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Abstract 
Background 
Circular RNAs are a novel class of non-coding RNAs that backsplice from 5' donor site and 3' acceptor site to 
form a circular structure. A number of circRNAs have been discovered in model organisms including human, 
mouse, Drosophila, among other organisms. There are a few candidate-based studies on circular RNAs in rat, 
a well studied model organism. The availability of a recent dataset of transcriptomes encompassing 11 tissues, 
4 developmental stages and 2 genders motivated us to explore the landscape of circular RNAs in the organism.  
 
Methodology 
In order to understand the difference among different pipelines, we have used the same bodymap RNA 
sequencing dataset. A number of pipelines have been published to identify the backsplice junctions for the 
discovery of circRNAs but studies comparing these tools have suggested that a combination of tools would be 
a better approach to identify high-confidence circular RNAs. We employed 5 different combinations of tools 
including tophat_CIRCexplorer2, segemehl_CIRCexplorer2, star_CIRCexplorer, Bowtie2_findcirc and 
Bowtie2_findcirc (noHisat2) to identify circular RNAs from the dataset.  
.  
Results 
Our analysis identified  a number of tissue-specific, developmental stage specific and gender specific circular 
RNAs. We further independently validated 16 circRNA junctions out of 24 selected candidates in 5 tissue 
samples. We additionally estimated the quantitative expression of 5 circRNA candidates using real-time PCR 
and our analysis suggests 3 candidates as tissue-enriched  
Conclusion 
This study is one of the most comprehensive studies that provides a circular RNA transcriptome as well as to 
understand the difference among different computational pipelines in Rat. 
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Introduction 
The last decade has witnessed tremendous advances in technology which has enabled an unprecedented 
opportunity to understand genomes. RNA-sequencing is one of the approaches which have tremendously 
improved our depth and breadth of understanding transcripts and transcript isoforms at resolutions previously 
few could fathom. This consequently has helped in the discovery of different classes of RNAs, including small 
RNAs like miRNAs, siRNAs and long non-coding RNAs including antisense RNAs, intronic RNAs, 
lncRNAs. It is now well understood how these different classes of RNAs play a key role in the regulation of 
gene expression and regulate key developmental and pathophysiological processes(Holdt et al., 2018; Qu et 
al., 2017; Rybak-Wolf et al., 2015).  
 
Circular RNAs, an emerging class of transcript isoforms, which have been rediscovered recently and found to 
be ubiquitous in all cellular organisms(Salzman, 2016; Zhao et al., 2019). These isoforms are produced by a 
unique back-splicing of exons and therefore could be classified as a splice isoform. Although earlier 
considered as splicing errors, it has now been shown that circular RNAs are present in a number of organisms 
including model organisms like humans(Long et al., 2018; Memczak et al., 2013; Nicolet et al., 2018; L. Song 
& Xiao, 2018; Z. Zhang et al., 2018), worms(Cortés-López et al., 2018), Drosophila(Cortés-López et al., 
2018; Westholm et al., 2014),mouse(Feng et al., 2018; Singh et al., 2018; J. Zhang et al., 2018), chicken(Shen 
et al., 2019; Y. Wang et al., n.d.) and pig(Guo et al., 2019; Liang et al., 2020; Mester-Tonczar et al., 2020). 
Recent studies have also suggested that circular RNAs might have a role in regulation of gene expression of 
protein-coding genes(X. Li et al., 2018). Circular RNAs have also been shown to have multiple miRNA 
binding sites, suggesting their role as miRNA sponges(Lin & Chen, 2018; X. Li et al., 2018; X. Wang et al., 
2018; Z. Wu et al., 2018). Different reports have also suggested the role of circular RNAs in disease and their 
potential as disease biomarkers(Y. Li et al., 2018; Sheng et al., 2018; Weng et al., 2019). Memczak et al have 
identified 1900 transcripts from the exonic, intronic and intergenic region(Memczak et al., 2013). Jeck et al 
also identified exonuclease treated transcripts >25,000(Jeck et al., 2013; Memczak et al., 2013). Circular RNA 
are known to exist as cell-line specific and tissue-specific isoforms(Coscujuela Tarrero et al., 2018; C. Zhou et 
al., 2017) and  are also known to have conserved splice sites.  
 
Till now, several computational methods for the detection of back-splice events from RNA-Seq data have 
been developed, such as CIRCexplorer(X. Zhang et al., 2019; X.-O. Zhang et al., 2014), 
testrealign/segemehl(Hoffmann et al., 2014; X.-O. Zhang et al., 2014), circRNA_finder(Westholm et al., 
2014), find_circ(Memczak et al., 2013; Westholm et al., 2014), CIRI(Gao et al., 2015), UROBORUS(Gao et 
al., 2015; X. Song et al., 2016), NCLscan(Chuang et al., 2016), PTESFinder(Izuogu et al., 2016),  
KNIFE(Izuogu et al., 2016; Szabo et al., 2015), Pcirc_finder(L. Chen et al., 2016) and Acfs(You & Conrad, 
2016). Each of the algorithms for circRNA identification rely on different approaches including different read 
aligners, requirement of genome annotations and also in many cases in the output formats. In a study by 
Hansen et al, 2015(Hansen et al., 2016), five circular RNA identification tools including 
CIRCexplorer(Hansen et al., 2016; X.-O. Zhang et al., 2014), circRNA_finder(Westholm et al., 2014), 
CIRI(Gao et al., 2015), find_circ(Memczak et al., 2013) and MapSplice(Memczak et al., 2013; K. Wang et al., 
2010) were compared for the levels of false-positives and sensitivity. The comparison suggested that the high 
number of circRNAs from a pipeline does not necessarily mean true positive candidates and one single 
method is not reliable. The study also concluded that it is perhaps better to use a combination of two or more 
methods to increase the robustness of circRNA detection, increase sensitivity and reduce false negative and 
false-positive predictions. CirComPara is one such pipeline that by default uses four circRNA prediction tools 
including CIRCexplorer2, CIRI, find_circ and test-realign with different combinations for different 
aligners(Gaffo et al., 2017). 
 
Studies have shown that humans, mice and rats share high levels of genetic conservation among each other. 
Rat, the first mammalian species domesticated for research purpose(Kuramoto et al., 2012)is the most widely 
studied experimental model so far in medical research and an excellent model for cardiovascular disease, 
stroke(Gaffo et al., 2017; Rubattu et al., 1996) and hypertension(Bier et al., 2018; Redina & Markel, 2018; 
Sung et al., 2018) and a variety of genetic stocks(Alam et al., 2014, 2015; Serikawa et al., 2015). In many 
cases rats were preferred to the mouse to model learning, memory and cognitive research(Vorhees & 
Williams, 2014). Rat is also a primary model for mechanistic studies in the field of human reproduction and a 
standard model for physiological and toxicological studies (Martin et al., 2011; Vorhees & Williams, 2014). 
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Yu et al have provided an rRNA depleted rat RNA-sequencing transcriptome map for 11 tissues and 4 
developmental stages (2 week-old, 6 week-old, 21 week-old and 104 week-old). Subsequent studies on rat 
circular RNA transcriptome have used this dataset to identify circular RNAs using CIRI(T. Zhou et al., 2018) 
but the predicted candidates were not independently validated experimentally.   
 
