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Abstract 15 

The colonization of the human gut microbiome begins at birth, and, over time, these microbial 16 

communities become increasingly complex. Most of what we currently know about the human 17 

microbiome, especially in early stages of development, was described using culture-independent 18 

sequencing methods that allow us to identify the taxonomic composition of microbial communities 19 

using genomic techniques, such as amplicon or shotgun metagenomic sequencing. Each method has 20 

distinct tradeoffs, but there has not been a direct comparison of the utility of these methods in stool 21 

samples from very young children, which have different features than those of adults. We compared 22 

the effects of profiling the human infant gut microbiome with 16S rRNA amplicon versus shotgun 23 

metagenomic sequencing techniques in 130 fecal samples; younger than 15, 15-30, and older than 30 24 

months of age. We demonstrate that observed changes in alpha-diversity and beta-diversity with age 25 

occur to similar extents using both profiling methods. We also show that 16S rRNA profiling 26 

identified a larger number of genera and we find several genera that are missed or underrepresented 27 

by each profiling method. We present the link between alpha diversity and shotgun metagenomic 28 

sequencing depth for children of different ages. These findings provide a guide for selecting an 29 

appropriate method and sequencing depth for the three studied age groups. 30 

1 Introduction 31 
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There is increasing evidence that changes in activity and diversity of the gut microorganisms are 32 

associated with the development of diseases and conditions such as type II diabetes (Hartstra et al., 33 

2015; Lambeth et al., 2015), cancer (Bultman, 2014; Marchesi et al., 2011), and even depression 34 

(Foster and McVey Neufeld, 2013). Assessing the taxonomic diversity of gut microbes is a key first 35 

step towards understanding how those microbes may affect host health. Most of what is currently 36 

known about the gut microbiome has been derived using culture-independent profiling methods such 37 

as next-generation sequencing (Ji and Nielsen, 2015; Lozupone et al., 2012; Malla et al., 2019). The 38 

two most widely used culture-independent methods are amplicon sequencing, a method that 39 

amplifies variable regions of a highly conserved bacterial gene such as the 16S rRNA gene, and 40 

shotgun metagenomic sequencing, an approach that sequences all of the DNA present in a sample.  41 

Both of these techniques have been pivotal in understanding the microorganisms living in the 42 

human gut and how they affect human health, but each has trade-offs. Profiling microbial 43 

communities using 16S rRNA genes is a straightforward and cost-effective method to profile the 44 

taxonomic composition of a microbial community, but it has low taxonomic resolution due to the 45 

conservation of the target gene and length of amplicon product. In addition, the amplification that is 46 

used to enrich for the rRNA gene can introduce bias in quantifying taxa in the resulting taxonomic 47 

profiles (Acinas et al., 2005; Tremblay et al., 2015). For instance, the choice of primers that bind to 48 

the 16S rRNA gene during amplification has been shown to have a great effect on microbiome 49 

community characterization (Chen et al., 2019; Tremblay et al., 2015). However, despite the need for 50 

a PCR amplification step, this type of profiling requires a relatively low number of sequenced reads 51 

per sample to maximize identification of rare taxa and is generally cheaper than shotgun 52 

metagenomic sequencing.  53 

Shotgun metagenomics indiscriminately sequences the entire metagenome, and therefore 54 

typically requires more sequenced reads per sample to find unique taxonomic identifiers. This need 55 

for increased sequencing depth carries a higher cost (Comeau et al., 2017), but yields information on 56 

many genes rather than only one. This substantially increases resolution in taxonomic assignments - 57 

metagenomic profiling often provides species-level assignment where amplicon sequencing is 58 

restricted to identifying genera (Ranjan et al., 2016) - and has the additional benefit of providing 59 

direct evidence of gene functional variation in strains present. Metagenomic sequencing may also be 60 

used to generate genomic assemblies, yielding further insight into microbial diversity (Wilkins et al., 61 

2019). 62 
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The ability to draw conclusions about taxonomy from microbiome sequencing data depends 63 

not only on the sequencing method, but also on sequencing depth: how many times on average a 64 

given piece of DNA is likely to be sequenced given a fixed read length and the assumption that all 65 

regions of a genome are equally likely to be sequenced (Sims et al., 2014). If it were possible to 66 

achieve the resolution of shotgun metagenomics at a lower cost, we could sequence more deeply, 67 

identify less abundant taxa, and learn more about the microbial diversity within and between samples 68 

(Pereira-Marques et al., 2019). However, deeper sequencing is more expensive. A few studies have 69 

investigated the potential for reduced metagenomic sequencing (Hillmann et al., 2018; Zaheer et al., 70 

2018), but there has not been substantial research analyzing the reduced sequencing depth for 71 

investigation of the gut microbiomes in young infants and children. The gut microbial communities 72 

of children are potentially good candidates for experimentation with shallower sequencing depths 73 

because their communities have lower gut microbial diversity until their microbiomes stabilize and 74 

become more adult-like around 2-3 years of age  (Palmer et al., 2007; Radjabzadeh et al., 2020; 75 

