or 3 time points (Poissant & Coltman, 2009). In 285 

contrast, the IMPC measures body weight weekly from 286 

week 3 through 16, providing the opportunity to estimate 287 

when during development the effects of expression 288 

changes become sex-biased. 289 

Using the same modelling approach described above, 290 

we obtained estimates for SSD and 𝑟𝑓𝑚
𝐾  at each week 291 

(Figure 3). SSD increases strongly at the start of this period, 292 

more than doubling between weeks 3 and 7 (Figure 3a). 293 

𝑟𝑓𝑚
𝐾  decreases during that same time (Figure 3b), and both 294 

parameters stabilize around 8 weeks. The two variables 295 

follow a roughly linear negative relationship during 296 

development (Figure 3c). A developmental link between 297 

SSD and 𝑟𝑓𝑚
𝐾  may be the result of sexually antagonistic 298 
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selection mainly acting in adulthood. This would bias sex-299 

specific loci to be expressed only later in development, 300 

driving an increasing SSD and decreasing 𝑟𝑓𝑚 . 301 

Alternatively, strong trait integration during early 302 

development may pose significant constraints on the 303 

divergence of the sexes before 6 weeks.  304 

Identification of knock-out genotypes with sexually 305 

discordant effects 306 

To gain insight into the extent to which sex-specific 307 

architectures are shared between different traits, we 308 

quantified to what extent knock-out genotypes have 309 

consistent sexually concordant or discordant effects. We 310 

separated the sexually concordant and discordant effect of 311 

each genotype on a trait by projecting the estimated effect 312 

(Best Linear Unbiased Predictor) along two independent 313 

axes (Ruzicka et al., 2019), the positive and negative 314 

diagonal of a female vs male plot (as in Figure S1). Then, in 315 

order to differentiate knockouts with strong versus weak 316 

discordant effects, we looked for genotypes with a 317 

consistently low or high ranking along the discordant axis. 318 

We identified five knock-out genotypes that 319 

consistently had smaller sexually discordant effects, 320 

compared to other genotypes (Figure 4). Those five 321 

genotypes also had much smaller concordant effects, 322 

indicating that their phenotypes are consistently average. 323 

Unsurprisingly, these were five wildtype genotypes. 324 

Additionally, 24 genotypes had larger than average 325 

discordant effects (Figure 4, Table S2). These genotypes 326 

tended to affect the sexes differently, across many traits. 327 

An analysis of Gene Ontologies for the genes that were 328 

knocked out in these genotypes, revealed no significantly 329 

overrepresented categories. In contrast to the 29 330 

Figure 3: The between sex genetic correlation decreases as size dimorphism increases over development. (a) Estimates 

for sexual dimorphism in body mass for wildtype mice. Points indicate the posterior median with wide and narrow line 

segments denoting the 66% and 95% credible intervals respectively, and the density gradient represents the posterior density. 

(b) As in (a), but depicting the between sex genetic correlation. (c) Association of sexual size dimorphism and the 𝑟𝑓𝑚
𝐾  during 

development. Points are posterior medians with 95% credible intervals, as in (a) and (b), with lines connecting subsequent 

week. Weeks 3 through 7 are numbered. 
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discordant genotypes, 292 genotypes (out of 2543) had 331 

