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Abstract

The majority of the genome is shared between the sexes, and it is expected that the genetic architecture of most
traits is shared as well. This common architecture has been viewed as a major source of constraint on the
evolution of sexual dimorphism (SD). SD is nonetheless common in nature, leading to assumptions that it results
from differential regulation of shared genetic architecture. Here, we study the effect of thousands of gene knock-
out mutations on 202 mouse phenotypes to explore how regulatory variation affects SD. We show that many traits
are dimorphic to some extent, and that a surprising proportion of knock-outs have sex-specific phenotypic effects.
Many traits, regardless whether they are monomorphic or dimorphic, harbor cryptic differences in genetic
architecture between the sexes, resulting in sexually discordant phenotypic effects from sexually concordant
regulatory changes. This provides an alternative route to dimorphism through sex-specific genetic architecture,

rather than differential regulation of shared architecture.
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Introduction

In  organisms with separate sexes, different
evolutionary interests of males and females can lead to
divergent trait optima, which can be realized through the
evolution of sexual dimorphism. For traits to change from
monomorphic to dimorphic, the underlying genetic
mechanisms need to be decoupled between males and
females. However, even in species with sex chromosomes,
males and females share the vast majority of their genome
(Bachtrog et al., 2014), leading to the expectation that
traits are controlled by the same loci in both sexes (Lande,
1980). This shared genomic architecture is typically
considered a source of significant constraint on the
evolution of dimorphism (Stewart & Rice, 2018), as traits
would need to first become genetically decoupled
between females and males before divergence can occur
(Lande, 1980; Poissant et al., 2010; Hermansen et al.,
2018). Shared trait architecture can lead to intra-locus
sexual conflict (Rice & Chippindale, 2001), where alleles at
a locus have different fitness effects in males and females,
and is this assumed to limit the degree to which the sexes
can achieve their respective fitness optima (Hansen, 2006).
Indeed, the constraints on the evolution of sexual
dimorphism (SD) are often considered both pervasive and
persistent, resulting in enduring sexually antagonistic
selection on many traits (Rice & Chippindale, 2001;
Chenoweth et al., 2008; Poissant et al., 2010; Ruzicka et
al., 2019). This persistent constraint is however difficult to
reconcile with the fact that sexual dimorphism evolves
rapidly (Stewart & Rice, 2018), is seen in a broad array of
traits, and differs markedly among related species (Owens
& Hartley, 1998).

It has been suggested that sexual dimorphism arises
from regulatory differences between males and females

(Ellegren & Parsch, 2007; Mank, 2017), and there are good

examples of this (e.g. Galouzis & Prud’homme, 2021).
Indeed, recent genome-wide scans in fruit flies have
shown that protein coding sequence differences are
overrepresented among evolutionarily persistent variants
thought to be maintained by sexual antagonism (Ruzicka
et al., 2019). This might suggest that conflict over coding
sequence variation is much harder to resolve compared to
conflict over gene expression. However, functional
studies have revealed that the genes underlying some
dimorphisms are not expressed differently between the
sexes (Khila et al., 2012). This indicates that sex-biased
expression alone cannot explain all dimorphism, and other
mechanisms may exist.

Another perspective on the genetics of sexually
dimorphic traits stems from investigations grounded in
quantitative genetic theory (Lande, 1980). By comparing
the phenotypes of individuals of known relatedness,
usually through breeding designs or pedigrees, one can
estimate the between-sex genetic correlation (r7,,) for a
trait of interest. This correlation describes the extent to
which a particular genotype affects both male and female
phenotypes in the same way. If 75, & 1, genotypes affect
males and females similarly (i.e. brothers and sisters look
alike), while if 7, = 0, male and female phenotypes vary
independently (Lande, 1980). This estimate of 7y, is based
on autosomal additive standing genetic variation and
measures the additive effects of the many genetic variants
that exist in that population at that time. It can therefore
be used to predict the extent to which a population can
respond to sexually divergent selection. Since this 75,
estimate is based on the additive genetic variance, we will
denote it here as 17, for clarity.