Stewart et al., 2018; Yatsunenko et al., 2012). 76 

While some have utilized both profiling methods in children (Ravi et al., 2018; Vatanen et al., 77 

2016), and the known trade-offs between amplicon and metagenomic sequencing have been 78 

previously explored in soil (Brumfield et al., 2020) and plant environments (Mas-Lloret et al., 2020), 79 

as well as in human adult microbiomes (Laudadio et al., 2018; Ranjan et al., 2016), to date, no one 80 

has directly investigated the relative trade-offs between 16S rRNA amplicon sequencing and 81 

metagenomic sequencing at different sequencing depths in the gut microbiomes of infants and young 82 

children of different ages. Here, we compare paired 16S rRNA versus metagenomic sequencing gut 83 

microbiome datasets from a cohort of young children broken into 3 age brackets: less than 15, 15 to 84 

30, and over 30 months.  85 

2 Materials and Methods 86 

2.1 Cohort description  87 

Samples for this study came from a subset of 130 children (Figure S1) in the RESONANCE Cohort 88 

(Providence, RI), an accelerated-longitudinal study of healthy children ages 0 to 12 years. Each child 89 

contributed one sample. The RESONANCE cohort is part of the Environmental influences on Child 90 

Health Outcomes (ECHO) Program (Forrest et al., 2018; Gillman and Blaisdell, 2018), which aims to 91 

investigate the effects of environmental factors on childhood health and development. All procedures 92 

for this study were approved by the local institutional review board at Women and Infants Hospital, 93 
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and all experiments adhered to the regulation of the review board. Written informed consent was 94 

obtained from all parents or legal guardians of enrolled participants. Children with known major risk 95 

factors for developmental abnormalities at enrollment were excluded.  96 

2.2 Stool sample collection and handling  97 

One stool sample per child (n=130) was collected by parents in OMR-200 tubes (OMNIgene GUT, 98 

DNA Genotek, Ottawa, Ontario, Canada), stored on ice, and brought within 24 hrs to the lab in RI 99 

where they were immediately frozen at -80˚C. Stool samples were not collected if the infant had 100 

taken antibiotics within the last two weeks. Samples were transported to Wellesley College 101 

(Wellesley, MA) on dry ice for further processing. 102 

2.3 DNA extraction and sequencing of metagenomes and 16S rRNA gene amplicons 103 

Nucleic acids were extracted from a 200 µL aliquot of fecal slurry using the RNeasy 104 

PowerMicrobiome kit automated on the QIAcube (Qiagen, Germantown, MD), according to the 105 

manufacturer’s protocol, excluding the DNA degradation steps. The samples were subjected to bead 106 

beating using the Qiagen PowerLyzer 24 Homogenizer (Qiagen, Germantown, MD) at  2500 speed 107 

for 45 seconds. The samples were transferred to the QIAcube to complete the protocol, and extracted 108 

DNA was eluted in a final volume of 100 µL. DNA extracts were stored at -80˚C until sequenced.  109 

 Samples were sequenced at the Integrated Microbiome Resource (IMR, Dalhousie University, 110 

NS, Canada) (Comeau et al., 2017). To sequence metagenomes, a pooled library (max 96 samples per 111 

run) was prepared using the Illumina Nextera Flex Kit for MiSeq and NextSeq (a PCR-based library 112 

preparation procedure) from 1 ng of each sample where samples were enzymatically sheared and 113 

tagged with adaptors, PCR amplified while adding barcodes, purified using columns or beads, and 114 

normalized using Illumina beads or manually. Samples were then pooled onto a plate and sequenced 115 

on the Illumina NextSeq 550 platform using 150+150 bp paired-end “high output” chemistry, 116 

generating ~400 million raw reads and ~120 Gb of sequence (NCBI Bioproject PRJNA695570).  117 

For sequencing 16S rRNA gene amplicons, the V4-V5 region of the 16S ribosomal RNA 118 

gene was sequenced according to the protocol described by Comeau et al. (2017). Briefly, the V4-V5 119 

region was amplified once using the Phusion High-Fidelity DNA polymerase (ThermoFisher 120 

Scientific, Waltham, MA) and universal bacterial primers 515FB:  5’- 121 

GTGYCAGCMGCCGCGGTAA-3’ and  926R: 5’-CCGYCAATTYMTTTRAGTTT-3’ (Parada et 122 

al., 2016; Walters et al., 2016). These primers had appropriate Illumina adapters and error-correcting 123 
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barcodes unique to each sample to allow up to 380 samples to be simultaneously run per single flow 124 

cell. After being pooled into a single library and quantified fluorometrically, samples were cleaned-125 

up and normalized using the high-throughput Charm Biotech Just-a-Plate 96-well Normalization Kit 126 

(Charm Biotech, Cape Girardeau, MO). The normalized samples were sequenced on the Illumina 127 

MiSeq platform (Illumina, San Diego, CA) using 300+300 bp paired-end V3 chemistry, producing 128 