consistently small or large concordant effects. This 332 

difference suggests that traits are more likely to genetically 333 

co-vary in their average value, rather than in their 334 

dimorphism. 335 

Sex-biased gene expression and fertility 336 

Many investigations into the evolutionary significance 337 

of gene expression to SD have focused on sex-biased gene 338 

expression (Grath & Parsch, 2016). Of specific interest are 339 

expression differences in the gonads, where most sex-340 

biased expression occurs. In these studies, it is often 341 

assumed that gonadal expression bias reflects important 342 

sex-specific fertility functions, however, it is usually not 343 

possible to verify this. Combining previously published 344 

gonadal expression data (Rinn et al., 2004) with fertility 345 

data from the IMPC database, however, allowed us to test 346 

whether the expression knock-out of sex-biased genes 347 

causes sex-specific infertility.  348 

As predicted, fertility status was significantly 349 

associated with expression bias category (i.e. male-biased, 350 

female-biased or unbiased; χ2
6 = 76.6, p < 0.001, Figure S4). 351 

Gene knockouts of female-biased or unbiased genes led to 352 

male-limited infertility in 1.5% of cases, but this increased 353 

to 11% of cases when knocking out male-biased genes. 354 

Female-limited fertility on the other hand was less 355 

common in general and showed no increase with knock-356 

outs of female-biased genes (Figure S4), possibly because 357 

female gametogenesis is largely encoded during fetal 358 

development and then arrested. 359 

Figure 4: Identifying genotypes with 

consistent sexually discordant effects. Each 

point is a genotype, having been tested for at 

least 50 traits, with error bars denoting 95% 

credible intervals (CIs). The average 

percentile rank for the absolute sexually 

discordant effect of a genotype is plotted 

along the x-axis. The y-axis shows the average 

percentile tank for the absolute concordant 

effect. Red points indicate genotypes that 

tend to have more sexually discordant effects 

than other genotypes, while blue points are 

genotypes that have less discordant effects 

(CI does not overlap 50th percentile). 
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Discussion 360 

