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Abstract

Intra-tumour heterogeneity is a leading cause of treatment failure and disease
progression in cancer. While genetic mutations have long been accepted as a primary
mechanism of generating this heterogeneity, the role of phenotypic plasticity is
becoming increasingly apparent as a driver of intra-tumour heterogeneity. Consequently,
understanding the role of plasticity in treatment resistance and failure is a key
component of improving cancer therapy. We develop a mathematical model of
stochastic phenotype switching that tracks the evolution of drug-sensitive and
drug-tolerant subpopulations to clarify the role of phenotype switching on population
growth rates and tumour persistence. By including cytotoxic therapy in the model, we
show that, depending on the strategy of the drug-tolerant subpopulation, stochastic
phenotype switching can lead to either transient or permanent drug resistance. We
study the role of phenotypic heterogeneity in a drug-resistant, genetically homogeneous
population of non-small cell lung cancer cells to derive a rational treatment schedule
that drives population extinction and avoids competitive release of the drug-tolerant
sub-population. This model-informed therapeutic schedule results in increased
treatment efficacy when compared against periodic therapy, and, most importantly,
sustained tumour decay without the development of resistance.

Author summary

We propose a simple mathematical model to understand the role of phenotypic
plasticity and non-genetic inheritance in driving therapy resistance in cancer. We
identify the role of non-genetic inheritance on treatment resistance and use a variety of
analytical and numerical techniques to understand the impact of phenotypic plasticity
on population fitness and dynamics. We further use our model to study the role of
phenotypic heterogeneity in therapeutic resistance in a genetically identical non-small
cell lung cancer population. Finally, we combine analytical perspectives and techniques
from the theory of structured populations, renewal equations and infinite dimensional
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dynamical systems to derive a model informed therapeutic strategy that both drives
tumour eradication while avoiding competitive release of a drug-tolerant subpopulation.
These results exemplify the potential of using mathematical techniques to identify
therapeutic strategies to guide the evolution of a heterogeneous tumour.

Introduction 1

Intra-tumour heterogeneity is a leading driver of cancer treatment failure [1–3]. The 2

genetic instability and high proliferative capacity typical of cancer cells induces a 3

genetically heterogenous population in which resistance-conferring mutations can arise 4

and expand during the selective pressure of therapy. This evolutionary process leads to 5

the eventual failure of treatment and the outgrowth of a refractory tumour [3–9]. 6

However, it is increasingly understood that genetic aberrations are not the sole 7

mechanism through which drug-resistant phenotypes can arise. Rather, adaptive 8

phenotypic change can arise without an associated genetic mutation. Such phenotypic 9

heterogeneity has been extensively studied as a possible mechanism of treatment 10

resistance [7,8,10–14]. For example, chemotherapy has been shown to induce a transient 11

drug-tolerant phenotype in breast cancer cell lines such that re-sensitisation occurs 12

following cessation of therapy [15,16], an example of phenotypic plasticity [17]. Whilst 13

this heterogeneity arises in response to environmental change, non-genetic variation in 14

phenotypes can also arise in unchanged environments, indicating the presence of 15

stochastic phenotype switching, termed bet-hedging [13,14]. Bet-hedging induces 16

phenotypic diversity that can help protect a population from extinction following 17

catastrophic environmental changes such as cytotoxic therapy [18–21]. 18

In recent years, evolutionarily-informed cancer therapy regimens have arisen as a 19

potential strategy to delay the emergence of drug resistance. Adaptive therapies exploit 20

competition between clonal populations by incorporating periods without therapy 21

wherein resistant subclones, which are often assumed to have a fitness cost in the 22

absence of treatment, can be outcompeted by drug-sensitive clones [5, 22–24]. The 23

treatment is applied and removed based on one or more biomarkers of disease, typically 24

proxy measurements for tumour burden. The theory underlying cancer adaptive therapy 25

is primarily based on competition dynamics between tumour subclones that are not 26

plastic, for example clones arising from mutations. It is presently unclear whether 27

adaptive therapies will prove as effective in mitigating resistance driven by non-genetic 28

mechanisms that change on a faster timescale than mutational rates, or whether better 29

understanding of such non-genetic drivers of resistance could help in the design of more 30

effective evolutionary therapies. Here, we address this question and study the impact of 31

bet-hedging strategies on the development of treatment resistance by developing a 32

simple and qualitative mathematical model. 33

Mathematical models have been used extensively to understand the development of 34

resistance to anti-cancer therapies. A number of authors have considered how 35

phenotypic variation arises [25,26] as well as the effects of phenotypic heterogeneity 36

(see [11] and references therein). These models rely, in large part, on the use of 37

structured equations which bridge cellular dynamics and population level heterogeneity 38

by explicitly considering the cellular phenotype. Often formulated as partial differential 39

equations (PDEs) structured in phenotypic space, these models conceptualise 40

continuously varying cellular phenotypes [27–30]. These PDE models often include 41

non-local terms to incorporate interactions between cells of different phenotypes, and 42

solutions of these models typically describe the density of cells in phenotype space. 43

Consequently, these structured mathematical models are well-suited to study 44

phenotypic evolution in dynamic environments. 45

We are particularly interested in the role of stochastic phenotype switching on the 46
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development of resistance to anti-cancer therapies. It has previously been shown that 47

stochastic switching between quiescence and proliferation in mammalian cells is biased 48

by the inheritance of mitogen and p53 signalling factors at cell division [31]. The 49

concentration of these factors was shown to be dependent on the life history of the 50

parental cell and are thus representative of non-genetic ‘memory’ in phenotypic 51

switching [31]. Theoretical studies of chemical reaction networks have demonstrated 52

that simple combinations of catalytic and autocatalytic reactions can produce such 53

bistable switches, with different network structures inducing different convergence and 54

stability behaviour [32,33]. Coupled with the inheritence and subsequent decay of 55

intracellular signalling factors, these bistable switches can govern a diverse range of 56

memory-driven switching regimes. Here, we investigate the role of phenotypic memory 57

in intracellular inheritance in driving the emergence of a resistant phenotype during 58

therapy. To this end, we use the cellular age, rather than phenotypic state, to structure 59

our model. In this framework, the cellular age acts as a cipher for a number of 60

epigenetic factors that vary throughout the cell’s life, such as protein 61

accumulation/dilution, cell size, adaptation to environmental stresses, etc. In the model, 62

we use the age of the parent cell to determine the probability that daughter cells will 63

inherit the parental phenotype: cells that reproduce soon after their birth are more 64

likely to bequeath their phenotype to their offspring. This mapping from cellular age to 65

switching probability generalises the role of the bistable switch mechanism that governs 66

phenotypic differentiation, as well any age-driven changes to its behaviour. 67

The canonical example of the stochastic nature of phenotypic inheritance is the 68

existence of persister cells resulting from stochastic phenotypic switches in Escherichia 69

coli populations [14,20,34,35]. Comparatively rare in a population in stable exponential 70

growth, the proportion of persister cells increases as the population of E.coli cells 71

competes for limited resources [20,34]. Accordingly, we study the role of growth phase 72

on population composition. Specifically, we demonstrate that populations in 73

exponential and stationary growth stages respond differently to environmental changes. 74

For example, we show that changes in the relative fitness between two phenotypically 75

distinct populations has a drastically different impact on a population in exponential 76

growth compared against the same change during the stationary growth phase. Further, 77

we study the role of phenotypic cooperation on population growth in nutrient-rich 78

environments, and show that this cooperation can hasten population growth when 79

compared against purely Malthusian growth. 80

We also study the establishment of a resistant population during cytotoxic 81

treatment. Through numerical simulation, we demonstrate that different phenotype 82

switching strategies result in either transient resistance [15, 16], or permanent resistance 83

due to the establishment of a dominant, resistant population [36,37]. We then 84

investigate alternative treatment scheduling options to delay or avoid the establishment 85

of resistance by preserving a drug-sensitive population. This scheduling, inspired by 86

adaptive therapy [5, 22], is then shown to outperform periodic or maximally tolerable 87

dosing strategies in a result that is robust to parameter changes. Applying our model to 88

in vitro growth data from genetically homogeneous non-small cell lung cancer (NSCLC) 89

populations, we study the effect of phenotypic switching in resistance to anti-cancer 90

drugs. We use two different measurements of fitness under treatment to derive a 91

model-informed therapeutic schedule that balances the desire to drive tumour extinction 92

with the need to avoid competitive release of a drug-tolerant population and the 93

resulting therapy resistance. We show that this treatment schedule leads to long term 94

tumour decay and significantly outperforms metronomic dosing. In the interest of 95

clarity, we present the full analytic results in the Supplemental Information. 96
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Results 97

Phenotypic switching model 98

Our primary interest is to understand and quantify resistance during chemotherapy. For 99

this, consistent with previous experimental [15,16,34,38] and 100

theoretical [7, 13,21,22,37,39] studies of bet-hedging, we constructed a mathematical 101

model of phenotypic switching to track the density of drug-sensitive (A(t, a)) and 102

drug-tolerant (B(t, a)) cell phenotypes at time t and age a. We assume that cell 103

phenotypes are fixed at birth [13], have phenotype-specific death rates dA and dB , and 104

reproduce at rates RA(Ā(t), B̄(t)) and RB(Ā(t), B̄(t)), respectively. 105

Briefly, we consider multiple forms of RA(Ā(t), B̄(t)) and RB(Ā(t), B̄(t)) 106

corresponding to different biological assumptions. When considering populations with 107

(effectively) unlimited resources, such as those that are continually replated during in 108

vitro experiments, we use a Malthusian growth model. We also consider the resource 109

limited case, such as in vitro experiments that approach total confluence, and use a 110

logistic growth model. Finally, we incorporate the effects of phenotypic cooperation, 111

whereby a larger proportion of a certain phenotype can lead to increased phenotypic 112

expansion through an Allee effect or frequency dependent fitness changes through a 113

function fn(Ā(t), B̄(t)) [2, 40–43]. The function fn(Ā(t), B̄(t)) models the increase in 114

relative fitness of drug tolerant cells as they become more common. Determining a 115

precise formulation of fn(Ā(t), B̄(t)) is difficult [23], and we give the functional forms of 116

RA and RB in the Supplementary Information. Under these assumptions, A(t, a) and 117

B(t, a) satisfy the age structured PDE, 118

∂tA(t, a) + ∂aA(t, a) = −[dA +RA(Ā(t), B̄(t))]A(t, a)

∂tB(t, a) + ∂aB(t, a) = −[dB +RB(Ā(t), B̄(t))]B(t, a)

}
(1)

and the total number of cells of each phenotype at time t is calculated by 119

Ā(t) =

∫ ∞
0

A(t, a)da and B̄(t) =

∫ ∞
0

B(t, a)da. (2)

In this way, we studied the cellular ageing process over (linear) time (LHS Eq. (1)), 120

with cellular loss at age a due to either death or reproduction (RHS Eq. (1)). 121

To model cellular reproduction, we assumed that the probability of changing 122

phenotypes depended on the age of the parent cell (i.e., older cells are more likely to 123

switch phenotypes during reproduction [44,45]). The probability that a cell of age a and 124

phenotype i will create a cell of phenotype j during reproduction is given by βij(a), 125

which leads to following boundary condition for Eq. (1). 126

A(t, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAA(a)A(t, a) +RB(Ā(t), B̄(t))βBA(a)B(t, a)da

B(t, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAB(a)A(t, a) +RB(Ā(t), B̄(t))βBB(a)B(t, a)da.

 (3)

The probability of a cell with phenotype A and age a producing two daughter cells
with the same phenotype is given by

βAA(a) = P ∗AA + (PmaxAA − P ∗AA) exp (−σAa) ,

while the probability of a cell of phenotype B with age a producing two cells of
phenotype B is

βBB(a) = P ∗BB + (PmaxBB − P ∗BB) exp (−σBa) .
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See Fig. S1 for representative forms and a discussion of βAA and βBB . Nascent cells
were restricted to either phenotype A or B, i.e.

βAB(a) = 1− βAA(a) and βBA(a) = 1− βBB(a),

and we set

A(0, a) = gA(a) > 0 and B(0, a) = gB(a) > 0, with Ā(0) <∞ and B̄(0) <∞,

to be a biologically-relevant initial condition for the age distribution of cells (see the 127

discussion in Supplementary Information for the technical conditions). 128

Effects of phenotypic switching on population fitness 129

We first studied the role of phenotypic heterogeneity on population fitness in the 130

presence of unlimited resources by considering two distinct measures of population 131

fitness: the intrinsic growth rate of the population or Malthusian parameter λP , and the 132

expected number of offspring or basic reproduction number R0. In structured 133

population models, these quantities are often related through the sign relationship: 134

sign(λP ) = sign(R0 − 1) [46–48]. Precise mathematical formulations and results 135

pertaining to these two metrics are described in the Supplementary Information. 136

A population comprised entirely of drug-sensitive cells has an intrinsic growth rate 137

given by λA = rA − dA, (and similarly, λB = rB − dB , for a population of entirely 138

drug-tolerant cells). The cost of resistance was assumed to reduce the intrinsic growth 139

rate in the tolerant population, i.e., λB < λA. In a heterogeneous population of cells 140

where cells cannot switch phenotypes, the Malthusian parameter is simply the 141

maximum of growth rates of the constituent populations (λP = max[λA, λB ]). However, 142

if cells exhibit phenotype plasticity, then the presence of a less-fit phenotype decreases 143

the fitness of the combined population, and the intrinsic growth rate of the 144

heterogeneous population falls between the growth rate of the constituent populations 145

i.e., λP ∈ (λB , λA) (Fig. 1). As we establish the previously mentioned sign relationship 146

between λP and R0 in the Supplemental Information, we can use either λP < 0 or 147

R0 < 1 as thresholds for population growth when designing a treatment schedule. 148

Tumour composition evolves during population growth 149

In nutrient-rich environments, similar to serial replating in in vitro experiments, 150

cooperation amongst drug-tolerant cells allows for tumour growth at a rate faster than 151

purely Malthusian growth (Fig. S2). In the presence of unlimited resources, increasing 152

the death rate dA of drug-sensitive cells while holding rA constant acts to decrease the 153

fitness of the drug-sensitive cells (Fig. 2A and B ), corresponding to both a decrease in 154

the relative fitness difference between drug-sensitive and drug-tolerant cells and a 155

decrease in the total population fitness. This is independent of the parameters that 156

determine phenotypic inheritance (see Supplemental Information for details). We found 157

that the proportion of sensitive type A cells was consistently higher during unlimited 158

growth, in line with experimental results [20,34]. Further, the strictly decreasing 159

behaviour of the ratio Ā/(Ā+ B̄) as dA increases indicates that the fitness difference 160

between phenotypes plays a critical role in determining population composition during 161

Malthusian growth. 162

In the limited resource situation, contrasting to the Malthusian case, the ratio 163

Ā/(Ā+ B̄) initially decreases before reaching a plateau and remaining relatively 164

constant as dA is increased. Accordingly, the relative fitness difference between 165

phenotypes is less important that the probability of phenotypic switching in 166

determining population composition (Fig. 2C and D). In fact, if the maximal probability 167
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Fig 1. The population Malthusian parameter λP as a function of intrinsic
growth rates of sensitive and tolerant cells. The Malthusian parameter, λP , is
increasing along the main diagonal, and the figure is symmetric. Thus, increases in
population fitness are driven by increases in the fitness of each phenotype without
preference.