~55,000 raw reads per sample (Comeau et al., 2017).  129 

2.4 16S rRNA gene amplicon processing and analysis  130 

Reads profiled using the 16S rRNA gene were analyzed using the Quantitative Insights in Microbial 131 

Ecology 2 (QIIME2), v 2019.10 (Bolyen et al., 2019) and we used a modified protocol developed by 132 

Comeau et al. (2017). Briefly, primers flanking V4-V5 were removed from fastq reads using the 133 

cutadapt QIIME2 plugin (Martin, 2011). Fastq reads were then filtered, trimmed and merged in 134 

DADA2 (Callahan et al., 2016) to generate a table of amplicon sequence variants (ASV). A multiple-135 

sequence alignment was created using MAFFT, and FastTree was used to create an unrooted 136 

phylogenetic tree, both with default values (Price et al., 2010). A root was added to the tree at the 137 

midpoint of the largest tip-to-tip distance in the tree. Taxonomy was assigned to the ASVs using a 138 

Naïve-Bayes classifier compared against a SILVA v 119 reference database trained on the 515-926 139 

region of the 16S rRNA gene (Bokulich et al., 2018). Rarefaction curves showed that the majority of 140 

samples reached asymptote, indicating sequencing depth was appropriate for analyses.  141 

2.5 Metagenome data processing and analysis 142 

Metagenomic data were analyzed using bioBakery workflows with all necessary dependencies and 143 

default parameters (McIver et al., 2018). Briefly, KneadData (v 0.7.10) was used to trim and filter 144 

raw sequence reads, and to separate human and 16S ribosomal gene reads from bacterial sequences in 145 

both fecal and oral samples. Samples that passed quality control were taxonomically profiled to the 146 

genus level using MetaPhlAn (v 3.0.7), which uses alignment to a reference database of “marker 147 

genes” to identify taxonomic composition (Beghini et al., 2020).  148 

2.6 Statistical Analysis  149 

Statistical analyses were carried out in R (4.0.3). vegan (v 2.5-6)  was used for all alpha-diversity 150 

calculations: Shannon diversity index (Shannon, 1948) (alpha diversity measurement of evenness and 151 

richness), evenness (how homogeneous the distribution of taxa counts are), and richness (number of 152 

taxa in a community). Pairwise Bray-Curtis dissimilarity was used to assess beta-diversity, or the 153 
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overall variation between each sample (Bray and Curtis, 1957). The Bray-Curtis dissimilarity metric 154 

compares two communities based on the number or relative abundance of each taxon present in at 155 

least one of the communities. When we calculated these values, we assumed that the set of 156 

dissimilarities calculated across a group was independent, even when the same child was paired to 157 

other children multiple times. These distance matrices were used for Principal Coordinates Analysis 158 

(PCoA) to create ordinations. The two principal components that explained the most variation were 159 

used to create biplots (Figure S2).  160 

Univariate comparisons were performed in two-sample two-tailed t-tests when we could 161 

assume normality, and Wilcoxon Signed Rank tests when we could not. P-values of less than 0.05 (or 162 

the equivalent after Benjamini-Hochberg false discovery rate correction (Benjamini and Hochberg, 163 

1995)) were considered statistically significant. Mixed effects linear models in lme4 were used to 164 

analyze data from subsampling results, to account for the fact that multiple subsamples were 165 

generated from each sample. Shannon ~ 1.58 + 5.21x10-4*read depth - 3.79x10-1 *less than 15 166 

months - 4.38x10-2 *older than 30 months - 1.50x10-4*read depth: less than 15 months - 1.56x10-167 
4*read depth:older than 30 months. 168 

2.7 Comparing missing and underrepresented genera in 16S rRNA to shotgun metagenomics 169 

datasets 170 

A genus was classified as being unique to a particular profiling method if reads were only assigned to 171 

it through one method. Taxa that could not be resolved down to the genus level (taxonomic 172 

assignments containing the phrases “unclassified,” “unidentified,” “group,” or “uncultured”) were 173 

removed prior to calculating relative abundance diversity, and all downstream metrics. Genera that 174 

only occurred in one but not the other method were classified as uniquely identified by 16S rRNA 175 

profiling or shotgun metagenomics. We found the intersection of genera by identifying microbes that 176 

were found at least once by both methods.  177 

We used Wilcoxon Signed Rank tests to compare the abundances of microbes that were found 178 

by both methods. This analysis was limited by the direct comparison of relative abundances instead 179 

of direct counts. Because 16S rRNA profiling was able to identify more taxa at the genus level, this 180 

meant that the relative abundances of its organisms were systematically lower. 181 

2.8 Analyzing primer coverage 182 
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TestPrime 1.0 (Klindworth et al., 2013; Ludwig et al., 2004) was used to perform in silico PCR to 183 

investigate how well certain primer pairs align to microbes in the SILVA database. We entered our 184 

forward and reverse primers (515FB and 926R) into the TestPrime web-tool provided by SILVA 185 