Using the extensive phenotyping effort of gene knock-361 

out mouse lines by the IMPC, we have tested for the extent 362 

of overlap in trait genetic architecture between males and 363 

females. Even in the mouse, which is relatively 364 

monomorphic when compared to many other vertebrates, 365 

it is surprisingly common for traits to show clear 366 

differences between the sexes after controlling for body 367 

size. This therefore suggests that sexual dimorphism is not 368 

the exception but the norm across many crucial somatic 369 

traits.  370 

Furthermore, traits are affected differently by knock-371 

out mutations depending on the sex of the individual. This 372 

clearly illustrates that studies of gene function must 373 

account for sex, as knock-out effects may only be easily 374 

detectable in one of the sexes (International Mouse 375 

Phenotyping Consortium et al., 2017). Alterations in gene 376 

expression are often thought to be a common mechanism 377 

to resolve intra-locus sexual conflict by making gene 378 

expression sex-biased or sex-specific (Grath & Parsch, 379 

2016). This assumes a shared genetic architecture, which 380 

is differentially regulated between the sexes. Our work 381 

suggests that the underlying architecture may differ 382 

between the sexes in many cases, and the low estimates 383 

of 𝑟𝑓𝑚
𝐾  that we recover highlight a different potential role 384 

of gene expression in the evolution of SD.  385 

Mutations of large regulatory effect can often be 386 

expected to alter SD, providing one way to resolve intra-387 

locus sexual conflict. However, these regulatory changes 388 

need not result in sex-biased gene expression, as our work 389 

suggests that regulatory changes in both sexes, in this case 390 

elimination of expression in both sexes through knockouts, 391 

often predominantly only affect the phenotype of one. In 392 

other words, sexually concordant regulatory changes can 393 

result in sexually discordant phenotypic effects, and our 394 

results suggest that this commonly occurs. This provides 395 

an alternative route to dimorphism through sex-specific 396 

genetic architecture, rather than differential regulation of 397 

shared architecture. This could, for example, be the result 398 

of interactions with sex-biased genes in the same 399 

regulatory network, or of a sex-bias in the size of the cell 400 

populations expressing the gene. It appears likely that the 401 

modulation of gene expression, either through sex-bias in 402 

the downstream phenotypic effects or in the expression 403 

itself, is a major contributor to the evolution of SD. 404 

Although mutations of large effect, especially gene 405 

deletions, can have deleterious effects on other traits 406 

through pleiotropy, many genes are non-essential 407 

(Amsterdam et al., 2004; Liao & Zhang, 2007; Georgi et al., 408 

2013). This suggests significant regulatory potential in the 409 

evolution of SD. Additionally, the knockout mutations 410 

assessed here likely represent an extreme form of 411 

regulatory variation, which we would expect to have 412 

similar, if less drastic, sex-specific effects, and more often 413 

contribute to SD. 414 

As others have previously indicated (Cowley & Atchley, 415 

1988; Reeve & Fairbairn, 2001; Bonduriansky & Rowe, 416 

2005), 𝑟𝑓𝑚
𝐴  may not be as strong an indicator of constraint 417 

as was originally suggested (Lande, 1980). While 𝑟𝑓𝑚
𝐴  is 418 

very useful in describing the potential for the standing 419 

genetic variation to alter SD in a single or a few 420 

generations, it cannot detect decoupling in trait 421 

architectures which are currently lacking variation. Our 422 

results indicate that even high 𝑟𝑓𝑚
𝐴  traits may be 423 

susceptible to changes in SD, as most traits have cryptic 424 

parts of the genetic architecture in which new mutations 425 

will likely have sex discordant effects. Importantly, 426 

changes in the architecture itself, such as changes in gene 427 

pathways or the recruitment of new transcription factors, 428 
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are not necessary to have occurred, contrasting with a 429 

common interpretation of a strong 𝑟𝑓𝑚
𝐴 . 430 

A potential limitation of this study is that the mice are 431 

inbred, resulting in genome-wide homozygosity. This 432 

means that the phenotypic variation is expected to be 433 

relatively small, making the effects of knockouts appear 434 

stronger. Additionally, the effects of dominance and 435 

epistasis are artificially limited. As it has been suggested 436 

that sex-specific dominance is pervasive (Grieshop & 437 

Arnqvist, 2018), and epistatic interactions could be 438 

affected by sex as well, our estimates of 𝑟𝑓𝑚
𝐾  could 439 

potentially be biased upwards. It is also important to note 440 

that sex-linked genetic architecture can allow for the 441 

evolution of dimorphism. However, given the relatively 442 

small size and limited gene content of the mouse Y 443 

chromosome (Soh et al., 2014), the role of the Y in sex-444 

specific genetic architecture for a broad array of somatic 445 

traits is unclear. 446 

The vast majority of genotypes were neither strongly 447 

nor weakly discordant across traits, suggesting there are 448 

very few or no “sex-specific genes” or “SD genes” but 449 

rather many different genes have sex-specific effects on 450 

different traits. The few genotypes that did show some 451 

consistently discordant effects had no functional 452 

categories in common, also suggesting that SD is regulated 453 

differently in different traits. As we identified more 454 

genotypes that had consistently large concordant effects, 455 

the genetic covariance between trait means is likely 456 

stronger than between SD of different traits. Large-scale 457 

analyses in a multivariate framework are needed to fully 458 

clarify the covariance of expression variance across traits 459 

and sex, in order to come to a complete understanding of 460 

the evolutionary constraints on SD.  461 

In conclusion, using a dataset of unprecedented size, 462 

we have demonstrated that traits harbor a surprising 463 

amount of sex-specific genetic architecture, as sexes 464 

respond variably to knock-out mutations. These results 465 

may help explain why SD is common, evolvable and 466 

variable, even under supposed strong genetic constraints. 467 

While these differences clearly indicate that the genotype-468 

to-phenotype mapping is sex-dependent for most traits, it 469 

remains unclear what underlying mechanisms are the 470 

cause for this. We hope future work will help elucidate 471 

proximate causes and evolutionary consequences of this 472 

work. 473 

Methods 474 

We obtained data from the online IMPC genotype-475 

phenotype database. We selected phenotypes for analysis 476 

by requesting all uni-dimensional continuous traits, 477 

excluding legacy pipelines. We also excluded traits that 478 

were not measured in both sexes, fitness-related traits 479 

(such as reproductive screening), body size (we analyzed 480 

body size separately), traits with fewer than 100 481 

genotypes, and traits that were clearly not actually 482 

continuous (such as a count of the number of ribs). After 483 

triage, we had 260 traits for which we downloaded all 484 

available phenotype data, including both knock-out 485 

phenotypes and control data. On average we obtained 486 

data for 8,069 control mice and 21,513 mice from 1,713 487 

knock-out lines, per trait. 488 

Sexual dimorphism and 𝑟𝑓𝑚
𝐾  of mouse traits 489 

As we were interested in estimating a single value for 490 

𝑟𝑓𝑚
𝐾  per trait, we collapsed different sources of genetic 491 

variance into genotypes. As some gene knock-outs were 492 

performed in different genetic backgrounds, some genes 493 

had multiple allelic knock-outs, and some genes were 494 

tested in different zygosities, we defined each unique 495 

gene:allele:background:zygosity combination as a 496 

separate genotype. Note that the genetic backgrounds are 497 

all C57BL/6 mice, but a different sub-strain. 498 
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To each of the trait datasets, we fitted a Bayesian linear 499 