of drug tolerant cells retaining their phenotype (PmaxBB ) is sufficiently small, increasing 168

dA increases the proportion of type A cells (not shown). Conversely, if drug-tolerant 169

cells are likely to produce drug-tolerant cells via a high probability of phenotypic 170

inheritance, illustrated by the PmaxBB = 19/30 and σB = 1× 10−3 cases, the population 171

evolves towards being predominantly drug-tolerant (phenotype B), despite the fact that 172

λA > λB . Contrary to the unlimited resource case, where the relative fitness between 173

phenotypes is the determining factor, the approximately constant proportion of 174

drug-sensitive cells in the resource-limited setting suggests the importance of resource 175

constraints in driving the establishment of a drug-tolerant population. 176

Periodic Treatment Leads to Dominant Phenotype Switches 177

We next sought to quantify the permanence of treatment resistance. For this, we 178

defined a phenotypic switching strategy as a pair (P ∗BB , P
max
BB ) representing the minimal 179

and maximal probability that a daughter cell retains the drug-tolerant phenotype of the 180

parent cell. We considered two contrasting and illustrative switching strategies: 1) the 181

switching strategy where resistant cells had a high probability of retaining their 182

phenotype if they reproduced early in life (where this probability decreased to 0 as cells 183

age, so [(P ∗BB , P
max
BB ) = (0, 0.9)]), and 2) the staying strategy, where resistant cells were 184

assumed to be unlikely to change phenotype regardless of reproductive age (i.e. 185

[(P ∗BB , P
max
BB ) = (0.95, 1)]). To measure the effectiveness of a given treatment strategy S 186

for treatment from t = 0 to t = Tend, we calculated the average total number of cells as 187
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Fig 2. The ratio of drug-sensitive cells to the total population in
Malthusian and resource limited growth for increasing values of the
tolerant cell death rate. A: ratio Ā(t)/N(t) during Malthusian growth for
PmaxBB = 0.1, 11/30, 19/30. B: ratio Ā(t)/N(t) for σB = [1× 10−3, 0.25, 0.5, 0.75]. C and
D: predictions as in A and B but in limited-resource settings. Note that the proportion
of drug-tolerant cells in A and B compare favourably with the population composition
of drug-tolerant cells reported by Sharma et al. [15].

a fraction of the carrying capacity, 188

Burden(S) =
1

Tend

∫ Tend

0

N(τ)

K
dτ =

1

Tend

∫ Tend

0

Ā(τ) + B̄(τ)

K
dτ, (4)

assuming here the physiologically-realistic finite resource case with phenotypic 189

cooperation. Since we wish to avoid competitive release of the resistant sub-population, 190

and subsequent tumour rebound, and are primarily interested in a sustainable reduction 191

in tumour size, we consider the cumulative tumour burden over the entire treatment 192

interval. In particular, (4) is related to the objective response rate, as schedules with a 193

lower tumour burden as defined in (4) would presumably also have a higher objective 194

response rate. Further, we used data from in vitro growth assays to parametrize our 195

mathematical model. In these in vitro experiments, the population size can be easily 196

measured and used as a proxy for treatment efficacy. However, if we were fitting the 197

model to clinical data rather than in vivo data, it would be possible to use more 198

clinically relevant measurements of treatment effect, such as time to disease progression 199

or treatment failure due to resistance. In our framework, treatment resistance was 200

defined as a significantly decreased therapeutic effect on the total population. The 201

robustness of our results when considering different switching strategies is shown in the 202

Supplementary Information. 203
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Fig 3. The effect of switching strategy on treatment efficacy. The effect of
periodic treatment on a population using either a A: switch or B: stay strategy. In
both cases, the same therapeutic strategy is applied between the black stars. In both A
and B, the red curve shows the proportion of sensitive cells Ā/(Ā+ B̄), and the blue
curve shows the dynamics of the total population N(t).

We simulated a 21-day cyclic chemotherapy with the half-life of the anti-cancer 204

agent set to t1/2 = 6 hrs, similar to cyclophosphamide, etoposide, and teniposide [49]. 205

For both the switch and stay strategies, the tumour population eventually developed 206

resistance as the drug-tolerant phenotype became dominant (Fig. 3). We observed that 207

the proportion of drug-sensitive cells in the switch population remained above 20% of 208

the total population – at least during the simulated treatment regimen – while the 209

drug-sensitive cells in the stay population were effectively driven extinct during 210

treatment. Thus different switching strategies act to either maintain or destroy a 211

treatment-susceptible population. However, in the long term, the switch population 212

eventually reverted back to a predominantly drug-sensitive population after treatment 213

was discontinued. Clinically, this corresponds to transient resistance and an eventually 214

re-sensitised population that has been observed in some cancers [8, 15,16], suggesting 215

that treatment holidays where therapy is re-applied after a break may be beneficial, as 216

the switch population will eventually return to a mostly drug-sensitive state. 217

Conversely, the stay population evolved into a drug-tolerant phenotype dominated state 218

and acquired essentially permanent resistance to therapy. In this case, reapplying the 219

same therapy would be unsuccessful, even after a treatment holiday. These contrasting 220

results demonstrate that different strategies of phenotypic switching can account for two 221

drastically different types of therapeutic resistance by inducing either transient or 222

permanent changes to the population, further underlining the difficulty of designing 223

effective therapies to prevent phenotypic switching. 224

Avoiding resistance to therapy in NSCLC 225

Lung cancer is the leading cause of cancer-related death in the United States, and 226

non-small cell lung cancer (NSCLC) accounts for 20% of all cancer-related deaths [50]. 227

Nearly two-thirds of NSCLC patients present with surgically unresectable disease and 228

rely on systemic therapies for survival. Better characterisation of NSCLC at the 229

molecular level has resulted in the introduction of a number of targeted therapies that 230

are safer and more effective than standard chemotherapy. However, successful long-term 231

treatment of NSCLC remains hampered by drug resistance [51]. We have recently 232

shown that phenotypic interactions in co-cultured NSCLC spheroids and heterogeneity 233
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Parameter Value Biological interpretation Reference
λA rA − dA Intrinsic growth rate of drug-sensitive cells Prop. S2
λB rB − dB Intrinsic growth rate of drug-tolerant cells Prop. S2
λ∗A rA − dmaxA Treated growth rate of drug-sensitive cells Definition
λB(θ) rBfn(θ)− dB Growth rate of drug-tolerant cells

with Allee effect Eq (7)

ε ε ∈ ( rBrA , 1) Permissible fitness from Allee effect Chosen

ϑ∗ε

[
εrA−rB
rA(1−ε)

]1/n
Ratio Ā/B̄ to ensure rB < εrA with Allee effect Eq (5)

Dose∗ αT
λA

−λ∗
A

Minimum dose size to ensure R∗0 < 1 Eq (6)

θ∗
[
−λB

λA

]1/n
Threshold θ such that λB(θ) < 0 Eq (8)

Table 1. Summary of analytical expressions used to determine model
informed therapy.

within patient samples drive a Cooperative Adaptation to Therapy (CAT) [7]. We 234

sought to further quantify the evolution of phenotypic switching in NSCLC using our 235

switching model to better understand treatment failure due to drug tolerance. In the 236

subsequent analysis, we derived a number of analytical results and expressions that 237

characterise our model informed treatment schedule. These quantities and their 238

biological interpretation are summarized in Table 1 with the full analytical details given 239

in the Supplemental Information. 240

Beyond the intrinsic heterogeneity within tumours, external factors, including 241

maximally tolerated dosing schedules, can lead to the establishment of a resistant 242

phenotype and limit the effectiveness of therapy. This is clearly clinically 243

disadvantageous. However, if there were no cooperation amongst drug-tolerant cells, 244

then once the selection pressure of therapy was removed, the population would become 245

re-sensitised to therapy. Thus, a possible therapeutic strategy is to limit the fitness gain 246

of drug-tolerant cells due to cooperation. In our model formulation, limiting fitness gain 247

due to cooperation is equivalent to limiting cooperation driven increases in reproduction 248

rates, that is, rB < εrA, where ε ∈ (rB/rA, 1). To accomplish this, the ratio of 249

drug-tolerant to drug-sensitive cells, B̄/Ā, must not exceed the threshold ratio ϑ∗ε which 250

is given by 251

ϑ∗ε =

[
εrA − rB
rA(1− ε)

]1/n
. (5)

Using ϑ∗ε, it is possible to schedule therapy to avoid competitive release (“fall then 252

rebound”) as drug sensitive phenotypes switch to drug tolerant ones, and maintain a 253

drug-sensitive population (Supplementary Information and [22,23]). Here, we detail a 254

strategy for our NSCLC data that simultaneously ensures that the total tumour 255

population decays and the population of drug-tolerant cells remains dependent on the 256

drug-sensitive cells for survival. This strategy requires a delicate balance of maintaining 257

chemotherapeutic concentrations at a large enough value to inhibit growth of the 258

drug-sensitive cells while maintaining the frequency of drug-tolerant cells below a level 259

that induces significant cooperation and the resulting competitive release. In the 260

analytical work that follows, we assumed that rB < dB , an assumption which is satisfied 261

by the results of the parameter fitting described in the Supplementary Information, and 262

that there were ample resources available, though we include the carrying capacity in 263

our simulations. Lastly, we assumed that the chemotherapeutic infiltrated the tumour 264
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uniformly and that therapy is administered over a fixed period T . We calculate the 265

chemotherapeutic concentration during metronomic therapy in the Supplementary 266

Information along with the precise analytical results underpinning our strategy. 267

From a classical population dynamics perspective, if the treated basic reproduction 268

number R∗0 is less than 1, then the tumour population is expected to decay during 269

treatment. In a approximately periodic environment, where chemotherapy is 270

administered every T days, the threshold minimum dose size to ensure that R∗0 < 1 is 271

Dose∗ =
λA
−λ∗A

αT , (6)

where λ∗A = rA − dmaxA < 0 is the decay rate of the drug-sensitive population during
treatment and αT is a constant depending on the period of administration T . We give a
derivation of (6) and the explicit expression for αT in the Supplemental Information.
To render this threshold clinically relevant, we rewrite Eq.(6) as

λA
−λ∗A

=
Dose∗

αT
.

The left hand side above is comprised of patient specific parameters, namely the 272

intrinsic growth rate of the drug susceptible population λA, and the decay rate of the 273

sensitive population during treatment, λ∗A. To estimate these quantities, consider two 274

time series, Āi and Ā∗i , representing a drug-sensitive population grown in normal media 275

or in the presence of a chemotherapeutic, respectively. Due to phenotypic switching, it 276

is unlikely that these populations are comprised of solely drug susceptible cells, which 277

complicates the estimation of λA and λ∗A directly from experimental data. Nevertheless, 278

to first approximation, the slope of log(Āi) during the early exponential stage of growth 279

offers an estimate for the intrinsic growth rate λA = rA − dA. Assuming, for simplicity, 280

that the chemotherapeutic agent only acts to increase the death rate of cells, then the 281

the slope of log(Ā∗i ) during exponential decay rate gives an estimate for 282

λ∗A = rA − dmaxA . The right hand side of Eq (6) is comprised of parameters describing 283

the properties of the drug as well as the size and frequency of drug administration that 284

can be directly translated to the clinic. 285

To inhibit competitive release (i.e. the observed “fall and rebound” in the NSCLC 286

spheroid data during therapy), we updated our approach to avoiding the establishment 287

of tolerant phenotypes to ensure that λB < 0 even when considering cooperation. 288

Denoting the ratio of drug-tolerant to drug-sensitive cells by θ = B̄/Ā, the expression 289

for the fitness of the drug-tolerant population including the Allee effect is 290

λB(θ) = rBfn(Ā(t), B̄(t))− dB . (7)

where fn(Ā(t), B̄(t)) models cooperation mediated fitness increases and is given in 291

Eq (S9). In particular, fn(Ā(t), B̄(t)) is a Hill type function with Hill coefficient n > 1. 292

In this context, n can be understood as representing the necessary amount of 293

cooperation between drug-tolerant cells to induce a fitness increase. Then, enforcing the 294

condition that λB < 0 yielded the threshold ratio 295

θ∗ =

[
−λB
λA

]1/n
. (8)

As λB < 0, the right hand side of Eq (8) is the ratio of the decay rate of drug-tolerant
cells to the growth rate of drug-sensitive cells. If the population of drug-tolerant cells
decays at a faster rate than the population of drug-sensitive cells grows (|λB | > λA),
then drug-tolerant cells must outnumber drug-sensitive cells before cooperation will
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allow for expansion of the drug-tolerant population. In this case, cooperation acts to
attenuate the factor by which drug-tolerant cells must outnumber drug-sensitive cells
before the drug-tolerant population is self-sustaining, since[

−λB
λA

]1/n
6
−λB
λA

.

Conversely, if |λB | < λA, then increasing levels of cooperation necessitates a larger 296

proportion of drug-tolerant cells to permit self-renewal of the treatment resistant 297

population. Once again, the ratio of untreated intrinsic growth rates can be directly 298

estimated from in vitro data. In summary, ensuring that θ < θ∗ is sufficient to avoid 299

the establishment of a resistant population. 300

Model-informed treatment drives tumour extinction 301

Lastly, we combined the strategies ensuring tumour decay or avoiding the establishment 302

of resistance described above to drive long-term treatment effectiveness to docetaxel 303

(see Supplementary Information for similar results for the chemotherapeutics afatanib 304

and bortezomib and details of the parametrization of the pharmacokinetic models for 305

each therapeutic). 306

In most treatment schedules, docetaxel is administered either weekly or
once-every-three-weeks [52], however, it is not obvious that either of these cycle lengths
represent optimal treatment periods. Rather, as suggested by Bacevic et al. [23] and
others, it may be ideal to dose more frequently and with less intensity to maintain drug
pressure on the population. Therefore, we did not a priori fix the period of
administration T to model-informed therapy. Rather, for T = 1, 2, 3..., 7 days, we
determine the model-informed dose size as

Dose∗

C1/2V ol
=

7

T
min

T=1,2,3,...,7

[(
λA

dmaxA − λA − dA

)
(1− exp[−kelimT ]) exp(kelimT ), 104

]
.