(Quast et al., 2013) to analyze the percent primer coverage of microbes found only with metagenomic 186 

sequencing, but not by amplicon sequencing. Coverage is defined as the percentage of matches for a 187 

particular taxonomic group (# of matches / (total # of mismatches + matches). The primers described 188 

in Methods 2.4 were compared to sequences found within the SSU r138.1 SILVA database. A single 189 

nucleotide mismatch between each primer and 16S rRNA gene sequence was considered a mismatch 190 

for that organism. Once the percent coverage was calculated, we compared the average coverage of 191 

microbes uniquely found by shotgun metagenomics, 16S rRNA profiling, or both methods. Some 192 

genera identified uniquely by shotgun metagenomics were not as identified as hits to the primer, 193 

despite being in the SILVA database. Their alignment was manually entered to be 0% for 194 

downstream analysis. 195 

2.9 Generating phylogenetic trees 196 

The union of all genera that were identified by either 16S rRNA gene or shotgun metagenomic 197 

sequencing was used to generate a phylogenetic common tree using TimeTree (Kumar et al., 2017). 198 

In addition to these genera, Thermus aquaticus was added as an outgroup. This tree was visualized 199 

using the Interactive Tree of Life (iTOL) v 5.5.1, (Letunic and Bork, 2019), along with metadata that 200 

described which profiling method (either 16S, shotgun metagenomics, or both) was able to identify 201 

the genus (Letunic and Bork, 2007, 2019). For taxa that were unidentified by a particular profiling 202 

method, we investigated whether or not that taxon was present in the missing database. The 203 

phylogenetic tree notes taxa that would be impossible to be identified by that method, as they were 204 

not present in the relevant database.  205 

2.10 Exploring the effect of read depth on diversity using metagenome samples 206 

We investigated the results of decreasing read depth on alpha and beta-diversity by resampling 207 

shotgun metagenomic reads from a subset of children within the RESONANCE cohort that had 208 

deeply sequenced metagenomes (average 7,209,871± 2,562,647 reads). Metagenomic reads from 30 209 

children were selected and 10k, 100k, 250k, 500k, 750k, and 1M reads were randomly sampled (with 210 

replacement) from each child’s reads. Each child was resampled at each depth four times for the 211 

analysis involving RESONANCE subjects. 212 
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To investigate whether these observations were generally applicable to other childhood 213 

cohorts, we performed the same subsampling analysis on the DIABIMMUNE cohort (Simre et al., 214 

2016). Only a single sample for each depth was obtained for DIABIMMUNE subjects due to the 215 

substantially higher number of original samples. DIABIMMUNE subjects were subsampled at depths 216 

of 100k, 250k, 500k, 750k, 1M, and 10 M reads. All children were separated by developmental stage 217 

(less than 15 months: n = 10, between 15 and 30 months, n = 10, over 30 months, n = 10). Reads 218 

were reassigned taxonomy using MetaPhlAn (see section 2.7) and diversity was recalculated. The 219 

majority of these samples subsampled at 10,000 reads had no identifiable taxa and were excluded 220 

from downstream analysis.  221 

3 Results 222 

3.1 Alpha diversity increases with age in both 16S rRNA gene- and metagenomic-profiled 223 

samples 224 

First, we directly compared taxonomic profiles generated by shotgun metagenomic or amplicon 225 

sequencing to assess their ability to detect poorly characterized or low abundance taxa. On average, 226 

the proportion of microbes resolved to the genus level in a sample was 97.7%  (SD = 1.7%) when 227 

profiled by shotgun metagenomic sequencing and 78.2% (SD = 20.7%) when profiled by 16S rRNA 228 

sequencing. As expected, regardless of the profiling method, the observed alpha (within-sample) 229 

diversity of the gut microbiome of children increased in the first 30 months of life (Welch’s t-test,  p-230 

value < 0.001). Given that we observed that children’s microbiomes grow increasingly complex and 231 

diverse, we hypothesized that any differences in ability of the profiling methods to identify less-232 

abundant taxa would only be magnified with age. Consistent with this hypothesis, we found that 233 

profiles created from shotgun metagenomics data had systematically lower alpha diversity than 234 

profiles from 16S rRNA sequencing at the genus level across all developmental stages (Figure 1A). 235 

The mean of these differences between paired profiles increased as the children age, with the largest 236 

differences observed in children older than 30 months (mean of the differences = 0.18, paired t-test, 237 

p-value < 0.001). This suggests that the differences between 16S rRNA and shotgun metagenomics 238 

profiling in capturing alpha diversity are amplified as children age and their microbial diversity 239 

becomes increasingly complex.  240 

We next examined between-sample, or beta, diversity within each of the three age groups to 241 

determine if age or profiling method were associated with large between-sample differences. 242 
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Comparisons of beta diversity within children of the three groups indicated the similarity between gut 243 

microbiome communities increased with age in both profiling methods. Regardless of which method 244 

was used, Bray-Curtis dissimilarity, a pairwise measure of beta diversity between two communities, 245 