In this study, we used publicly available dataset of total RNA sequencing from Yu et al and applied a suite of 
computational algorithms to create a comprehensive map of circular RNAs in rats.  A subset of candidates 
were further independently validated using experimental approaches. This is by far the most comprehensive 
circular RNA transcriptome of the rat with respect to tissues, developmental stages and gender using multiple 
combinations of tools. 
 
Materials and Methods 
Datasets 
A total of 320 datasets were downloaded from the Gene Expression Omnibus , a publicly available database 
with the accession ID GSE53960. These datasets encompass study by Yu et al report the transcriptome from 
different tissues and developmental stages of the rat. We downloaded ribosomal RNA-depleted RNA-
sequencing datasets for different organs including liver, heart, kidney, brain, lung, muscle, spleen, thymus, 
adrenal gland, uterus and testis. These samples were further categorized as male and female, the age of 2, 6, 21 
and 104 weeks and four biological replicates each [GEO: GSE53960]. We have converted Sequence Read 
Archive (SRA) files to FASTQ format using SRA toolkit for further mapping and analysis. The SRA IDs for 
the datasets used in the present analysis have been  summarised in Supplementary Table 1. 
 
Identification of circular RNAs from Rat samples using CirComPara 
We downloaded Rattus norvegicus reference genome (version rn6)from UCSC genome browser and 
annotation file from Ensembl(Rosenbloom et al., 2015) database. We used the CirComPara pipeline to 
identify circular RNAs. CirComPara(Gaffo et al., 2017; Rosenbloom et al., 2015) is an automated pipeline to 
detect, quantify and annotate circular RNA junctions from RNA-sequencing data and can be used for four 
different pipelines to identify backsplice junctions. This pipeline also quantifies the expression of linear RNA 
and their gene expression which can be compared and correlated with circRNAs. CirComPara uses four 
different detection tools including CIRI, testrealign, CIRCexplorer and find_circ. CirComPara can be used in 
any pair of pipelines or alignment tools with  customized cut-offs for read coverage and filters for alignment 
scores. We used Segemehl, STAR, Tophat and Bowtie2 aligners, creating a total of 4 combinations -
Segemehl_CIRCexplorer2, Star_CIRCexplorer2, tophat_CIRCexplorer2 and Bowtie2_FindCirc. The first step 
to identify backsplice junctions is to align the RNA-sequencing reads. CirComPara aligns the RNA-
sequencing reads over the reference genome using Hisat2 to discard reads aligning over linear transcripts and 
uses only the discarded reads  to identify circ-junctions. After discarding the mapped reads that were possibly 
mapping with the linear transcriptome, we took the unmapped reads to identify circRNA junctions. We 
aligned our data using different aligners including hisat, bowtie, segemehl, star and tophat. Figure 1 shows a 
schematic representation for identification of circular RNAs. 
 
Figure 1. The schematic representation of the pipeline followed for the identification of circular RNAs. 
 
Identification of circular RNAs from Rat samples using FindCirc 
In addition to CirComPara, we have also added find-circ with Bowtie2 as the aligner (the standard pipeline 
mentioned in Memzak et al 2013(Memczak et al., 2013)) as an additional pipeline without using Hisat2 to 
discard unmapped reads which is default default feature in CirComPara. The datasets downloaded were 
aligned over the indexed reference genome rn6 using Bowtie2. In this approach, after alignment using 
Bowtie2, unmapped reads were segmented and mapped from the terminals head and tails to form anchor 
sequences. We  mapped the FASTQ file over the reference genome and discarded the mapped reads. The 
mapped reads were discarded to avoid any ambiguity with linear transcripts. Next, using the customized 
scripts from the reference study, we took 20 mers from the head and tail of unmapped reads for unique 
alignment and extended the read to form an anchor sequence. Certain filters were applied including unique 
anchor alignment, maximum of 2 mismatches in extended sequences and alignment score above 35, a splice 
site of GU/AG to avoid false-positives candidates as mentioned in the reference study. The reads that fulfilled 
the criteria to form putative circular RNAs were saved as output bed files.  
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Genome-wide annotation and distribution of circular RNA junctions 
We downloaded the annotation GTF file for Rattus norvegicus from ensemble (Rnor_6.0.93). The annotation 
file has 32624 genes, 27780 5’UTR, 22322 3’UTR, 40807 transcripts, 26224 start codon and 25926 stop 
codon coordinates. We overlapped the circRNA junctions identified from each sample over the annotation file 
to understand the genome-wide distribution pattern, if any, for circRNA coordinates.  
 
Tissue-specific, gender-specific and developmental-stage-specific Circular RNAs 
We further analyzed the identified circRNA junctions for tissue-specificity. For each tissue, we also analysed 
the data with respect to developmental stage and gender. We also identified candidates with read coverage >2, 
>2 to 10<, >10 to 100<, 100-200 and >200 to study the relation of function with their expression level in the 
tissue.  
 
Splice-site identification 
We extracted the splice site nucleotides for each circRNA junction to analyze any pattern in the splice site of 
circular RNA and to spot any difference from the linear counterpart. We have studied three conditions as 
shown in Supplementary Figure  1. 
 
Experimental validation 
In order to validate the predicted circRNA junctions from Bowtie2_FindCirc pipeline, we used a polymerase 
chain reaction (PCR) based approach. We randomly selected candidates based on the significance of genes in 
the tissue and expression of circular RNA junction that should be expressed in at least 30 samples out of 32 
samples for each tissue. In order to validate the circRNA junctions, PCR amplification was performed on 
cDNAs of corresponding tissues and genomic DNA of the rat using divergent primers. We designed divergent 
primers of ~20bp length across the predicted back-spliced junction for different circRNAs in 6 rat tissues 
(Brain, Heart, Lungs, Liver, Kidney, Thymus). First stranded complementary DNA (cDNA) was prepared 
from 500ng of RNA from individual tissues using random hexamers and superscript II reverse transcriptase 
(Invitrogen, USA). PCR amplification was performed using divergent primers designed for a total 24 
candidates across 6 tissues using respective cDNAs.  
 
Expression analysis using quantitative real-time PCR 
Expression analysis was performed for selected circular RNA candidates, predicted for their tissue-specific 
expression patterns. RNA from 6 different tissues (Brain, Heart, Lungs, Liver, Kidney and Thymus) were used 
to synthesize cDNA as previously described. Circular RNA levels were quantified by quantitative Real-Time 
Polymerase Chain Reaction (qRT-PCR), using Sybr Green mix (dssTakara, Japan) and detected by 
Lightcycler LC 480 (Roche). Primer sequences for qRT- PCR have been summarised in Supplementary 
Table 2. 
 