Increasing the density of therapy increases the burden of therapy and may be 307

overwhelmingly toxic. Accordingly, we imposed that the cumulative chemotherapeutic 308

dose under model informed therapy does not surpass what would be administered in the 309

fixed periodic schedule. For each period T , we used the minimal dose size that satisfies 310

(6), as our calculation of R∗0 only identifies a sufficient condition to drive tumour 311

population decay, and any larger dose size potentially allows competitive release of the 312

drug-tolerant population. 313

We tested the model-informed therapy for each value of T = 1, 2, 3, . . . , 7 and chose 314

the largest therapy period T that avoided the establishment of a drug-tolerant 315

population and led to sustained population decay. While the decision to administer 316

therapy on each treatment day nT is dependent on the ratio θ(t) < θ∗, and the tumour 317

micro-environment may not be precisely periodic, our results indicate that combining 318

the two model informed constraints successfully drives tumour extinction. 319

We compared our model-informed therapy to periodic dosing administered every 7 320

days and found that informed therapy performed comparatively to periodic dosing 321

during the initial stage of therapy (Fig. 4). However, the benefit of our model-informed 322

therapy becomes apparent when inspecting the behaviour of the treated tumour over 323

longer periods: the fixed dosing schedule allowed for the establishment of a drug-tolerant 324

phenotype and the eventual loss of effectiveness of therapy, while the model-informed 325

therapy maintained a drug-sensitive population and led to sustained tumour decay. 326

As before, we computed the effectiveness of therapy using Eq. (4). The ratio of 327

tumour burden in the model-informed therapy to periodic therapy was 0.2059 and 328

0.3708 for Wild Type (WT) and Mutant 1 (M1) cells studied (see Materials and 329
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Fig 4. Comparing model-informed and periodic dosing treatment regimens.
Panels A and B show the effect of model-informed therapeutic strategy on the WT
population over 100 and 450 days, respectively with T = 3. Panels C and D show the
effect of model-informed therapeutic strategy on the M1 population over 100 and 450
days with T = 7, respectively. The parameters used in this simulation are given in S3
TableS1.

methods), respectively. This result clearly demonstrates that model-informed therapy 330

significantly outperforms periodic therapy, and is consistent across all populations and 331

therapeutics, demonstrating the robust efficacy of this adaptive approach to 332

maintaining tolerant phenotypes. 333

Discussion 334

Despite the introduction of novel targeted therapies and increased characterisations of 335

individual patient’s genetic landscapes, drug resistance continues to drive treatment 336

failure. This suggests that identifying and understanding non-genetic factors 337

contributing to drug therapy tolerance is crucial to providing better care. In this work 338

we proposed a simple quantitative model of stochastic phenotype switching in the 339

context of cancer. Our model is comprised of two non-local age structured PDEs that 340

incorporate phenotypic switching through non-local boundary terms. Specifically, 341

phenotypic switching is described as a random process where the probability of 342

inheriting the parents’ phenotype is a decreasing function of cellular age at reproduction. 343

This mapping from age to switching probability generalises the role of molecular 344

switching mechanisms and the inheritence of signalling factors in phenotype 345

determination. In this sense, we have studied the role of phenotypic ‘memory’ governed 346

by the inheritance of intracellular factors, similar to the biological phenomenon observed 347
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by Yang et al. [31] where inheritance of signalling factors such as p53 and mitogen can 348

predispose daughter cells towards quiescence or proliferation. Recent experimental work 349

has implicated these signalling factors and the resulting non-genetic memory in response 350

to anti-cancer treatment. These results have specifically identified the role of treatment 351

induced stress on mother cells as a determining factor in daughter cell’s adoption of a 352

“persister” like phenotype [53–55]. In previous theoretical work we demonstrated that 353

the precise mechanisms governing phenotype switching determine the rate of extinction 354

under cytotoxic therapy [13]. Thus, molecular switching mechanisms may be subject to 355

evolution by natural selection. The model presented here represents a more general 356

framework to further explore this phenomenon, and to extend it through the 357

introduction of phenotypic memory, by specifying switching dynamics in a functional, 358

rather than network-defined, form. 359

Given the assumption of unlimited resources, we derived expressions for the 360

Malthusian parameter and basic reproduction number, and established the classic sign 361

relationship between these two measures of population fitness. From this model, we 362

derived an equivalent ODE model describing the dynamics of drug-tolerant and 363

sensitive populations to study the impact of resource availability and intra-phenotype 364

cooperation on population growth. This allowed us to show that competition for limited 365

resources facilitates the establishment of a less fit phenotype. Incorporating a 366

phenomenological model of cytotoxic therapy, we showed that the phenotype switching 367

strategy of the drug-tolerant population (to either preferentially inherit or relinquish the 368

parent cells phenotype) determined the type of treatment resistance observed. In 369

particular, our mathematical model can reproduce both transient drug resistance or 370

epigenetic permanent resistance by only changing the switching strategy of the 371

drug-tolerant population. Leveraging this, we proposed a treatment schedule that 372

exploits the population composition to avoid the establishment of treatment resistance. 373

Importantly, we then applied our model to understand the development of treatment 374

resistance within ex vivo NSCLC tumour spheroids to understand the impact of 375

phenotypic switching on response to treatment. When exposed to chemotherapeutics, 376

genetically identical NSCLC populations were found to exhibit a “fall then rebound” 377

behaviour indicative of phenotypic resistance. We derived the basic reproductive 378

number in the context of periodic treatment and determined a therapy schedule that 379

avoided the establishment of resistance and exhibited sustained tumour decay. The 380

NSCLC data and our results underline that phenotypic switching may be occurring in a 381

genetically identical population of NSCLC cells and may be driving treatment 382

resistance. It is thus important to quantify it’s presence and impact of on treatment 383

scheduling. In this work, we presented a mathematical model to understand phenotypic 384

heterogeneity and derived a model informed strategy to mitigate –and potentially avoid– 385

phenoytpically driven treatment resistance. 386

Our phenomenologically-based model is simple. Consequently, our results must be 387

evaluated in light of the many assumptions and limitations of our model, and remain to 388

be further validated in experimental systems. We also made an important assumption 389

that cancer cells are either entirely drug-tolerant and drug-sensitive. While this 390

assumption of a discrete phenotype landscape simplifies the mathematical modelling, it 391

is not biologically realistic. Moreover, we do not consider the role of spatial and 392

metabolic heterogeneity [56–58], drug infiltration [59,60], nor the role of other cells in 393

the tumour micro-environment [61]. 394

These limitations notwithstanding, our work identifies the role of stochastic 395

switching in therapeutic resistance, explicitly incorporates non-genetic inheritance, or 396

phenotypic memory, in a physiologically structured mathematical model, and highlights 397

the role of mathematical modelling in understanding and developing 398

evolutionary-inspired therapeutic strategies. 399
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Materials and methods 400

Non-small cell lung cancer data 401

We integrated in vitro growth assay data taken from a NSCLC cell line with induced 402

mutations in Dicer1 [7]. Briefly, Craig et al. [7] cloned a cell line with an oncogenic 403

Kras, homozygous p53 and heterozygous Dicer1 loss of function mutations that induces 404

tumours when injected into mice. Growth of non-small cell lung cancer (NSCLC) 405

tumour spheroids was quantified as previously described [7, 62]. The parental (WT) cell 406

line was derived from KRas-G12D, p53−/−, Dicer1f/− genotype lung tumours and 407

mutants (M1 and M2) were obtained through transfection to Dicer1+/+ and Dicer1-/- 408

using CRISPR-Cas9 [62]. Cells were then transfected with lentivirus particles expressing 409

fluorescent proteins for quantification using flow cytometry [7]. Cells were plated as 410

tumour spheroids on NanoCulture plates every other day for 7 days in the absence or 411

presence of a variety of anti-cancer agents [7]. WT, M1, and M2 were all grown 412

separately as monocultures and in co-culture as parental and mutant lines in 413

proportions of 10:90, 50:50, and 90:10. Growth without and with drug was assessed via 414

flow cytometry on days 1, 3, 5, and 7 [7]. 415

In the untreated experiments, Craig et al. [7] cultured a genotypically homogeneous 416

population of NSCLC cells in a constant environment for 7 days. In the treated 417

experiments, after 72 hours of growth in untreated medium, the authors bathed the 418

population of cells in a constant and lethal concentration of one of three 419

chemotherapeutics (docetaxel, afatinib, or bortezomib) and counted the number of 420

surviving cells. As the anti-cancer drug concentration is constant, we assume that the 421

observed “fall and rebound” behaviour is not driven by the proliferation of a 422

drug-sensitive population, but rather due to the expansion of a drug-tolerant 423

population, similar to the phenotypic resistance observed in numerous studies [8, 15,16]. 424

While the drug-tolerant population may have arisen due to genetic mutations, the short 425

treatment time of 96 hours suggests the expansion of a previously established 426

drug-tolerant phenotype. We report results for the WT and Mutation 1 (M1) lineages 427

treated with docetaxel in the main text with similar results for WT, M1 cells treated 428

with afatinib and bortezomib, as well as a separate population Mutation 2 (M2) cells 429

shown in the Supplemental Information. 430

Numerical simulation of phenotypic switching model 431

Equation (1) is a system of coupled non-local PDEs for the cell densities A(t, a) and
B(t, a). Rather than implementing these PDEs numerically, we note that we are
primarily interested in the number of drug-sensitive and drug-tolerant cells, given by

Ā(t) =

∫ ∞
0

A(t, a)da and B̄(t) =

∫ ∞
0

B(t, a)da.

For L1 initial data, the theory of transport equations ensures that these integrals are
finite [63]. Therefore, rather than solving the system of coupled PDEs and integrating
over age to compute Ā(t) and B̄(t), we derive an equivalent finite dimensional system of
ordinary differential equations for the populations Ā(t) and B̄(t). The derivation uses
Leibniz’s integral rule and integration by parts and is detailed in the Supplemental
Information. Incorporating phenotypic switching through the boundary conditions
necessitates two extra ODEs for the proportion of drug-sensitive or drug-tolerant cells
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retaining their phenotype. The resulting ODE model is

d

dt
Ā(t) = −[RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2
]Ā(t)

+ 2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))
[
B̄(t)−NBB(t)

]
d

dt
B̄(t) = −[RB(Ā(t), B̄(t) + dB ]B̄(t) + 2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

d

dt
NAA(t) = PmaxAA

[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

(
B̄(t)−NBB(t)

)]
−
(
RA(Ā(t), B̄(ts)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
NAA(t)

+ σA
(
P ∗AĀ(t)−NAA(t)

)
d

dt
NBB(t) = PmaxBB

[
2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

]
−
(
RB(Ā(t), B̄(t)) + dB

)
NBB(t)− σBNBB(t) + σBP

∗
BB̄(t),

with initial conditions corresponding to populations in exponential growth. 432

Generic model of chemotherapy 433

We denote the concentration of a chemotherapeutic at time t as C(t) and assume that 434

therapy is given intravenously with administrations at times {ti}ni=1. The time 435

dynamics of C(t) are given by 436

d

dt
C(t) = I(t)− kelimC(t) (9)

where I(t) models the I.V administration of the cytotoxic drug during an injection time
of Tadmin, and is given by

I(t) =

{
Dose

V ol×Tadmin
if t ∈ (ti, ti + Tadmin

0 otherwise.

and where V ol is the volume of absorption of the drug and Dose is the size of each 437

administration. The half life of the drug in question, t1/2, defines the elimination 438

constant through kelim = log(2)/t1/2. 439

We assume that chemotherapy increases the death rate of drug-sensitive cells through

dA(t) = dA + (dmaxA − dA)
C(t)

C(t) + C1/2
,

where the half effect concentration is given by C1/2. We note that, in our simple model, 440

it is the ratio of the drug concentration C(t) and the half effect C1/2 that completely 441

determine the pharmacodynamics of the therapy in question. While using this simple 442

pharmacodynamic model limits the direct applicability of our work, it allows for the 443

identification of the crucial aspects in determining the effect of therapy. 444

Model parametrization to NSCLC data 445

To fit the mathematical model to the NSCLC in vitro data, we fix P ∗AA = 0 and 446

PmaxAA = 0.95, set σA = σB = 1× 10−2 hours−1, and enforce dA = dB and account for 447
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the fitness cost of resistance by enforcing rB 6 rA. The parameters remaining to be fit 448

control either population growth (rA, rB , and dA), or the probability of retaining the 449

drug-tolerant phenotype (P ∗BB and PmaxBB ). 450

We show in the Supplemental Information that, for given untreated data, these 451

parameters may not be identifiable. In particular, for a given pair (P ∗BB , P
max
BB ), it is 452

possible to fit the parameters rA, rB and dA can be chosen to fit experimental data 453

equally well in the absence of treatment. However, the role of the parameters 454

(P ∗BB , P
max
BB ) becomes evident once therapy is administered and the previously 455

indistinguishable curves become distinct. Therefore, we simultaneously fit the untreated 456

and docetaxel data from [7]. 457

During the treated experiments, the cells are continuously bathed in lethal
concentrations of each chemotherapeutic, so we model the death rate of the
drug-sensitive cells during fitting as

dA(t) =

{
dA if t < ttreat
dmaxA if t > ttreat.

For treated and untreated time series data {Datai}ni=1, we fit the parameters 458

rA, rA, dA = dB , d
max
A , P ∗BB and PmaxBB by minimizing 459

Error(rA, rB , dA, d
max
A , P ∗BB , P

max
BB ) =

n∑
i=1

(N(ti)−Datai)
2

(10)

where N(ti) = Ā(ti) + B̄(ti) is the total number of cancer cells predicted by the 460

mathematical model. We used the Matlab [64] algorithm fmincon to minimize (10) with 461

15 initial starting points in parameter space. The results of our fitting to the untreated 462

and docetaxel data are shown in Fig. S5. 463

Having fit the parameters rA, rA, dA = dB , d
max
A , P ∗BB and PmaxBB to the untreated 464

and docetaxel treated population data, we fix the tumour growth parameters 465

rA, rA, dA = dB , and only fit dmaxA , P ∗BB and PmaxBB for the data from experiments with 466

afatinib and bortezomib. We do not refit the growth rate rB , both to avoid overfitting, 467

and as cancer cells with a drug-tolerant phenotype have exhibited cross-resistance to 468

other chemotherapeutics [16]. We list the tumour growth and switching parameters in 469

Tables S1 and S2. 470
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S1 Fig. Phenotypic switching probability and relative fitness gain. Panel 483

(A) shows a representative form of βii(A). Panel (B) shows the frequency dependent 484

fitness increase function fn(θ) for n = 1, 2, 10. 485

S2 Fig. A comparison of growth rates for different growth functions fn, 486

n = 1, 2, 3, 10, against Malthusian growth. The “no fitness” curves corresponds to 487

no frequency dependent fitness increase and fn = 1. Panel (A) shows population 488

evolution from an initial population comprised of 100 drug-sensitive cells and one 489

drug-tolerant cell. Conversely, Panel (B) shows population evolution from an initial 490

population comprised of one phenotype B cell, or 1 drug-sensitive cell and 100 491

drug-tolerant cells. 492

S3 Fig. Fitting of the mathematical model to the Dingli 2009 data for a 493

variety of fitting strategies. Panel (A) shows the fitting of the mathematical 494

model (1) to the Dingli 2009 data for 8 different switching strategies. Panel (B) shows 495

the same 8 strategies after 2 applications of therapy. 496

S4 Fig. The effect of adjustable therapy on a partially resistant population 497

The drug-tolerant population uses either a switch (panel (A)) or stay (panel (B)) 498

strategy. In both cases, treatment is applied between the black stars, while the red 499

curve shows the proportion Ā/(Ā+ B̄), and the blue curve shows the dynamics of N(t). 500

S5 Fig. Fitting results of Equation (1) to the WT and M1 data treated 501

with docetaxel The data for WT and M1 are given in Panels (A) and (B), 502

respectively. In all cases, the untreated data is given by the black stars while the 503

untreated simulation is in solid blue. The docetaxel treated data is given by the hollow 504

circles and the treated simulation is in dashed blue. 505

S5 Fig. Fitting results of Equation (1) to the WT, M1 and M2 data from 506

treated with afatinib and bortezomib. Panels (A), (B) and (C) show the WT, 507

M1 and M2 data treated with afatinib, respectively. Panels (D), (E) and (F) show the 508

WT, M1 and M2 data treated with bortezomib, respectively. 509

S1 Table The switching parameters for WT, M1, and M2 cell lines. 510

S2 Table The tumour growth parameters for the WT, M1 and M2 type 511

cells. 512

S3 Table The effectiveness of model informed therapy when compared to 513

periodic dosing over 150 days. 514

S6 Fig. Comparison of periodic therapy in blue and model informed 515

therapy in red for afatinib and bortezomib. Panels (A) and (B) are the WT 516

and M1 cells treated with afatinib, respectively. Panels (C) and (D) are the WT and 517

M1 cells treated with bortemozib, respectively. 518
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General model of phenotype switching 539

Here, we detail the mathematical model used in the main text. As mentioned, we 540

consider two distinct cellular phenotypes A and B, where phenotype A represents the 541

drug sensitive sub-population and phenotype B represents the drug tolerant 542

sub-population. We denote the age density of cells with phenotype A at time t as 543

A(t, a), while B(t, a) represents the density of cells of age a with phenotype B at time t. 544

The object of clinical interest at time t is unlikely to be the density of cells with a given 545

age, but rather total number of cells of each phenotype, given by 546

Ā(t) =

∫ ∞
0

A(t, a)da and B̄(t) =

∫ ∞
0

B(t, a)da. (S1)

Under the assumptions in the main text, A(t, a) and B(t, a) satisfy the non-local PDE 547

∂tA(t, a) + ∂aA(t, a) = −[dA +RA(Ā(t), B̄(t))]A(t, a)

∂tB(t, a) + ∂aB(t, a) = −[dB +RB(Ā(t), B̄(t))]B(t, a).