was the smallest between children over the age of 30 months (Figure 1B).  246 

After observing differences in the two profiling methods among young children, we next 247 

compared profiles generated from the different methods for the same fecal sample. If data from 248 

shotgun metagenomics and 16S rRNA gene profiling both produced exactly the same gut microbial 249 

profiles, we would expect that profiles from the same child’s fecal sample would have a Bray-Curtis 250 

dissimilarity of  ~0. At a minimum, we would expect to see that the Bray-Curtis dissimilarity among 251 

profiles constructed from the same stool sample would be smaller than the dissimilarity between two 252 

profiles from two random children. As hypothesized, we observe that the average Bray-Curtis 253 

dissimilarity among paired samples is much lower than that of unpaired samples (Figure 1C; mean 254 

difference = 0.348, Welch’s t-test, p-value < 0.001). The largest differences in the paired profiles 255 

were found in children less than 15 months (Figure 1C, 1D).  256 

3.2 Discrepancies between 16S rRNA and shotgun metagenomics profiles 257 

To further investigate the cause of the largest discrepancies in diversity between the two profiling 258 

methods, we looked at biases in taxonomic representation at different taxonomic levels. At all 259 

taxonomic levels, except the species level, 16S rRNA amplicon profiling identifies more taxa 260 

(Figure 2A). We found that 41 families were found by both methods, while 33 and 14 were uniquely 261 

identified by 16S rRNA and shotgun metagenomic profiling, respectively. At the genus level, of 202 262 

genera identified across all samples, only 105 genera were identified with both amplicon and shotgun 263 

metagenomic sequencing. 16S rRNA amplicon sequencing identified 63 genera not found by 264 

metagenomic profiling including Acetobacter, Bacillus, Flavobacterium, Pseudomonas, and 265 

Sulfitobacter, while only 34 genera were uniquely found using shotgun metagenomic sequencing, 266 

such as Citrobacter, Coprococcus, Enterobacter, Gordonibacter, and Helicobacter (Figure 2B). At 267 

the species level, 16S rRNA amplicon profiling was not able to resolve any taxa to the species level, 268 

while shotgun metagenomics was able to identify 385 unique species. We decided to focus on 269 

comparing taxonomic differences at the genus level, as that is the most specific taxonomic level in 270 

which we are able to meaningfully compare the two methods. 271 

After identifying genera that were found by only one of the two methods, we next 272 

investigated whether there were any taxa that were systematically found at higher levels in one 273 
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method versus the other. We found that Butyricicoccus was observed to have a significantly higher 274 

relative abundance in 16S rRNA profiles compared to samples profiled with shotgun metagenomics 275 

(Wilcoxon signed rank test for this and all microbes, p-value < 0.001 ) (Table S1). Similarly, 276 

Romboutsia (p-value < 0.001) and Sutterella (p-value < 0.001) were found to have a higher relative 277 

abundance when detected by 16S rRNA amplicon sequencing. In contrast, genera such as 278 

Bifidobacterium (p-value < 0.001), Eggerthella (p-value < 0.001), and Klebsiella (p-value < 0.001) 279 

systematically had higher relative abundance when detected by shotgun metagenomic techniques.  280 

3.3 Reduced sequencing depth decreases has smaller effect on observed diversity in young 281 

children 282 

After comparing two different profiling methods, we investigated the effect of reducing metagenomic 283 

sequencing depth on observed alpha diversity among the three developmental groups. We selected 284 

samples from a sub-group of 30 children (10 from each developmental stage) that were initially 285 

sequenced at the highest depth (mean 7.2 million reads; SD = 2.6 million reads) and performed 286 

random resampling of shotgun metagenomic reads at varying depths (100k, 250k, 500k, 750k and 287 

1M reads). We then recalculated alpha diversity metrics (evenness, richness, and Shannon) for each 288 

community of re-sampled reads after assigning taxonomy using MetaPhlAn. Figure 3A shows the 289 

relationship between the evenness, richness, and sequencing depth across all the resamplings we 290 

performed. Regardless of the starting community’s diversity, as sequencing depth increased, 291 

observed sample richness and evenness also increased (Figure S3). For example, samples that were 292 

only profiled with 100k reads had a mean Shannon Index of 1.35, whereas those sampled at 1M reads 293 

had mean Shannon Index of 1.89 (Figure 3B).  294 

In addition, we observed that increasing sequencing depth affected children of different ages 295 

differently. Not only did children younger than 15 months have a lower median Shannon Index when 296 

we ignore sampling depth (<15 months median: 1.42, >15 months median: 1.99), the Shannon Index 297 

increases more slowly with sampling depth in kids under 15 months. In particular, a mixed effects 298 

linear model showed that the slope of the Shannon Index on sampling depth is significantly lower for 299 

children under 15 months, compared to those between 15 and 30 months (p < 0.001), and the slope is 300 

significantly lower for children between 15 and 30 months compared to those greater than 30 months 301 