Average estimates of rf“}n are often close to one
(Poissant et al., 2010), suggesting that there is little

standing sex-specific genetic variation. However, these
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estimates are also interpreted by many to reflect the
extent to which the autosomal genetic architecture
underlying the trait is shared between the sexes
(Chenoweth et al., 2008; Poissant et al., 2010; Griffin et al.,
2013; e.g. Stewart & Rice, 2018). In other words, a strongly
positive rﬁn is interpreted to mean that the gene network
that produces the phenotypic trait value is largely identical
between the sexes, suggesting that genetic architecture
needs to be decoupled before SD can evolve. Furthermore,

if rf“}n is an evolutionary important constraint, one would

expect those traits with weak rf‘}n to be more likely to

evolve in  a negative relationship

SD, resulting
(Bonduriansky & Rowe, 2005; Fairbairn & Roff, 2006;
Poissant et al., 2010). Alternatively, selection in favor of SD
may drive reductions in rf“:n, leading to the same
prediction. This negative association is supported by the

prevailing evidence (Poissant et al., 2010), however the

correlation varies widely between studies, and rf“:n is
a b
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generally a poor predictor of SD. Furthermore, rf“,‘n has
been shown to be quickly eroded under artificial selection

(Delph et al., 2011).

rf“;n estimates provide a high-level statistical

description of genotype to phenotype mapping across the
sexes and are an aggregate across standing genetic
variation in the population. However, we know very little
about the loci that underlie this statistic. In particular, we
do not know whether variation in protein coding sequence
is more or less likely to cause sexually discordant
phenotypic effects than expression variation. Here, we use
high-throughput phenotype data from a genome-wide
panel of gene knock-outs in mice to reveal unexpected
differences in the gene expression architecture between

the sexes (The International Mouse Phenotyping

Consortium et al., 2016; International Mouse Phenotyping
Consortium et al., 2017). We find that although most

phenotypic traits are dimorphic, even many monomorphic

Figure 1: (a) Estimates and
associated uncertainty for sexual
dimorphism for each trait analyzed.
Each horizontal line displays the
credible intervals for one trait, where
traits have been arranged by the
posterior median. Shaded regions
indicated the credible intervals of
50%, 80% and 95% of the posterior
densities from a multilevel model.
Sexual dimorphism is averaged
across the wild-type genotypes, and
defined as the ratio of female and

male means. (b) As in (a), but
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traits harbor sex-dependent architectures, suggesting that
many traits may harbor cryptic sex-specific variation.
Changes in both sexes to these loci through expression
may provide a way for SD to rapidly evolve, as traits are
already partially decoupled and the phenotypic effect
differs between males and females. These findings imply
that the evolutionary constraint in SD may be more easily
overcome than previously thought and explain the broad
diversity of sexual dimorphism observed in nature, as well
as the apparent rapid evolution of many sexually

dimorphic traits.

Results

We evaluated the sex-specific effects of alterations to
gene expression, by leveraging data from large-scale high-
throughput phenotyping of gene knock-out lines from the
International Mouse Phenotyping Consortium (IMPC) (The
International Mouse Phenotyping Consortium et al.,
2016). We obtained data for all continuous traits from the
main IMPC pipeline for which at least 100 genotypes were
available. The IMPC uses highly standardized phenotyping
assays on C57BL/6 inbred mice. Both control mice and
phenotype knock-out lines are tested continuously, with
the eventual goal of knocking out each gene in the mouse
genome. This immense scientific effort provides an
unprecedented opportunity to quantify the between-sex
genetic correlation across many traits and many genotypes
in highly standardized conditions.

Sexual dimorphism and rflﬁn of mouse traits

If males and females share the genetic architecture of
traits, knock-outs should affect the phenotype of both
sexes similarly, and as architectures diverge the knock-out
effects should diverge as well. We estimated the genetic
correlation between males and females analogous to the

conventional approach outlined above (rf‘ﬁn). However, to

delineate the knock-out lines from the traditional
approach, we denote these estimates as rflﬁn, where K
denotes the genetic variance-covariance matrix between
knock-out genotypes (Figure S1). Note that rf’fn measures
the correlation between the phenotypic effects of genetic
knock-outs, while rffn measures the correlation for
genome-wide additive genetic variance.

For each of 260 traits, we obtained all available
observations. On average, traits were measured in 8,069
control mice, as well as in 21,513 mice across 1,713
different knock-out genotypes. Per knock-out line, seven
females and seven males were typically phenotyped.