}
(S2)

Cellular reproduction is incorporated through non-local boundary conditions. 548

Specifically, reproduction of cells produces 2 daughter cells with age a = 0 that may not 549

inherit the parent’s phenotype. As mentioned, we assume that the probability of 550

changing phenotypes depends on the age of the parent cell: i.e, older cells are more 551

likely to switch phenotypes during reproduction [44,45]. We use βij(a) to denote the 552

probability that a cell with age a and phenotype i will create a cell of phenotype j 553

during reproduction. Hence, the boundary condition corresponding to (S2) is 554

A(t, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAA(a)A(t, a) +RB(Ā(t), B̄(t))βBA(a)B(t, a)da

B(t, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAB(a)A(t, a) +RB(Ā(t), B̄(t))βBB(a)B(t, a)da.


(S3)

We model the probability that a cell of phenotype A gives birth to two cells of 555

phenotype A as 556

βAA(a) = P ∗AA + (PmaxAA − P ∗AA) exp [−σAa] , (S4)

while the probability of a cell of phenotype B producing two cells of phenotype B is 557

βBB(a) = P ∗BB + (PmaxBB − P ∗BB) exp [−σBa] . (S5)

As expected, we note that both βAA(a) and βBB(a) are non-negative decreasing
functions of age. Moreover, as nascent cells are assumed to be restrained to either
phenotype A or B, we necessarily have

βAB(a) = 1− βAA(a) and βBA(a) = 1− βBB(a).

We illustrate a representative form of βii(a) in Figure S1 (a). Using the bistable switch 558

example, the σi parameters model the decay rate of the molecules that bias the switch. 559

With σi = 1× 10−2 days−1 (as is the case in our generic parametrization), a cell that 560

replicates after 1 day will a roughly 1% smaller probability of phenotypic inheritance 561

than if the cell had replicated immediately upon birth. 562

To complete the initial value problem defined by (S2), we prescribe initial
conditions describing the age distribution of cells at time t = 0

A(0, a) = gA(a) and B(0, a) = gB(a).
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It is natural to enforce that the initial age distributions gA(a) and gB(a) are 563

non-negative functions. We note that cells with age a > 0 at time t = 0 must have been 564

born at some time s < 0. However, A(t, 0) and B(t, 0) are only defined for t > 0. 565

Nevertheless, it is possible to use the initial data of (S2) to define A(−s, 0) and 566

B(−s, 0) for s ∈ (0,∞) by A(−s, 0) = gA(s) exp([rB + dB ]s) and 567

B(−s, 0) = gB(s) exp([rB + dB ]s) [65], and we use these definitions when considering 568

the equivalent renewal equation (S25). 569

Further, we are only interested in finite populations, so we require that
gA, gB ∈ L1(0,∞). The requirement that gA and gB are integrable ensures that (S2)
has a unique solution in the sense of distributions, and that this solution belongs to
L1(0,∞) [63]. It follows that the quantities Ā(t) and B̄(t) are well-defined for t > 0.
Rather than introducing a maximal age and subsequent mathematical complications in
our simple model, we note that, along the characteristics of (S2) given by a = t− t0,

d

dt
A(t, a) = −[RA(Ā(t), B̄(t)) + dA]A(t, a), and

d

dt
B(t, a) = −[RB(Ā(t), B̄(t)) + dB ]B(t, a).

both A(t, a) and B(t, a) decay exponentially in age. Nevertheless, given the biological 570

interpretation of a in Eq. (S2), it may be reasonable to enforce a maximal cellular age 571

amax. However, translating this requirement to solutions of Eq. (S2) is not trivial. 572

Age structured PDE models similar to (S2) have been used extensively to model 573

the progression of cells through a reproductive process [63,65–68], and there is extensive 574

mathematical theory regarding the use of these age structured models in mathematical 575

biology (see [69] for a review). As mentioned in the Main Text, other authors have 576

considered PDEs structured in phenotype with non-local or diffusion terms. However, 577

to our knowledge, the incorporation of the phenotypic switching in a McKendrick type 578

equation is new. 579

Growth dynamics 580

To complete the mathematical model (S2), we now specify the form of RA and RB . In 581

what follows, we explore multiple forms of these functions corresponding to different 582

biological assumptions. We begin with the simplest case: unconstrained exponential 583

growth which is appropriate in populations with (effectively) unlimited resources such 584

as those that are continually replated during in vitro experiments. We then remove this 585

assumption of unlimited resources and consider constrained growth, such as in vitro 586

experiments that approach total confluence. Finally, we incorporate the effects of 587

phenotypic cooperation, whereby a larger proportion of a certain phenotype can lead to 588

increase phenotypic expansion through an Allee effect or frequency dependent fitness 589

changes [2, 40–43]. By considering the effects of different growth functions, we will 590

explore the impact of growth stage on establishment of a drug tolerant population. 591

The simplest case corresponds to unconstrained growth, where there are unlimited 592

resources in the environment. This surplus of resources allows for exponential, or 593

Malthusian growth. In this case, we use a constant and phenotype dependent growth 594

rate 595

RA(Ā(t), B̄(t)) = rA and RB(Ā(t), B̄(t)) = rB . (S6)

During in vitro experiments, this unconstrained growth corresponds to the early growth 596

phase of cells in culture or following the replating of an established cell culture into a 597

nutirent rich environment. 598

In an environment with limited resources, the early exponential growth of a
population gives way to tempered growth as competition for resources begins. This
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restrained growth is typically modelled as logistic type growth. Thus, in the limited
resource case, we model the growth rates as

RA(Ā(t), B̄(t)) = rA

(
1− Ā(t) + B̄(t)

K

)
and

RB(Ā(t), B̄(t)) = rB

(
1− Ā(t) + B̄(t)

K

)
. (S7)

We note that, as the population reaches the carry capacity of the environment, the 599

reproduction rates RA and RB both converge to 0. 600

Finally, we consider the influence of frequency dependent fitness increases in the B
phenotype. This corresponds to cells of phenotype B gaining fitness as they become
more populous and cooperate. This frequency dependent fitness increase, or Allee effect,
has been observed in cancer [5, 6, 23,70–72]. To allow for cooperation amongst drug
tolerant cells, we model reproduction as

RA(Ā(t), B̄(t)) = rA

(
1− Ā(t) + B̄(t)

K

)
and

RB(Ā(t), B̄(t)) = rB

(
1− Ā(t) + B̄(t)

K

)
fn(Ā(t), B̄(t)). (S8)

The function fn(Ā(t), B̄(t)) models the increase in relative fitness of drug tolerant
cells and determining a precise formulation of fn(Ā(t), B̄(t)) is difficult [23]. However,
from biological considerations, as the proportion of drug tolerant cells increases, the
relative fitness these cells should increase. Therefore, fn(Ā(t), B̄(t)) should be
monotonically decreasing in Ā and increasing in B̄. In what follows, we will use the
following frequency dependent growth function

fn(Ā(t), B̄(t)) = 1 +

(
rA − rB
rB

)(
B̄(t)n

Ā(t)n + B̄(t)n

)
(S9)

= 1 +

(
rA − rB
rB

)(
θ(t)n

1 + θ(t)n

)
= fn(θ(t)) for θ(t) = B̄(t)/Ā(t).

The function fn(Ā(t), B̄(t)) is a Hill-type function that ensures that 601

rBfn(Ā(t), B̄(t))) smoothly interpolates between rB and rA as the proportion of 602

phenotype B cells in the total population increases between 0 and 1. The parameter n 603

controls the steepness the sigmoidal curve. As n increases, the smooth sigmoid function 604

approaches a step function at θ(t) = 1. Throughout the rest of this work, we consider 605

n = 1, 2, 10 to illustrate the impact of different frequency dependent fitness functions on 606

population dynamics. In Figure S1 (b), we show f1(Ā(t), B̄(t)), f2(Ā(t), B̄(t)) and 607

f10(Ā(t), B̄(t)) as a function of θ(t). We conclude by noting that the growth rates given 608

by Equations (S6), (S7) and (S8) are non-negative functions for non-negative input Ā(t) 609

and B̄(t). 610

Generic model of chemotherapy 611

Treatment necessarily imposes selection pressure against susceptible 612

cells [5, 13,14,22,23]. This selection pressure can drastically change population level 613

dynamics and lead to the development and competitive release of resistant populations. 614

As mentioned, this resistance can be driven by phenotypic switching [8, 15,16]. 615

Therefore, we include the effects of cytotoxic treatment in the mathematical model (S2). 616

We emphasize that we are only attempting to model the qualitative effects of cytotoxic 617

treatment and recall that, when incorporating therapeutic effects, we have assumed that 618
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Fig S1. Phenotypic switching probability and relative fitness gain. Figure (a) shows a
representative form of βii(a). Figure (b) shows the frequency dependent fitness increase
function fn(θ) for n = 1, 2, 10.

cells of phenotype A are drug sensitive, while cells of phenotype B are drug tolerant and 619

thus resistant to treatment. 620

We denote the concentration of a chemotherapeutic at time t as C(t) and assume 621

that therapy is given intravenously. The time dynamics of C(t) are given by 622

d

dt
C(t) = I(t)− kelimC(t) (S10)

where I(t) is given by

I(t) =

{
Dose

V ol×Tadmin
if t ∈ (ti, ti + Tadmin

0 otherwise.

and models the I.V administration of the cytotoxic drug during an injection time of 623

Tadmin, where V ol is the volume of distribution of the drug and Dose is the size of one 624

administration. The half life of the drug in question, t1/2, defines the elimination 625

constant through kelim = log(2)/t1/2. 626

We assume that chemotherapy increases the death rate of drug sensitive cells
through

dA(t) = dA + (dmaxA − dA)
C(t)

C(t) + C1/2
,

where the half effect concentration is given by C1/2. We note that, in our simple model, 627

it is the ratio of the drug concentration and the half effect C1/2 that completely 628

determine the pharmacodynamics of the therapy in question. While using this simple 629

pharmacodynamic model limits the direct applicability of our work, it allows for the 630

identification of the crucial aspects in determining the effect of therapy. 631

Ordinary differential equations for Ā(t) and B̄(t) 632

633

The partial differential equation (S2) is difficult to solve numerically. Moreover, we 634

are primarily interested in the clinically relevant and biologically measurable Ā(t) and 635
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B̄(t). We note that the quantities of interest, Ā(t) and B̄(t), are independent of age. 636

Therefore, it is reasonable to expect that their dynamics should be determined by a 637

system of two ODEs. As we will show, the age dependence in the non-local boundary 638

condition (S3) will necessitate the inclusion of two extra ODEs. As the analysis that 639

follows is identical for B̄(t), we only show the derivation of the ODE for Ā(t). 640

To derive the equivalent system of ODEs, we note that the formal solution of (S2) 641

for A(t, a) during treatment is 642

A(t, a) = A(t− a, 0) exp

[
−
∫ t

t−a
RA(Ā(s), B̄(s)) + dA + (dmaxA − dA)

C(s)

C(s) + C1/2
ds

]
,

(S11)
with a similar expression for B(t, a). For notational convenience, we denote the total 643

population of cells at time t, Ā(t) + B̄(t) as N(t). 644

We begin by using Leibniz’s rule to differentiate (S1) and, after adding 645

0 = ∂aA(t, a)− ∂aA(t, a), find 646

d

dt
Ā(t) = −

[
RA(Ā(t), B̄(t) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

] ∫ ∞
0

A(t, a)da+A(t, 0).

(S12)
The boundary conditions of (S2) give

A(t, 0) = 2RA(Ā(t), B̄(t))

∫ ∞
0

βAA(t, a)A(t, a)da

+ 2RB(Ā(t), B̄(t))

∫ ∞
0

βBA(a)B(t, a)da

= 2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

∫ ∞
0

βBA(a)B(t, a)da

where

NAA(t) =

∫ ∞
0

βAA(a)A(t, a)da =

∫ t

−∞
βAA(t− a)A(t, t− a)da

with a similar expression for NBB(t). We note that, as A(t, a) ∈ L1(R+) with the
normal Lebesgue measure, and βAA 6 1, it follows that NAA is finite. Now, we recall
that reproducing cells of phenotype i either create two cells of phenotype i or j.
Therefore,

βAB(a) = 1− βAA(a) and βBA(a) = 1− βBB(a),

so

2RB(Ā(t), B̄(t))

∫ ∞
0

βBA(a)B(t, a)da = 2RB(Ā(t), B̄(t))

[∫ ∞
0

(1− βBB(a)B(t, a)da

]
= 2RB(Ā(t), B̄(t))

[
B̄(t)−NBB(t)

]
.

Thus, Ā(t) and B̄(t) satisfy a system of differential equations that require the
evaluation of the integral terms NAA(t) and NBB(t), which is, once again, numerically
challenging. Therefore, to implement (S12) numerically, we write NAA(t) and NBB(t)
as the solutions of the differential equations

d

dt
NAA(t) = βAA(0)A(t, 0) +

∫ t

−∞

d

dt
[βAA(t− a)A(t, t− a)] da

= βAA(0)
[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))NBA(t)

]
+

∫ t

−∞
[

d

dt
βAA(t− a)]A(t, t− a)da−

(
RA(Ā(t), B̄(t)) + dI

)
NAA(t)

(S13)
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an

d

dt
NBB(t) = βBB(0)B(t, 0) +

∫ t

−∞

d

dt
[βBB(t− a)B(t, t− a)] da

= βBB(0)
[
2RA(Ā(t), B̄(t))NAB(t) + 2RB(Ā(t), B̄(t))NBB(t)

]
+

∫ t

−∞
[

d

dt
βBB(t− a)]A(t, t− a)da−

(
RB(Ā(t), B̄(t)) + dI

)
NBB(t)

(S14)

where we have used (S11) to write

A(t, t− a) = A(a, 0) exp

[
−
∫ t

a

RI(Ā(s), B̄(s)) + dA + (dmaxA − dA)
C(s)

C(s) + C1/2
ds

]
,

so that

d

dt
A(t, t− a) = −

(
RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
A(t, t− a).