(Figure 3B; p < 0.001).  302 
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While the step-wise increase in alpha diversity with sampling depth is statistically significant 303 

for children less than 15 months (p < 0.001), the increase in observed alpha diversity is substantially 304 

smaller than typical effect sizes in childhood microbiome studies. For instance, a recent meta-305 

analyses of other studies that investigated alpha diversity of children that were and were not breastfed 306 

observed average differences in Shannon Index to be 0.34 (95% Confidence Interval: [0.20, 0.48]) 307 

(Ho et al., 2018), but increasing sequencing depth from 500k reads to 1M reads only increased this 308 

metric by 0.06 (Table 1, Table S2).  309 

To investigate whether these observations were generally applicable to other childhood 310 

cohorts, we performed the same subsampling analysis on the DIABIMMUNE cohort (Simre et al., 311 

2016) (Figure S4). Consistent with the findings from the RESONANCE cohort, lower sequencing 312 

depth decreases the Shannon Index for all age groups (Mixed effects linear model, p <0.001), and the 313 

benefits of deeper sequencing are most pronounced in older kids, as observed alpha diversity 314 

increases more quickly as additional reads are added for older children (Table S3, p < 0.001). In 315 

addition, for both cohorts, the benefits of additional sequencing on observed diversity in children 316 

under 15 months substantially decrease over 500 thousand reads. 317 

4 Discussion 318 

Increasing interest in the human microbiome, especially during early child development, raises the 319 

urgency of selecting appropriate methods for interrogating taxonomic and functional composition of 320 

human-associated communities. Given that shotgun metagenomic sequencing is capable of providing 321 

higher taxonomic resolution as well as information about gene functional potential, it is clearly 322 

preferable to amplicon sequencing when working with high biomass samples such as stool and when 323 

cost is not an issue. However, the higher cost of sequencing to provide sufficient sequencing depth 324 

for shotgun metagenomics is relevant when resources are constrained. Because infant microbiomes 325 

are substantially less diverse than adult microbiomes, we reasoned that lower sequencing depth (and 326 

therefore lower cost) may enable comparable taxonomic resolution to amplicon sequencing at a 327 

similar cost. 328 

We, therefore, set out to analyze a group of child stool samples sequenced with both methods 329 

and profiled with commonly used taxonomic-assignment tools so that direct comparisons could be 330 

made. As expected, microbial communities from younger children (less than 15 months old) were 331 

substantially less diverse than communities from older children, and both amplicon and shotgun 332 

metagenomic sequencing with ~1.2 Gb per sample were able to capture comparable taxonomic 333 
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diversity at the genus level across all age groups. It is important to note that metagenomic sequencing 334 

generally captures more diversity due to its species-level resolution (Ranjan et al., 2016), but we 335 

restricted our analysis to the genus level in order to make the most direct comparison to amplicon 336 

sequencing. Interestingly, though the observed diversity overall was comparable between methods, 337 

the actual taxonomic profiles generated by each method had substantial differences, particularly in 338 

the youngest children. For example, some particularly important genera in young children such as 339 

Bifidobacterium and Enterobacter were under-represented in amplicon sequencing profiles. Because 340 

shotgun metagenomic sequencing does not include an amplification step and therefore avoids issues 341 

of amplification bias, it is likely to be more accurate, though further investigation with synthetic or in 342 

silico communities may be necessary to determine which method provides the most accurate profiles 343 

in this population. 344 

While shallower sequencing may enable investigators to observe comparable diversity, there 345 

are substantial differences in the identities of taxa profiled. Like other groups (Rausch et al., 2019), 346 

we showed that 16S rRNA gene amplicon and shotgun metagenomic sequencing each missed some 347 

taxa, but more genera were identified overall by 16S rRNA gene profiling, at least in the 348 

RESONANCE cohort. This may be due to an increased ability to identify very low abundance taxa or 349 

some artifact of amplification or sequencing, though in the DIABIMMUNE cohort, more genera 350 

were identified using shotgun metagenomic profiling, suggesting that the relative performance of 351 

each method for some metrics may vary between populations. Interestingly, we also show that the 352 

largest discrepancies between the two profiling methods were found in the youngest kids. This is 353 

likely due in part to the low diversity of these samples, since loss of one genus in a profile with few 354 

genera may have a larger impact on dissimilarity metrics. Another possible explanation is the large 355 

fraction of many samples in young children  (as much as 40% relative abundance) that could not be 356 

resolved to the genus level (see section 3.1) with amplicon sequencing. As unresolved taxa were 357 

excluded from our alpha diversity analysis, the true diversity could be much higher or lower than we 358 

observe in those samples. 359 

Some of the discrepancies we observed were due to technical differences in sequencing 360 

methods. For example, some taxa found exclusively through 16S rRNA gene profiling were not 361 

found in the MetaPhlAn database, including 16 genera that did not have reference genomes available. 362 

All of the genera found uniquely by shotgun metagenomics were present in the SILVA database, but 363 

their 16S rRNA gene sequences may not have perfectly complemented the primers we used. Though 364 
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16S rRNA PCR primers are often referred to as “universal,” there is considerable sequence diversity 365 

in the 16S rRNA gene, even in the most conserved regions and among bacteria of the same species 366 