For each trait we obtained posterior distributions for
SD and the between-sex genetic correlation (rf’fn) by fitting
a Bayesian multilevel model. SD was expressed as the ratio

of means (for Figure 1) and as the “sexual dimorphism

Xlarger sex

index”: — 1 (for downstream analyses). Since

Xsmaller sex

mice are sexually dimorphic for body size and many traits
scale with body size, we included a standardized
population level effect of body weight in the model.
Models without body size adjustment produced
qualitatively similar results (see supplementary material).
Additionally, we added group level intercepts for known
sources of variance, this included the phenotyping center,
the date of testing, as well as variation in testing conditions
indicated by the IMPC. Using a Bayesian approach allowed
us to evaluate and propagate the uncertainty in the
estimate of rflﬁn in downstream analyses. This can be
important since this correlation can be biased towards 0 if
it is difficult to estimate (Griffin et al., 2013). Out of 260
traits tested, 202 traits passed our model evaluation

procedure and were used for further inference.
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Many of the measured traits showed substantial SD
(Figure 1a), confirming a previous report on the IMPC data
(International Mouse Phenotyping Consortium et al.,
2017), with an average SD index of 0.09 [0.08, 0.10]
(posterior median [95% Credible Interval]). As the large
sample size in this study makes it possible to distinguish
small effects that have little biological relevance, we
evaluated SD using equivalence testing (Wellek, 2010). We
compared the 95% credible intervals (Cl) of the SD index
for each trait with a region of practical equivalence (ROPE)
between 0 and 0.05 (Kruschke, 2018) (i.e. between 0 and
5% difference in absolute magnitude). When the entire Cl
falls outside the ROPE, we can be confident the sexes differ
by more than 5% and the trait is considered dimorphic. We
consider a trait monomorphic if we are confident there is
less than a 5% difference, so when the entire Cl falls within
the ROPE. Under this decision rule (Kruschke, 2018),
dimorphic traits roughly equal monomorphic traits. 49 out

of the 156 traits (31.4%) were found to be clearly

fm

dimorphic, while 47 traits (30.1%) to be monomorphic. and
60 traits (38.5%) were not classified, as their credible
interval overlapped the 5% threshold. Some of the most
monomorphic traits include calcium levels in the blood and
the time spent on the periphery of an open field. Strongly
dimorphic traits include a variety of immune function
related traits, such as spleen weight and counts of
different T-cell types, as well as glucose tolerance (Table
S1).

Traits showed a wide variety of estimates for rf’fn, from
a correlation close to 1 between the phenotypes of the
sexes down to correlations indistinguishable from O (Figure
1b). The average correlation was clearly positive, but not
as strong as we expected (0.650 [0.622, 0.689]).
Surprisingly, very few traits showed a strong concordance
between male and female effects, with fewer than 5% of

traits having an estimate above 0.9. Some of the traits with

the highest correlation are body temperature and eye
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Figure 2: The between-sex genetic correlation does not depend on sexual dimorphism in the trait. Each point is a trait,

with error bars indicating the 95% credible interval (Cl) in the estimates. The red line represents the model fit of a linear

model on the Fisher-transformed rf’ﬁn, with the shaded region indicating the 95% credible interval, including propagation of

trait level uncertainty. Sexual dimorphism is expressed as the SD ratio.
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morphology, while several immune phenotypes have a
correlation close to O (Table S1).

To test the constraint that high rflﬁn places on the
evolution of dimorphism, we assessed whether rflfn is
lower for more dimorphic traits, which we would expect if
dimorphism is more often associated with a reduced inter-
sexual correlation. We fitted a linear model with Fisher-
transformed rnlgf values as the dependent variable and
sexual dimorphism (expressed as the SD index),
propagating the uncertainty in both variables from the
trait-level models. Contrary to expectation, the between-
sex genetic correlation is not associated with sexual
dimorphism (Figure 2, slope: -0.49 [-1.34, 0.35]). Although
there is a trend in the expected direction, the relationship
is non-significant, and rflfn at monomorphism (i.e. the
intercept) is only slightly higher than the overall average:
0.630 [0.557, 0.698].

