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Abstract  39 

 40 

Methamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational 41 

purposes. Besides disrupting the monoaminergic system and promoting oxidative brain 42 

damage, Meth also causes neuroinflammation that contributes to synaptic dysfunction and 43 

behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the 44 

brain, is a common feature in neurological disorders linked to cognitive impairment and 45 

neuroinflammation. In this study, we investigated the mechanisms underlying the aberrant 46 

activation of microglia elicited by Meth in the adult mouse brain. We found that binge Meth 47 

exposure caused microgliosis and disrupted risk assessment behavior (a feature that usually 48 

occurs in human Meth abusers), both of which required astrocyte-to-microglia crosstalk. 49 

Mechanistically, Meth triggered a detrimental increase of glutamate exocytosis from 50 

astrocytes (in a manner dependent on TNF production and calcium mobilization), promoting 51 

microglial expansion and reactivity. Ablating TNF production or suppressing astrocytic calcium 52 

mobilization prevented microglia reactivity and abolished the behavioral phenotype elicited by 53 

Meth exposure. Overall, our data indicate that glial crosstalk is critical to relay behavioral 54 

alterations caused by acute Meth exposure.  55 
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Introduction  56 

 57 

Methamphetamine (Meth) is a potent and highly-addictive psychostimulant that causes 58 

long-lasting harmful effects in the central nervous system (CNS)1,2. Meth toxicity is classically 59 

characterized by severe disruption of the dopaminergic system, causing oxidative stress and 60 

behavioral deficits3,4. More recently, release of proinflammatory mediators and glutamate were 61 

also reported5,6.  62 

There is a growing understanding that the interplay between neuronal and glial cells is 63 

important for the build-up and maintenance of addiction7-9. Gliotransmission is implicated in 64 

drug-seeking modulation, with particular focus on glutamatergic signaling10,11, that can trigger 65 

calcium influx, leading to reactive oxygen species (ROS) formation and subsequent oxidative 66 

damage12. However, the overall contribution of such mechanisms to the addictive process 67 

remains unclear13,14. 68 

Microglia and astrocytes play crucial roles in brain injury and repair15,16, but their 69 

sustained reactivity – often increasing the production of proinflammatory mediators like TNF, 70 

glutamate, and ROS17,18 – may result in damage to the brain parenchyma19,20. Under exposure 71 

to psychoactive substances, microglia may also become highly reactive, augmenting the 72 

release of proinflammatory mediators13, and in early abstinence this reactivity might increase 73 

the likelihood of relapse9,13. Therefore, a better understanding of the microglia reactivity and 74 

associated brain immune-pathways in response to psychostimulants is paramount to 75 

implement relevant interventions for treating addictive behaviors. In accordance, we have 76 

recently demonstrated that binge alcohol administration to adult mice causes aberrant 77 

synaptic pruning and loss of prefrontal cortex excitatory synapses, increasing anxiety-like 78 

behavior, which is prevented by pharmacological blockade of Src activation or by reducing 79 

TNF production in microglia21. 80 

Here, we investigated how Meth interferes with microglia reactivity. Our results showed 81 

that the behavioral alterations caused by binge Meth exposure are mediated by astrocyte-82 

microglia crosstalk in which release of glutamate from astrocytes in a TNF/IP3 receptor 83 

(IP3R)/SNARE-dependent manner leads to microglial activation, neuroinflammation, and 84 

ultimately to changes in behavior.   85 
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Materials and Methods 86 

 87 

Animals 88 

All experiments were in accordance with the Directive 2010/63/EU and approved by 89 

the competent authorities Direcção Geral de Alimentação e Veterinária (DGAV) and i3S 90 

Animal Ethical Committee (ref.2018-13-TS and DGAV 17469/2012). Researchers involved in 91 

animal experimentation were FELASA certified. All efforts were made to minimize animal 92 

suffering and the number of animals used. 93 

Mice were housed under specific pathogen-free conditions, controlled environment 94 

