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The evolution of many microbes and pathogens, including circulating viruses such as seasonal
influenza, is driven by immune pressure from the host population. In turn, the immune systems of
infected populations get updated, chasing viruses even further away. Quantitatively understanding
how these dynamics result in observed patterns of rapid pathogen and immune adaptation is in-
strumental to epidemiological and evolutionary forecasting. Here we present a mathematical theory
of co-evolution between immune systems and viruses in a finite-dimensional antigenic space, which
describes the cross-reactivity of viral strains and immune systems primed by previous infections. We
show the emergence of an antigenic wave that is pushed forward and canalized by cross-reactivity.
We obtain analytical results for shape, speed, and angular diffusion of the wave. In particular,
we show that viral-immune co-evolution generates a new emergent timescale, the persistence time
of the wave’s direction in antigenic space, which can be much longer than the coalescence time of
the viral population. We compare these dynamics to the observed antigenic turnover of influenza
strains, and we discuss how the dimensionality of antigenic space impacts on the predictability of
the evolutionary dynamics. Our results provide a rigorous and tractable framework to describe
pathogen-host co-evolution.

I. INTRODUCTION

The evolution of viral pathogens under the selective
pressure of its hosts’ immunity is an example of rapid co-
evolution. Viruses adapt in the usual Darwinian sense
by evading immunity through antigenic mutations, while
immune repertoires adapt by creating memory against
previously encountered strains. Some mechanisms of in-
host immune evolution, such as affinity maturation pro-
cess, are important for the rational design of vaccines.
Examples are the seasonal human influenza virus, where
vaccine strain selection can be informed by predicting
viral evolution in response to collective immunity[1], as
well as chronic infections such as HIV [2–5], where co-
evolution occurs within each host. Because of the rela-
tively short time scales of selection and strain turnover,
these dynamics also provide a laboratory for studying
evolution and its link to ecology [6].

It is useful to think of both viral strains and immune
protections as living in a common antigenic space [6],
corresponding to an idealized “shape space” of binding
motifs between antibodies and their cognate epitopes
[7]. While the space of molecular recognition is high-
dimensional, projections onto a low-dimensional effective
shape space have provided useful descriptions of the anti-
genic evolution. In the example of influenza, neutraliza-
tion data from hemagglutination-inhibition assays can be
projected onto a two-dimensional antigenic space [8–10].
Mapping historical antigenic evolution in this space sug-
gests a co-evolutionary dynamics pushing the virus away
from its past positions, where collective immunity has de-
veloped. Importantly, the evolution of influenza involves
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competitive interactions of antigenically distinct clades
in the viral population, generating a “Red Queen” dy-
namics of pathogen evolution [11, 12]. Genomic analysis
of influenza data has revealed evolution by clonal inter-
ference [13]; this mode of evolution is well-known from
laboratory microbial populations [14]. In addition, the
viral population may split into subtypes. Such splitting
or “speciation” events, which are marked by a decoupling
of the corresponding immune interactions, happened in
the evolution of influenza B [15] and of noroviruses [16].

The joint dynamics of viral strains and the immune
systems of the host population may be modeled using
agent-based simulations [17, 18] that track individual
hosts and strains. Such approaches have been used to
study the effect of competition on viral genetic diver-
sity [19], to study geographical effects [20], and the ef-
fect of vaccination [21]. Alternatively, systems of cou-
pled differential equations known as Susceptible-Infected-
Recovered (SIR) models may be adapted to incorpo-
rate evolutionary mechanisms of antigenic adaptation
[6, 22, 23]. Agent-based simulations in 2 dimensions were
used to recapitulate the ballistic evolution characteristic
of influenza A [18], and to predict the occurence of split-
ting and extinction events [24]. In parallel, theory was
developed to study the Red Queen effect [12, 25], based
on the well established theory of the traveling fitness wave
[26–28]. While effectively set in one dimension, this class
of models can nonetheless predict extinction and splitting
events assuming an infinite antigenic genome [12].

In this work, we propose a co-evolutionary theory in
an antigenic interaction space of arbitrary dimension d,
which is described by joint non-linear stochastic differen-
tial equations coupling the population densities of viruses
and of protected hosts. We show that these equations
admit a d-dimensional antigenic wave solution, and we
study its motion, shape, and stability, using simulations
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and analytical approximations. Based on these results,
we discuss how canalization and predictability of anti-
genic evolution depend on the dimensionality d.

II. RESULTS

A. Coarse-grained model of viral-immune
co-evolution

Our model describes the joint temporal evolution of
populations of viruses and immune protections in some
effective antigenic space of dimension d. Both viral
strains and immune protections are labeled by their po-
sition x = (x1, . . . , xd) in that common antigenic space,
called “phenotype” (Fig. 1A). In that space, viruses ran-
domly move as a result of antigenic mutations, as well
as proliferate through infections of new hosts. Immune
memories are added at the past positions of viruses. Im-
mune memories distributed across the host population
provide protection that reduce the effective fitness of the
virus. We coarse-grain that description by summarizing
the viral population by a density n(x, t) of hosts infected
by a particular viral strain x, and immunity by a density
h(x, t) of immune memories specific to strain x in the
host population.

At each infection cycle, each host may infect R0 unpro-
tected hosts, where R0 is called the basic reproduction
number. However, a randomly picked host is susceptible
to strain x with probability (1−c(x, t))M , where c(x, t) is
the coverage of strain x by immune memories of the pop-
ulation, and the number M of immune memories carried
by each host. Because of cross-reactivity, which allows
immune memories to confer protection against closeby
strains, immune coverage is given as a function of the
density of immune memories:

c(x, t) =
1

M

∫
dx′h(x′, t)H(x− x′), (1)

where H(x− x′) = exp(−|x− x′|/r) is a cross-reactivity
Kernel describing how well memory x′ protects against
strain x, and r is the range of the coverage provided
by cross-reactivity. In summary, the effective growth
rate, or “fitness”, of the virus is given by f(x, t) ≡
ln[R0(1− c(x, t))M ] in units of infection cycles.