By using the following relationships for βAA(t− a) and βBB(t− a),

d

dt
βAA(t− a) =

d

dt
(P ∗A + (PmaxA − P ∗A) exp[−σA(t− a)]) = −σA (βAA(t− a)− P ∗A)

d

dt
βBB(t− a) =

d

dt
(P ∗B + (PmaxB − P ∗B) exp[−σB(t− a)]) = −σB (βBB(t− a)− P ∗B)

we simplify (S13) to

d

dt
NAA(t) = PmaxAA

[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

(
B̄(t)−NBB(t)

)]
−
(
RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
NAA(t)

+ σA
(
P ∗AĀ(t)−NAA(t)

)
while (S14) becomes

d

dt
NBB(t) = PmaxBB

[
2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

]
−
(
RB(Ā(t), B̄(t)) + dB

)
NBB(t)− σBNBB(t) + σBP

∗
BB̄(t).
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Thus, the system of ODEs for Ā(t) and B̄(t) is 647

d

dt
Ā(t) = −[RA(Ā(t), B̄(t)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2
]Ā(t)

+ 2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))
[
B̄(t)−NBB(t)

]
d

dt
B̄(t) = −[RB(Ā(t), B̄(t) + dB ]B̄(t) + 2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

d

dt
NAA(t) = PmaxAA

[
2RA(Ā(t), B̄(t))NAA(t) + 2RB(Ā(t), B̄(t))

(
B̄(t)−NBB(t)

)]
−
(
RA(Ā(t), B̄(ts)) + dA + (dmaxA − dA)

C(t)

C(t) + C1/2

)
NAA(t)

+ σA
(
P ∗AĀ(t)−NAA(t)

)
d

dt
NBB(t) = PmaxBB

[
2RA(Ā(t), B̄(t))

(
Ā(t)−NAA(t)

)
+ 2RB(Ā(t), B̄(t))NBB(t)

]
−
(
RB(Ā(t), B̄(t)) + dB

)
NBB(t)− σBNBB(t) + σBP

∗
BB̄(t).


(S15)

The ODE (S15) is intrinsically finite dimensional with real valued initial conditions
given by Ā(0), B̄(0), NAA(0) and NBB(0). This contrasts with the infinite dimensional
system of PDEs (S2) with initial data given by gA(a) and gB(a) in the infinite
dimensional space L1(0,∞). To obtain the system of ODEs (S15), we partially solved
the PDE (S2), so it is somewhat unsurprising that the resulting dynamical system is
lower dimensional. We would like solutions of (S2) to correspond to solutions of (S15).
Therefore, it is important to ensure that the initial conditions of the ODE system are
appropriate. For integrable initial data gA(a) and gB(a) from the initial value problem
(S2), it follows from the definition of Ā(t) and B̄(t) that

Ā(0) =

∫ ∞
0

A(0, a)da =

∫ ∞
0

gA(a)da and B̄(0) =

∫ ∞
0

B(0, a)da =

∫ ∞
0

gB(a)da.

We can easily see that the initial conditions of NAA and NBB must satisfy

NAA(0) =

∫ ∞
0

βAA(a)gA(a)da and NBB(0) =

∫ ∞
0

βBB(a)gB(a)da.

By the assumption that gA(a) and gB(a) are integrable and non-negative, these initial 648

conditions are all finite and non-negative. In practice, it is simplest to assume that 649

gA(a) and gB(a) are exponentially decaying functions of age so that the above integrals 650

are simple to compute. This assumption of exponential decay in age is not unreasonable, 651

both biologically and given the form of (S2). 652

Generic model parametrization 653

To study the role of phenotype switching on treatment resistance, we use a variety of 654

physiologically based parameters rather than fitting the model to specific data. We 655

assume that phenotype A cells successfully reproduce approximately once per day 656

–similar to the reproductive time of most cells. Thus, we take rA = 0.7 ≈ log(2)/tA,2. 657

Further, we assume that the phenotype B cells reproduce at about half the rate of 658

phenotype A cells to account for the fitness cost of resistance [23, 73], and set rB = 0.35. 659

Unless otherwise stated, we fix dA = dB = 0.01. We note that, with these parameters, 660
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drug sensitive cells are fitter than drug tolerant cells. We set P ∗AA = 0 and PmaxAA = 0.95. 661

While this parametrization is deliberately generic, we show later that our results are 662

robust to parameter variation. 663

Model analysis 664

The mathematical model (S2) is quite simple and describes the time evolution of cell 665

densities. In the following analysis, we do not consider the model with treatment, so 666

C(t) = 0. We begin by demonstrating that solutions of (S2) evolving from non-negative 667

and integrable initial data remain non-negative, as we would expect for a biological 668

model. 669

Proposition S1. Let the model parameters be positive. Assume that gA(a) and gB(a) 670

are integrable and almost-everywhere non-negative for a ∈ (0,∞). Then, the solution of 671

(S2) is non-negative for all time t > 0 and all growth functions Ri(Ā(t), B̄(t)). 672

Proof. Using the method of characteristics, the formal solution of (S2) is 673

A(t, a) = A(t− a, 0) exp

[
−
∫ t

t−a
dA +RA(Ā(s), B̄(s))ds

]
B(t, a) = B(t− a, 0) exp

[
−
∫ t

t−a
dB +RB(Ā(s), B̄(s))ds

]
.

 (S16)

We note that A(t, a) and B(t, a) preserve the sign of A(t− a, 0) and B(t− a, 0) 674

respectively, and we recall that A(t− a, 0) = gA(a− t) exp(−[rB + dB ](t− a)) and 675

B(t− a, 0) = gB(a− t) exp(−[rB + dB ](t− a)) for t < a. Thus, to show that A(t, a) > 0 676

and B(t, a) > 0, it is sufficient to show that A(x, 0) > 0 and B(x, 0) > 0 for all x > 0. 677

We consider A(x, 0), as the same argument holds for B(x, 0), and proceed by
contradiction. Assume for contradiction that x∗ is the first time such that A(x∗, 0) < 0
or B(x∗, 0) < 0, so A(s, 0) > 0 and B(s, 0) > 0 for all s < x∗. Now, we must have

Ā(x∗) =

∫ ∞
0

A(x∗, a)da

=

∫ ∞
0

A(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RA(Ā(s), B̄(s)) + dAds

]
da > 0,

and

B̄(x∗) =

∫ ∞
0

B(x∗, a)da

=

∫ ∞
0

B(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RB(Ā(s), B̄(s)) + dBds

]
da > 0.

Therefore, the functions Ri(Ā(x∗), B̄(x∗)) are non-negative for i = A,B.
Furthermore, βij(a) > 0 from definition. Then, using the definition of A(x, 0) given in
(S3) and the formal solution of (S2), we calculate

A(x∗, 0) = 2

∫ ∞
0

RA(Ā(t), B̄(t))βAA(a)A(t, a) +RB(Ā(t), B̄(t))βBA(a)B(t, a)da

= 2

∫ ∞
0

RA(Ā(x∗), B̄(x∗))βAA(a)A(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RA(Ā(s), B̄(s))dAds

]
da

+

∫ ∞
0

RB(Ā(x∗), B̄(x∗))βBA(a)B(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RB(Ā(s), B̄(s)) + dBds

]
da
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Finally, since x∗ − a < x∗, it follows that A(x∗ − a, 0) > 0 and B(x∗ − a, 0) > 0, so
the integrals∫ ∞

0

2RA(Ā(x∗), B̄(x∗))βAA(a)A(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RA(Ā(s), B̄(s))dAds

]
da

and∫ ∞
0

2RB(Ā(x∗), B̄(x∗))βBA(a)B(x∗ − a, 0) exp

[
−
∫ x∗

x∗−a
RB(Ā(s), B̄(s)) + dBds

]
da

are integrals of non-negative functions over a set of positive measure. Thus, A(x∗, 0) is 678

the sum of two non-negative integrals and must satisfy A(x∗, 0) > 0, a contradiction. 679

The same argument for B(x∗, 0) yields the claim. 680

681

Turning now to the ODE model for Ā(t) and B̄(t) and having prescribed 682

appropriate initial data, the theory of ODEs ensures that the initial value problem 683

(IVP) defined by (S15) has a unique solution. Further, it follows immediately from 684

Proposition S1 that solutions of (S15) evolving from non-negative initial data remain 685

non-negative. 686

Nonlinear Eigenproblem for the Malthusian Parameter 687

To analyse the long term behaviour of the cell population, we search for an stable age 688

distribution in the population [63,69]. This stable age distribution is equivalent to 689

finding the first eigenelements of (S2). We assume a solution of the type 690

A(t, a) = w(a)eλP t, B(t, a) = z(a)eλP t. (S17)

where λP is the Malthusian parameter to be determined [63]. The Malthusian 691

parameter is an important quantity in population dynamics [47, 66, 74], and is typically 692

used as measure of population fitness [41,75]. Later, we will show that the expected 693

sign relationship between the Malthusian parameter λP and R0 − 1, where the basic 694

reproduction number R0 is another classical measure of population fitness, holds in our 695

model. This result normally follows immediately in most structured population models. 696

However, the inclusion of phenotypic switching in our model complicates this 697

relationship. 698

The unknown functions w(a) and z(a) are the age distributions of A and B 699

respectively. These functions define a system of ordinary differential equations (ODEs) 700

from which we will obtain a nonlinear eigenvalue problem with solution λP . For general 701

λ, inserting the ansatz (S17) into (S2) yields the following system of ODEs 702

eλt [w′(a) + λw(a)] = −[dA + rA]eλtw(a)

eλt [z′(a) + λz(a)] = −[dB + rB ]eλtz(a),

}
(S18)

with solutions 703

w(a) = A0 exp [−[dA + rA + λ]a] , z(a) = B0 exp [−[dB + rB + λ]a] . (S19)

We must now ensure agreement with the boundary condition (S3) of the population
PDE (S2), so

eλtA0 = 2

∫ ∞
0

rAβAA(a)w(a)eλt + rBβBA(a)z(a)eλtda

eλtB0 = 2

∫ ∞
0

rAβAB(a)w(a)eλt + rBβBB(a)z(a)eλtda.


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Cancelling the eλt terms gives a system of equations for the unknowns λ,A0 and B0

A0 = 2

∫ ∞
0

rAβAA(a)A0 exp (−[dA + rA + λ]a)]da

+ 2

∫ ∞
0

rBβBA(a)B0 exp (−[dB + rB + λ]a) da

B0 = 2

∫ ∞
0

rAβAB(a)A0 exp (−[dA + rA + λ]a) da

+ 2

∫ ∞
0

rBβBB(a)B0 exp (−[dB + rB + λ]a) da.


This linear system for the unknowns A0, B0 is equivalent to 704[

A0

B0

]
=

[
M11(λ) M12(λ)
M21(λ) M22(λ)

] [
A0

B0

]
, (S20)

where

M11(λ) = 2

∫ ∞
0

rAβAA(a) exp (−[dA + rA + λ]a) da and

M22(λ) = 2

∫ ∞
0

rBβBB(a) exp (−[dB + rB + λ]a) da.

We note that newly born cells must be of either phenotype A or B, so we have

M21(λ) =

∫ ∞
0

(1− βAA(a)) rA exp (−[dA + rA + λ]a) da =
2rA

dA + rA + λ
−M11(λ)

and

M12(λ) =

∫ ∞
0

(1− βBB(a)) rB exp (−[dA + rA + λ]a) da =
2rB

dB + rB + λ
−M22(λ).

Consequently, the Malthusian parameter λP is the rightmost real solution of the 705

nonlinear eigenproblem defined by (S20) and must satisfy 706

det [M(λ)− I] = 0, (S21)

where M(λ) is given by the matrix in (S20). In the case of no phenotypic switching, the 707

matrix M(λ) is diagonal and this eigenvalue problem is simple. The following 708

proposition is nearly obvious from the biological interpretation of the problem. 709

Proposition S2. Assume that cells cannot switch phenotype and that the model 710

parameters are positive. Then, the Malthusian parameter is given by 711

λP = max[rA − dA, rB − dB ]. 712

Proof. If offspring directly inherit the phenotype of the parent cell, then
Pmaxii = P ∗ii = 1. It follows that M12 = M21 = 0, and the matrix (S20) is given by[

M11(λ) 0
0 M22(λ).

]
The eigenvalues are therefore M11(λ) and M22(λ), which, for Pmaxi = P ∗i = 1, are given
by

M11(λ) =
2rA

λ+ dA + rA
and M22(λ) =

2rB
λ+ dB + rB

.

Then, 1 is an eigenvalue if and only if λ = rA − dA or λ = rB − dB . The Malthusian 713

parameter is the maximum of these values, so λP = max[rA − dA, rB − dB ]. 714
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It follows from the preceding proposition that, if no phenotypic switching can 715

occur, a population comprised of entirely phenotype A cells has Malthusian parameter 716

λA = rA − dA and a population with only type B cells has Malthusian parameter 717

λB = rB − dB . To simplify notation, we will assume, without loss of generality, that 718

λB 6 λA. 719

We will now show that allowing for phenotypic switching acts to decrease
population fitness. Namely, if λP is the Malthusian parameter of the switching
population, then λP ∈ (λB , λA). We begin by removing the restriction that
P ∗ii = Pmaxii = 1, and evaluate (S21). Then, this determinant becomes

0 = (1−M11(λ))(1−M22(λ))

−
(

2rA
dA + rA + λ

−M11(λ)

)(
2rB

dB + rB + λ
−M22(λ)

)
. (S22)

For βii given by (S4) and (S5), we calculate

M11,22(λ) = 2ri

∫ ∞
0

[P ∗ii + (Pmaxii − P ∗ii) exp (−σia)] exp [−(λ+ di + ri)a] da

=
2riP

∗
ii

λ+ di + ri
+

2ri(P
max
ii − P ∗ii)

λ+ di + ri + σi
.

Then, equation (S22) becomes

0 = 1− 4rArB
(dA + rA + λ)(dB + rB + λ)

+

(
2rB

rB + dB + λ
− 1

)[
2rAP

∗
AA

λ+ dA + rA
+

2rA(PmaxAA − P ∗AA)

λ+ dA + rA + σA

]
+

(
2rA

rA + dA + λ
− 1

)[
2rBP

∗
BB

λ+ dB + rB
+

2rB(PmaxBB − P ∗BB)

λ+ dB + rB + σB

]
(S23)

To simplify notation in the following analysis, we set

F (λ) = 1− 4rArB
(dA + rA + λ)(dB + rB + λ)

+

(
2rB

rB + dB + λ
− 1

)[
2rAP

∗
AA

λ+ dA + rA
+

2rA(PmaxAA − P ∗AA)

λ+ dA + rA + σA

]
+

(
2rA

rA + dA + λ
− 1

)[
2rBP

∗
BB

λ+ dB + rB
+

2rB(PmaxBB − P ∗BB)

λ+ dB + rB + σB

]
,

so that roots of F (λ) correspond to solutions of (S23). 720

It remains to show that (S23) admits at least one real root. While F (λ) may admit 721

multiple real roots, the Malthusian parameter λP is the rightmost real root by 722

convention. As we have seen, in models without phenotypic switching, it is typically 723

fairly straightforward to prove that λ∗ exists and is unique [63,69]. However, the 724

phenotypic switching in (S2) results in the off diagonal terms of M(λ) and complicates 725

the analysis here, as the Malthusian parameter is no longer a strictly monotonic function 726

of the parameters ri, di. However, F (λ) is eventually monotonic for λ > 0 large enough. 727

Lemma S3. F (λ) is strictly increasing for λ > λA = max(λA, λB). 728

Proof. To simplify notation in the proof, we write for i = A,B, 729

gi(λ) =
2ri

di + ri + λ
and hi(λ) =

2riP
∗
ii

λ+ di + ri
+

2ri(P
max
ii − P ∗ii)

λ+ di + ri + σi
,
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so
F (λ) = 1− gA(λ)gB(λ) + (gA(λ)− 1)hB(λ) + (gB(λ)− 1)hA(λ).

Then, differentiating F (λ) and regrouping terms gives

F ′(λ) = g′A(λ) (hB(λ)− gB(λ)) + g′B(λ) (hA(λ)− gA(λ))

+ (gA(λ)− 1)h′B(λ) + (gB(λ)− 1)h′A(λ).