(20°C, 45–55% humidity) with an inverted 12h/12h light/dark cycle, and allowed free access 95 

to food and water. Because of the potential behavioral variability related to the estrous cycle 96 

in females22, only male mice were used. C57BL/6 male mice were obtained from the i3S 97 

animal facility. TNF knockout mice in the C57BL/6 background (referred herein as TNF KO) 98 

were kindly supplied by Professor Rui Appelberg (University of Porto). TNF KO mice21 were 99 

maintained at i3S and genotyped by PCR using ATCCGCGACGTGGAACTGGCAGAA 100 

(forward) and CTGCCCGGACTCCGCAAAGTCTAA (reverse) primer pair. IP3R2 KO mice23,24 101 

were held at ICVS animal facility and genotyped PCR using the primer pairs: WT (F, 5’-102 

ACCCTGATGAGGGAAGGTCT-3’; R, 5’-ATCGATTCATAGGGCACACC-3’) and mutant 103 

allele (neo-specific primer: F, 5’-AATGGGCTGACCGCTTCCTCGT-3’; R, 5’-104 

TCTGAGAGTGCCTGGCTTTT-3’). 105 

 106 

Mice treatment 107 

Mice were treated using a Meth binge protocol25,26 and randomly assigned to treated 108 

group (4x5mg/kg Meth, 2h apart, intraperitoneally) or control (4x isovolumetric saline), and 109 

sacrificed 24h after the first administration (Suppl.Fig. 1A). Since Meth causes 110 

hyperthermia27, we controlled body temperature through infrared readings every 20min using 111 

subcutaneous tags (Biomark, ID, USA). Meth significantly increased body temperature 112 

(Suppl. Fig. 1B) but did not exceed critical values. Methamphetamine hydrochloride was 113 

imported from Sigma-Aldrich (MO, USA) under special INFARMED license (ref. 290-13). 114 

 115 

Fluorescence-Activated Cell Sorting (FACS) and RNA extraction 116 

Twenty-four hours after methamphetamine administration, animals were perfused 117 

under deep anesthesia with ice-cold PBS. The brains were removed and collected in ice-cold 118 

medium A (HBBS 1X (Thermo Scientific MA, USA) supplemented with 15mM HEPES and 119 

0.6% glucose both from Sigma-Aldrich (MO, USA). Microglial cells were isolated from adult 120 

mice brain exactly as previously described28. Microglia (Cd11b+, CD45low and CD206-) were 121 

sorted on the FACS ARIA (BD Immunocytometry Systems, CA, USA) and the RNA was 122 
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isolated using a RNeasy Plus Micro Kit (Qiagen, Düsseldorf, DE) according to the 123 

manufacturer’s instructions. RNA integrity was analyzed using the Bioanalyzer 2100 RNA Pico 124 

chips (Agilent Technologies, CA, USA), according to manufacturer instructions. 125 

 126 

Library preparation and Sequencing  127 

Ion Torrent sequencing libraries were prepared according to the AmpliSeq Library prep 128 

kit protocol. Briefly, 1ng of highly intact total RNA was reverse transcribed, the resulting cDNA 129 

was amplified for 16 cycles by adding PCR Master Mix, and the AmpliSeq mouse 130 

transcriptome gene expression primer pool. Amplicons were digested with the proprietary 131 

FuPa enzyme, then barcoded adapters were ligated onto the target amplicons. The library 132 

amplicons were bound to magnetic beads, and residual reaction components were washed 133 

off. Libraries were amplified, re-purified and individually quantified using Agilent TapeStation 134 

High Sensitivity tape. Individual libraries were diluted to a 50pM concentration and pooled 135 

equally. Emulsion PCR, templating and 550 chip loading was performed with an Ion Chef 136 

Instrument (Thermo Scientific MA, USA). Sequencing was performed on an Ion S5XL™ 137 

sequencer (Thermo Scientific MA, USA). 138 

 139 

Bioinformatics 140 

Data from the S5 XL run processed using the Ion Torrent platform specific pipeline 141 

software Torrent Suite v5.12 to generate sequence reads, trim adapter sequences, filter and 142 

remove poor signal reads, and split the reads according to the barcode. FASTQ and/or BAM 143 

files were generated using the Torrent Suit plugin FileExporter v5.12. Automated data analysis 144 

was done with Torrent Suite™ Software using the Ion AmpliSeq™ RNA plug-in v.5.12 and 145 

target region AmpliSeq_Mouse_Transcriptome_V1_Designed. 146 

Raw data was loaded into Transcripotme Analysis Console (4.0 Thremo Fisher Scientific, MA, 147 