To investigate whether there were differences in the
genetic architecture of dimorphism between trait types
(Poissant et al., 2010), we assigned each of the traits one
of four categories: behavior, morphology, physiology or
immunity (Table S1). We repeated the linear model
regressing rgf on SD, now including trait category and the
SD:trait category interaction as additional parameters.
There is no evidence that the relationship between rf,‘:f
and SD is different for different trait categories (Figure S2).
The average r,’,gf of trait categories, estimated at
monomorphism, can also not clearly be distinguished
(Figure S3).

Male and female genetic variances were often

unbalanced, and there was a clear tendency for male

genetic variance to be larger (@ = 1.14 [1.04 , 1.23]).
G(NH)

Thus, knock-out mutations have, on average, substantially
larger phenotypic effects in males. It has been noted

previously that mutations have larger fitness effects in

male Drosophila (Sharp & Agrawal, 2013), and differences
in genetic variance between the sexes may contribute
toward the evolution of dimorphism, even under a strong
between-sex genetic correlation (Wyman & Rowe, 2014).
However, we found no relation between the imbalance of
sex-specific variances and the level of SD (slope: 0.03 [-
0.26, 0.30]).

Development of size dimorphism and rf";n

Body size is dimorphic in many species, including the
mouse, yet it has been found numerous times that rme for
this trait is close to 1 (Roff, 2012). Nonetheless, sexual size
dimorphism can often be rapidly altered in response to the
environment (Badyaev, 2002), making this an important
trait to study in order to better understand the link
between the evolution of SD and sex-specific
architectures. As sexual size dimorphism (SSD) is
established through variable development rates and
times, it is especially useful to understand when in
development the effect of body size loci diverges between
the sexes. Unfortunately, there is very little data available
for the development of rfﬁn, with studies usually including
only 2 or 3 time points (Poissant & Coltman, 2009). In
contrast, the IMPC measures body weight weekly from
week 3 through 16, providing the opportunity to estimate
when during development the effects of expression
changes become sex-biased.

Using the same modelling approach described above,
we obtained estimates for SSD and rf’ﬁn at each week
(Figure 3). SSD increases strongly at the start of this period,
more than doubling between weeks 3 and 7 (Figure 3a).
rf";n decreases during that same time (Figure 3b), and both
parameters stabilize around 8 weeks. The two variables
follow a roughly linear negative relationship during
development (Figure 3c). A developmental link between

SSD and rf’ﬁn may be the result of sexually antagonistic
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Figure 3: The between sex genetic correlation decreases as size dimorphism increases over development. (a) Estimates

for sexual dimorphism in body mass for wildtype mice. Points indicate the posterior median with wide and narrow line

segments denoting the 66% and 95% credible intervals respectively, and the density gradient represents the posterior density.

(b) As in (a), but depicting the between sex genetic correlation. (c) Association of sexual size dimorphism and the rf’fn during

development. Points are posterior medians with 95% credible intervals, as in (a) and (b), with lines connecting subsequent

week. Weeks 3 through 7 are numbered.

selection mainly acting in adulthood. This would bias sex-
specific loci to be expressed only later in development,
driving an increasing SSD and decreasing 75y,

Alternatively, strong trait integration during early
development may pose significant constraints on the

divergence of the sexes before 6 weeks.

Identification of knock-out genotypes with sexually
discordant effects

To gain insight into the extent to which sex-specific
architectures are shared between different traits, we
quantified to what extent knock-out genotypes have
consistent sexually concordant or discordant effects. We
separated the sexually concordant and discordant effect of
each genotype on a trait by projecting the estimated effect
(Best Linear Unbiased Predictor) along two independent

axes (Ruzicka et al., 2019), the positive and negative

diagonal of a female vs male plot (as in Figure S1). Then, in
order to differentiate knockouts with strong versus weak
discordant effects, we looked for genotypes with a
consistently low or high ranking along the discordant axis.