The coupled dynamics of viruses and immune memo-
ries is then described by the stochastic differential equa-
tions:

∂tn(x, t) = f(x, t)n(x, t) +D∂2
xn+

√
n(x, t)η(x, t) (2)

∂th(x, t) =
1

Nh

[
n(x, t)−N(t)

h(x, t)

M

]
, (3)

and η is a Gaussian white noise in time and space
〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′) accounting for de-
mographic noise [29]. This stochastic term is crucial,
as it will drive the evolution of the wave. D describes
the effect of infinitesimal mutations on the phenotype,

virus immune memory
viral fitness

D

FIG. 1: A simple model of viral-host co-evolution pre-
dicts the emergence of an antigenic wave. A. Schematic
of the co-evolution model. Viruses proliferate while effectively
diffusing in antigenic space (here in 2 dimensions) through
mutations, with coefficient D. Past virus positions are re-
placed by immune protections (light blue). Immune protec-
tions create a fitness gradient for the viruses (green gradi-
ent) favoring strains at the front. Both populations of viruses
and immune populations are coarse-grained into densities in
antigenic space. B. Snapshot of a numerical simulation of
Eq. 2-3 showing the existence of a wave solution. The blue
colormap represents the density of immune protections h(x, t)
left behind by past viral strains. The current virus density
n(x) is shown in red. C. Close-up onto the viral population,
showing fitness isolines. The wave moves in the direction of
the fitness gradient (arrow) through the enhanced growth of
stains at the edge of the wave (black dots). D. Distribution
of fitness across the viral population (corresponding to the
projection of B. along the fitness gradient). Parameters for
B-D: D/r2 = 3 · 10−9, Nh = 108, lnR0 = 3, M = 1.

D = µ〈δx2
1〉/2, where µ is the mean number of muta-

tions per cycle, and 〈δx2
1〉 the mean squared effect of each

mutation along each antigenic dimension (assuming that
mutations do not have a systematic bias, 〈δx1〉 = 0). The
continuous diffusion assumption implied by Eq. 2 is only
valid when there are many small mutation effects, µ� 1
and δx � r. The total viral population size, or number
of infected hosts, N(t) =

∫
dxn(x, t) may fluctuate, but

not the host population size Nh, which is constant: new
added memories (first term of right-hand side of Eq. 3)
overwrites existing ones picked uniformly at random (sec-
ond term of r.h.s. of Eq. 3). Since each host carries M
immune receptors, we have

∫
dxh(x, t) = M .

If we assume that the system reaches an evolutionary
steady state, with stable viral population size N(t) = N ,
then Eq. 3 can be integrated explicitly:

h(x, t) =
M

N

∫ t

−∞

dt′

τ
e−

t−t′
τ n(x, t′), (4)

with τ = MNh/N . This equation shows how the density
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of protections reflects the past of the virus evolution.

B. Antigenic waves

We simulated (2)-(3) on a square lattice (Methods) and
found a stable wave solution (Fig. 1B-D). The wave has a
stable population size N , and moves approximately bal-
listically through antigenic space, pushed from behind by
the immune memories left in the trail of past viral strains
(Fig. 1B). These memories exert an immune pressure on
the viruses, forming a fitness gradient across the width
of the wave (Fig. 1C), favoring the few strains that are
furthest from immune memories, at the edge of the wave.

We assume that the solution of the coupled evolution
equations (2)-(3) takes the form of a moving quasispecies
in a d-dimensional antigenic space,

n(x, t) =
N√
2πσ2

exp

[
− (x1 − vt)2

σ2

]
ρ(x2, . . . , xd). (5)

Here, we have written the solution in a co-moving frame,
in which a motion with constant speed v takes place in
the direction of the coordinate x1, and fluctuations in the
other dimensions, ρ(x2, . . . , xd, t), centered around xi = 0
for i > 1, are assumed to be independent. In the next
sections, we will analyse solutions of this form. First, we
will project the d-dimensional antigenic wave onto the
one-dimensional fitness space; this projection produces a
travelling fitness wave [26–28, 30, 31] that determines the
antigenic speed v and the mean pair coalescence time 〈T2〉
of the viral genealogy. Second, we will study the shape
of the d-dimensional quasispecies and determine the fluc-
tuations in the transverse directions. These fluctuations
produce a key result of this paper: immune interactions
canalize the evolution of the antigenic wave; this con-
straint can be quantified by a persistence time govern-
ing the transverse antigenic fluctuations. Canalization is
most pronounced spaces of low dimensionality d and, as
we discuss below, affects the predictability of antigenic
evolution.

C. Speed of antigenic evolution

Projected onto the fitness axis f = f(x, t), the solution
is approximately Gaussian (Fig. 1D). This representation
suggests a strong similarity to the fitness wave solution
found in models of rapidly adapting populations with
an infinite reservoir of beneficial mutations [26–28, 30,
31]. To make the analogy rigorous, we must assume that
the fitness gradient in antigenic space is approximately
constant, meaning that fitness isolines are straight and
equidistant. Mutations along the gradient direction have
a fitness effect that is linear in the displacement, while
mutations along perpendicular directions are neutral and
can be treated independently. Note that while we will use
this projection onto fitness to compute the speed of the

antigenic wave, our description remains in d dimension,
and we will come back to transverse fluctuations in the
next sections.

There exist different theories for the fitness wave, de-
pending on the statistics of mutational effects. Our as-
sumption of diffusive motion makes our projected dynam-
ics equivalent to that studied in Ref. [31], which itself
builds on earlier work [27]. In the limit where the wave
is small compared to the adaptation time scale, vτ � σ,
the wave may be replaced by a Dirac delta function at
x = (vt, 0, . . . , 0) in Eq. 4. One can then calculate ex-
plicitly the immune density (upstream of the wave) and
coverage (downstream of the wave, using Eq. 1):

h(x, t) ≈ M

vτ
e−

vt−x1
vτ Θ(vt− x1)δ(x2) · · · δ(xd), (6)

c(x, t) ≈ e−(x1−vt)/r

1 + vτ/r
, x1 ≥ vt, xi>1 � r (7)

where Θ(x) = 1 for x ≥ 0 and 0 otherwise. This ideal-
ized exponential trail of immune protections h(x, t) cor-
responds to the blue trace of Fig. 1B, and the coverage
or fitness gradient to the isolines of Fig. 1C.