EUA) and first filtered based on ANOVA eBayes using Limma package, applied to fold 148 

changes ≤ -1.5 or ≥1.5 between experimental and control conditions. Significant changes had 149 

a p value <0.05 and a false discovery rate <0.2. Genes that significantly downregulated and 150 

upregulated by Meth in microglia, following the described criteria, are represented in Supp. 151 

Table 1.  152 

RNA-seq functional enrichment analysis using Gene Set Enrichment Analysis (GSEA) was 153 

performed by WEB-based Gene SeT AnaLysis Toolkit (WebGestalt)29. All detectable genes 154 

(Supp. Table 2) with their corresponding fold-change values were submitted to WebGestalt 155 

at http:// http://www.webgestalt.org. GSEA was performed using the open-access available 156 

platforms, Wikipathways, KEEG and REACTOME with default settings. Enrichment scores for 157 

gene sets were calculated using an FDR cutoff of 0.05 and hypergeometric overlap analysis 158 

(Supp. Table 3). Genes retrieved from GSEA datasets were used for constructing a protein-159 
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protein interaction network. Such network was generated using Omics Visualizer30 and String 160 

applications31 in Cytoscape. 161 

 162 

Primary cultures 163 

Primary mixed glial cultures were performed as previously described32,33. Briefly, 164 

neonatal Wistar rats or C57BL/6 mice were sacrificed, and their cerebral cortices dissected 165 

and digested with 0.07% trypsin-EDTA in the presence of DNAse for 15min. Cells were 166 

dissociated and seeded in poly-D-lysine-coated T-flasks at 1.5x106 cells/cm2 in DMEM 167 

GlutaMAX™-I. Culture media was changed every three days up to 21 days. All cultures were 168 

kept at 37ºC with 95% air/ 5%CO2 in a humidified incubator.  169 

To obtained purified microglia cultures, culture flasks were orbitally shaken (200 rpm, 170 

2h) to detach microglia. Then, culture media containing microglia were collected, centrifuged 171 

(453g, 5min), resuspended, and plated in glass coverslips at 2.5×105 cells/cm2 in DMEM-F12 172 

GlutaMAXTM-I supplemented with 10% FBS, 0.1% Penicillin-Streptomycin and 1ng/ml GM-173 

CSF. Purified microglia were cultured for 4-7 days. Immunolabeling with CD11b showed a 174 

purity of 95-99%. 175 

For purified astrocyte cultures, mixed glial cell cultures were shaken to remove non-176 

astrocytic cells. Astrocytes (adherent cells) were detached and split into non-coated T-flasks 177 

in DMEM GlutaMAX™-I. Split cultures were re-split at least four times to obtain purified 178 

cultures. After that, astrocytes were plated at 2.5×104 cells/cm2 in non-coated plates and 179 

maintained for 3 to 4 days. 180 

 181 

Astrocyte-conditioned medium and microglia treatment 182 

Astrocytes were seeded at a density of 2.5×104 cells/cm2. After two days, cells were 183 

left untreated (control) or incubated with 100µM Meth for 24h. Untreated astrocyte-conditioned 184 

medium (ACM CT) and conditioned medium from Meth-treated astrocytes (ACM Meth) were 185 

collected, centrifuged for debris removal, and frozen at -80ºC until used. To evaluate astrocytic 186 

conditioned media's effects, purified microglial cell cultures were exposed to ACM CT or ACM 187 

Meth for 24h. 188 

 189 

Flow cytometry 190 

Microglia and macrophages were analyzed, as we previously described33,34. Briefly, 191 

mice were anesthetized and perfused with ice-cold PBS. For single-cell suspensions, the 192 

whole brain was quickly removed and mechanically homogenized. The cell suspension was 193 

passed through a 100μm cell strainer and centrifuged over a discontinuous 70%/30% Percoll 194 

gradient. Cells on the interface were collected, pelleted, and resuspended in FACS buffer (2% 195 

BSA; 0.1% Sodium Azide in PBS). Cells were counted using the Countess TM automated 196 
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counter (Thermo Scientific, MA, USA). For microglia and macrophages characterization, the 197 

following antibodies were used: CD45-PE (103106), CD11b-Alexa647 (101218), Ly6C-198 