We identified five knock-out genotypes that
consistently had smaller sexually discordant effects,
compared to other genotypes (Figure 4). Those five
genotypes also had much smaller concordant effects,
indicating that their phenotypes are consistently average.
Unsurprisingly, these were five wildtype genotypes.
Additionally, 24 genotypes had larger than average
discordant effects (Figure 4, Table S2). These genotypes
tended to affect the sexes differently, across many traits.
An analysis of Gene Ontologies for the genes that were
knocked out in these genotypes, revealed no significantly

overrepresented categories. In contrast to the 29
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discordant genotypes, 292 genotypes (out of 2543) had
consistently small or large concordant effects. This
difference suggests that traits are more likely to genetically
co-vary in their average value, rather than in their
dimorphism.
Sex-biased gene expression and fertility

Many investigations into the evolutionary significance
of gene expression to SD have focused on sex-biased gene
expression (Grath & Parsch, 2016). Of specific interest are
expression differences in the gonads, where most sex-
biased expression occurs. In these studies, it is often
assumed that gonadal expression bias reflects important
sex-specific fertility functions, however, it is usually not
possible to verify this. Combining previously published

gonadal expression data (Rinn et al., 2004) with fertility
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data from the IMPC database, however, allowed us to test
whether the expression knock-out of sex-biased genes
causes sex-specific infertility.

As predicted, fertility status was significantly
associated with expression bias category (i.e. male-biased,
female-biased or unbiased; x% = 76.6, p < 0.001, Figure S4).
Gene knockouts of female-biased or unbiased genes led to
male-limited infertility in 1.5% of cases, but this increased
to 11% of cases when knocking out male-biased genes.
Female-limited fertility on the other hand was less
common in general and showed no increase with knock-
outs of female-biased genes (Figure S4), possibly because
female gametogenesis is largely encoded during fetal

development and then arrested.

Figure 4: Identifying genotypes with
consistent sexually discordant effects. Each
point is a genotype, having been tested for at
least 50 traits, with error bars denoting 95%
credible intervals (Cls). The average
percentile rank for the absolute sexually
discordant effect of a genotype is plotted
along the x-axis. The y-axis shows the average
percentile tank for the absolute concordant
effect. Red points indicate genotypes that
tend to have more sexually discordant effects
than other genotypes, while blue points are
genotypes that have less discordant effects
(Cl does not overlap 50" percentile).
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Discussion

Using the extensive phenotyping effort of gene knock-
out mouse lines by the IMPC, we have tested for the extent
of overlap in trait genetic architecture between males and
females. Even in the mouse, which is relatively
monomorphic when compared to many other vertebrates,
it is surprisingly common for traits to show clear
differences between the sexes after controlling for body
size. This therefore suggests that sexual dimorphism is not
the exception but the norm across many crucial somatic
traits.

Furthermore, traits are affected differently by knock-
out mutations depending on the sex of the individual. This
clearly illustrates that studies of gene function must
account for sex, as knock-out effects may only be easily
detectable in one of the sexes (International Mouse
Phenotyping Consortium et al., 2017). Alterations in gene
expression are often thought to be a common mechanism
to resolve intra-locus sexual conflict by making gene
expression sex-biased or sex-specific (Grath & Parsch,
2016). This assumes a shared genetic architecture, which
is differentially regulated between the sexes. Our work
suggests that the underlying architecture may differ
between the sexes in many cases, and the low estimates
of rf’ﬁn that we recover highlight a different potential role
of gene expression in the evolution of SD.

Mutations of large regulatory effect can often be
expected to alter SD, providing one way to resolve intra-
locus sexual conflict. However, these regulatory changes
need not result in sex-biased gene expression, as our work
suggests that regulatory changes in both sexes, in this case
elimination of expression in both sexes through knockouts,
often predominantly only affect the phenotype of one. In
other words, sexually concordant regulatory changes can

result in sexually discordant phenotypic effects, and our

results suggest that this commonly occurs. This provides
an alternative route to dimorphism through sex-specific
genetic architecture, rather than differential regulation of
shared architecture. This could, for example, be the result
of interactions with sex-biased genes in the same
regulatory network, or of a sex-bias in the size of the cell
populations expressing the gene. It appears likely that the
modulation of gene expression, either through sex-bias in
the downstream phenotypic effects or in the expression
itself, is a major contributor to the evolution of SD.

Although mutations of large effect, especially gene
deletions, can have deleterious effects on other traits
through pleiotropy, many genes are non-essential
(Amsterdam et al., 2004; Liao & Zhang, 2007; Georgi et al.,
2013). This suggests significant regulatory potential in the
evolution of SD. Additionally, the knockout mutations
assessed here likely represent an extreme form of
regulatory variation, which we would expect to have
similar, if less drastic, sex-specific effects, and more often
contribute to SD.