In the moving frame of the wave, (u, x2, . . . , xd), with
u = x1−vt, the local immune protection and viral fitness
can be expanded locally for u, xi � vτ (see [25] for a
similar treatment in a one-dimensional antigenic space):

f((u, xi>1); t) ≈ ln

[
R0

(
1− e−u/r

1 + vτ/r

)M]
≈ f0 + su,

(8)
where f0 = lnR0 −M ln[1 + r/(vτ)] is the average pop-
ulation fitness, and

s = |∂x1
f | = M

r

(
R

1/M
0 − 1

)
(9)

is the fitness gradient. Rescaling the antigenic variable
x1 as sx1, this process is equivalent to the evolution of a
population where mutation effects are described by dif-
fusion in fitness space with coefficient Ds2. This is pre-
cisely the model from which the fitness wave solution of
Ref. [27, 31] was described (see Appendix). In the fol-
lowing we will use results from these works to describe
the antigenic wave, with however the following difference
concerning the regulation of the population size. In the
usual fitness wave theory, population is kept constant by
construction, meaning that fitness is only relevant when
compared to the mean of the population. By contrast, in
our model population size is left free, and fitness is de-
fined as an absolute growth rate. However the fitness of
the whole viral population undergoes continuous negative
drift due to the constant adaptation of immune systems,
encoded in the −svt term in Eq. 8. This negative fitness
drift has an analogous effect to subtracting the mean fit-
ness in models with constant population size, making the
equivalence possible.

The fitness wave theory allows us to make analytical
prediction about the properties of the antigenic wave.
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Let us start with its population size N , which is regu-
lated by how fast the immune system catches up with
the wave. The immune turnover time τ in Eq. 4 is in-
versely proportional to N : the larger the population size,
the faster immune memories are updated, increasing the
immune pressure on current viral strains (lower f0), and
thus decreasing N . As the moving wave reaches a stable
moving state, its size N becomes stable over time, giv-
ing the condition (1/N)dN/dt = f0 = 0, which in turn
constraints the ratio between the wave’s size and speed:

N

v
=
MNh
r

(
R

1/M
0 − 1

)
= Nhs. (10)

But the fitness wave theory predicts that the speed
of the wave itself depends on the population size. The
larger N , the more outliers at the nose the fitness wave,
and the further out they may jump in antigenic space, es-
tablishing fitter ancestors of the future population. This
results in a fitness wave whose speed depends only weakly
on population size and mutation rate (see [31] and Ap-
pendix),

vF ≈ D2/3
F

[
24 ln(ND

1/3
F )

]1/3
, (11)

where DF = s2D and vF = sv are the diffusivity and
wave speed in fitness space, which are related to their
counterparts in antigenic space through the scaling factor
s. Replacing this scaling into Eq. 11 yields a relation
between antigenic speed and population size,

v ≈ D2/3s1/3
[
24 ln(N(Ds2)1/3)

]1/3
, (12)

which closes the system of equations: using the defini-
tion of s (Eq. 9), Eqs. 10 and 12 completely determine N
and v as a function of the model’s parameters (through
a transcendental equation, see Appendix). We validated
these theoretical predictions for N and v by comparing
them to numerical simulations, which show good agree-
ment over a wide range of parameters (Fig. 2A-B).

D. Shape of the antigenic wave

The width σ of the wave in the direction of motion
is given by Fisher’s theorem, which relates the rate of
change of the average fitness to its variance in the popu-
lation: ∂tf = Var(f). In our description fitness and the
antigenic dimension x1 are linearly related with coeffi-
cient s, implying s2σ2 = sv. The result of that predic-
tion for σ is validated against numerical simulations in
Fig. 2C.

The wave is led by an antigenic ‘nose’ formed by
few outlying strains of reduced cross-reactivity with the
concurrent immune population, generating high fitness.
These strains have phenotype uc = sσ4/4D = v2/(4Ds)
and fitness suc. They serve as founder strains from which
the bulk of the future population will derive some time
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FIG. 2: Analytical prediction of wave properties.
Shown are the numerical versus analytical predictions for the
wave’s population size N (A), speed v (B), width σ along the
wave’s direction of motion (C), and width σ⊥ in the direction
perpendicular to motion (D), with d = 2 dimensions. Length
are in units of the cross-reactivity range (so that r = 1, with
no loss of generality). Parameters: Nh = 108 (squares), 1010

(circles), or 1012 (triangles); lnR0 = 1 (filled symbols) or 3
(empty symbols); M = 1 (small symbols) or 5 (large sym-
bols).

∼ uc/v = σ2/4D later (see Appendix). As a result, two
strains taken at random can trace back their most recent
common ancestor to some averge time 〈T2〉 = ασ2/2D in
the past, where α ≈ 1.66 is a numerical factor estimated
from simulations [31].

To explain the width σ⊥ of the wave in the other
phenotypic dimensions than that of motion (xi>1), we
note that in these directions evolution is neutral. Two
strains taken at random in the bulk are expected to have
drifted, or ‘diffused’ in physical language, by an average
squared displacement 〈∆x2

i 〉 = 2DT2 from their com-
mon ancestor, so that their mean squared distance is
4D〈T2〉 = 2ασ2 along xi. If one assumes an approx-
imately Gaussian wave of width σ⊥, the mean square
distance between two random strains along xi should
be equal to 2σ2

⊥. Equating the two estimates yields
σ2
⊥ = ασ2. Fig. 2D checks the validity of this predic-

tion against simulations.
Both longitudinal and transversal fluctuations in anti-

genic space are instances of quantitative traits under
interference selection generated by multiple small-effect
mutations. The width of these traits is governed by the
common relation 〈∆x2

i 〉 = 2D〈T2〉 ∼ σ2, which expresses
the effective neutrality of the underlying genetic muta-
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tions [32]. This relation says that antigenic variations
in all dimensions scale in the same way with the model
parameters, and the wave should have an approximately
spherical shape. Consistently, here we find a wave with
a fixed ratio α ≈ 1.66 between transverse and longitudi-
nal variations. This implies a slightly asymmetric shape
(which may be non-universal and depend on the micro-
scopic assumptions of our mutation model).