RNase R treatment to validate circular RNAs 
RNA from each of the 6 tissues were treated with RNase R as described previously(Sharma et al., 2019).  In 
order to validate circular RNAs candidates, 5ug of RNA from individual tissues were treated with 15 units of 
RNAse R (Epicentre, Illumina, USA) for 15 minutes at 37 degrees Celsius. LiCl was used to precipitate the 
RNAse R treated (RNaseR +) and untreated RNA (RNaseR -). After the purification, cDNA was synthesized 
from 1ug of the untreated RNA and from the same amount of RNAse R treated RNA using random hexamer 
and  Superscript II reverse transcriptase (Invitrogen, USA). PCR amplification was attempted using divergent 
primers for selected circular RNA candidates. Beta-actin was used as a control, for which convergent primers 
were used in the experiment. Primer sequences for PCR have been summarised in Supplementary Table 2. 
 
Results 
Summary of RNA-seq data 
The RNA-seq dataset used in the study was obtained from a previous publication which sequenced 11 tissues. 
The data for 320 samples encompassing 11 tissues, 4 developmental stages, both gender (male and female) 
were retrieved from NCBI SRA. Each of the datasets had  4 replicates each and had an average of 40 million 
reads each. The samples and the read counts are summarised in Supplementary Table 1. The average read 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 6 

count is 41 million reads for which Lvr_21_M_1 had the minimum number of reads, 16038547  and 
Kdn_104_M_2 had the maximum number of reads that is 82590785. Figure 2 shows the total number of reads 
for each sample. 

 
Figure 2: The read numbers in the different tissue sample datasets considered in the analysis.  
 
Combination of tools used to identify circular RNA junctions 
After alignment of RNA-sequencing reads over Hisat2, the average alignment percentage was 87.78%. 
Supplementary Table 1 shows the alignment details for each sample using hisat2. The minimum alignment 
was 68.75% in the liver tissue and maximum alignment was 90.53% in the kidney tissue. The unmapped reads 
were processed through Segemehl, Tophat, STAR and Bowtie2 aligners to identify backsplice junctions. The 
alignment details for each aligner have been  summarised in Supplementary Table 1. The mean alignment in 
case of Bowtie2_findcirc (noHisat2) was 85%. Similarly, in other cases including Bowtie2, STAR, Segemehl 
and Tophat, the mean alignment percentage was 66.7%, 38.7%, 73.37% and 61.5% respectively. From the 
unmapped reads, we observed an alignment of 30-75% from Bowtie2, 42-85% from Segemehl, 20-57% from 
STAR, 32-75% from Tophat, 15-76% from Bowtie2_FindCirc. Figure 3 shows the alignment percentage for 
each sample for each pipeline. 
 

 
 
 
Figure 3: The figure shows the alignment details of the samples in the different combinations of tools. 
 
Identification of circular RNAs 
Our analysis identified a total of 57,022 unique back-splice junctions in the rat genome from 
Segemehl_CIRCexplorer2, 21,375 from STAR_CIRCexplorer2, 30,943 from Tophat_CIRCexplorer2, 
244,511 from Bowtie2_FindCirc and 9,109 from Bowtie2_FindCirc (no Hisat2). Out of the total 5,358,249 
unique cirRNA junctions from these 5 combinations, we found 490 were common among all the five 
combinations (Supplementary Table 3).  
 
Genome-wide distribution of circ-junctions 
Different studies have shown that circular RNAs loci in the genome could map to exons, introns, 5’UTR as 
well as 3’UTR. We mapped the circular RNAs identified from each combination to the refseq annotations to 
analyze the overall genome-wide distribution of circ-junctions. For the circular RNAs identified by 
Bowtie2_FindCirc (no Hisat2), our analysis revealed 1,111 circRNAs mapping (from start to stop) to the 
5’UTR, 506 circRNAs to the 3’UTR, 1,361 overlapped with the start codon, 730 overlapped with the 
stop_codon. In addition to this, we found 86 and 83 circRNAs that had start and stop boundaries upstream 
1000 from gene start and downstream 1000bps gene end respectively. In the case of Bowtie2_FindCirc (after 
Hisat2), we found 3,093 and 3,062 circRNA junctions from upstream and downstream 1,000 base pairs from 
gene boundaries. Similarly of the circular RNAs identified by the STAR+CIRCexplorer2 approach, 1,994 
mapped to the 5’UTR, 369 to the 3’UTR. We could not find intergenic regions in CIRCexplorer2 as it uses 
existing gene models for annotation by default and we would need to select the “--low-confidence” option. We 
did not want to increase false positive in our analysis. The numbers overlapping the genome features have 
been  shown in Supplementary Table 4. 
 
Tissue-specific circRNA junctions 
Since the dataset encompassed 11 tissues, we further explored the tissue specific circular RNA junctions. Out 
of the total circular RNAs identified from 11 tissues, the brain was found to have  the maximum number of 
circRNA junctions and the liver was found to have the least number of circRNA junctions. The 
Supplementary Table 5 shows the total number of circular RNAs identified from each tissue. Out of the total 
circRNA-junctions, the unique number of circRNAs specific to each tissue is also mentioned in 
Supplementary Table 6. The data clearly shows tissue enriched and tissue-specific circular RNAs. We have 
shown the circ-junctions identified from each pipeline specific to tissues in Supplementary Table 1. Figure 4 
summarises the pattern of circRNA-junctions with respect to tissues and pipeline used. While comparing all 
the combinations, we found that 130 from adrenal, 806 from brain, 208 from heart, 326 from kidney, 308 from 
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lungs, 80 from liver, 111 from MSC, 312 from thymus, 244 from spleen, 299 from testis and 135 from uterus 
were common in all 5 combinations. From these total circRNAs among 5 pipelines, we found 11 from adrenal, 
407 from brain, 37 from heart, 10 from liver, 49 from lungs, 83 from kidney, 61 from thymus, 26 from spleen, 
13 from MSC, 97 from testis and 13 from uterus tissue-specific circ-junctions Supplementary Figure  2. 

 
 
 

Figure 4: The plot showing the total vs tissue-specific number of circular RNAs for each pipeline. 
(MSC=Mesenchymal stem cells) 
 