As others have previously indicated (Cowley & Atchley,
1988; Reeve & Fairbairn, 2001; Bonduriansky & Rowe,
2005), rf“:n may not be as strong an indicator of constraint
as was originally suggested (Lande, 1980). While rf’ﬁn is
very useful in describing the potential for the standing
genetic variation to alter SD in a single or a few
generations, it cannot detect decoupling in trait
architectures which are currently lacking variation. Our
results indicate that even high rf‘in traits may be
susceptible to changes in SD, as most traits have cryptic
parts of the genetic architecture in which new mutations
will likely have sex discordant effects. Importantly,
changes in the architecture itself, such as changes in gene

pathways or the recruitment of new transcription factors,
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are not necessary to have occurred, contrasting with a
common interpretation of a strong rfén.

A potential limitation of this study is that the mice are
inbred, resulting in genome-wide homozygosity. This
means that the phenotypic variation is expected to be
relatively small, making the effects of knockouts appear
stronger. Additionally, the effects of dominance and
epistasis are artificially limited. As it has been suggested
that sex-specific dominance is pervasive (Grieshop &
Arngvist, 2018), and epistatic interactions could be
affected by sex as well, our estimates of rflﬁn could
potentially be biased upwards. It is also important to note
that sex-linked genetic architecture can allow for the
evolution of dimorphism. However, given the relatively
small size and limited gene content of the mouse Y
chromosome (Soh et al., 2014), the role of the Y in sex-
specific genetic architecture for a broad array of somatic
traits is unclear.

The vast majority of genotypes were neither strongly
nor weakly discordant across traits, suggesting there are
very few or no “sex-specific genes” or “SD genes” but
rather many different genes have sex-specific effects on
different traits. The few genotypes that did show some
consistently discordant effects had no functional
categories in common, also suggesting that SD is regulated
differently in different traits. As we identified more
genotypes that had consistently large concordant effects,
the genetic covariance between trait means is likely
stronger than between SD of different traits. Large-scale
analyses in a multivariate framework are needed to fully
clarify the covariance of expression variance across traits
and sex, in order to come to a complete understanding of
the evolutionary constraints on SD.

In conclusion, using a dataset of unprecedented size,
we have demonstrated that traits harbor a surprising

amount of sex-specific genetic architecture, as sexes

10

respond variably to knock-out mutations. These results
may help explain why SD is common, evolvable and
variable, even under supposed strong genetic constraints.
While these differences clearly indicate that the genotype-
to-phenotype mapping is sex-dependent for most traits, it
remains unclear what underlying mechanisms are the
cause for this. We hope future work will help elucidate
proximate causes and evolutionary consequences of this

work.

Methods

We obtained data from the online IMPC genotype-
phenotype database. We selected phenotypes for analysis
by requesting all uni-dimensional continuous traits,
excluding legacy pipelines. We also excluded traits that
were not measured in both sexes, fithess-related traits
(such as reproductive screening), body size (we analyzed
body size separately), traits with fewer than 100
genotypes, and traits that were clearly not actually
continuous (such as a count of the number of ribs). After
triage, we had 260 traits for which we downloaded all
available phenotype data, including both knock-out
phenotypes and control data. On average we obtained
data for 8,069 control mice and 21,513 mice from 1,713
knock-out lines, per trait.

Sexual dimorphism and rflﬁn of mouse traits

As we were interested in estimating a single value for
rf";n per trait, we collapsed different sources of genetic
variance into genotypes. As some gene knock-outs were
performed in different genetic backgrounds, some genes
had multiple allelic knock-outs, and some genes were
tested in different zygosities, we defined each unique
gene:allele:background:zygosity = combination as a

separate genotype. Note that the genetic backgrounds are

all C57BL/6 mice, but a different sub-strain.
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To each of the trait datasets, we fitted a Bayesian linear
mixed model with the goal of estimating both the
between-sex genetic correlation ( rflﬁn ) and sexual
dimorphism (SD). We opted for the analysis of single traits
as opposed to multivariate models, since phenotypes have
been measured across differing sets of individuals and
knock-outs. Additionally, the univariate models were
computationally expensive, with each model taking
several days to a week to fit, and multivariate models
would be logistically unfeasible. Each model had one of the
phenotypes as the dependent variable, which was
standardized (centered and scaled to unit variance) and
transformed (see below). We included sex as a population
level effect (also called fixed effect), allowing an average
level of dimorphism across genotypes, although we did not
directly use this parameter as our measurement of SD (see
below). We also included body mass as a population level
parameter, since mice are size dimorphic. Body mass was
standardized (centered and scaled to unit variance) prior
to analysis. All analyses were repeated without body mass,
and the qualitatively similar results can be found in the
supplementary material, although we only recommend
interpretation of the results accounting for body size.