In what parameter regime is our theory valid? The
fitness wave theory we built upon is meant to be valid
in the large population size, N � 1. In addition, we
assumed that the fitness landscape was locally linear
across the wave. This approximation should be valid
all the way up to the tip of wave, given by uc, since
this is where the selection of future founder strains hap-
pen. This condition translates into uc � r, implying
D � r2/ ln(N)2, where D is in antigenic unit squared
per infection cycle. This result means that one infection
cycle will not produce enough mutations for the virus
to leave the cross-reactivity range. In that limit, an-
other assumption is automatically fulfilled, namely that
the width of the wave be small compared to the span of
immune memory: σ � vτ . Our simulations, which run in
the regime of very slow effective diffusion (D/r2 . 10−6)
and have relatively large population sizes (N & 104), sat-
isfy these conditions. This explains the good agreement
between analytics and numerics.

E. Equations of motion of the wave’s position

The wave solution allows for a simplified picture. The
wave travels in the direction of the fitness gradient (or
equivalent the gradient of immune coverage) with speed
v (Fig. 3A). Occasionally the population splits into two
separate waves that then travel away from each other
and from their common ancestor (Fig. 3B). The tip of
the wave’s nose, which contains the high-fitness individ-
ual that will seed the future population, determines its
future position in antigenic space. In the directions per-
pendicular to the fitness gradient, this position diffuses
neutrally with coefficient D. This motivates us to write
effective equations of motion for the mean position of the
wave:

dx

dt
= −

(
v +

√
2D‖ξ‖(t)

) ∂xc

|∂xc|
+
√

2Dξ⊥(t), (13)

c(x, t) =

∫ t

−∞

dt′

τ
e−

t−t′
τ −

|x−x(t′)|
r , (14)

where ξ‖ and ξ⊥ are Gaussian white noises in the di-
rections along, and perpendicular to, the fitness gradient
∂xf/|∂xf | = −∂xc/|∂xc|. D‖ is an effective diffusivity
in the direction of motion resulting from the fluctuations
at the nose tip. These fluctuations are different than
suggested by D, as they involve feedback mechanisms
between the wave’s speed v, size N , and advancement of
the fitness nose uc. In the following we do not consider

D

FIG. 3: Stochastic behaviour of the wave: diffusive
motion, splits, and extinctions. A. The wave moves for-
ward in antigenic space but is driven by its nose tip, which
undergoes antigenic drift (diffusion) in directions perpendicu-
lar to its direction of motion. These fluctuations deviate that
direction, resulting in effective angular diffusion. B. When
antigenic drift is large, the wave may randomly split into sub-
populations, creating independent waves going in different di-
rections. Each wave can also go extinct as size fluctuations
bring it to 0. C. Cartoon illustrating the wave’s angular dif-
fusion. Selection and drift combine to create a inertial ran-
dom walk of persistence time tpersist. D. Analytical prediction
(Eq. 17) for the persistence time, versus estimates from sim-
ulations. Symbols and colors are the same as in Fig. 2.

these fluctuations, and focus on perpendicular fluctua-
tions instead.

F. Angular diffusion and antigenic canalization

In the description of Eqs. 13-14, the viral wave is
pushed by immune protections left in its trail. The fit-
ness gradient, and thus the direction of motion, points in
the direction that is set by the wave’s own path. This
creates an inertial effect that stabilizes forward motion.
On the other hand, fluctuations in perpendicular direc-
tions are expected to deviate the course of that mo-
tion, contributing to effective angular diffusion. To study
this behaviour, we assume that motion is approximately
straight in direction x1 = vt, and study small fluctua-
tions in the perpendicular directions, x⊥ = (x2, . . . , xd),
with |x⊥| � r (as illustrated in Fig. 3C). Eqs (13)-(14)
simplify to (see Appendix):

∂tx⊥(t) =

∫ +∞

0

dt′

T

x⊥(t)− x⊥(t− t′)
t′

e−t
′/T+

√
2Dξ⊥(t),

(15)

where T = (v/r + 1/τ)−1 = (r/v)R
−1/M
0 is an effective

memory timescale combining the host’s actual immune
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memory, and the cross-reactivity with strains encoun-
tered in the past.

Eq. (15) may be solved in Fourier space. Defining

x̃⊥(ω) =
∫ +∞
−∞ dteiωtx⊥(t), it becomes:

−iωx̃⊥(ω)

(
1 +

ln(1− iωT )

iωT

)
=
√

2Dξ̃⊥(ω). (16)

To understand the behaviour at long times � T , we ex-
pand at small ω: −ω2x⊥(ω) ≈

√
8Dξ̃⊥(ω)/T or equiv-

alently in the temporal domain ∂2
t x⊥ ≈

√
8Dξ⊥(t)/T .

This implies that the direction of motion, ê ∼
∂xf/|∂xf | ∼ ∂tx/|∂tx|, undergoes effective angular dif-

fusion in the long run: ∂tê =
√

8Dξ⊥(t)/(vT ). The per-
sistence time of that inertial motion,

tpersist =
v2T 2

4D
=

r2

4D
R
−2/M
0 , (17)

does not depend explicitly on the speed and size. How-
ever, a larger diffusivity implies larger N and v while re-
ducing the persistence time. Likewise, a larger reproduc-
tion number R0 or smaller memory capacity M speeds
up the wave and increases its size, but also reduces its
persistence time. This implies that, for a fixed number
of hosts Nh, larger epidemic waves not only move faster
across antigenic space, but also change course faster.

This persistence time scales as the time it would take
a single virus drifting neutrally to escape the cross-
reactivity range, r2/D. For comparison, the much
shorter timescale for a population of viruses to escape
from the cross-reactivity range r,

tescape =
r

v
= TR

1/M
0 =

NhM

N
(R

1/M
0 − 1), (18)

scales with the inverse incidence rate Nh/N . This is con-
sistent with the whole population having been infected
at least one every ∼ Nh/N infection cycles. This separa-
tion of time scales is consistent with the observation that
evolution in the transverse directions is driven by neutral
drift, which is much slower than adaptive evolution in the
longitudinal direction. Both tpersist and tescape are much
longer than the coalescence time of the viral population,
uc/v ∼ σ2/4D, since they reflect long-term memory from
the immune system. However, while tescape ∼ Nh/N cor-
responds to the re-infection period and is thus bounded
by the hosts’ immune memory (itself bounded by their
lifetime, which we do not consider), tpersist may be much
longer than that. This is possible thanks to inertial ef-
fects, which are allowed by the high-order dynamics of
Eq. 15 generated by the immune system. This very much
like when, in mechanics, a massive object set in motion
in a given direction will keep that direction without the
need for an external force to maintain it.