Development-stage specific circRNA junctions 
The RNA-sequencing dataset utilised in this analysis encompassed 4 developmental stages of rats that are 2 
weeks-old, 6 weeks-old, 21 weeks-old and 108 weeks-old. Out of the total circ-junctions identified from 
Segemehl_CIRCexplorer2, we found 10,060 circ-junctions uniquely belonged to 2 weeks-old stage, 10,852 to 
6 weeks-old stage, 10,420 to 21 weeks-old and 10,753 to 108 weeks-old stage of the rat. In the case of 
Bowtie2_FindCirc, we found 1,093 uniquely from weeks 2, 1,241 from weeks 6, 1,580 from weeks 21 and 
1,674 from weeks 104. Supplementary Figure  3 shows the development-stage-specific circRNAs. With 
respect to tissues, we found a maximum number of 2 weeks-old stage-specific circRNAs in brain tissue and 
least in uterus tissue. Similarly, in 6 weeks-old stage, we found maximum circRNAs in brain tissue and least 
in liver tissue followed by 21 weeks-old stage where we found circRNAs in brain tissue and least from liver 
tissue and 108 weeks-old stage where we found circRNAs in brain tissue and least in mesenchymal cell tissue. 
Supplementary Figure  4 shows the tissue-wise development-stage specific circRNAs in rat. Our analysis 
suggests  the maximum number of circular RNAs are identified in 104 weeks stage and least from 2 weeks 
stage (Supplementary Table 7-12). Among all 5 combinations, we found 537 circRNA junctions common at 
2 weeks stage, 655 circRNA-junctions at 6 weeks stage, 776 at 21 weeks stage and 833 circ-junctions at 104 
weeks stage. Out of these common junctions expressing among all pipeline combinations, we found 102 
uniquely expressing at 2 weeks stage, 130 at 6 weeks stage, 193 at 21 weeks stage and 247 at 104 weeks stage 
and 258 were common among these stages. Figure 5 shows that the number of circular RNAs identified from 
each pipeline for each development stage. The venn diagram is shown in Supplementary Figure  5 that 
shows the common circular RNAs from all the combinations of tools. 

 
Figure 5: The figure shows a venn diagram comparing each pipeline with different development stages. 
 
 
Gender-specific circRNA junctions 
We further categorized the circ-junctions based on gender. We identified 5,517 circRNA junctions from 
female samples of Bowtie2_Findcirc (no Hisat2) and 6,524 circ-junctions from male samples. Out of these 
9,109 total unique candidates, 32.18% junctions were common among both genders. We found 46.86% and 
55.06% unique circ-junctions from females and male respectively.  Similarly, in the case of 
Bowtie2_FindCirc, we found 79.68% unique circ-junctions from females and 80.23% from male. In the case  
of Segemehl_CIRCexplorer2, we found 21% unique common junctions. We identified 23.6% common circ-
junctions, 40% unique male and 37.72% unique female junctions from Star_CIRCexplorer2. Out of total 
circRNAs junctions from male, we found ~89% unique circRNA junctions from male and female both with 
11.9% common circ-junctions. Figure 6 shows the distribution of circular RNAs in both genders. Among the 
common circ-junctions from 5 combinations, we found 683 circRNA junctions common among all 5 
pipelines. We found 59 circ-junctions unique to the male gender and 25 circ-junctions unique to the female 
gender common in all 5 pipelines (data shown in Supplementary Table 13-14) 
 
 
Figure 6: The figure shows the venn diagram for gender-specific circRNAs in each pipeline.* 
=Bowtie2_findCirc (no Hisat2) includes circular RNAs identified from Memczak et al pipeline without 
aligning prior with Hisat2. 
 
Circ-junctions based on read coverage 
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We have shortlisted circ-junctions with cut-off of read coverage at splice junctions with cut-off >2, >2 and 
10<, >10 and 100<, 100-200 and >200 to study the relation of function with their expression level in the 
tissue. Among 5 different combinations, we found that maximum number of circRNAs with circ-count 26,094 
fall with >200 cut-off is from Segemehl_CIRCexplorer2 and minimum circRNAs with 3 from >200 cut-off is 
from Bowtie2_FindCirc combination. Segemehl_CIRCexplorer2 has a maximum number of reads in the range 
100-200 reads. Supplementary Table 15 shows the read counts from each range for each combination and 
Figure 7 shows the overall distribution of reads by coverage cut-off. 

 
Figure 7: The classification of circular RNAs based on read coverage from each of the pipelines 
considered.  
 
Splice-sites involve in the formation of circRNA junction 
We identified the splice sites for all the three cases from start and stop sites for each pipeline combination and 
interestingly we found that splice sites used to identify backsplice junctions for each pipeline were conserved. 
We found conserved AG and AC splice sites at the start position (case 2) and GG,CC splice sites at stop 
position. We also found that there is conserved T/C at one site before the splice site (TA and CA at start sites 
in case 1) and G/A at one site after stop position (CC,GG,GA at stop site in case 3). Similarly, at the stop 
position, we found conserved C/G right before the splice site (case 1 with CT/GT splice sites at stop site) and 
A nucleotide one position after the splice site. 
 
Experimental Validation 
We validated 16 circ-junctions out of 24 candidates selected based on literature significance using divergent 
primers approach with PCR in tissues including brain, thymus, liver, lungs and kidney. The list of selected 
candidates is given in Supplementary Table 2 with the primer sequences. Divergent sets of primers of length 
~20 nucleotides were designed overlapping the back-splice junction to obtain the amplicon product of around 
200-300 base-pairs. The selected candidates were amplified from cDNA of respective tissues and genomic 
DNA as control. The genomic DNA was used to negate the possibility that the sequence of circRNA junctions 
could be a part of DNA itself as there are cases of repetitive exons and transplicing are reported. The results of 
experimental validation have been summarized in Figure 8. 
 
 
Figure 8: Validation of circular RNAs using RT-PCR for 6 tissues panel. 
Agarose gel represents the amplification products obtained from cDNA synthesized from different rat 
tissues and control rat DNA. Total 24 candidates were analyzed in 6 different rat tissues. 
 
Quantitative expression using qRT-PCR 
The experimentally validated circRNA candidates were further analyzed for their quantitative expression 
analysis using qRT-PCR based approach in these tissues. Interestingly the expression of circRNA from brain 
specific gene ‘Anks1b’ has shown the tissue-enriched expression in case of brain and the expression of 
circRNA originating from thymus specific gene ‘Themis’ has shown the tissue-enriched expression in case of 
thymus. In the case of the liver, Efemp1 showed tissue-enriched expression. We also performed RT-PCR for 2 
circRNAs originating from genes ‘Ubr5’ and ‘Ralgapa1’. These circRNAs did not show tissue-enriched 
expression but showed differential expression among different tissues. We have shown the quantitative 
expression of the circRNAs in Supplementary Figure 7. The Figure clearly shows the tissue-enriched 
expression of circ-Anks1b, circ-Efemp1 and circ-Themis and differential expression of circ-Ubr5 and circ-
Ralgapa1. The validation of circular RNAs was also done using RNaseR (shown in Figure 9). We have also 
compared the expression with the bioinformatics data from Bowtie2_FindCirc (no Hisat2) read-coverage and 
the RT-PCR expression was shown to be in coherence with the bioinformatics data. The bioinformatics data 
for these candidates have been shown in Supplementary Figure  6a and b. 
 
 
 
Figure 9: Validation of tissue-enriched circRNAs with RNaseR treatment using PCR based approach 
Agarose gel represents PCR amplified products in RNaseR treated (+) and RNaseR not treated (-) and 
no template control (NC). 
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Discussion 
In this study, we have performed a comprehensive analysis of circular RNAs in rat utilising  transcriptome 
profiling dataset made available by  Yu et al(Yu et al., 2014). The dataset encompassed 320 samples including 
11 tissues, 4 developmental stages and  2 genders each with  4 replicates.  
 