(Větrovský and Baldrian, 2013). Using TestPrime 1.0, we identified several genera that had very low 367 

alignment with our primers, such as Solobacterium (2.2% alignment) and Pediococcus (1.3%) and 10 368 

genera that were present in the SILVA database and identified using shotgun metagenomics, but were 369 

not found to be hits with our primers. We also explored if certain clusters of taxa were more 370 

systematically unidentified by a particular profiling method. For example, several genera identified 371 

uniquely by shotgun metagenomic profiling had lower primer coverage compared to the genera 372 

identified by 16S rRNA amplicon profiling (Figure S5). Other taxa were only identified using 16S 373 

amplicon profiling (Figure 2B; ex. clade containing Ruegeria, Planktotalea, Planktomarina, and 374 

Sulfitobacter).  375 

Given that both profiling methods exhibited some biases against certain taxa, future study 376 

designs should carefully consider which method is most appropriate to their research question, and 377 

further investigation using communities where the ground truth of composition is known should be 378 

pursued to interrogate whether these differences are systematic.  In addition to uncertainty about the 379 

true composition of these samples’ communities, our study was also limited in scope to a single 16S 380 

rRNA gene primer pair for amplification, a single sequencing read length for shotgun sequencing, 381 

and a single computational pipeline for taxonomic profiling each sequencing method. There are 382 

several different approaches for both the sequencing (Driscoll et al., 2017; Martínez et al., 2014; 383 

Rausch et al., 2019) and profiling step (Almeida et al., 2018; Ye et al., 2019), each of which is likely 384 

to have its own biases. We chose to compare widely used and accessible methods to compare for 385 

investigation of child microbiomes, but further investigation to select the best combination of 386 

methods may be warranted. Finally, advances in sequencing technology (e.g., long-read sequencing 387 

of 16S rRNA genes (Karst et al., 2020)), changes to reference databases and improved taxonomic 388 

assignment methods may affect the performance and relative trade-offs in the future. 389 

5 Conclusion 390 

Understanding the advantages associated with different methods of investigating the human 391 

microbiome will allow others in the field to use the most cost-effective methods to explore the 392 

relationship between the gut microbiome and human health. Most research is limited by financial 393 

resources, which impacts the number of controls, replicates, samples we can analyze, and the depth to 394 

which we can characterize each sample. Better insight into how we can sequence more efficiently 395 
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will allow us to use these finite resources more effectively. Hopefully, this will allow us to devote 396 

resources where they will be best utilized (eg. deep sequencing for older children with higher alpha 397 

diversity) and reduce them where they are not necessary. 398 

Given the importance of the first thirty months of one’s life in shaping future health outcomes 399 

(Bokulich et al., 2016; Tamburini et al., 2016; Yang et al., 2016), it is crucial that we understand how 400 

to efficiently characterize developing microbiomes. By identifying the most effective methods for 401 

investigating the microbiomes of children at different stages of development, we can reduce 402 

sequencing costs and reduce bias in results. This will ultimately increase the quality of the research 403 

by ensuring that resources are appropriately expended. Altogether, understanding the links between 404 

the infant gut microbiome and child development will allow us to better predict how early-life 405 

environmental exposures or health decisions can mediate the gut microbiome’s effects on health later 406 

in life.  407 
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Figure Legends 577 

Figure 1: Diversity of the child gut microbiome differs by age, regardless of profiling method 578 

Microbiome communities from 130 children were sequenced using 16S rRNA (abbreviated “amp”) 579 

and shotgun metagenomic (abbreviated “mgx”) profiling. (A) Alpha diversity was calculated using 580 

the Shannon diversity index for each child. Boxplots are grouped by age and colored by profiling 581 

method. (B) Beta-diversity was quantified using pair-wise Bray-Curtis dissimilarities between all 582 

children within the same profiling method and developmental stage. (C) Bray-Curtis dissimilarities 583 

between 16S and metagenomic profiles for matched samples (from same fecal sample), 16S and 584 

metagenomic profiles among unmatched samples (from different fecal samples). (D) Beta-diversity 585 

was visualized using Principal Coordinate analysis (PCoA). The first two principal coordinate axes, 586 

which together explain 49.25% of variation, are shown. Each dot represents one taxonomic profile, 587 

with lines connecting profiles from the same sample. Colors represent developmental stages and 588 

shape represent profiling methods.  589 

Figure 2: Some phylogenetic clustering of taxa by profiling method 590 

(A) Venn diagrams indicating the number of taxa that were found by 16S (peach), shotgun 591 

metagenomics (cyan), or both (grey) methods. Number of overlapping and unique taxa were 592 

calculated on the family, genus, and species level. (B) A common phylogenetic tree was generated 593 

from all taxa identified by both 16S rRNA gene (amp) and shotgun metagenomic sequencing (mgx). 594 