To estimate rflﬁn we added group level parameters (also
called random effects) of genotype for each sex, and their
correlation. Finally, we added group level intercepts for
known sources of variation when they were present, which
were 1) the phenotyping center in which testing was
performed, a parameter encoding several methodological
differences (“meta group”), and 2) the date of testing. This
leads to the final model definition (in Ime4/brms syntax):
phenotype ~ weight + sex + (0 + sex | genotype) + (1 |
center) + (1 | meta_group) + (1 | date). In mathematical

notation, following Gelman & Hill (2006):
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trait; ~ N (i ki agimin + Bsex,jpi (5€X)

+ B (body mass), 2)

2
(ﬁfemale,j) ~N (Mﬁfemale,j) ( OBtemale,j
ﬁmale,j ‘uﬁmale,j pﬁmale,jﬁfemale,j
for genotypej=1,...,]
2 —
o ~N (uak, aak), for centerk =1, ...,K

o ~N (”az' atfl), for meta groupl =1, ..., L

tpn ~ N (ig,,, 02, ), fordatem = 1,...,M

Parameter values were estimated using the brms
(Barkner, 2017, 2018) interface to the probabilistic
programming language Stan (Carpenter et al., 2017). We
used weakly informative prior distributions, with priors of
N(O, 1) for the intercept and N(0O, 2) for the effect of body
mass. For the group level standard deviations and residual
standard deviation we used the positive range of unit
student-t distributions with 5 degrees of freedom. Finally,
we used an LKJ prior with n = 1 for rflﬁn, which is uniform
over the range -1 to 1. Posterior distributions were
obtained using Stan’s no-U-turn HMC sampler, with 2
chains of 8000 iterations, with the first 4000 used as warm-
up and discarded. We additionally set the max tree-depth
to 20 and the adapt delta parameter to 0.9. To evaluate
the ability of our models to accurately estimate the
between-sex genetic correlation, even though the sample
size for each genotype was limited, we performed a
simulation study (figure S7), confirming that our approach
recovers the true value for rf’ﬁn.

In order to satisfy the assumption of approximately
normal residuals, we preceded each analysis by estimation
of a Box-Cox transformation, following the established
methods by the IMPC (Kurbatova et al., 2019), using the

simplified model definition: phenotype ~ weight + sex + (0

pﬁfemale,jﬁmale,j

2
O-ﬁmale,j

)
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+ sex | genotype). We estimated the transform using the
bcnPower method in the car package (Fox et al., 2019),
with model fitting performed by Ime4 (Bates et al., 2015).

After fitting all 260 trait models, we performed model
criticism. For each model we obtained the maximum R
parameter, the number of divergences and the minimum
effective sample size. We removed all models that had a
maximum R of more than 1.05, more than 2.5% divergent
draws, or a minimum effective sample size of less than
400. Finally, we performed visual posterior predictive
checks (Gabry et al., 2019), and removed models that did
not reproduce the observed data distribution. Considering
the computational effort required for each of these
models, as well as that the number of successful models
was more than large enough for the analyses we wished to
perform, we did not attempt to remedy the failing models.
We performed visual checks to confirm that the excluded
traits did not have a bias in SD or rflﬁn. After model
criticism, 202 out of 260 models remained.