Since no single computational approach is perfect to detect circRNAs at high sensitivity and specificity, we 
used a combination of tools to identify putative backsplice junctions. Our study focussed on using 5 different 
pipeline combinations to identify circRNA junctions. These pipelines include tophat_CIRCexplorer2, 
Star_CIRCexplorer2, Segemehl_CIRCexplorer2, Bowtie2_FindCirc and Bowtie2_FindCirc (no Hisat2). 
These pipelines use aligners including segemehl, star, Bowtie2 and tophat to identify the backsplice junctions 
and then different algorithms including CIRCexplorer2, Find_Circ and segemehl to filter backsplice junctions. 
Our study shows the 1) tissue-specific 2) development stage-specific and 3) gender-specific circRNAs from 
each pipeline combination. 
 
The RNA-sequencing dataset varying read count from 16 million to 82 million. Liver samples had the lowest 
read count and kidney, brain and heart were among the samples with the most number of reads with very good 
quality. CirComPara is one published algorithm that uses the combination of circRNA tools to identify 
circRNA junctions. The first step, in circompara, is to trim the input RNA-sequencing reads with phred cut-off 
30. Our analysis showed that the quality of reads were good enough so no reads were removed. Next step is to 
align the data over alignment tool to remove the reads aligning the linear transcripts. This step is very critical 
as it removes the ambiguous reads matching with both linear and backsplice junctions and improves the 
sensitivity of the circRNA detection by reducing false positives. CirComPara uses hisat2 (hierarchical 
indexing for spliced alignment of transcripts) as the alignment tool to discard the reads aligning to the linear 
transcriptome. HISAT2 uses two-way indexing, one is whole genome Ferragina-Manzini (FM) index to 
anchor each alignment and multiple local FM indexes for rapid extension of the alignments. HISAT2 uses 
only 4GB memory to run and is one of the fastest alignment tools available for large datasets. After alignment 
with hisat2, with average alignment of 87%, alignment percentage ranged from 68.75% to 90%. The lowest 
alignment percentage was for liver samples and kidney and heart were samples that showed very high 
alignment.  
 
CirComPara uses hisat2 as default aligner to discard the linear mapped reads but in case of Memczak et 
al(Memczak et al., 2013), the complete pipeline includes Bowtie2 from the step to remove reads mapping over 
the linear transcripts to the identification of circRNA junctions using the anchor alignment method. So we 
added one more variation to the default procedure that is findcirc with Bowtie2 aligner without aligning before 
with Hisat2. In the latter case, Bowtie2 uses options like --very-sensitivity, --score-min=C,-15,0 to use very 
stringent conditions to filter out reads mapping contiguously and full length to the genomes. We observed the 
minimum number of circRNAs from Bowtie2_FindCirc (no Hisat2). The study describing CirComPara also 
explained that testrealign predicts 86% of the total circRNAs predicted and the difference with other methods 
is at least ~5 times more which is due to the reason that testrealign does not perform any post-processing 
specific for circRNAs. So combining it with other methods can reduce the loose predictions so we have not 
used testrealign in our pipeline. Hansen et al compared 5 prediction tools including circRNA_finder, 
find_circ, CIRCexplorer, CIRI, and MapSplice to check the sensitivity and number of false positives(Hansen 
et al., 2016). The data from the study clearly showed the problems with each pipeline. In the case of top 
candidates, Find_circ performs badly as it is very distracted by the highly expressed linear RNA species. 
CIRCexplorer is the most reliable to predict top 100 candidates. So we did a further analysis using the 
individual pipeline as well as the combination of pipelines. Comparing analysis between Bowtie2_FindCirc 
and Bowtie2_FindCirc (no Hisat2), we found that default features of CirComPara does not use 2 read cut-off 
and splice-site cutoff of 100kb because of which we have identified very high number of circular RNAs in 
Bowtie2_FindCirc. Moreover, FindCirc is not dependent on existing models of genome whereas 
CIRCexplorer2 uses annotated GTF file to annotate circular RNAs. Due to these reasons, Bowtie2_FindCirc 
has a relatively higher number of circular RNAs than CIRCexplorer2. 
 
While comparing tissue-specific circular RNAs, we found the maximum number of circRNAs were expressed 
in the brain and least in the liver. The high number of circRNAs in the brain is quite expected from the 
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previous studies and though the least number of circRNAs in the liver could be because of the sample read 
count also. We found ~22-30% of unique candidates from each tissue. Interestingly, out of number of 
circRNAs candidates identified from each pipeline, our analysis showed that very small of circ-junctions were 
common in all the 5 combinations in each tissue ranging from 80 to 900 (maximum in brain), out of which, 
15-400 were unique to each tissue with maximum from brain i.e. 400 which increase the depth of the problem. 
In comparison to literature and existing databases such as circAtlas(W. Wu et al., 2020) and circfunbase(Meng 
et al., 2019), we found only ~7000 circRNAs common. Rest of the circular RNA junctions can be considered 
novel. 
 
Our comparison of the development stage specific circular RNAs revealed most of the circRNAs from 104 
weeks-old stage followed by 2 weeks-old stage. We found an interesting pattern for each tissue over the 
development stage as the number of circRNAs increases over the age in the brain which is also mentioned by 
Zhou et al(T. Zhou et al., 2018). Adrenal circRNA count increases from 2 to 21 weeks-old stage then 
decreases with aging. Heart and thymus have the most number of circRNAs at puberty i.e. 6 weeks-old stage 
followed by 2 weeks-old stage then reduce with adult stage and aging. Lungs circRNAs are highest at 
immature stage and aged stage. Interestingly the circRNAs in mesenchymal stem cells are reduced with aging 
and in Testis, circRNAs are highest in the adult stage and uterus circRNAs increase with age (highest at 104 
weeks-old stage). So clearly there is pattern and tissue-specific behaviour in circular RNAs. We also identified 
gender-specific circRNAs and found only 59 circRNAs that were common in all the circRNAs pipeline 
combinations and yet unique to the male gender. Similarly, we found 25 circRNAs specific to females that 
were common in all 5 combinations of tools.  
 
Next, we were interested in observing how every pipeline differs on the level of read coverage and we found 
contrasting patterns between CIRCexplorer2 and FindCirc as CIRCexplorer2 had most of the circRNAs fall in 
the range of <200 reads whereas FindCirc pipeline had most circular RNAs in range of 2 -10 reads. Studies 
have shown that circular RNAs are originating from exons, introns, 5’UTR and 3’ UTRs(Santer et al., 2019). 
We were also interested to observe the pattern in rat and found that there are many circular RNAs originating 
from only 5’UTR and from 3’UTRs. This explains the regulatory role of circRNAs in transcription. Even 
though we did not use arguments to identify novel circular RNAs from CIRCexplorer2, we identified many 
circular RNAs originating from intergenic regions from FindCirc and CIRI. 
 