It is clear that g′i(λ) < 0 and h′i(λ) < 0 for λ > −min(rA + dA, rB + dB). Further, for
λ > max(rA − dA, rB − dB), we obtain gi(λ)− 1 < 0 and

hi(λ) 6
2riP

max
ii

ri + di + λ
6

2ri
ri + di + λ

= gi(λ).

Therefore, each of the terms in F ′(λ) is the product of two non-positive functions, with

(gA(λ)− 1)h′B(λ) + (gB(λ)− 1)h′A(λ) > 0.

It follows that F ′(λ) > 0 and F (λ) is strictly increasing for λ > max(rA − dA, rB − dB). 730

731

We continue by considering an extremely particular case, where both 732

sub-populations have the same fitness. Consequently, phenotypic switching does not 733

affect population fitness. 734

Lemma S4. Let the model parameters be positive. If rA − dA = rB − dB , then 735

λP = rA − dA = rB − dB is the Malthusian parameter. 736

Proof. Evaluating (S22) at λ∗ = rA − dA = rB − dB gives

(1−M11(λ∗))(1−M22(λ∗))−
(

2rA
dA + rA + λ∗

−M11(λ∗)

)(
2rB

dB + rB + λ∗
−M22(λ∗)

)
= (1−M11(λ∗))(1−M22(λ∗))− (1−M11(λ∗)) (1−M22(λ∗)) = 0.

Then, since F (λ) is strictly increasing for λ > rA − dA, λ∗ is the rightmost real root of 737

F , and λP = λ∗ = rA − dA. 738

We now consider the more general case, where rA − dA 6= rB − dB . 739

Lemma S5. Let the model parameters be positive and assume that 740

λA > λB > −min[rA + dA, rB + dB ]. Then, there exists a real root λ∗ of (S23) with 741

λ∗ ∈ (λB ,∞). 742

Proof. We begin by noting F (λ) is continuous and well-defined for 743

λ ∈ (−min[rA + dA, rB + dB ],∞). Further, 744

lim
λ→∞

F (λ) = 1 > 0. (S24)

Now, recall that λB = rB − dB , so rB + dB + λB = 2rB and calculate

F (λB) = 1− 2rA
(dA + rA + λB)

2rB
(dB + rB + λB)

+

(
2rB

rB + dB + λB
− 1

)[
2rAP

∗
AA

λB + dA + rA
+

2rA(PmaxAA − P ∗AA)

λB + dA + rA + σA

]
+

(
2rA

rA + dA + λB
− 1

)[
2rBP

∗
BB

λB + dB + rB
+

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

]
= 1− 2rA

dA + rA + λB
+

(
2rA

rA + dA + λB
− 1

)[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

]
=

(
1− 2rA

dA + rA + λB

)(
1−

[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

])
.
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Now, since σB > 0, λB + dB + rB + σB = σB + 2rB > 2rB and[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

]
< PmaxBB 6 1

⇒
(

1−
[
P ∗BB +

2rB(PmaxBB − P ∗BB)

λB + dB + rB + σB

])
> 0.

By the assumption that λB < λA, we have rA + dA + λB < 2rA. It follows that(
1− 2rA

dA + rA + λB

)
< 0.

Thus, F (λB) < 0 and the intermediate value theorem yields the claim. 745

We now regroup Lemmas S3 and S5 to establish the existence of the Malthusian 746

parameter. 747

Theorem S6. Let the model parameters be positive. Then the Malthusian parameter 748

λP of the population with phenotypic switching satisfies λP ∈ (λB , λA). 749

Proof. The existence and lower bound follows immediately from Lemma S3 and
Lemma S5. It only remains to show that λP < λA. Recalling that λA = rA − dA, we
calculate

F (λA) = 1− 2rA
(dA + rA + λA)

2rB
(dB + rB + λA)

+

(
2rB

rB + dB + λA
− 1

)[
2rAP

∗
AA

λA + dA + rA
+

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

]
+

(
2rA

rA + dA + λA
− 1

)[
2rBP

∗
BB

λA + dB + rB
+

2rB(PmaxBB − P ∗BB)

λA + dB + rB + σB

]
= 1− 2rB

dB + rB + λA
+

(
2rB

rB + dB + λA
− 1

)[
P ∗AA +

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

]
=

(
1− 2rB

dB + rB + λA

)(
1−

[
P ∗AA +

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

])
.

From the definition of λA, it follows that λA + dA + rA + σA > 2rA, so(
1−

[
P ∗AA +

2rA(PmaxAA − P ∗AA)

λA + dA + rA + σA

])
> (1− PmaxAA ) > 0.

Moreover, λA + rB + dB = rA − dA + rB + dB > rB − dB + rB + dB = 2rB , so(
1− 2rB

dB + rB + λA

)
> 0.

Thus, F (λA) is the product of two positive terms which ensures that F (λA) > 0. The 750

intermediate value theorem ensures that there is at least one root λ∗i ∈ (λB , λA). 751

Finally, Lemma S3 ensures that F (λ) has no real roots λ > rA − dA. Then, the 752

Malthusian parameter is the maximum of the possible roots {λ∗i } in the interval 753

(λB , λA), so λP = max{λ∗i } ∈ (λB , λA). 754

755
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The Basic Reproduction Number 756

As previously mentioned, there typically is a correspondence between the Malthusian 757

parameter λP and the basic reproduction number. The basic reproduction number is 758

the spectral radius of the next generation operator [46], and is typically understood as 759

the expected number of new cells produced by each existing cell. We now recast the 760

nonlinear eigenproblem (S20) as a renewal type equation from which we derive the basic 761

reproduction number. In what follows, we use the formal solution of (S2) given by 762

(S16). 763

To simplify notation, define

f11(a) = rAβAA(a) exp[−(rA + dA)a], f12(a) = rBβBA(a) exp[−(rB + dB)a],

f21(a) = rAβAB(a) exp[−(rA + dA)a], and f22(a) = rBβBB(a) exp[−(rB + dB)a],

and note that the boundary terms A(t, 0) and B(t, 0) are functions of time. We recall 764

that we extended the initial conditions gA(a) and gB(a) to define A(t− a, 0) and 765

B(t− a, 0) for t < a by A(t− a, 0) = gA(a− t) exp(−[rB + dB ](t− a)) and 766

B(t− a, 0) = gB(a− t) exp(−[rB + dB ](t− a)). 767

Now, inserting the formal solution (S16) into the boundary condition (S3), we see 768

that A(t, 0) and B(t, 0) satisfy the renewal equation 769

A(t, 0) = (A(t, 0) ∗ f11)(t) + (B(t, 0) ∗ f12)(t)
B(t, 0) = (A(t, 0) ∗ f21)(t) + (B(t, 0) ∗ f22)(t).

}
(S25)

Taking the Laplace transform of (S25) gives the linear system 770[
Â(t, 0)

B̂(t, 0)

]
=

[
f̂11(λ) f̂12(λ)

f̂21(λ) f̂22(λ)

] [
Â(t, 0)

B̂(t, 0)

]
= M(λ)

[
Â(t, 0)

B̂(t, 0)

]
, (S26)

where M(λ) is given by (S20). The untreated next generation operator (NGO) is
therefore given by [46,76,77]

M(0) =

[
M11(0) M12(0)
M21(0) M22(0).

]
.

and R0 is the spectral radius of M(0). The eigenvalues of M(0) are

ξ1,2 =
Tr(M(0))±

√
Tr(M(0))2 − 4 det(M(0))

2

=
M11 +M22 ±

√
(M11 −M22)2 + 4M12M21

2

In particular, we note that ξ12 are real numbers, and the reproductive number of the
mixed population is

R0 =
M11 +M22 +

√
(M11 +M22)2 − 4M11M22 + 4M12M21

2
.

As each individual cell can only produce a maximum of two daughter cells, we expect 771

R0 6 2. We now show that this is the case, and that this bound will be reached only if 772

there is no death. 773

Lemma S7. Let the model parameters be non-negative. Then, 0 6 R0 6 2, and 774

achieves these bounds if rA = rB = 0, or if dA = dB = 0 respectively. 775
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Proof. The matrix M(λ) is comprised of non-negative elements Mij(λ), so

0 6
M11 +M22

2
6 R0.

Now, R0 = 0 if and only if

M11 +M22 = 0 and (M11 −M22)2 + 4M12M21 = 0,

which can only be achieved when rA = rB = 0. To show the upper bound, we recall that

M21(0) =
2rA

dA + rA
−M11(0) and M12(0) =

2rB
dB + rB

−M22(0),

so the NGO is given by

M(0) =

[
M11(0) 2rB

dB+rB
−M22(0)

2rA
dA+rA

−M11(0) M22(0).

]
Then, the Gershgorin circle theorem implies that

R0 ∈
{[

2M11(0)− 2rA
dA + rA

,
2rA

dA + rA

]⋃[
2M22(0)− 2rB

dB + rB
,

2rB
dB + rB

]}
,

so

R0 6 max

[
2rA

dA + rA
,

2rB
dB + rB

]
6 2.

with strict inequality if both dA > 0 and dB > 0. Now, assume that dA = dB = 0, so
that M(0)T becomes

M(0)T =

[
M11(0) 2−M11(0)

2−M22(0) M22(0).

]
which has spectral radius 2. Since M(0) and M(0)T are similar, it follows that R0 = 2 if 776

dA = dB = 0. 777

778

Similar to the Malthusian parameter, the basic reproduction number is a measure 779

of population fitness, where the sign of R0 − 1 determines if cells are expected to replace 780

themselves through replication. When the birth and death rates are balanced, we now 781

show that we should not expect population growth. 782

Lemma S8. Let the model parameters be positive and assume that 783

rA − dA = rB − dB = 0. Then λP = R0 − 1 = 0. 784

Proof. Since rA = dA and rB = dB , it follows that

2rA
rA + dA

=
2rB

rB + dB
= 1.

Once again using the similarity between M(0) and M(0)T , we compute

M(0)T =

[
M11(0) 1−M11(0)

1−M22(0) M22(0),

]
which clearly has spectral radius 1, so the R0 claim in shown. Further, for F (λ) given 785

by (S23), it is simple to see that F (0) = 0 when λA = λB = 0. Further, Lemma S3 786

shows that F (λ) is strictly increasing for λ > max(rA − dA, rB − dB) = 0. Therefore, 0 787

is the rightmost real root of F (λ) and λP = 0. 788
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Theorem S9. If the model parameters are positive, then, sign(λP ) = sign(R0 − 1). 789

Proof. Consider the spectral radius of M(λ) given by

ξ(λ) =
M11(λ) +M22(λ)

2

+

√
(M11(λ) +M22(λ))2 − 4M11(λ)M22(λ) + 4M12(λ)M21(λ)

2
,

and note that R0 = ξ(0) while the Malthusian parameter λP satisfies ξ(λP ) = 1.
Viewing ξ as a function of Mij for i, j = 1, 2, we compute

∂ξ

∂Mii
=

1

2
+

1

2

(
Mii −Mjj√

(Mii +Mjj)2 − 4M11M22 + 4M12M21

)

=
1

2
+

1

2

(
Mii −Mjj√

(Mii −Mjj)2 + 4M12M21

)
> 0,

∂ξ

∂Mij
=

Mij√
(Mii +Mjj)2 − 4M11M22 + 4M12M21

> 0,

where we have used the non-negativity of Mij to establish the sign of ∂ξ
∂Mij

. Since each

Mij is strictly decreasing in λ, it follows that

dξ(λ)

dλ
=

2∑
i,j=1

∂ξ

∂Mij

dMij

dλ
6 0.

If one of Mij 6= 0, then the above inequality is strict, and ξ is a strictly decreasing 790

function of λ. Moreover, Mij = 0 for all i, j can only occur when rA = rB = 0. 791

Therefore, for positive model parameters, ξ(λ) is a strictly decreasing function. 792

Now, assume that λP > 0, so R0 = ξ(0) > ξ(λP ) = 1. Conversely, assume that
R0 − 1 > 0, so then ξ(0) > 1. As

lim
λ→∞

ξ(λ) = 0,

the intermediate value theorem ensures that λP > 0. Next, assume that R0 = ξ(0) < 1. 793

Then, as λP must exist from Theorem S6, the monotonicity of ξ gives λP < 0. Finally, 794

assume that λP < 0. It follows that 1 = ξ(λP ) > ξ(0) = R0. 795

796

The sign relationship between the Malthusian paramether λP and the basic 797

reproduction number R0 established in Theorem S9 allows us to determine if the 798

tumour population will grow or decay through a number of techniques. As we will show 799

later, it is sufficient to design a treatment schedule to ensure that R0 < 1, and the sign 800

relationship established in Theorem S9 immediately yields that λP < 0 so small tumour 801

population cannot grow. Conversely, if both λA < 0 and λB < 0, Theorem S6 implies 802

that λP < 0, so R0 < 1 from which it follows that the tumour population is decaying. 803

Stable Age Distribution and Population Proportion 804

Having calculated the Malthusian parameter, we can determine the stable age 805

distribution. From the non-linear eigenproblem (S20), each value of the Malthusian 806

parameter λP defines an eigenvector [A0, B0] and corresponding solution to (S18) given 807

by (S19). At a given time t, these exponential functions model the proportion of cells 808
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born at time t− a that have not died or reproduced. Perhaps counter-intuitively, a 809

larger value of λ implies that there are fewer cells for a given age a. However, as nascent 810

cells are necessarily born with age 0, an accumulation of old cells (large a) is indicative 811

of a population that is not reproducing. 812

Finally, after solving the non-linear eigenproblem for the Malthusian parameter, we
can calculate the explicit solution of (S2) under steady state growth using (S17). Then,
it is simple to calculate

Ā(t) = eλP t

∫ ∞
0

A0 exp (−[dA + rA + λP ]a) da =
A0e

λP t

dA + rA + λ

B̄(t) = eλP t

∫ ∞
0

B0 exp (−[dB + rB + λP ]a) da =
B0e

λP t

dB + rB + λ
.

In practice, it is difficult to calculate the age of each cell in a cohort, but relatively easy 813

to calculate the proportion of different phenotypes. Thus, the ratio 814

Ā

Ā+ B̄
=

A0/(dB + rB + λP )

A0/(dB + rB + λP ) +B0/(dA + rA + λP )
. (S27)

is likely to be of clinical interest in understanding drug resistance, although the 815

assumption of Malthusian growth is only appropriate in the case of unlimited resources. 816

We note that this ratio is dependent on both the Malthusian parameter λP and the 817

eigendirection corresponding to λP through [A0, B0]. Later, we will show how this ratio 818

is dependent on the model parameters and growth function RI(Ā(t), B̄(t)). This 819

dependence on the growth function indicates that the ratio Ā/(Ā+ B̄) will evolve as a 820

population exhausts available resources. The importance of growth phase on population 821

make up is well established in E.coli populations that exhibit bet-hedging [13,20,34]. 822

Frequency dependent fitness outperforms Malthusian growth 823

The ability to calculate the Malthusian parameter relies on the existence of a dominant 824

exponential type solution. Exponential growth is unrealistic in the case of finite 825

resources, as growing populations will exhaust available resources. Therefore, we also 826

consider the dynamics of N(t) for logistic and Allee type growth functions, given by 827

(S7) and (S8) respectively. To study growth in resource rich environments, we take 828

N(0)� K, so there are sufficient resources available initially. 829

In populations dominated by the “fitter” drug sensitive phenotype, it is reasonable 830

to expect Malthusian growth to dominate resource limited growth, even in the case 831

N(0)� K. Biologically, this corresponds to the competition for finitely many resources 832

limiting growth, even for small populations. However, we show in Figure S2 that it is 833

possible that cooperation amongst drug tolerant cells can initially out perform 834

exponential type growth. 835

In Figure S2, we plot the ratio of the resource limited vs unlimited growth, so 836

Malthusian growth would correspond to a horizontal line at 1. As shown in Figure S2 837

(a), a majority drug sensitive initial population can briefly match, or even slightly 838

surpass (due to a slight Allee effect), Malthusian growth. As the Malthusian parameter 839

falls between the fitnesses of phenotype A and B, a population initially comprised of 840

exclusively drug sensitive cells will outperform Malthusian growth of the mixed 841

population until the effects of phenotypic switching become apparent and the drug 842

tolerant population grows in size. Moreover, as N(t) increases and cells compete for 843

limited resources, Malthusian growth overtakes and dominates the finite resource case. 844

As drug sensitive cells are assumed to be fitter than drug tolerant cells, the presence of 845

less fit drug tolerant cells both consumes resources and also lowers the average fitness of 846

the population. 847
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Fig S2. A comparison of growth rates for different growth functions fn, n = 1, 2, 3, 10,
against Malthusian growth. The “no fitness” curves corresponds to no frequency
dependent fitness increase and fn = 1. Figure (a) shows population evolution from an
initial population comprised of 100 drug sensitive cells and one drug tolerant cell.
Conversely, Figure (b) shows population evolution from an initial population comprised
of one phenotype B cell, or 1 drug sensitive cell and 100 drug tolerant cells.