Colors indicate which method was able to identify taxa (peach = identified by 16S, cyan = identified 595 

by shotgun metagenomics, yellow =  taxa was not present in the database of the method with which it 596 

was not found). 597 

Figure 3  Alpha diversity increases with sequencing depth 598 

(A) Shotgun metagenomic reads from 30 deeply sequenced samples were resampled four times at 599 

each different sequencing depths (100k; 250k; 500k; 750k; 1M reads). Reads were reassigned 600 

taxonomy using MetaPhlAn and diversity was recalculated. Each dot represents a single resampled 601 

community. (B) Boxplots of Shannon diversity among all samples at each re-sampling depth, colored 602 

by developmental stage. Scatter plot indicates Shannon diversity of original samples. 603 

 604 
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Table 1 Average Shannon Index values among children less than 15 months at different 605 
subsampling depths in the RESONANCE data-set 606 

 607 

read_depth mean sd abs_diff 

100 1.35 0.39  

250 1.67 0.42 0.32 

500 1.8 0.44 0.13 

750 1.86 0.44 0.06 

1000 1.89 0.44 0.03 

original 2.04 0.42 0.15 

 608 

“Read_depth”: indicates subsampling depth, “mean”: mean Shannon Index at subsampling depth, sd: 609 
standard deviation of Shannon Index at subsampling depth, “abs_diff”: absolute difference in 610 
Shannon Index from previous subsampling depth.  611 
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Supplemental Figures 612 

Figure S1: RESONANCE: a cohort of healthy children between ages 2 months and 4 years  613 

Histogram showing distribution of ages across developmental stages. Both 16S rRNA gene data and 614 

metagenome profiles were obtained for 130 stool samples (one sample per child and timepoint). n= 615 

85 for children <15 months, n=15 for children 15-30 months, n= 60 for children >30 months. Color 616 

indicates developmental stage. 617 

Figure S2: Cumulative percent of variation explained by first 100 principal components 618 

Barplot of the cumulative sum of the percentage explained by the first 100 principal components 619 

used to create Figure 1D. The first 10 principal components explained 88.5% of the total variation in 620 

Bray-Curtis dissimilarity within the dataset.  621 

Figure S3: Species richness increases with sampling depth within developmental stage 622 

(A) Boxplots of species richness among all samples at each sampling depth, colored and grouped by 623 

developmental stage. (B) Boxplots of species richness among all samples at each re-sampling depth, 624 

separated by sampling depth.  625 

Figure S4: Alpha diversity decreases with sequencing depth in DIABIMMUNE dataset 626 

(A) Shotgun metagenomic reads from 804 deeply sequenced samples were resampled times at six 627 

different sequencing depths (100k; 250k; 500k; 750k; 1M, & 10 M reads). Reads were reassigned 628 

taxonomy using MetaPhlAn and diversity was recalculated. Each dot represents a single resampled 629 

community. (B) Boxplots of Shannon diversity among all samples at each re-sampling depth, colored 630 

by developmental stage. Scatter plot indicates Shannon diversity of original samples. 631 

Figure S5: Genera found by 16S rRNA amplicon sequencing have significantly higher primer 632 

coverage  633 

TestPrime 1.0 was used to calculate the percent primer coverage of the primers used in our study for 634 

amplicon sequencing. We compared the percent coverage for microbes found uniquely by 16S rRNA 635 

sequencing, both methods, and shotgun metagenomic sequencing. A pairwise Wilcoxon test found 636 

that primer coverage for microbes found uniquely by amplicon sequencing is significantly higher 637 

than that in the genera found uniquely by shotgun metagenomics (p < 0.05).  638 

Supplemental Tables  639 
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Table S1: Genera systematically over-represented with either profiling method 640 

The Wilcoxon signed-rank test was used to compare the relative abundances of a particular genera, 641 

calculated from 16S and shotgun metagenomics profiling. “Diff” is the average relative abundance 642 

difference for a particular genera (mean 16S relative abundance - mean shotgun metagenomics 643 

relative abundance) “P.adjust” is the p-value after Benjamini-Hotchberg correction. The table 644 

presents genera with significant differences (adjusted p-value < 0.05), indicating genera that had 645 

higher average relative abundances when profiled by 16S rRNA or shotgun metagenomics. “Method” 646 

indicates the profiling method where the genus was more abundant.  647 

Table S2: Output of linear model used to predict Shannon Index based on read depth and 648 

developmental stage in RESONANCE dataset 649 

lme4 was used to construct a Mixed effects linear model to analyze data from the RESONANCE 650 

subsampling results. “Estimates” reports the estimated coefficients for the intercept of the fitted line 651 

and each variable (read depth, developmental stage) or interaction of variables.  652 

Table S3: Output of linear model used to predict Shannon Index based on read depth and 653 

developmental stage in DIABIMMUNE dataset  654 

lme4 was used to construct a Mixed effects linear model to analyze data from the DIABIMMUNE 655 

subsampling results. “Estimates” reports the estimated coefficients for the intercept of the fitted line 656 

and each variable (read depth, developmental stage) or interaction of variables.  657 
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