mixed model with the goal of estimating both the 500 

between-sex genetic correlation ( 𝑟𝑓𝑚
𝐾 ) and sexual 501 

dimorphism (SD). We opted for the analysis of single traits 502 

as opposed to multivariate models, since phenotypes have 503 

been measured across differing sets of individuals and 504 

knock-outs. Additionally, the univariate models were 505 

computationally expensive, with each model taking 506 

several days to a week to fit, and multivariate models 507 

would be logistically unfeasible. Each model had one of the 508 

phenotypes as the dependent variable, which was 509 

standardized (centered and scaled to unit variance) and 510 

transformed (see below). We included sex as a population 511 

level effect (also called fixed effect), allowing an average 512 

level of dimorphism across genotypes, although we did not 513 

directly use this parameter as our measurement of SD (see 514 

below). We also included body mass as a population level 515 

parameter, since mice are size dimorphic. Body mass was 516 

standardized (centered and scaled to unit variance) prior 517 

to analysis. All analyses were repeated without body mass, 518 

and the qualitatively similar results can be found in the 519 

supplementary material, although we only recommend 520 

interpretation of the results accounting for body size. 521 

To estimate 𝑟𝑓𝑚
𝐾  we added group level parameters (also 522 

called random effects) of genotype for each sex, and their 523 

correlation. Finally, we added group level intercepts for 524 

known sources of variation when they were present, which 525 

were 1) the phenotyping center in which testing was 526 

performed, a parameter encoding several methodological 527 

differences (“meta group”), and 2) the date of testing. This 528 

leads to the final model definition (in lme4/brms syntax): 529 

phenotype ~ weight + sex + (0 + sex | genotype) + (1 | 530 

center) + (1 | meta_group) + (1 | date). In mathematical 531 

notation, following Gelman & Hill (2006): 532 

𝑡𝑟𝑎𝑖𝑡𝑖 ~ 𝑁 (𝛼𝑗[𝑖],𝑘[𝑖],𝑙[𝑖],𝑚[𝑖] + 𝛽sex,𝑗[𝑖](sex)533 

+ 𝛽3(body mass), 𝜎2) 534 

(
𝛽female,𝑗

𝛽male,𝑗
) ~ 𝑁 ((

𝜇𝛽female,𝑗

𝜇𝛽male,𝑗

) , (
𝜎𝛽female,𝑗

2 𝜌𝛽female,𝑗𝛽male,𝑗

𝜌𝛽male,𝑗𝛽female,𝑗
𝜎𝛽male,𝑗

2 )) ,535 

for genotype j = 1, … , J 536 

α𝑘 ~ 𝑁 (𝜇𝛼𝑘
, 𝜎𝛼𝑘

2 ), for center k = 1, … , K 537 

α𝑙 ~ 𝑁 (𝜇𝛼𝑙
, 𝜎𝛼𝑙

2 ), for meta group l = 1, … , L 538 

α𝑚 ~ 𝑁 (𝜇𝛼𝑚
, 𝜎𝛼𝑚

2 ), for date m = 1, … , M 539 

Parameter values were estimated using the brms 540 

(Bürkner, 2017, 2018) interface to the probabilistic 541 

programming language Stan (Carpenter et al., 2017). We 542 

used weakly informative prior distributions, with priors of 543 

N(0, 1) for the intercept and N(0, 2) for the effect of body 544 

mass. For the group level standard deviations and residual 545 

standard deviation we used the positive range of unit 546 

student-t distributions with 5 degrees of freedom. Finally, 547 

we used an LKJ prior with η = 1 for 𝑟𝑓𝑚
𝐾 , which is uniform 548 

over the range -1 to 1. Posterior distributions were 549 

obtained using Stan’s no-U-turn HMC sampler, with 2 550 

chains of 8000 iterations, with the first 4000 used as warm-551 

up and discarded. We additionally set the max tree-depth 552 

to 20 and the adapt delta parameter to 0.9. To evaluate 553 

the ability of our models to accurately estimate the 554 

between-sex genetic correlation, even though the sample 555 

size for each genotype was limited, we performed a 556 

simulation study (figure S7), confirming that our approach 557 