Conversely, Figure S2 (b) presents a much more interesting situation. From an 848

initial population of one drug sensitive cell and 100 drug tolerant cells, the impact of 849

the Allee effect drastically changes initial population growth. From this high initial 850

proportion of drug tolerant cells, the constrained growth model out performs 851

Malthusian growth. Since the drug tolerant cells receive a substantial increase in fitness 852

due to the Allee effect, the initial fitness of the population is higher – despite the finite 853

amount of resources – than the fitness of the total population in the presence of 854

unlimited resources and no cooperation. However, despite the cooperation induced 855

increased fitness of drug tolerant cells, the population eventually evolves towards a 856

predominantly drug sensitive population due to phenotypic switching and the growth 857

rate falls below Malthusian growth. 858

Parameter identifiability during cancer therapy 859

Thus far, we have shown that the phenotypic switching strategy employed by a 860

population can lead to different types of therapeutic resistance. Here, we discuss the 861

difficulties of determining the switching probability based on untreated population data. 862

We consider in vitro data from the growth of multiple myeloma growth in mice [78], and 863

numerous different phenotypic switching strategies. After digitizing the data from 864

Figure 1 (a) of [78] and fixing a phenotypic switching strategy, we fit the tumour growth 865

parameters rA, rB and dA = dB to the time series by minimizing 866

Error(rA, rB , dA) =
n∑
i=1

(N(ti)−Datai)
2
. (S28)

The data from [78] is sampled at times {ti}ni=1. For a given phenotypic switching 867

strategy and parameter set rA, rB and dA = dB , we simulate (S15) and sample the 868

numerical solution at the times ti. Equation (S28) is then the `2 distance between N(ti) 869

and the [78] data. In addition to the switch and stay strategies discussed in the Main 870
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Text, we consider 6 additional phenotypic strategies given by the pairs (PmaxBB , P ∗BB) : 871

(1, 0.25); (1, 0.5); (1, 0.75); (0.9, 0.25); (0.9, 0.5); and (0.9, 0.75). 872

0 10 20 30 40

Time (days)

0

0.5

1

1.5

2

2.5

3
109

Dingli et al. Data
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(a) (b)
Fig S3. Fitting of the mathematical model to the Dingli 2009 data for a variety of
fitting strategies. Figure (a) shows the fitting of the mathematical model (S2) to the
Dingli 2009 data for 8 different switching strategies. Figure (b) shows the same 8
strategies after 2 applications of therapy.

In Figure S3 (a), we show the fitting results for each of the 8 different switching 873

strategies to the [78] data. The eight curves are essentially indistinguishable, which 874

indicates a possible difficulty in translating our results to the clinic. In Figure S3 (b), we 875

simulate two therapy cycles, and the eight previously indistinguishable curves are then 876

separated into two clusters almost immediately following therapy. The four strategies 877

corresponding to the less responsive (larger N(t): black, green, red and blue) curves all 878

have PmaxBB = 1, while the four strategies corresponding to higher response to therapy 879

(lower N(t): purple and other colors) all have PmaxBB = 0.9. Thus, we see that population 880

response to treatment can stratify populations by their switching strategy. Therefore, it 881

should be possible to use treatment response to determine the approximate switching 882

strategy of a tumour biopsy and use this information to inform therapeutic strategies. 883

Generic strategy to avoid treatment failure 884

For the generic tumour growth parameters used thus far, rB/rA = 1/2. While our 885

results are robust to different values of ε, we illustrate our results with ε = 0.7 in the 886

threshold ratio ϑ∗ from the Main Text Eq. (5) . To test if this simple threshold ratio is 887

sufficient to avoid the establishment of therapy, we follow the same periodic dosing as 888

shown in Main Text Fig 3, but we only administer therapy if the ratio B̄(t)/Ā(t) < ϑ∗ 889

and label this strategy adjustable therapy. 890

However, it is unrealistic that clinicians will determine the ratio B̄(t)/Ā(t) and 891

immediately administer therapy. Therefore, to decide if treatment will be applied at 892

time t∗, we consider B̄(t∗ − 1)/Ā(t∗ − 1)) < θ∗ which corresponds to clinicians taking 893

one day to complete the phenotype profile of the tumour. We show that adjustable 894

therapy avoids the establishment of resistance in Figure S4. As in the Zhang et al. [22] 895

trial, the main benefit of this adjustable therapy is, that by avoiding the development of 896

resistance, therapy with the same drug can continue indefinitely. In particular, the 897

effectiveness of the adjustable therapy, as measured by disease burden (S29), increases 898
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the longer that therapy is applied. We note that, rather than using the ratio of drug 899

tolerant to sensitive cells to determine if therapy should be applied, it is possible to use 900

a cancer specific biomarker [22]. 901

Inspired from the success of adaptive therapy in prostate cancer [5, 22], we 902

developed a simple strategy to avoid the establishment of resistance in Avoiding the 903

establishment of a drug tolerant population. We show the results from that section here. 904

It is important to note, once again, that our model is quite coarse, so these results serve 905

more as a proof-of-concept, rather than a proposed therapeutic strategy. As such, and 906

to avoid confusion, we refer to the following strategy as adjustable therapy. We measure 907

treatment efficiency by 908

Burden(S) =
1

T

∫ T

0

N(τ)

K
dτ =

1

T

∫ T

0

Ā(τ) + B̄(τ)

K
dτ. (S29)
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Fig S4. The effect of adjustable therapy on a population using either a switch (panel
(a)) or stay (panel (b)) strategy. In both cases, treatment is applied between the black
stars, while the red curve shows the proportion Ā/(Ā+ B̄), and the blue curve shows
the dynamics of N(t).

Figure S4 demonstrates that the proposed adjustable therapy strategies avoid the 909

establishment of a dominant resistant phenotype. We compare the results of the 910

adaptive therapy against periodic treatment in Figure S4. Figure S4 a shows the 911

response of a population with a switch strategy (PmaxBB = 0.9, P ∗BB = 0) and transient 912

resistance to adjustable therapy, while Figure S4 b shows the same effect of adjustable 913

therapy on a population with a stay strategy and permanent resistance 914

(PmaxBB = 1, P ∗BB = 0.95). When comparing the effectiveness of the therapy using (S29) 915

over 240 days of treatment, the adjustable therapy is leads to a disease burden that is 916

0.2% lower (for the switch strategy) or 0.03% higher (for the stay strategy) than the 917

periodic therapy in Figure S4 a and b, respectively. 918

If these adjustable strategies are continued for longer than 240 days, there is an 919

increasingly important decrease in disease burden when compared to the periodic type 920

treatment resulting from the eventual ineffectiveness of the periodic dosing due to 921

therapeutic resistance that occurs when the population is dominated by the resistant 922

phenotype. 923
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General results are robust to parameter variation 924

We have thus far shown that changes in phenotypic switching strategy can lead to two 925

distinct types of therapy resistance for a given parameter set. Here, we confirm that 926

this qualitative result is robust to parameter variations, and that the results presented 927

in the main text are representative of model dynamics for a number of different 928

parametrizations. We continue to enforce dA = dB and explore the possible parameter 929

combinations by selecting triplets of parameter values from the set 930

r̃A ∈ {0.7, 1.4, 0.4} r̃B ∈ {0.35, 0.1, 0.035} σA,B ∈
{

1× 10−1, 1× 10−2, 1× 10−3
}
.

(S30)
For a given parameter combination, we simulated the mathematical model with periodic 931

treatment as described previously. 932

Each of the 27 possible parameter combinations were tested with both the switch 933

and stay strategies for the drug tolerant population and each demonstrated transient 934

resistance and the re-establishment of the wild type phenotype shortly after cessation of 935

therapy when coupled with a switch strategy, similar to Main Text Fig 3 (a). 936

Conversely, when simulated with a stay strategy, each parameter combination 937

demonstrated the permanent resistance shown in Main Text Fig 3 (b). Therefore, we 938

consider the simulations shown to be representative. 939

As demonstrated, the switch and stay strategies are crucial in determining the 940

appearance and duration of therapeutic resistance. However, the probabilities PmaxBB 941

and P ∗BB used to determine the switch and stay strategies are vastly different. 942

Therefore, we test the robustness of the qualitative results shown in Main Text Fig 3 for 943

different extremes of the switch and stay strategies. Once again, we consider two 944

distinct strategies. In the first, we fix PmaxBB = 0.9, as in the switch strategy, and test 945

different values of P ∗BB from P ∗BB ∈ {0, 0.25, 0.5, 0.75, 0.9}. Then, for each value of P ∗BB , 946

we simulate periodic therapy. For P ∗BB ∈ {0, 0.25, 0.5, 0.75}, resistance was transient 947

and the wild type phenotype was re-established in the population shortly after the end 948

of therapy. Conversely, for P ∗BB = PmaxBB = 0.9, re-establishment of the wild type 949

population took over 800 days after treatment cessation, which is effectively permanent 950

resistance. We note that, if PmaxBB = P ∗BB = 0.9, then reproductive resistant cells are 951

quite likely to transfer their phenotype to offspring, and this strategy closely resembles 952

a staying strategy. As a consequence, the correspondence between transient resistance 953

and a “switch” strategy appears to be robust to parameter changes. 954

Now, to test if a stay strategy consistently predicts permanent resistance, we fix 955

the homoeostatic switching probability P ∗BB = 0.9 and vary 956

PmaxBB ∈ {0.92, 0.94, 0.96, 0.98, 1}. For all values of PmaxBB , periodic therapy led to 957

resistant phenotype dominance that persisted for over 800 days following the end of 958

therapy. Once again, in the context of therapeutic scheduling, this resistance is 959

effectively permanent. Thus, the stay strategy consistently leads to permanent 960

treatment resistance, and we consider our results in the Main Text to be representative. 961

Effectiveness of Adjustable Therapy 962

We also verified the effectiveness of adjustable therapy for the combination of growth 963

parameters given in (S30). Once again, we tested all 27 possible combinations of 964

parameters in (S30) for both the switch and stay strategy, while holding the measure of 965

acquired fitness, ε, fixed at ε = 0.7. For the switch strategy, adjustable therapy 966

improved upon periodic therapy in 15/27 cases, with 8 of the remaining cases showing 967

less than a 0.0001% increase in tumour burden. In the worst case, adjustable therapy led 968

to an increase in tumour burden by 3%, while in the best case, there was a 2% decrease. 969

We completed the same test for a population with a stay strategy. There, 970

adjustable therapy improved upon periodic therapy in 15/27 cases. In the worst case, 971
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adjustable therapy led to an increase in tumour burden by 0.6%, while in the best case, 972

there was a 0.2% decrease. Therefore, the therapeutic improvement offered by 973

adjustable therapy appears to be robust to parameter variations. Moreover, the 974

adjustable schedule consistently avoided the establishment of resistance. 975

These results differ from the sustained treatment success in for NSCLC in the main 976

text for an important reason, namely that, for the generic parametrization considered 977

here, λB > 0. Accordingly, our analysis and derivation of the model informed therapy in 978

the main text does not apply. Therefore we are not using an optimized dose size, and as 979

the drug tolerant cells are entirely resistant to therapy, it is not possible to drive R∗0 < 1. 980

Application to Non-Small Cell Lung Cancer 981

Similar to the experiments that identified persisters in bacterial populations [26, 34], the 982

experimental set up used by Craig et al. [7] begins with a constant environment and a 983

genotypically homogeneous population of cancer cells. Thus, it may be tempting to 984

conclude that the phenotypic heterogeneity present is solely due to stochastic phenotype 985

switching. However, the distinction between phenotypic plasticity, wherein cells change 986

phenotype in response to environmental change, and truly stochastic phenotype 987

switching is subtle [26]. Moreover, this dichotomic representation of phenotypic 988

heterogeneity does not account for partially heritable phenotype, as reported by Yang et 989

al. [31] and considered in our model. Nevertheless, the NSCLC data offers an initial 990

opportunity to apply our simple mathematical model to cancer data and explore the 991

role of phenotype switching in treatment resistance. 992

Parameter fitting 993

Here, we present the results of the fitting procedure for the WT, M1 and M2 data 994

from [7]. As mentioned in the Main Text, we fit this data by minimizing the `2 error 995

between the data and the model simulation. We used the algorithm fmincon [64] with 996

15 distinct initial points. We show the results of the fitting for the WT, M1 and M2 997

data in Figures S5 and S6, and give the parameter values in Table S1 and S2. 998
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Fig S5. Fitting results of Equation (S2) to the WT and M1 data from [7] in Figures
(a) and (b), respectively. In all cases, the untreated data is given by the black stars
while the untreated simulation is in solid blue. The docetaxel treated data is given by
the hollow circles and the treated simulation is in dashed blue.
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Fig S6. Fitting results of Equation (S2) to the WT, M1 and M2 data from [7] treated
with afatinib and bortezomib. Figures (a), (b) and (c) show the WT, M1 and M2 data
treated with afatinib, respectively. Figures (d), (e) and (f) show the WT, M1 and M2
data treated with bortezomib, respectively.

Treatment induced periodic environment 999

Most anti-cancer therapies include a recovery period following each treatment where the 1000

drug washes out and the patient recovers from the effects of treatment. Classical 1001

chemotherapy induces an approximately periodic tumour microenvironment with 1002

respect to the concentration of the chemotherapeutic agent, where each treatment cycle 1003

acts as the beginning of a new period. In what follows, we assume that the 1004

chemotherapeutic drug C(t) is administered periodically with a period of T days, and 1005

eliminated according to (S10) with elimination rate kelim. To facilitate the calculation 1006

of the reproduction number during treatment, we derive an estimate for the forced limit 1007

cycle in C(t) during periodic therapy. 1008

Now, let the first dose be given at time t = t0, and assume that the administration
time, Tadmin is negligible, so that each administration of therapy is given as an impulse
at time t0 + nT . Then, for t ∈ (t0, t0 + T ), C(t) = Dose

V ol exp(−kelim(t− t0)). At time

t = T , a second dose is given, so C(T ) = Dose
V ol [1 + exp(−kelim(T − t0))], and the

concentration of the drug decays, for t ∈ (T, 2T ), according to
C(t) = C(T ) exp(−kelim(t− T )). Proceeding inductively, we see that, immediately after
administering the n+ 1st dose at t = t0 + nT+,

C(t0 + nT+) =
Dose

V ol

n∑
m=0

exp(−kelimmT ) =
Dose

V ol

(
1− exp(−kelim(n+ 1)T )

1− exp(−kelimT )

)
.