The high-frequency behaviour of (16) has a logarithmic
divergence, meaning that the total power of ê is infinite
unless we impose a (ultraviolet) cutoff. Such a regulariza-
tion emerges from the fine structure of the wave. While

the motion of the wave is driven by its nose tip, the im-
mune pressure only extends back to the recent past of
the bulk of the distribution, which stands at a distance
uc away from the nose. In other words, there is a lag (and
thus an gap uc in antigenic space) between the most in-
novative variants that drive viral evolution, and the ma-
jority of currently circulating variants which drive host
immunity. Mathematically, this implies that the domain
of integration of the first term in the right-hand side of
(15) should start at tc = uc/v, which regularizes the di-
vergence. A more careful analysis provided in the Ap-
pendix shows that this regularization does not affect the
long-term diffusive behaviour of the wave.

G. Deflection, speciations, and predictability of
antigenic evolution

We now examine how deflections of the wave in the
transverse direction determines the predictability and
stability of the viral quasi-species. Assuming t � T ,
angular diffusion causes motion to be deflected as (see

Appendix) 〈x2
⊥〉 = 8(d−1)D

3T 2 t3. Crucially, this deflection
depends on the dimension of the antigenic space. Higher
dimension means more deviation from the predictable
course of the wave, and thus less predictability. We can
define a predictability time scale

tpredict ∼ [8(d− 1)/3]−1/3T 2/3(r2/D)−1/3, (19)

which is the time it takes for prediction errors to become
of the order of the cross-reactivity range. In low dimen-
sions, this time scales as a weighted geometric mean be-
tween tescape ∼ T and tpersist ∼ r2/D. However, at high
dimensions tpredict may be significantly reduced, causing
loss of predictability even below tescape.

To get a sense of numbers, we can compare our re-
sults with epidemiological data, taking the evolution of
influenza as an example, with an infection cycle time of
3 days. It is assumed that individuals lose immunity to
the circulating strain of the flu within ∼ 5 years ∼ 500
cycles, meaning that the wave would travel a distance
r in t = 500, i.e. v/r ∼ 2 · 10−3. For instance, with
Nh = 109-1010, R0 = 2, D/r2 = 3 · 10−6, and M = 1,
we get v/r ∼ 1.3 · 10−3 and tpersist ∼ 2 · 104 ∼ 200
years. By contrast, the predictability timescale tpredict is
much shorter and depends on dimension, albeit slowly,
ranging from ∼ 20 years for d = 2 to about 2 years for
d = 1000. We stress that these numbers are obtained by
scaling laws, and should not be taken as precise quanti-
tative predictions.

Large deflections may also cause speciations, or splits,
which occur when two substrains co-exist long enough to
become independent from the immune standpoint. This
happens when two sub-lineages see the difference of their
transverse positions ∆x⊥ become larger than ∆x0 ∼ r,
within some limited period given by the coalescence time.
We estimated the rate of such splitting events using a
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FIG. 4: Rate of speciation. Rescaled rate of splitting
events, defined as the emergence of two substrains at distance
∆x0 = 0.1r from each other in antigenic space, meaning that
they are becoming antigenically independent. The predicted
scaling, ksplit ∼ (v2/D)e−L, as well as the definition of the
collective variable L as a function of the model parameters,
are given by Eq. 20. The line shows a linear fit of the loga-
rithm of the ordinate.

saddle-point approximation (see Appendix):

ksplit ≈
√

3

8

v2

4D
e−L, L = α

(
s3R

−2/M
0 D2r4

(d− 1)v5

)1/4

(20)
with α some numerical factor. Simulations confirmed the
validity of this scaling (Fig. 4).

The splitting rate grows with the dimension, consistent
with the intuition that departure from canalized evolu-
tion is easier when more directions of escape are available.
Splitting events are expected to strongly affect our abil-
ity to predict the future course of the wave. However, the
rarity of such events (exponential scaling of ksplit) means
that they will have a lower impact on predictability than
deflections. These results provide a theoretical and quan-
titative basis from which to assess the effect of dimension
on predictability, and possibly estimate d from antigenic
time course data of real viral populations.

III. DISCUSSION

In this work we have developed an analytical theory for
studying antigenic waves of viral evolution in response
to immune pressure. We showed that predictabilty is
limited by two features of antigenic evolution, directional
diffusion and lineage speciations of the antigenic wave.

Unlike previous efforts that considered one- [25] or
infinite-dimensional antigenic spaces [12], we explicitly
embedded the antigenic phenotype in a d-dimensional
space. This description allows for the possibility of com-
pensatory mutations, and makes it easier to compare re-
sults with empirical studies of viral evolution projected

onto low-dimensional spaces [8, 9]. Unlike these stud-
ies however, our work does not address the question how
an effective dimension of antigenic space arises from the
molecular architecture of immune interactions. Rather,
we focused on the implications of the dimensionality
of antigenic space for phenotypic evolution and its pre-
dictability.

Our results suggest a hierarchy of time scales for vi-
ral evolution. The shortest is the coalescence time 〈T2〉,
which determines population turnover. Then comes
tescape, which is the time it takes the viral population to
escape immunity elicited at a previous time point. The
longest timescale is the persistence time tpersist, which
governs the angular diffusion of the wave’s direction.
That time scale is due to inertial effects rather than rely
directly on the hosts’ immune memories, and may thus
exceed their individual lifetimes. Finally, the prediction
timescale tpredict, beyond which prediction accuracy falls
below the resolution of cross-reactivity, scales between
tescape and tpersist at low dimensions. However, unlike
the other timescales, it decreases with the dimension of
the antigenic space, and may become arbitrarily low at
very high dimensions.