We observed differential expression of circular RNAs among tissues. circ-themis is one such gene that shows 
tissue-specific expression in thymus. Host themis gene plays a regulatory role in T-cell positive and negative 
selection during thymocyte development(Chabod et al., 2012; Iwata et al., 2010). Another tissue specific 
circular RNA is circ-anks1b that is predominantly found in the brain and we also found expression of Anks1b 
in brain tissue only. The Anks1b gene protein interacts with amyloid beta protein precursor and is involved in 
brain development(Tindi et al., 2015). Role of Efemp1 has also been reported in liver cancer and methylation 
of the promoter cause decrease in expression of Efemp1 in hepatocellular carcinoma (HCC)(Y. Chen et al., 
2018; Dou et al., 2016; Hu et al., 2019). The gene is also shown to be involved in pathogenesis of Alzheimer’s 
disease. Genes Ubr5 and Ralgapa1 are involved in signalling pathways and we have observed circular RNAs 
originating from these genes expressing in multiple tissues but differentially expressed.  
 
 
Conclusions 
We have created a comprehensive map of rat circular RNA transcriptome from 320 samples from 11 tissues, 4 
developmental stages and 2 gender. We have also validated a few circular RNAs candidates. Out of these, 3 
circular RNAs showed tissue-enriched patterns and 2 are differentially expressed.   
 
Acknowledgements 
DS would like to thank Intel India fellowship for providing fellowship. PS would like to acknowledge CSIR 
for his fellowship. The authors would like to acknowledge Samatha Mathew for her help in performing 
experiments. 
 
References 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 11 

Alam, I., Koller, D. L., Cañete, T., Blázquez, G., López-Aumatell, R., Martínez-Membrives, E., Díaz-Morán, 

S., Tobeña, A., Fernández-Teruel, A., Stridh, P., Diez, M., Olsson, T., Johannesson, M., Baud, A., Econs, 

M. J., & Foroud, T. (2014). High-resolution genome screen for bone mineral density in heterogeneous 

stock rat. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone 

and Mineral Research, 29(7), 1619–1626. 

Alam, I., Koller, D. L., Cañete, T., Blázquez, G., Mont-Cardona, C., López-Aumatell, R., Martínez-

Membrives, E., Díaz-Morán, S., Tobeña, A., Fernández-Teruel, A., Stridh, P., Diez, M., Olsson, T., 

Johannesson, M., Baud, A., Econs, M. J., & Foroud, T. (2015). Fine mapping of bone structure and 

strength QTLs in heterogeneous stock rat. Bone, 81, 417–426. 

Bier, A., Braun, T., Khasbab, R., Di Segni, A., Grossman, E., Haberman, Y., & Leibowitz, A. (2018). A High 

Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive 

Hypertension Rat Model. Nutrients, 10(9). https://doi.org/10.3390/nu10091154 

Chabod, M., Pedros, C., Lamouroux, L., Colacios, C., Bernard, I., Lagrange, D., Balz-Hara, D., Mosnier, J.-F., 

Laboisse, C., Vergnolle, N., Andreoletti, O., Roth, M.-P., Liblau, R., Fournié, G. J., Saoudi, A., & 

Dejean, A. S. (2012). A spontaneous mutation of the rat Themis gene leads to impaired function of 

regulatory T cells linked to inflammatory bowel disease. PLoS Genetics, 8(1), e1002461. 

Chen, L., Yu, Y., Zhang, X., Liu, C., Ye, C., & Fan, L. (2016). PcircRNA_finder: a software for circRNA 

prediction in plants. Bioinformatics , 32(22), 3528–3529. 

Chen, Y., Gilbert, M. A., Grochowski, C. M., McEldrew, D., Llewellyn, J., Waisbourd-Zinman, O., 

Hakonarson, H., Bailey-Wilson, J. E., Russo, P., Wells, R. G., Loomes, K. M., Spinner, N. B., & Devoto, 

M. (2018). A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 

within the gene EFEMP1. PLoS Genetics, 14(8), e1007532. 

Chuang, T.-J., Wu, C.-S., Chen, C.-Y., Hung, L.-Y., Chiang, T.-W., & Yang, M.-Y. (2016). NCLscan: 

accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good 

balance between sensitivity and precision. Nucleic Acids Research, 44(3), e29. 

Cortés-López, M., Gruner, M. R., Cooper, D. A., Gruner, H. N., Voda, A.-I., van der Linden, A. M., & Miura, 

P. (2018). Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics, 

19(1), 8. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 12 

Coscujuela Tarrero, L., Ferrero, G., Miano, V., De Intinis, C., Ricci, L., Arigoni, M., Riccardo, F., 

Annaratone, L., Castellano, I., Calogero, R. A., Beccuti, M., Cordero, F., & De Bortoli, M. (2018). 

Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget, 

9(18), 14580–14596. 

Dou, C.-Y., Cao, C.-J., Wang, Z., Zhang, R.-H., Huang, L.-L., Lian, J.-Y., Xie, W.-L., & Wang, L.-T. (2016). 

EFEMP1 inhibits migration of hepatocellular carcinoma by regulating MMP2 and MMP9 via ERK1/2 

activity. Oncology Reports, 35(6), 3489–3495. 

Feng, D., Li, Z., Wang, G., Yao, J., Li, Y., Qasim, W., Zhao, Y., & Tian, X. (2018). Microarray Analysis of 

Differentially Expressed Profiles of Circular RNAs in a Mouse Model of Intestinal Ischemia/Reperfusion 

Injury with and Without Ischemic Postconditioning. Cellular Physiology and Biochemistry: International 

Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 48(4), 1579–1594. 

Gaffo, E., Bonizzato, A., Kronnie, G. T., & Bortoluzzi, S. (2017). CirComPara: A Multi-Method Comparative 

Bioinformatics Pipeline to Detect and Study circRNAs from RNA-seq Data. Non-Coding RNA, 3(1). 

https://doi.org/10.3390/ncrna3010008 

Gao, Y., Wang, J., & Zhao, F. (2015). CIRI: an efficient and unbiased algorithm for de novo circular RNA 

identification. Genome Biology, 16, 4. 

Guo, T., Zhang, J., Yao, W., Du, X., Li, Q., Huang, L., Ma, M., Li, Q., Liu, H., & Pan, Z. (2019). CircINHA 

resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian 

follicles. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1862(10), 194420. 

Hansen, T. B., Venø, M. T., Damgaard, C. K., & Kjems, J. (2016). Comparison of circular RNA prediction 

tools. Nucleic Acids Research, 44(6), e58. 

Hoffmann, S., Otto, C., Doose, G., Tanzer, A., Langenberger, D., Christ, S., Kunz, M., Holdt, L. M., Teupser, 

D., Hackermüller, J., & Stadler, P. F. (2014). A multi-split mapping algorithm for circular RNA, splicing, 

trans-splicing and fusion detection. Genome Biology, 15(2), R34. 

Holdt, L. M., Kohlmaier, A., & Teupser, D. (2018). Circular RNAs as Therapeutic Agents and Targets. 

Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01262 

Hu, J., Duan, B., Jiang, W., Fu, S., Gao, H., & Lu, L. (2019). Epidermal growth factor-containing fibulin-like 

extracellular matrix protein 1 (EFEMP1) suppressed the growth of hepatocellular carcinoma cells by 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 13 

promoting Semaphorin 3B(SEMA3B). Cancer Medicine, 8(6), 3152–3166. 

Iwata, R., Sasaki, N., & Agui, T. (2010). Contiguous gene deletion of Ptprk and Themis causes T-helper 

immunodeficiency (thid) in the LEC rat. Biomedical Research , 31(1), 83–87. 

Izuogu, O. G., Alhasan, A. A., Alafghani, H. M., Santibanez-Koref, M., Elliott, D. J., & Jackson, M. S. 

(2016). PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) 

events. BMC Bioinformatics, 17, 31. 

Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. 

E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA , 19(2), 141–

157. 

Kuramoto, T., Nakanishi, S., Ochiai, M., Nakagama, H., Voigt, B., & Serikawa, T. (2012). Origins of albino 

and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PloS 

One, 7(8), e43059. 

Liang, G., Yan, J., Guo, J., & Tang, Z. (2020). Identification of Ovarian Circular RNAs and Differential 

Expression Analysis between MeiShan and Large White Pigs. Animals : An Open Access Journal from 

MDPI, 10(7). https://doi.org/10.3390/ani10071114 

Lin, X., & Chen, Y. (2018). Identification of Potentially Functional CircRNA-miRNA-mRNA Regulatory 

Network in Hepatocellular Carcinoma by Integrated Microarray Analysis. Medical Science Monitor 

Basic Research, 24, 70–78. 

Li, X., Yang, L., & Chen, L.-L. (2018). The Biogenesis, Functions, and Challenges of Circular RNAs. 

Molecular Cell, 71(3), 428–442. 

Li, Y., Zeng, X., He, J., Gui, Y., Zhao, S., Chen, H., Sun, Q., Jia, N., & Yuan, H. (2018). Circular RNA as a 

biomarker for cancer: A systematic meta-analysis. Oncology Letters, 16(3), 4078–4084. 

Long Z., Xie J., Liu Y.-P., Zhang L., Xu C.-G., Luo J.-Y., & Li G.-Q. (2018). [Differentially expressed 

circular RNAs in human gastric cancer cells]. Sheng li xue bao: [Acta physiologica Sinica], 70(4), 384–

390. 

Martin, M. T., Knudsen, T. B., Reif, D. M., Houck, K. A., Judson, R. S., Kavlock, R. J., & Dix, D. J. (2011). 

Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biology of 

Reproduction, 85(2), 327–339. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 14 

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., 

Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & 

Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 

495(7441), 333–338. 

Meng, X., Hu, D., Zhang, P., Chen, Q., & Chen, M. (2019). CircFunBase: a database for functional circular 

RNAs. Database: The Journal of Biological Databases and Curation, 2019. 

https://doi.org/10.1093/database/baz003 

Mester-Tonczar, J., Winkler, J., Einzinger, P., Hasimbegovic, E., Kastner, N., Lukovic, D., Zlabinger, K., 

Spannbauer, A., Traxler, D., Batkai, S., Thum, T., & Gyöngyösi, M. (2020). Association between 

Circular RNA CDR1as and Post-Infarction Cardiac Function in Pig Ischemic Heart Failure: Influence of 

the Anti-Fibrotic Natural Compounds Bufalin and Lycorine. Biomolecules, 10(8). 

https://doi.org/10.3390/biom10081180 

Nicolet, B. P., Engels, S., Aglialoro, F., van den Akker, E., von Lindern, M., & Wolkers, M. C. (2018). 

Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic 

Acids Research, 46(16), 8168–8180. 

Qu, S., Zhong, Y., Shang, R., Zhang, X., Song, W., Kjems, J., & Li, H. (2017). The emerging landscape of 

circular RNA in life processes. RNA Biology, 14(8), 992. 

Redina, O. E., & Markel, A. L. (2018). Stress, Genes, and Hypertension. Contribution of the ISIAH Rat Strain 

Study. Current Hypertension Reports, 20(8), 66. 

Rosenbloom, K. R., Armstrong, J., Barber, G. P., Casper, J., Clawson, H., Diekhans, M., Dreszer, T. R., 

Fujita, P. A., Guruvadoo, L., Haeussler, M., Harte, R. A., Heitner, S., Hickey, G., Hinrichs, A. S., 

Hubley, R., Karolchik, D., Learned, K., Lee, B. T., Li, C. H., … Kent, W. J. (2015). The UCSC Genome 

Browser database: 2015 update. Nucleic Acids Research, 43(Database issue), D670–D681. 

Rubattu, S., Volpe, M., Kreutz, R., Ganten, U., Ganten, D., & Lindpaintner, K. (1996). Chromosomal 

mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nature 

Genetics, 13(4), 429–434. 

Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., 

Ashwal-Fluss, R., Herzog, M., Schreyer, L., Papavasileiou, P., Ivanov, A., Öhman, M., Refojo, D., 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 15 

Kadener, S., & Rajewsky, N. (2015). Circular RNAs in the Mammalian Brain Are Highly Abundant, 

Conserved, and Dynamically Expressed. Molecular Cell, 58(5), 870–885. 

Salzman, J. (2016). Circular RNA Expression: Its Potential Regulation and Function. Trends in Genetics: TIG, 

32(5), 309–316. 

Santer, L., Bär, C., & Thum, T. (2019). Circular RNAs: A Novel Class of Functional RNA Molecules with a 

Therapeutic Perspective. Molecular Therapy: The Journal of the American Society of Gene Therapy, 

27(8), 1350–1363. 

Serikawa, T., Mashimo, T., Kuramoro, T., Voigt, B., Ohno, Y., & Sasa, M. (2015). Advances on genetic rat 

models of epilepsy. Experimental Animals / Japanese Association for Laboratory Animal Science, 64(1), 

1–7. 

Sharma, D., Sehgal, P., Mathew, S., Vellarikkal, S. K., Singh, A. R., Kapoor, S., Jayarajan, R., Scaria, V., & 

Sivasubbu, S. (2019). A genome-wide map of circular RNAs in adult zebrafish. Scientific Reports, 9(1), 

3432. 

Sheng, J.-Q., Liu, L., Wang, M.-R., & Li, P.-Y. (2018). Circular RNAs in digestive system cancer: potential 

biomarkers and therapeutic targets. American Journal of Cancer Research, 8(7), 1142–1156. 

Shen, M., Li, T., Zhang, G., Wu, P., Chen, F., Lou, Q., Chen, L., Yin, X., Zhang, T., & Wang, J. (2019). 

Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development 

in chicken. BMC Genomics, 20(1), 96. 

Singh, M., George, A. K., Homme, R. P., Majumder, A., Laha, A., Sandhu, H. S., & Tyagi, S. C. (2018). 

Circular RNAs profiling in the cystathionine-β-synthase mutant mouse reveals novel gene targets for 

hyperhomocysteinemia induced ocular disorders. Experimental Eye Research, 174, 80–92. 