Then, for t ∈ (t0 + nT, t0 + (n+ 1)T ), C(t) = C(nT+) exp(−kelim(t−NT )). As
the number of administrations, n, grows, the term exp(−kelim(n+ 1)T ) becomes
increasingly small. Recalling that the half effect of the chemotherapeutic is given by
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Cell Type Drug PmaxBB P ∗BB σA = σB (1/hour) dmaxA (1/hour)
WT Docetaxel 0.93 0.62 1×10−2 0.7025
WT Afatinib 0.95 0.81 1×10−2 0.4828
WT Bortemozib 0.95 0 1×10−2 0.7993
M1 Docetaxel 0.91 0 1×10−2 1.145
M1 Afatinib 0.92 0 1×10−2 1.699
M1 Bortemozib 92 0 1×10−2 0.4491
M2 Docetaxel 0.71 0.09 1×10−2 0.1447

Table S1. The switching parameters for WT, M1, and M2 cell lines.

Cell Type rA (1/hour) rB (1/hour) dA (1/hour)
WT 0.4827 0.3498 0.4198
M1 0.1646 0.0100 0.1163
M2 0.1114 0.0857 0.0768

Table S2. The tumour growth parameters for the WT, M1 and M2 type cells.

C1/2, we discard the influence of drug concentrations that are less than ωC1/2 for a
given value of ω � 1. Thus, after

Nω =

⌈
log
(
ωC1/2V ol/Dose

)
−kelimT

⌉
− 1,

administrations, the error induced by discarding the exp(−kelim(Nω + 1)T ) terms is(
Dose

V ol

) ∣∣∣∣1− exp(−kelim(Nω + 1)T )

1− exp(−kelimT )
− 1

1− exp(−kelimT )

∣∣∣∣ 6 ωC1/2

1− exp(−kelimT )
.

Accordingly, for a given value of ω and after the Nω-st administration of the 1009

chemotherapeutic, we consider the drug concentration in the tumour microenvironment 1010

to be in a periodically forced limit cycle given by 1011

C(t) =

(
Dose

V ol

)(
1

1− exp(−kelimT )

)
exp(−kelim(t mod T )). (S31)

R∗
0 in the treated environment 1012

Having derived an estimate for the chemotherapeutic concentration during metronomic 1013

therapy, we study the effect of this therapy on tumour growth. Once again, we are 1014

assuming that the drug tolerant population is not self-sustaining and has a negative 1015

intrinsic growth rate, λB < 0, as in the NSCLC data considered. We assume that the 1016

chemotherapeutic has been administered at least Nω times so that the tumour 1017

microenvironment is roughly periodic and consider the age structured PDE 1018

∂tA(t, a) + ∂aA(t, a) = −[dA(t) +RA(Ā(t), B̄(t))]A(t, a)

∂tB(t, a) + ∂aB(t, a) = −[dB +RB(Ā(t), B̄(t))]B(t, a),

}
(S32)

Once again, solving (S32) along the characteristic lines gives

A(t, a) = A(t− a, 0) exp

[
−
∫ t

t−a
dA(s) + rAds

]
B(t, a) = B(t− a, 0) exp [−(dB + rB)a] .
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We thus obtain the corresponding renewal equations

A(t, 0) =

∫ ∞
0

2rAβAA(a) exp

[
−
∫ t

t−a
dA(s) + rAds

]
A(t− a, 0)da

+

∫ ∞
0

2rB(1− βBB(a)) exp [−(dB + rB)a]B(t− a, 0)da

B(t, 0) =

∫ ∞
0

2rA(1− βAA(a)) exp

[
−
∫ t

t−a
dA(s) + rAds

]
A(t− a, 0)da

+

∫ ∞
0

2rBβBB(a) exp [−(dB + rB)a]B(t− a, 0)da.

Taking the Laplace transform of these renewal equations gives the linear system[
Â(t, 0)

B̂(t, 0)

]
=

[
f̂∗11(λ) f̂∗12(λ)

f̂∗21(λ) f̂∗22(λ)

] [
Â(t, 0)

B̂(t, 0)

]
= F̂ (λ)

[
Â(t, 0)

B̂(t, 0)

]
,

The treated NGO is therefore time dependent, due to the drug induced periodicity in
the tumour microenvironment, and given by

(KTh)(t) =

∫ ∞
0

Ψ(t, a)h(t− a)da,

where, recalling that βij(a) = 1− βii(a),

Ψ(t, a) =

 2rAβAA(a) exp
[
−
∫ t
t−adA(s) + rAds

]
2rBβBA(a) exp [−(dB + rB)a]

2rAβAB(a) exp
[
−
∫ t
t−adA(s) + rAds

]
2rBβBB(a) exp [−(dB + rB)a]

 .
Now, it is important to note that periodic therapy does not immediately induce a 1019

periodic environment. However, as shown, for a large number of administrations, the 1020

error induced by assuming that C(t) is given by (S31) and can be made arbitrarily 1021

small. Moreover, we are interested in the asymptotic behaviour of the population of the 1022

tumour population, and therefore make the simplifying assumption that the drug 1023

concentration, and thus the environment, is effectively periodic. 1024

The treated NGO KT acts on the space of T–periodic functions CT (R;R2).
However, this is inconvenient for calculation purposes and we follow [47,79] and pass
the periodicity from the function h to the operator by defining

(K̂T g)(t) =

∫ T

0

ΘT (t, σ)g(σ)dσ

where K̂T acts on C((0, T );R2), and ΘT (t, σ) is a periodic function defined by

ΘT (t, σ) =


∞∑
n=0

Ψ(t, σ + nT ) if t > σ

∞∑
n=1

Ψ(t, σ + nT ) if t < σ.

It follows that the spectral radius of KT equals that of K̂T [47, 79]. After interchanging
the order of integration and summation, the treated basic reproduction number R∗0 is
given by the spectral radius of

M =

[
M11 M12

M21 M22

]
.

February 22, 2021 43/54

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.431869doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.431869
http://creativecommons.org/licenses/by-nc/4.0/


where

M11 =
∞∑
n=0

∫ T

0

2rAβAA(a+ nT ) exp

[
−
∫ t

t−a−nT
dA(s) + rAds

]
da

M12 =
∞∑
n=0

∫ T

0

2rB(1− βBB(a+ nT )) exp [−(dB + rB)(a+ nT )] da

M21 =
∞∑
n=0

∫ T

0

2rA(1− βAA(a+ nT )) exp

[
−
∫ t

t−a−nT
dA(s) + rAds

]
da

M22 =
∞∑
n=0

∫ T

0

2rBβBB(a+ nT ) exp [−(dB + rB)(a+ nT )] da

As the drug tolerant cells are immune to therapy, both M12 and M22 are constant
in time, so these infinite series telescope and we immediately see M12 =M12 and
M22 =M22, where Mi2 is defined in the untreated NGO. It remains to calculate the
effects of therapy on M11 and M21. Treatment increases the death rate of drug
susceptible cells via

d̂A(t, a) = dAa+ (dmaxA − dA)

∫ t

t−a

C(s)

C(s) + C1/2
ds,

Using the estimate for C(t) during periodic therapy derived previously, it is possible to 1025

calculate d̂A(t, a) explicitly, and thus calculate R∗0. However, we recall that R0 = 1 is the 1026

threshold between disease growth and decay, and therefore the value of clinical interest. 1027

We now calculate a relationship between dose frequency, T and dose size to ensure that 1028

the treated reproduction number is below this threshold, so R∗0 < 1. Accordingly, if 1029

rA − dA
dmaxA − dA

=
λA

dmaxA − dA
<

∫ t
t−a

C(s)
C(s)+C1/2

ds

a
, (S33)

it follows that

exp

[
−
∫ t

t−a
dA(s) + rAds

]
< exp [−2rAa] and M11 < 1.

Then, we see that

M21 =
∞∑
n=0

∫ T

0

2rA(1− βAA(a+ nT )) exp

[
−
∫ t

t−a−nT
dA(s) + rAds

]
da

<

[ ∞∑
n=0

∫ T

0

2rA exp [−2rA(a+ nT )ds] da

]
−M11 = 1−M11.

From the proof of Theorem S9, R∗0 is a strictly increasing function of M21, so it follows
that

R∗0 < ρ(M̂)

where ρ(M̂) is the spectral radius of

M̂ =

[
M11 M12

1−M11 M22

]
.
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Using the fact that λB < 0, the Gershgorin Circle Theorem gives

R∗0 < ρ(M̂) < max

[
1,

2rB
rB + dB

]
6 1.

Thus, the condition (S33) is sufficient to ensure that R∗0 < 1. We now use the
estimate for the periodic chemotherapeutic concentration derived in (S31) to derive a
dose size to ensure that (S33) holds and, more importantly, that R∗0 < 1. For notational

simplicity, denote αT =
(
Dose
V ol

) (
1

1−exp(−kelimT )

)
so

C(t) ∈ [αT exp(−kelimT ), αT ].

Now, let C∗ be the solution of

λA
dmaxA − dA

=
C∗

C∗ + C1/2
,

so

C∗ = C1/2
λA
−λ∗A

,

and a sufficient condition for (S33) to hold is

C∗ < αT e
−kelimT . (S34)

To see that (S34) is necessary for (S33) to hold, first note that if the required dose
C∗ satisfies C∗ > αT , then it is not possible to administer a large enough dose to drive
R∗0 < 1 and (S33) cannot hold. Now, consider the case where that
αT > C∗ > αT e

−kelimT . As C(t) attains the lower bound C = αT e
−kelimT directly

before the subsequent administration, it follows from the assumption C∗ > αT e
−kelimT

that there exists t∗ such that C(t∗) < C∗. As C(t) is continuous and αT > C∗, there
must be an a∗ such that C(t∗ − a∗) = C∗. Then, since C(t) is strictly decreasing
between drug administrations, it follows that C(s) < C∗ for s ∈ (t∗ − a∗, t∗) and∫ t∗

t∗−a∗
C(s)

C(s)+C1/2
ds

a∗
<

∫ t∗
t∗−a∗

C∗

C∗+C1/2
ds

a∗
=

λA
dmaxA − dA

.

Consequently, R∗0 > 1 during the interval (t∗ − a∗, t∗) for each administration period, 1030

and the tumour population may not decay. Thus, we conclude that the dose size must 1031

be chosen such that (S34) holds, which gives the threshold dose size 1032

λA
−λ∗A

αT = Dose∗. (S35)

For a given chemotherapeutic agent, both C1/2 and kelim are fixed. Thus, the 1033

attending clinician can control the quantity e−kelimT /C1/2 by varying treatment 1034

frequency and intensity. 1035

Limiting cooperation of drug tolerant cells 1036

It may be tempting to increase the amount of chemotherapeutic administered, and
indeed (S35) appears to supports the usage of maximally tolerated dosing of anti-cancer
drugs. However, this maximal dose size may allow for the competitive release of a
drug-tolerant phenotype and the resulting resistance to therapy, which was not
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considered in the preceding analysis. Thus, therapy must be designed to balance the
need to ensure R∗0 < 1 while guarding against the evolution of resistance. We
incorporated the Allee effect and cooperation of drug tolerant cells in the mathematical
model through the function fN (θ). Naively including cooperation, the fitness of the
drug tolerant population is given by

rBfn(θ)− dA = rB − dA + (rA − rB)
θn

θn + 1
.

Thus, the threshold ratio θ∗ must ensure rBfn(θ)− dA < 0. Using the definition of
fn(θ) and re-arranging gives

θn

θn + 1
<
−λB

rA − rB
=

−λB
λA − λB

.

Then, a simple calculation gives the ratio θ∗ defined in the main text. 1037

Parametrization of chemotherapeutic pharmacokinetics 1038

Docetaxel has an effective half life of roughly 86 hours [52], so we set 1039

kelim = log(2)/86/24 days−1 in our simple pharmacokinetic model, and an in vitro 1040

half-effect concentration of 4ng/mL [80], which is orders of magnitude less than the 1041

achievable plasma concentrations. Using the common dose size of 100mg/m
2
, and 1042

volume of distribution 74L/m
2

[81], the ratio of Dose/V ol for half-maximum effect is 1043

roughly 104. We used the dmaxA value calculated from the parameter fitting in the 1044

Methods to complete the pharmacodynamic model of docetaxel. To simulate the fixed 1045

therapy schedule, we set T = 7 days and fixed C1/2 = 0.5. For V ol = 74L/m
2
, the dose 1046

size during the fixed therapy schedule was calculated by satisfying 1047

Dose/V ol/C1/2 = 104. As previously mentioned, it is this ratio and the value of dmaxA 1048

that determines the pharmacodynamics in our simple model. 1049

To simulate the administration of afatinib, we set t1/2 = 37 hours [82,83] . Afatinib
is administered daily as an 40 mg oral capsule with Cmax = 25.2ng/mL [82,83]. The
steady state concentration of daily afatinib is roughly 2.11× Cmax [83]. As we do not
update the model for C(t) to be specific for oral administration of drug, we can use the
approximation for the steady state concentration of C(t) to calculate

2.11× Cmax =
Dose/V ol

C1/2

(
1

1− e−kelimT

)
.

Then, once again we can calculate the ratio of Dose/C1/2, which along with the 1050

elimination constant kelim determines the pharmacokinetics and pharmacodynamics of 1051

afatinib. 1052

To simulate the fixed periodic administration of bortezomib, we set t1/2 = 40 hours, 1053

and take T = 3 days to account for the minimum 72 hours between intravenous 1054

administrations [84]. Bortezomib has a large volume of distribution, between 498–1884 1055

L/m2, so we take V ol = 850 L, while [84] report Cmax = 162 ng/mL following multiple 1056

I.V administrations. Thus, we once again use the approximation for the steady state 1057

concentration of C(t) to calculate the value of Dose. 1058

Model informed therapy for other therapeutics 1059

We implemented the model informed therapeutic strategy for afatinib and bortemozib 1060

in the WT and M1 cells and show the results in Figure S7. We note that the parameter 1061

estimates for the M2 population do not satisfy rB < dB , so the model informed therapy 1062
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Cell Type Drug Treatment Effectiveness
WT Afatinib 0.9587
WT Bortemozib 0.7640
M1 Afatinib 0.4308
M1 Bortemozib 0.4397

Table S3. The effectiveness of model informed therapy when compared to periodic
dosing over 150 days.

cannot be applied. For WT and M1 treated with afatinib and bortezomib, the increased 1063

effectiveness of the model informed therapy over 100 days of therapy is shown in 1064

Table S3. 1065

We note that the model informed therapy for WT cells with afatinib does not lead 1066

to population extinction. For WT cells treated with afatinib, 1067

rA − dmaxA = −6.0842× 10−05. It follows that it must be the case that C(t)� C1/2 if 1068

(S34) is to be satisfied. Accordingly, C(t) decays too slowly between doses to inhibit the 1069

establishment of a drug tolerant population. Thus, the model informed therapy, while 1070

outperforming periodic dosing, does not drive tumour extinction. 1071
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Fig S7. Comparison of periodic therapy in blue and model informed therapy in red for
afatinib and bortezomib. Figures (a) and (b) are the WT and M1 cells treated with
afatinib, respectively. Figures (c) and (d) are the WT and M1 cells treated with
bortemozib, respectively.
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