Our framework should be applicable to general host-
pathogens systems. For instance, co-evolution between
viral phages and bacteria protected by the CRISPR-Cas
system [33] is governed by the same principles of escape
and adaptation as vertebrate immunity. Even more gen-
erally, our theory (Eqs. 2,3) may be relevant to the cou-
pled dynamics of predators and preys interacting in space
(geographical or phenotypic), opening potential avenues
for experimental tests of these theories in synthetic mi-
crobial systems.

IV. METHODS

We simulated discrete population dynamics of in-
fected hosts n(x, t)) and immune protections nh(x, t) ≡
Nhh(x, t) (all integers) on a 2D square lattice with lat-
tice size ∆x ranging from 10−5r to 0.1r. Each time step
corresponds to a single infection cycle, ∆t = 1. At each
time step: (1) viral fitness f is computed at each oc-
cupied lattice site from the immune coverage Eq. 1; (2)
viruses at each occupied lattice site are grown according
to their fitness, n(x, t + 1) ∼ Poisson[(1 + f∆t)n(x, t)];
(3) viruses are mutated by jumping to nearby sites on
the lattice; (4) the immune system is updated according
a discrete version of Eq. 3, by implementing nh(x, t+1) =
nh(x, t) + n(x, t) and then removing N(t) protections at
random (so that Nh remains constant).

To implement (1), we used a combination of exact
computation of Eq. 1 and approximate methods, includ-
ing one based based non-homogeneous fast Fourier trans-
forms [34, 35]. Details are given in the Appendix.

To implement (3), we drew the number of mu-
tants at each occupied site from a binomial distribution
Binomial(n(x, t), 1 − e−µ∆t). The number of new muta-
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tions m affecting each of these mutants is drawn from a
Poisson distribution of mean µ∆t conditioned on having
at least 1 mutation. The new location of each mutant
is drawn as x + δx, with δx = round(

∑m
i=1 εi) (round-

ing is applied to each dimension), where εi is a vector of
random orientation and modulus drawn from a Gamma
distribution of mean δ ∼ 2∆x and shape parameter 20.
This distribution was chosen so as to maximize the num-
ber of non-zero jumps while maintaining isotropy. We
then define D = µ〈δx2

1〉/2.
To find the wave solution more rapidly, the viral popu-

lation was initialized as a Gaussian distribution centered
at (0, 0) with size N and width σ in all dimensions, to
which 0.1% additional viruses are randomly added within
the interval (0;uc) along x1 (N , σ, and uc being all given
by the theory prediction). Immune protections are placed
according to Eq. 6. The first 20,000 time steps serve
to reach steady state and are discarded from the analy-
sis. When a population extinction (N = 0) or explosion
(N = Nh/2) occurs, the simulation is resumed at an ear-
lier checkpoint to avoid re-equilibrating. Simulations are
ended after 5·106 steps of after 20 consecutive extinctions
or explosions from the same checkpoint.

In order to analyze the organization of viruses in phe-
notypic space, we save snapshots of the simulation at
regular time intervals. For each saved snapshot we take
all the coordinates with n > 0 and then cluster them into
separate lineages through the python scikit-learn DB-
SCAN algorithm [36] [37] with the minimal number of
samples min samples = 10. The ε parameter defines the
maximum distance between two samples that are con-
sidered to be in the neighborhood of each other. We
perform the clustering for different values of ε and select
the value that minimizes the variance of the 10th nearest
neighbor distance. Clustering results are not sensitive to
this choice. This preliminary clustering step is refined
by merging clusters if their centroids are closer than the
sum of the maximum distances of all the points in each

cluster from the corresponding centroid.

From the clustered lineages we can easily obtain a se-
ries of related observables, such as its speed v obtained
as the derivative of the center’s position. The width of
the lineage profile in the direction of motion σ as well as
in the perpendicular direction σ⊥ are obtained by tak-
ing the standard deviaton of the desired component of
the distances of all the lineage viruses from the lineage
centroid. Reported numbers are time averages of these
observables. We can track their separate trajectories in
antigenic space. A split of a lineage into two new lineages
is defined when two clusters are detected where previ-
ously there was one, and their distance is larger than
∆x0.

To estimate the persistence time, we first subsample
the trajectory so that the distance between consecutive
points is bigger than 6(〈σ〉 + std(σ)) so that fast fluctu-
ations in the population size do not affect the inference.
We take the resulting trajectory angles and smooth them
with a sliding window of 5. Then we divide the tra-
jectory into subsegments, and compute the angles mean
squared displacement (MSD) over all lineages and all sub-
segments. We consider time lags only bigger than twice
the typical smoothing time, and if the MSD trace is long
enough we also require the time lag to be bigger than
2T . Finally we only keep time lag bins with at least 10
datapoints. We fit the resulting time series to a linear
function ax + b, and get the persistence time as 2

a . We

compute the reduced χ2 as a goodness-of-fit score. Re-
sults are shown for simulations that had enough statistics
to perform the fit, lasted at least 105 cycles, and had a
reduced χ2 below 3.
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Appendix A: Fitness wave theory

We decompose the density of viral strains according to the main direction of the wave x1:

n(x, t) = n1(x1, t)φ(x2, . . . , xd), (A1)

where φ is normalized to 1. Projecting and linearizing Eq. (2) of the main text yields:

∂n1(x1, t)

∂t
= s(x1 − vt)n1(x1, t) +D

∂2n1

∂x2
1

+
√
n1(x, t)η1(x1, t), (A2)

with s defined by (9), and η1 =
∫
dx2 · dxd η(x, t), so that 〈η1(x1, t)η1(x′1, t

′)〉 = δ(x1 − x′1)δ(t − t′). The change of

variable x̃1 = sx1, ṽ = sv, ñ1 = s−dn1, yields the traveling wave equation of Ref. [31]:

∂ñ1(x̃1, t)

∂t
= (x̃1 − ṽt)ñ1(x1, t) + D̃

∂2ñ1

∂x̃2
1

+
√
ñ1(x, t)η̃1(x̃1, t), (A3)

with D̃ = Ds2 and 〈η̃1(x̃1, t)η̃1(x̃′1, t
′)〉 = δ(x̃1 − x̃′1)δ(t− t′).