For each of these models we derived posterior
distributions of rflﬁn. Note that brms estimates standard
deviations and correlations directly, so no parameter
transformation was necessary. We then derived posterior
distributions of SD by predicting average male and female
phenotypes for wildtype (i.e. control group) mice. When
there were multiple genetic background variations in
which a trait was tested, we used the marginal means
across backgrounds. To make SD estimates comparable

across traits, we used a mean standardized effect size for

SD, the SD index: —279<rsex. _

1, i.e. the ratio between
Xsmaller sex

larger and smaller, divided by the residual standard

deviation. Note that the SD index requires that
comparisons to zero are biologically meaningful (i.e. traits
are measured on a ratio scale), which was not true for all

the traits in our data set, such as body temperature,
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indices and fractional measures. We therefore performed
back transformations of the marginal means to the original
scale, and we only calculated SD for 156 out of 202 traits.
After obtaining the posteriors for each trait, we used a
linear model to test for a relationship between rflﬁn and SD.
In order to account for uncertainty in those estimates we
performed random draws from the posterior distributions
of those estimates to create 500 datasets. For each of
those samples we ran one MCMC chain of a er’;f SD
index model using the brm_multiple function, and
performed inference on the combined set of 500 chains.
Note that we performed a Z-transformation on rf";n, also
called the Fisher transformation, to stabilize the variance.

Additionally, we performed the same procedure for the

VG(larg er)

ratio of the genetic variances: , which was log

VG(smaller)
transformed before analysis.
Development of size dimorphism and rf";n

To quantify sexual size dimorphism during
development, and associated changes in rflﬁn, we split the
body mass data into different ages. Mice were weighed
once a week, with most mice being measured between 4
and 16 weeks of age. For each week, we ran the same

analysis as for the separate traits outlined above.

Identification of knock-out genotypes with sexually
discordant effects

The concordant and discordant nature of knock-out
genotypes was determined by evaluating whether the
genotypes were consistently ranked low or high along the
concordant and discordant axes across traits. For each
trait, we used the multilevel model that was used to
estimate SD and rf’ﬁn, described above, to obtain estimates
of the male and female trait values for the measured
genotypes. We extracted the posteriors for the male and

female parameter for the genotype group term (BLUP).

Note that these estimates are adjusted for body weight
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and environmental effects, have already undergone
parameter shrinkage, and are centered around zero. We
then translated the male and female phenotypes into
concordant and discordant effects, by rotating the axes so
that the concordant axis is the positive diagonal (female =
male) and the discordant axis is the negative diagonal
(female = -male). The absolute value along the two
diagonal axes was taken, so that the effect of a genotype
is larger when it is further from the population average.
Since the size of the discordant effects of a genotype is
strongly affected by the trait architecture (i.e. rn’gf ), we
assigned genotypes percentile ranks to aid comparison
across traits.

For all genotypes that were tested for at least 100
phenotypes, we then calculated the average concordant
and discordant rank across traits. Credible intervals (Cls)
for this average were calculated by computing that
average for 100 random draws of the posteriors. We then
categorized genotypes as less or more discordant than
average by checking whether the Cl overlapped a median
rank (50" percentile in Figure 4).

For the genotypes that were more discordant than
average, we extracted which gene had been knocked out
and analyzed the associated gene ontology (GO) terms.
Using goseq (Young et al., 2010) we tested for
overrepresented GO terms, using the hypergeometric
method for obtaining p-values. Finally, we adjusted the p-

values to control the false discovery rate(Benjamini &

Hochberg, 1995).

Sex-biased gene expression and fertility

We obtained published gene expression profiles of
male and female gonadal tissue from the ArrayExpress
database under accession number E-GEOD-1148 (Rinn et
al., 2004). Using limma (Ritchie et al., 2015), we calculated

the difference in expression between the sexes (log, fold
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change), and empirical Bayes moderated t-statistics with
adjusted p-values. We then classified genes as sex-biased
if the fold-change was at least 2, and the adjusted p-values
was significant (o = 0.05). Genes that did not satisfy both
those criteria were categorized as unbiased.

We then obtained female and male specific fertility
data from the IMPC (phenotypes IMPC_FER_019_001 and
IMPC_FER_001_001), which are binary traits (fertile vs.
infertile) where each sex has been allowed to breed with a
wildtype mate. Combining these we defined four fertility
categories: fertile, female-limited infertile, male-limited
infertile and infertile. To test for an association between
gene expression category and fertility outcome after
knock-out, we performed a 3x4 chi-squared test for
independence.

Software

All analyses were performed in R v3.6.1 (R Core Team,
2019). Specific R packages used in the analyses are listed
above, and the tidyverse (Wickham et al., 2019) was used

for general data handling and visualization.
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