PerCP/Cy5.5 (128012), CCR2-PE/Cy7 (150611), and MHCII-BV421 (107631), all obtained 199 

from BioLegend (CA, USA). Samples were evaluated on FACS Canto II (BD 200 

Immunocytometry Systems, CA, USA).  201 

 202 

Immunohistochemistry 203 

Mice were anesthetized and perfused with ice-cold PBS, followed by 4% PFA. Brains 204 

were post-fixed overnight, cryoprotected using sucrose gradients (15 and 30%), embedded in 205 

OCT, frozen and cryosectioned (coronally at 40μm, between Bregma positions 1.0mm-206 

2.0mm) in the CM3050S cryostat (Leica Biosystems, Nussloch, DE). Brain sections were 207 

collected on adherent slides and stored at -20ºC. 208 

For immunolabeling, brain slides were defrosted and permeabilized with 0.25% Triton 209 

X-100 for 15min. Then, brain slices were blocked with 3% BSA, 0.1% Triton X-100 and 5% 210 

FBS for 1h. Primary antibodies were incubated overnight (4°C) under the manufacturer's 211 

recommendations. After washing, slices were incubated with corresponding secondary 212 

antibodies conjugated to Alexa Fluor for 2h (RT). After PBS washes, sections were mounted 213 

using Fluoroshield from Sigma-Aldrich and visualized under a TCS SP5 II confocal 214 

microscope (Leica Biosystems). All used antibodies were described in Suppl. Table 4. 215 

 216 

Immunocytochemistry 217 

Immunocytochemistry was performed as we previously described33,34. Briefly, after 218 

fixation with 4% PFA, cultures were permeabilized with 0.1% Triton X-100 or 10 min and 219 

blocked with 3% BSA for 1h. Cells were incubated with primary antibody under the 220 

manufacture's recommendations, washed and incubated with secondary antibodies 221 

conjugated with Alexa Fluor 488 or 568 for 1h (RT). Finally, cells were incubated with DAPI, 222 

mounted, and visualized using a DMI6000B inverted microscope (Leica Microsystems) with 223 

an HCX Plan Apo 63x/1.3 NA glycerol immersion objective. Images were acquired with 4x4 224 

binning using a digital CMOS camera (ORCA-Flash4.0 V2, Hamamatsu Photonics). All 225 

antibodies are described in Suppl. Table 5. 226 

 227 

Phagocytic assay 228 

Fluorescent latex beads (Sigma-Aldrich) were diluted in a culture medium (0,001%) 229 

and incubated for 1h. After that, cells were washed and fixed with 4% PFA. 230 

Immunocytochemistry for CD11b was performed, and the phagocytic efficiency of microglia 231 

was estimated as described elsewhere with minor modifications35. 232 

 233 
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Reactive oxygen species determination by fluorescence microscopy 234 

Primary microglia cultures were incubated with CellROX® green reagent from Thermo-235 

Fisher Scientific, according to manufacturer's recommendations, following PBS washing and 236 

fixation with 4% PFA. 237 

 238 

Fluorescent signals quantification and colocalization analysis 239 

For the intensity quantification, images were exported using the Leica LAS AF program 240 

in TIFF format (16-bit). Background subtraction of images, image segmentation, and 241 

determination of the intensity of the fluorescence signal was processed in FIJI software as 242 

before33. For colocalization analyses, images were acquired using an HCX Plan Apo 63x/1.4-243 

0.6NA oil immersion objective in 16-bit sequential mode using bidirectional TCS mode at 244 

100Hz with the pinhole kept at one airy in the Leica TCS SP5 II confocal microscope. The 245 

Coloc2 plug-in in FIJI was used to establish TNF/GFAP channels' quantitative colocalization 246 

as before32. 247 

 248 

Total RNA extraction, cDNA synthesis, and qRT-PCR 249 

From brain tissue, RNA was extracted using the TRIzolTM (Ambion by Life 250 

Technologies, MA, USA). RNA from cell cultures was isolated using the RNeasy Mini Kit from 251 

Qiagen (Düsseldorf, DE). RNAs quality and concentration were determined using a NanoDrop 252 

ND-1000 Spectrophotometer. cDNA synthesis was performed using 1µg of total RNA using 253 

RT2 Easy First Strand kit from Qiagen. qRT-PCR was performed using iQ™ SYBR®Green 254 