Note that this continuous description differs from that used in Ref. [12], which also describes a fitness wave in
antigenic space. Their approach relies on a discrete evolutionary model where each mutation confers a fixed fitness
advantage, as described by the fitness wave solution of Desai and Fisher [28].

Applying the formulas of that theory yield in the limit of large populations:

s2σ2 ≈ D̃2/3(24 ln(ND̃1/3))1/3, (A4)
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or

σ ≈ (D/s)1/3(24 ln(N(Ds2)1/3))1/6, (A5)

and

v ≈ D2/3s1/3(24 ln(N(Ds2)1/3))1/3. (A6)

The fittest in the population is ahead of the bulk by uc = sσ4/4D in phenotypic space, with

uc ≈
1

4
(D/s)1/3(24 ln(N(Ds2)1/3))2/3 (A7)

Plugging in (9) yields:

σ =

(
Dr

M(R
1/M
0 − 1)

)1/3
24 ln

ND1/3

(
M(R

1/M
0 − 1)

r

)2/3
1/6

, (A8)

v = D2/3

(
M(R

1/M
0 − 1)

r

)1/3
24 ln

ND1/3

(
M(R

1/M
0 − 1)

r

)2/3
1/3

, (A9)

uc ∼
1

4

(
Dr

M(R
1/M
0 − 1)

)1/3
24 ln

ND1/3

(
M(R

1/M
0 − 1)

r

)2/3
2/3

. (A10)

From the stationarity condition (10) we obtain a self-consistent equation for N :

N

Nh
=
M

τ
= sv = D2/3

(
M(R

1/M
0 − 1)

r

)4/3
24 ln

ND1/3

(
M(R

1/M
0 − 1)

r

)2/3
1/3

. (A11)

The condition uc � r, implies that r scales with N faster than uc, r � ln(N). We also want σ � vτ , therefore

r � M(R
1/M
0 −1)

M3/2 ln(N)1/4, which is automatically satisfied by the previous condition.

Appendix B: Fluctuations in the direction perpendicular to motion

The dynamics of the wave in the directions that are orthogonal to x1 is governed by the projection of (13) onto
x⊥ = (x2, . . . , xd):

∂tx⊥ = −v ∂x⊥c
|∂xc|

+
√

2Dξ⊥. (B1)

From (14) we have

c(x, t) ≈
∫ t

−∞

dt′

τ
e−(t−t)′/τ−

√
(x1−vt′)2+(x⊥(t)−x⊥(t′))2/r. (B2)

Taking the derivative along x⊥ yields:

∂x⊥c|x1=vt ≈
1

r

∫ t

−∞

dt′

τ

−(x⊥(t)− x⊥(t′))√
(vt− vt′)2 + (x⊥(t)− x⊥(t′))2

e−(t−t)′/τ−
√

(vt−vt′)2+(x⊥(t)−x⊥(t′))2/r

≈ − 1

rvτ

∫ t

−∞
dt′

x⊥(t)− x⊥(t′)

t− t′
e−(t−t′)(1/τ+v/r),

(B3)
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where we assumed |x⊥| � r, τ/v. This derivative is small compared to the gradient along the x1, so that we may
approximate |∂xc| ≈ |∂x1c| = (r + vτ)−1.

Replacing into (B1), we obtain:

∂tx⊥ ≈
∫ t

−∞

dt′

T

x⊥(t)− x⊥(t′)

t− t′
e−(t−t′)/T +

√
2Dξ⊥, (B4)

with 1/T = 1/τ + v/r. Using integration by part, this equation can be rewritten as an auto-regressive process on
∂tx⊥:

∂tx⊥ =

∫ ∞
0

dt′

T
E1(t′/T )∂tx⊥(t− t′) +

√
2Dξ⊥(t) (B5)

where E1(x) ≡
∫∞
x
dx′ e−x

′
/x′ has the property

∫∞
0
dxE1(x) = 1. Computing the Fourier transform of E1(t/T )/T ,

which is given by − 1
iωT ln(1 − iωT ) and using the rule of convolution in Fourier space yields (16). Eq. (B5) can be

re-written in terms of the direction of motion ê = ∂tx/|∂tx| ≈ ∂tx/v:

ê(t) =

∫ ∞
0

dt′

T
E1(t′/T )ê⊥(t− t′) +

√
2D

v
ξ⊥(t) (B6)

Focusing on long-term behaviour yields the angular diffusion equation, ∂tê =
√

8Dξ⊥(t)/(vT ), for the direction of
motion ê. The two-point function of ê follows the equation

∂t arccos [ê(t0)ê(t0 + t)] =

√
8D

vT
η(t), (B7)

where η(t) is a unit Gaussian white noise, leading to:

〈ê(t)ê(t+ ∆t)〉 = e−∆t/tpersist , (B8)

with tpersist = v2T 2/(4D) is defined as the persistence time. Going along the curviline coordinate that follows the
trajectory with speed v, we obtain a persistence length of vtpersist.

The logarithmic divergence at high frequencies in (16), which is also apparent in the logarithmic divergence in the
temporal domain at small t in the auto-regressive Kernel E1(t/T )/T . This divergence may be regularized by realizing
that there is a lag uc/v between the nose of the wave, which drives the behaviour of the wave, and its bulk. This
implies that the integral over the past trajectory encoding the immune memory extends only up t− uc/v in the past:

∂tx⊥ ≈
∫ t−uc/v

−∞

dt′

T

x⊥(t)− x⊥(t′)

t− t′
e−(t−uc/v−t′)/T +

√
2Dξ⊥, (B9)

or after integration by parts:

∂tx⊥ = eε
[
E1(ε)(x⊥(t)− x⊥(x⊥ − Tε)) +

∫ ∞
εT

dt′

T
E1(t′/T )∂tx⊥(t− t′)

]
+
√

2Dξ⊥, (B10)

with ε = tc/T � 1.
In Fourier space this reads:

−iωx̃⊥ = K(−iωt)x̃⊥ +
√

2Dξ̃⊥ (B11)

where now the K is the Laplace transform of the operator:

K(z) = eε [E1(ε)− E1(ε(1 + z))] (B12)

Since E1(z) goes to 0 for large z, (z −K(z))−1 goes as 1/z for z → ∞ (small time scales), which means that at
high frequency fluctuations of ∂tx⊥ (and thus of the direction of motion ê) track those of ξ⊥.