recovers the true value for 𝑟𝑓𝑚
𝐾 . 558 

In order to satisfy the assumption of approximately 559 

normal residuals, we preceded each analysis by estimation 560 

of a Box-Cox transformation, following the established 561 

methods by the IMPC (Kurbatova et al., 2019), using the 562 

simplified model definition: phenotype ~ weight + sex + (0 563 
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+ sex | genotype). We estimated the transform using the 564 

bcnPower method in the car package (Fox et al., 2019), 565 

with model fitting performed by lme4 (Bates et al., 2015). 566 

After fitting all 260 trait models, we performed model 567 

criticism. For each model we obtained the maximum �̂� 568 

parameter, the number of divergences and the minimum 569 

effective sample size. We removed all models that had a 570 

maximum �̂� of more than 1.05, more than 2.5% divergent 571 

draws, or a minimum effective sample size of less than 572 

400. Finally, we performed visual posterior predictive 573 

checks (Gabry et al., 2019), and removed models that did 574 

not reproduce the observed data distribution. Considering 575 

the computational effort required for each of these 576 

models, as well as that the number of successful models 577 

was more than large enough for the analyses we wished to 578 

perform, we did not attempt to remedy the failing models. 579 

We performed visual checks to confirm that the excluded 580 

traits did not have a bias in SD or 𝑟𝑓𝑚
𝐾 . After model 581 

criticism, 202 out of 260 models remained. 582 

For each of these models we derived posterior 583 

distributions of 𝑟𝑓𝑚
𝐾 . Note that brms estimates standard 584 

deviations and correlations directly, so no parameter 585 

transformation was necessary. We then derived posterior 586 

distributions of SD by predicting average male and female 587 

phenotypes for wildtype (i.e. control group) mice. When 588 

there were multiple genetic background variations in 589 

which a trait was tested, we used the marginal means 590 

across backgrounds. To make SD estimates comparable 591 

across traits, we used a mean standardized effect size for 592 

SD, the SD index:
�̅�𝑙𝑎𝑟𝑔𝑒𝑟 𝑠𝑒𝑥

�̅�𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑠𝑒𝑥
− 1 , i.e. the ratio between 593 

larger and smaller, divided by the residual standard 594 

deviation. Note that the SD index requires that 595 

comparisons to zero are biologically meaningful (i.e. traits 596 

are measured on a ratio scale), which was not true for all 597 

the traits in our data set, such as body temperature, 598 

indices and fractional measures. We therefore performed 599 

back transformations of the marginal means to the original 600 

scale, and we only calculated SD for 156 out of 202 traits. 601 

After obtaining the posteriors for each trait, we used a 602 

linear model to test for a relationship between 𝑟𝑓𝑚
𝐾  and SD. 603 

In order to account for uncertainty in those estimates we 604 

performed random draws from the posterior distributions 605 

of those estimates to create 500 datasets. For each of 606 

those samples we ran one MCMC chain of a 𝑍𝑟𝑓𝑚
𝐾 ~ SD 607 

index model using the brm_multiple function, and 608 

performed inference on the combined set of 500 chains. 609 

Note that we performed a Z-transformation on 𝑟𝑓𝑚
𝐾 , also 610 

called the Fisher transformation, to stabilize the variance. 611 

Additionally, we performed the same procedure for the 612 

ratio of the genetic variances: 
𝑉𝐺(𝑙𝑎𝑟𝑔𝑒𝑟)