Supermix on an iQ™5 multicolor real-time PCR detection system (Bio-Rad, CA, USA). All 255 

primers were obtained from Sigma-Aldrich and described in Suppl. Table 6. Raw data were 256 

analyzed using the ∆∆CT method with Yhwaz serving as the internal control gene and results 257 

expressed in relative gene abundance. 258 

 259 

FRET assays 260 

Primary microglia or astrocyte were plated on plastic-bottom culture dishes μ-261 

Dish35mm (iBidi, Martinsried, DE) and transfected with FRET biosensor for glutamate 262 

(pDisplay FLIPE-600n, plasmid 13545), ROS (pFRET-HSP33 cys, plasmid 16076) or calcium 263 

(pcDNA-D1ER, plasmid 36325), all from Addgene (MA, USA) using jetPRIME® from Polyplus 264 

(NY, USA). Imaging was performed using a Leica DMI6000B inverted microscope, and images 265 

were processed in FIJI software exactly as before36. 266 

 267 

Elevated plus-maze (EPM) 268 

Anxiety-like behavior was assessed using the elevated plus maze (EPM) test precisely 269 

as we previously described21,37. The test was conducted in the dark phase of the light/dark 270 
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cycle. The mice's movement and location were analysed by an automated tracking system 271 

equipped with an infrared-sensitive camera (Smart Video Tracking Software v 2.5, Panlab, 272 

Harvard Apparatus). The maze, made of opaque grey polyvinyl, consisted of four arms 273 

arranged in a cross-shape; two closed arms have surrounding walls (18cm high), opposing 274 

two open arms (all arms 37x6cm). The apparatus was elevated at the height of 50cm. Each 275 

mouse was placed on the central platform facing an open arm and allowed to explore the 276 

maze for 5min.  277 

 278 

Statistical analysis  279 

A 95% confidence interval was used, and P < 0.05 was considered statistically 280 

significant. Results were expressed as mean ± SEM (standard error of the mean). Gene 281 

clusters were compared by contingency analysis using the Fisher’s exact test and the 282 

Baptista-Pike method to calculate the odds-ratio. Experimental units in individual replicates 283 

were evaluated for Gaussian distribution using the D' & Pearson omnibus normality test. When 284 

comparing only two experimental groups, the unpaired Student t test with equal variance 285 

assumption was used for data with normal distribution, and the Mann-Whitney test was used 286 

otherwise. When comparing three or more groups, a one-way analysis of variance (ANOVA), 287 

followed by the Bonferroni or Tukey post hoc test was used for data with normal distribution, 288 

and the Kruskal-Wallis test followed by Dunn's multiple comparisons was used otherwise. We 289 

used a two-way ANOVA followed by the Sidak test to compare different groups with two 290 

independent variables. All quantifications were performed blinded. Statistical analysis was 291 

performed using the GraphPad Prism® software version 8.4.3.  292 
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Results  293 

 294 

Microglia exposed to Meth display a core cell cycle-related transcriptomic signature  295 

To clarify the action of Meth in microglia, we used a binge pattern of Meth 296 

administration to adult mice (Suppl. Fig. 1A) and conducted RNA-Seq analysis in flow 297 

cytometry-sorted microglia (CD11b+CD45LowCD206-) from whole brain tissue. Out of 23,930 298 

microglial transcripts identified in the transcriptome dataset, 207 were significantly altered after 299 

binge Meth administration (Fig. 1A and Suppl. Tables 1 and 2). To pinpoint the most relevant 300 

biological pathways altered in the microglial transcriptome after Meth exposure, we performed 301 

gene set enriched analysis (GSEA). GSEA using Wikipathways, KEEG, and REACTOME 302 

databases revealed a prominent upregulation of cell cycle-related pathways (including DNA 303 

Replication, mRNA processing, Eukaryotic Transcription Initiation, Homologous 304 

recombination, RNA polymerase, Mismatch repair, DNA Repair, DNA Double-Strand Break, 305 

G2/M DNA damage checkpoint, Mitotic Cell Cycle, Cell Cycle) (Fig. 1B and detailed data in 306 

Suppl. Table 3), possibly associated with Meth-induced microglial expansion. Of note, the 307 

TNF-alpha NF-kB and the NOD-like receptor signaling pathways, both associated with 308 

proinflammatory signaling, were also upregulated (Fig. 1B). 309 

The combined cell cycle-related transcriptomic cluster (the top 50 upregulated 310 

transcripts are displayed as network in Fig. 1C) contained as highest altered transcripts the 311 