Since E1(x) ∼ −γ − ln(x) + x at small x, then E1(ε) − E1(ε(1 + z)) ≈ ln(1 + z) − εz for moderate z and small ε,
and K(z) ≈ z − z2/2 +O(z2ε), so that (z −K(z))−1 ∼ 2/z2. We thus recover that at long time scales ∂tx⊥ diffuses
with diffusivity 4D/T 2.
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Appendix C: Rate of speciation

A speciation, or split, occurs when two strains starting at the tip of the nose of the fitness wave, and continuing
through their progenies, co-exist long enough for them to become independent from the viewpoint of the immune
pressure. This happens when their distance in the x⊥ direction become larger than some threshold scaling with the
cross-reactivity range, ∆x0 ∼ r.

Assuming t� T , angular diffusion causes a strain to bend from the main direction of the wave as:

∂2
t x⊥ =

√
8D

T
ξ⊥(t). (C1)

After integration, the expected deviation reads:

〈x2
⊥〉 =

8(d− 1)D

3T 2
t3 (C2)

assuming x⊥(t = 0) = 0. Now if there are two strains a and b co-existing, their divergence in the perpendicular
direction is Gaussian distributed with:

〈∆x2〉 = 〈(x⊥a − x⊥b)2〉 =
16(d− 1)D

3T 2
t3. (C3)

Two strains are expected to co-exist at the leading edge for a time t before one of them gets absorbed into the bulk
and goes extinct. The expected time for that scales as ∼ τsw = uc/v = σ2/4D = v/4Ds. Assuming splitting events
are rare, they occur when two co-existing strains both survive for an unusually long time. The distribution of such
rare events is asymptotically given by the probability density function P (tcoexist > t) = e−t/τsw . The probability that
the two strains have drifted by at least r before that happens is then given by:

P (∆x > ∆x0; coexist) =

∫ +∞

0

dt

τsw
e−t/τsw

∫ +∞

∆x0

d∆x√
2π16(d− 1)Dt3/(3T 2)

exp

(
− ∆x2

32(d− 1)Dt3/(3T 2)

)
. (C4)

Since we assume that this even is rare, P (∆x > ∆x0; coexist) � 1, we make a saddle-point approximation (Laplace
method) in the t variable. We look for the maximum of

L(t,∆x) =
t

τsw
+

∆x2

32(d− 1)Dt3/(3T 2)
, (C5)

with respect to t, ∂tL = 0, which gives:

t∗ =

√
3

25/4

(
T 2τsw∆x2

(d− 1)D

)1/4

. (C6)

Applying Laplace’s method with ∆x = ∆x0 along with a linear approximation of L in the vicinity of ∆x & ∆x0,
we obtain:

P (∆x > ∆x0; coexist) ≈ 1

τsw

1√
2π16(d− 1)Dt∗3/(3T 2)

√
2π√

∂2
tL(t∗,∆x0)

1

∂xL(t∗,∆x0)
e−L(t∗,∆x0) =

√
3

8
e
−
(

8T2∆x2
0

9(d−1)Dτ3
sw

)1/4

.

(C7)

Replacing T = (r/v)R
−1/M
0 and τsw = v/(4Ds) yields:

P (∆x > ∆x0; coexist) ≈
√

3

8
exp

−(29s3R
−2/M
0 D2∆x2

0r
2

9(d− 1)v5

)1/4
 . (C8)

We check self-consistently that our approximation of angular diffusion is correct for ∆x0 ∼ r. The condition is met
when t∗ � T , or

t∗ =

√
3r∆x0R

−1/M
0

27/4((d− 1)D2sv)1/4
� T =

r

v
R
−1/M
0 . (C9)
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This condition is equivalent to:

v � D2/3r−1/3, (C10)

which is (barely) satisfied for large population sizes (Eq. 12).
Finally, to get the rate of splitting events, we must multiply the probability of a successful splitting event, P (∆x >

∆x0; coexist), by the rate with which branches sprout from the main trunk of the phylogenic tree. Since mutations
are modeled by continuous diffusion in antigenic space, such a new branch occurs whenever the individual virus on
the trunk of the tree (defined as the virus that will eventually seed the entire future population) reproduces, as the
two offspring immediately become antigenically distinct because of diffusion, and thus make two distinct branches.
This happens with rate f(uc) = ucs = v2/4D, so that the overall rate of speciation should scale as:

ksplit ≈
√

3

8

v2

4D
exp

−(29s3R
−2/M
0 D2∆x2

0r
2

9(d− 1)v5

)1/4
 . (C11)

Replacing ∆x0 = ar, with a a numerical scaling factor, gives the result of the main text.

Appendix D: Details of simulation implementation

To update the fitness at each time step, we used either an exact computation of Eq. 1, or a faster approximate
method based non-homogeneous fast Fourier transforms [34, 35]. For the exact computation, c(x, t+ ∆t)− c(x, t) was
calculated at each time step by convolving the Kernel H with nh(x, t + ∆t) − nh(x, t) (exploiting the fact that this
sum is sparse because not all positions get updated). Both algorithms can be preceded by an extra-approximation
for positions x′ with nh(x′, t + ∆t) > 0 that are far enough from the viral cloud. We approximate the Kernel H by
reducing |x− x′| to its projection along the direction given by x′ − 〈x〉n, with 〈x〉n =

∫
dxxn(x)/N . This allows us

to pre-compute the contributions of all these x′ to Eq. 1 with a mere 1D convolution, ∀x where n(x) > 0, speeding
up the computation considerably. We choose the desired combination of approximations based on the convolution
computational complexity, driven by the number of positions with n(x, t+ ∆t) > 0 and nh(x, t+ ∆t)− nh(x, t) > 0.
To limit errors accretion we compute the update to the convolution exactly as explained above depending on a proxy
for the fitness errors. In addition, the full convolution was recalculated with no approximation every 10000 steps.
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