𝑉𝐺(𝑠𝑚𝑎𝑙𝑙𝑒𝑟)
, which was log 613 

transformed before analysis. 614 

Development of size dimorphism and 𝑟𝑓𝑚
𝐾  615 

To quantify sexual size dimorphism during 616 

development, and associated changes in 𝑟𝑓𝑚
𝐾 , we split the 617 

body mass data into different ages. Mice were weighed 618 

once a week, with most mice being measured between 4 619 

and 16 weeks of age. For each week, we ran the same 620 

analysis as for the separate traits outlined above. 621 

Identification of knock-out genotypes with sexually 622 

discordant effects 623 

The concordant and discordant nature of knock-out 624 

genotypes was determined by evaluating whether the 625 

genotypes were consistently ranked low or high along the 626 

concordant and discordant axes across traits. For each 627 

trait, we used the multilevel model that was used to 628 

estimate SD and 𝑟𝑓𝑚
𝐾 , described above, to obtain estimates 629 

of the male and female trait values for the measured 630 

genotypes. We extracted the posteriors for the male and 631 

female parameter for the genotype group term (BLUP). 632 

Note that these estimates are adjusted for body weight 633 
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and environmental effects, have already undergone 634 

parameter shrinkage, and are centered around zero. We 635 

then translated the male and female phenotypes into 636 

concordant and discordant effects, by rotating the axes so 637 

that the concordant axis is the positive diagonal (female = 638 

male) and the discordant axis is the negative diagonal 639 

(female = -male). The absolute value along the two 640 

diagonal axes was taken, so that the effect of a genotype 641 

is larger when it is further from the population average. 642 

Since the size of the discordant effects of a genotype is 643 

strongly affected by the trait architecture (i.e. 𝑟𝑚𝑓
𝐾 ), we 644 

assigned genotypes percentile ranks to aid comparison 645 

across traits.  646 

For all genotypes that were tested for at least 100 647 

phenotypes, we then calculated the average concordant 648 

and discordant rank across traits. Credible intervals (CIs) 649 

for this average were calculated by computing that 650 

average for 100 random draws of the posteriors. We then 651 

categorized genotypes as less or more discordant than 652 

average by checking whether the CI overlapped a median 653 

rank (50th percentile in Figure 4). 654 

For the genotypes that were more discordant than 655 

average, we extracted which gene had been knocked out 656 

and analyzed the associated gene ontology (GO) terms. 657 

Using goseq (Young et al., 2010) we tested for 658 

overrepresented GO terms, using the hypergeometric 659 

method for obtaining p-values. Finally, we adjusted the p-660 

values to control the false discovery rate(Benjamini & 661 

Hochberg, 1995). 662 

Sex-biased gene expression and fertility 663 

We obtained published gene expression profiles of 664 

male and female gonadal tissue from the ArrayExpress 665 

database under accession number E-GEOD-1148 (Rinn et 666 

al., 2004). Using limma (Ritchie et al., 2015), we calculated 667 

the difference in expression between the sexes (log2 fold 668 

change), and empirical Bayes moderated t-statistics with 669 

adjusted p-values. We then classified genes as sex-biased 670 

if the fold-change was at least 2, and the adjusted p-values 671 

was significant (α = 0.05). Genes that did not satisfy both 672 

those criteria were categorized as unbiased.  673 

We then obtained female and male specific fertility 674 

data from the IMPC (phenotypes IMPC_FER_019_001 and 675 

IMPC_FER_001_001), which are binary traits (fertile vs. 676 

infertile) where each sex has been allowed to breed with a 677 

wildtype mate. Combining these we defined four fertility 678 

categories: fertile, female-limited infertile, male-limited 679 

infertile and infertile. To test for an association between 680 

gene expression category and fertility outcome after 681 

knock-out, we performed a 3x4 chi-squared test for 682 

independence. 683 

Software 684 

All analyses were performed in R v3.6.1 (R Core Team, 685 

2019). Specific R packages used in the analyses are listed 686 

above, and the tidyverse (Wickham et al., 2019) was used 687 

for general data handling and visualization. 688 
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