DNA primase small subunit (Prim1), the DNA polymerase epsilon catalytic subunit A (Pole), 312 

the DNA polymerase epsilon subunit 3 (Pole3), the translocated promoter region, nuclear 313 

basket protein (Tpr), and the DNA helicases MCM5 and MCM6 (Fig. 1C). Thus, initiation of 314 

DNA replication, DNA mismatch repair, homologous recombination, and telomere C-strand 315 

synthesis (licensed by the epsilon DNA polymerase complex and the MCM complex via 3´-5´ 316 

exodeoxyribonuclease and 3´-5´ DNA helicase activities) are plausibly the most strongly 317 

microglial pathways affected by Meth exposure. 318 

Next, we compared our cluster of 207 differentially expressed transcripts upon Meth 319 

exposure with clusters previously reported for microglial signature program38,39, aging40, 320 

disease-associated (DAM)41, injury-related (IRM)40, drug exposure42,43, or the microglial 321 

engulfment module38 (Suppl. Fig. 1C and Suppl. Table 7). Interestingly, we only found a 322 

positive association of our Meth-induced cluster with the aging clusters. These data indicate 323 

that Meth exposure does not affect the classical signature programs of healthy or diseased 324 

microglia but are in line with reports showing that Meth might foster cellular and tissue 325 

ageing44.  326 

 327 

Meth activates microglia in vivo. 328 
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The increase in expression of cell cycle-related transcripts correlated with a significant 329 

increase in the number of Iba-1+ cells on tissue sections obtained from the striatum and the 330 

hippocampus (Fig. 1D) of mice exposed to Meth when compared to saline-treated (control) 331 

animals. This increase in microglia numbers was further confirmed using flow cytometry (Fig. 332 

1E). We found also an increase in MHC-II expression in microglia (Fig. 1F). We also analyzed 333 

the brain macrophage population (CD11b+CD45High) and found no differences between Meth-334 

treated and control mice in total, Ly6C+ or Ly6C+/CCR2+ macrophages (Suppl. Fig. 2A). 335 

Together, these results indicate that binge Meth administration causes microgliosis. 336 

 337 

Meth activates microglia in an astrocyte dependent-manner 338 

 Microglia activation is thought to modify several of their morphological, molecular and 339 

functional properties. Therefore, using primary microglia cultures, we investigated whether 340 

exposure to Meth altered some of those properties. We found that Meth diminished the 341 

microglia capacity to phagocyte inert fluorescent beads (Fig. 2A) and did not increase the 342 

formation of ROS (Fig. 2B) or the expression of iNOS (Fig. 2C). We also observed no 343 

differences in the mRNA transcript abundance of the proinflammatory cytokines IL-1β, IL-6 344 

and TNF compare to saline-treated microglia (Fig. 2D). To further confirm that our microglia 345 

cultures were responsive to a classic proinflammatory stimulus, but not to Meth, we treated 346 

them with LPS, which as expected increased ROS formation and iNOS expression (Suppl. 347 

Fig. 2B and C). We also analyzed classic microglial anti-inflammatory markers and found no 348 

significant alterations in arginase 1 expression (Fig. 2E), nor in the amounts of mRNA 349 

transcripts IL-10 and TGFβ (Fig. 2F). We concluded that Meth does not activate microglia in 350 

a cell-autonomous manner and that the transcriptomic changes associated with microgliosis 351 

observed in vivo might result from crosstalk between microglia and other cell types. 352 

 Because astrocyte-derived signaling is essential in microglia activation45, we tested 353 

the hypothesis that astrocytes could mediate Meth-induced microglia activation. To do that, 354 

we exposed primary cortical microglia to conditioned media (CM) obtained from primary 355 

cortical astrocytes treated with Meth (ACM Meth) or CM from control astrocyte cultures (ACM 356 

CT). Neither Meth nor ACM Meth affected astrocytic or microglial viability (Suppl. Fig. 2D-F). 357 