Song, L., & Xiao, Y. (2018). Downregulation of hsa_circ_0007534 suppresses breast cancer cell proliferation 

and invasion by targeting miR-593/MUC19 signal pathway. Biochemical and Biophysical Research 

Communications, 503(4), 2603–2610. 

Song, X., Zhang, N., Han, P., Moon, B.-S., Lai, R. K., Wang, K., & Lu, W. (2016). Circular RNA profile in 

gliomas revealed by identification tool UROBORUS. Nucleic Acids Research, 44(9), e87. 

Sung, Y.-L., Wu, C.-E., Syu, J.-Y., Kuo, T. B. J., Li, J.-Y., Chen, C.-W., Weng, C.-H., Hsu, W.-H., Chen, S.-

A., Hu, Y.-F., & Lin, S.-F. (2018). Effects of long-term exercise on arrhythmogenesis in aged 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 16 

hypertensive rats. Computers in Biology and Medicine, 102, 390–395. 

Szabo, L., Morey, R., Palpant, N. J., Wang, P. L., Afari, N., Jiang, C., Parast, M. M., Murry, C. E., Laurent, L. 

C., & Salzman, J. (2015). Statistically based splicing detection reveals neural enrichment and tissue-

specific induction of circular RNA during human fetal development. Genome Biology, 16, 126. 

Tindi, J. O., Chávez, A. E., Cvejic, S., Calvo-Ochoa, E., Castillo, P. E., & Jordan, B. A. (2015). ANKS1B 

Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit 

Localization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(24), 

8986–8996. 

Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and memory in rodents. ILAR Journal / 

National Research Council, Institute of Laboratory Animal Resources, 55(2), 310–332. 

Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P., Grimm, S. 

A., Perou, C. M., MacLeod, J. N., Chiang, D. Y., Prins, J. F., & Liu, J. (2010). MapSplice: accurate 

mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research, 38(18), e178. 

Wang, X., Zhu, X., Zhang, H., Wei, S., Chen, Y., Chen, Y., Wang, F., Fan, X., Han, S., & Wu, G. (2018). 

Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma 

proliferation. Biochemical and Biophysical Research Communications, 496(4), 1069–1075. 

Wang, Y., Guo, Z., Zi, C., Wu, P., Lv, X., Chen, L., Chen, F., Zhang, G., & Wang, J. (n.d.). CircRNA 

Expression in Chicken Granulosa Cells Illuminated with Red Light. https://doi.org/10.21203/rs.3.rs-

52557/v1 

Weng, Q., Chen, M., Li, M., Zheng, Y.-F., Shao, G., Fan, W., Xu, X.-M., & Ji, J. (2019). Global microarray 

profiling identified as a potential immune-associated prognosis biomarker for hepatocellular carcinoma. 

Journal of Medical Genetics, 56(1), 32–38. 

Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R., 

& Lai, E. C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and 

sequence properties and age-dependent neural accumulation. Cell Reports, 9(5), 1966–1980. 

Wu, W., Ji, P., & Zhao, F. (2020). CircAtlas: an integrated resource of one million highly accurate circular 

RNAs from 1070 vertebrate transcriptomes. Genome Biology, 21(1), 101. 

Wu, Z., Huang, W., Wang, X., Wang, T., Chen, Y., Chen, B., Liu, R., Bai, P., & Xing, J. (2018). Circular 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 17 

RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating 

SOX11. Molecular Medicine , 24(1), 40. 

You, X., & Conrad, T. O. (2016). Acfs: accurate circRNA identification and quantification from RNA-Seq 

data. Scientific Reports, 6, 38820. 

Yu, Y., Fuscoe, J. C., Zhao, C., Guo, C., Jia, M., Qing, T., Bannon, D. I., Lancashire, L., Bao, W., Du, T., 

Luo, H., Su, Z., Jones, W. D., Moland, C. L., Branham, W. S., Qian, F., Ning, B., Li, Y., Hong, H., … 

Wang, C. (2014). A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. 

Nature Communications, 5, 3230. 

Zhang, J., Jiang, J., Huang, R., Wang, Y., Nie, X., & Gui, R. (2018). Circular RNA expression profiles are 

significantly altered in mice bone marrow stromal cells after total body irradiation. Leukemia Research, 

70, 67–73. 

Zhang, X., Ma, X., Ning, L., Li, Z., Zhao, K., Li, K., He, J., & Yin, D. (2019). Genome-wide identification of 

circular RNAs in peanut (Arachis hypogaea L.). BMC Genomics, 20(1), 653. 

Zhang, X.-O., Wang, H.-B., Zhang, Y., Lu, X., Chen, L.-L., & Yang, L. (2014). Complementary sequence-

mediated exon circularization. Cell, 159(1), 134–147. 

Zhang, Z., Yang, T., & Xiao, J. (2018). Circular RNAs: Promising Biomarkers for Human Diseases. 

EBioMedicine, 34, 267–274. 

Zhao, W., Chu, S., & Jiao, Y. (2019). Present Scenario of Circular RNAs (circRNAs) in Plants. Frontiers in 

Plant Science, 10, 379. 

Zhou, C., Molinie, B., Daneshvar, K., Pondick, J. V., Wang, J., Van Wittenberghe, N., Xing, Y., Giallourakis, 

C. C., & Mullen, A. C. (2017). Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-

Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Reports, 20(9), 2262–2276. 

Zhou, T., Xie, X., Li, M., Shi, J., Zhou, J. J., Knox, K. S., Wang, T., Chen, Q., & Gu, W. (2018). Rat 

BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental 

stages. RNA , 24(11), 1443–1456. 

Tables 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432122


 

Sharma et al 18 

Figures 

Figure 1. The schematic representation of the pipeline followed for the identification of circular RNAs. 
Figure 2: The read numbers in the different tissue sample datasets considered in the analysis.  
Figure 3: The figure shows the alignment details of the samples in the different combinations of tools. 
Figure 4: The plot showing the total vs tissue-specific number of circular RNAs for each pipeline. 
(MSC=Mesenchymal stem cells) 
Figure 5: The figure shows a venn diagram comparing each pipeline with different development stages. 
Figure 6: The figure shows the venn diagram for gender-specific circRNAs in each pipeline.* 
=Bowtie2_findCirc (no Hisat2) includes circular RNAs identified from Memczak et al pipeline without 
aligning prior with Hisat2. 
Figure 7: The classification of circular RNAs based on read coverage from each of the pipelines considered.  
Figure 8: Validation of circular RNAs using RT-PCR for 6 tissues panel. 
Agarose gel represents the amplification products obtained from cDNA synthesized from different rat tissues 
and control rat DNA. Total 24 candidates were analyzed in 6 different rat tissues. 
Figure 9: Validation of tissue-enriched circRNAs with RNaseR treatment using PCR based approach Agarose 
gel represents PCR amplified products in RNaseR treated (+) and RNaseR not treated (-) and no template 
control (NC). 
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