Using the CellRox green reagent, we found an increase in ROS production in primary cortical 358 

microglia exposed to ACM Meth compared with cultures exposed to ACM CT (Fig. 2G). Using 359 

the FRET HSP biosensor46, we observed a consistent and fast increase (within 5 min) of ROS 360 

generation in living primary microglia exposed to ACM Meth (Suppl. Fig. 3A). Besides, 361 

primary cortical microglia treated with ACM Meth displayed higher mRNA levels of the 362 

proinflammatory markers iNOS, IL-1β, and IL-6, but not TNF (Fig. 2H). Primary cortical 363 

microglia exposed to ACM Meth also displayed enhanced iNOS expression compared with 364 
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cultures incubated with ACM CT (Suppl. Fig. 3B). We concluded that upon Meth exposure, 365 

astrocytes could induce microglial activation. 366 

 367 

Meth causes glutamate release via TNF and IP3-dependent Ca2+ mobilization in astrocytes 368 

 Astrocytes are critical players in regulating neuroinflammation47. Of note, our RNA-Seq 369 

data revealed a Meth-induced enrichment of gene transcripts associated with the TNF-alpha 370 

NF-kB Signaling Pathway (Fig. 1B). Besides, TNF has emerged as an essential mediator of 371 

brain homeostasis48. We observed increased TNF expression in specific brain regions 372 

following Meth exposure (Suppl. Fig 3D), which was also previously reported49. The secretion 373 

of high amounts of TNF activates TNF receptor 1 and leads to a massive release of glutamate 374 

from astrocytes50. Accordingly, we observed by double-labeling immunofluorescence an 375 

increase in TNF content in astrocytes (GFAP+ cells) in the hippocampus of mice exposed to 376 

Meth (Fig. 3A), and using the glutamate-release FRET biosensor FLIPE600nSURFACE 51, we 377 

found that TNF promoted a fast and sustained release of glutamate from living cortical 378 

astrocytes (Suppl. Fig. 3C). In addition, Meth also caused robust glutamate release in cortical 379 

astrocytes from WT mice (Fig. 3B). However, Meth was inefficient in triggering glutamate 380 

release in cortical astrocytes from TNF-deficient mice (Fig. 3B), confirming that autocrine TNF 381 

signaling plays a crucial role in Meth-induced glutamate release from astrocytes. 382 

Astrocytes can release glutamate from intracellular pools through various 383 

mechanisms, including Ca2+-dependent and -independent pathways52. To test whether 384 

glutamate release from astrocytes under Meth exposure is Ca2+-dependent, we chelated 385 

cytosolic Ca2+ with BAPTA-AM and observed an inhibition of Meth-induced glutamate release 386 

(Fig. 3C), suggesting that elevation of cytosolic Ca2+ is necessary for Meth-triggered astrocytic 387 

glutamate release. 388 

The rise in cytosolic Ca2+ required for glutamate release from astrocytes may originate 389 

from the endoplasmic reticulum (ER) through the Ca2+-release channel inositol triphosphate 390 

receptor (IP3R)53. Using the D1ER FRET biosensor54, which detects the efflux of Ca2+ from the 391 

ER into the cytosol, we monitored the mobilization of Ca2+ in living astrocytes exposed to Meth 392 

or TNF (Suppl. Fig. 3E). Treatment of primary cortical astrocytes with Meth (Suppl. Fig. 3E, 393 

blue circles) or TNF (Suppl. Fig. 3E, red circles) triggered a fast and sustained decrease in 394 

the FRET/CFP ratio of the D1ER biosensor, indicating that both Meth and TNF promoted the 395 

mobilization of Ca2+ from the ER to the cytosol. To investigate the role of IP3R in Meth-induced 396 

Ca2+-mobilization, we used Xestospongin C (XeC)55, an IP3R antagonist. We observed that 397 

XeC abolished glutamate release in living primary astrocyte cultures exposed to Meth (Fig. 398 

3C) or TNF (Suppl. Fig. 3F), and concluded that IP3R-dependent Ca2+ mobilization is involved 399 

in Meth-induced glutamate release.  400 
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To test whether in Meth-treated astrocytes, glutamate was released through an 401 

exocytic mechanism56, we used the tetanus toxin to prevent Ca2+-dependent assembling of 402 

the dnSNARE complex and the fusion of exocytic vesicles with the membrane57. In these 403 

conditions, we observed a large attenuation in the Meth-induced CFP/FRET ratio change of 404 

the FLIPE biosensor (Fig. 3C), indicating that, in astrocytes, Meth stimulates the exocytosis 405 

of glutamate-containing vesicles in a Ca2+-dependent manner. 406 

 Because TNF controls astrocytic glutamate release, we hypothesized that 407 

TNF/glutamate signaling might be directly involved in microglia activation by astrocytes that 408 

were exposed to Meth. Accordingly, we found that treating primary microglia with glutamate 409 

increased iNOS expression (Fig. 3D). Glutamate treatment also promoted fast and sustained 410 

ROS generation in living primary cortical microglia as revealed by using the FRET HSP ROS 411 

biosensor (Fig. 3E). While the CM obtained from WT astrocytes exposed to Meth promoted 412 

ROS generation in primary microglia (Fig. 3F), the CM obtained from TNF-deficient astrocytes 413 

exposed to Meth failed to increase microglial ROS production (Fig. 3F), confirming that 414 

TNF/glutamate signaling is necessary to induce microglial activation by astrocytes. 415 

 416 

TNF and IP3R2-dependent Ca2+ mobilization are required for microglia activation in vivo  417 

Because Meth activates microglia via TNF-to-IP3R signaling in astrocytes, we 418 

evaluated whether Meth-induced microgliosis required this signaling in vivo. Knowing that the 419 

IP3R isoform 2 is the primary IP3 receptor in astrocytes and the major source of Ca2+-420 

translocation from the ER into the cytosol in these cells58, we challenged IP3R2 KO, and TNF 421 

KO mice with binge Meth administration (as described in Suppl. Fig. 1A). We observed that 422 

the Meth-induced microgliosis in the striatum and in the hippocampus was prevented in both 423 

KO mice compared to WT (Fig. 4A). Consistently with these findings, flow cytometry showed 424 

that the Meth-induced increase in the microglia population was also prevented in TNF KO and 425 

IP3R2 KO mice (Fig. 4B). 426 

Excessive glutamate and microglia overactivation can negatively affect behavior59. 427 

Because Meth-induced TNF production led to glutamate release from astrocytes in an IP3R-428 

dependent manner and activated microglia, we hypothesized that blocking TNF or IP3R 429 

signaling could prevent the behavioral alteration elicited by Meth. When tested in EPM, WT 430 

mice exposed to Meth displayed increased time and distance traveled in the open arms (Fig. 431 

4C) and decreased frequency of stretch-attended postures (Suppl. Fig. 4), while the total 432 

traveled distance was lower than for the saline group (Fig. 4C). This behavioral pattern, which 433 

is consistent with decreased risk assessment and typical of psychostimulant intake, and was 434 

significantly attenuated in TNF or IP3R2 KO mice (Fig. 4C). These in vivo data confirm the 435 

relevance of the the TNF/Ca2+ mobilization-signaling for Meth-induced microgliosis and 436 

behavioral effects.  437 
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Discussion  438 

 439 

Although it was previously observed that Meth induces a microglia proinflammatory 440 

response in vivo25,60, the mechanisms involved in this process are still poorly understood. We 441 

found that Meth-induced microglia reactivity requires a crosstalk with astrocytes, mediated by 442 

glutamate release in a TNF- and IP3R/Ca2+-dependent manner and that blocking TNF-443 

signaling prevented both microgliosis and the loss of risk assessment behavior elicited by 444 

Meth. 445 

Consistently with previous findings61,62, our study shows that binge Meth caused 446 

microglial expansion and increased the expression of proinflammatory markers that are 447 

hallmarks of many neurodegenerative diseases63. The range of enriched pathways related to 448 

cell cycle modulation that associate with microglial expansion, confirms the relevance of this 449 

Meth-induced effect. To characterize the molecular mechanisms involved in Meth-induced 450 

microglia activation, we analysed Meth effects directly on purified microglia cultures. In 451 

contrast with a previous work reporting that Meth induces a proinflammatory response in an 452 

immortalized microglial cell line64, our results demonstrated that Meth does not directly induce 453 

a proinflammatory phenotype in primary microglia. Nonetheless, and corroborating our 454 

findings, Frank and colleagues observed that Meth fails to induce the expression of 455 

proinflammatory cytokines in microglial cultures despite up-regulating IL-1, IL-6, and TNF in 456 

vivo65. Likewise, our primary microglia cultures were highly responsive to LPS, excluding the 457 

possibility that the lack of a direct Meth effect could be due to microglia anergy65. Similarly, 458 

cocaine was reported to be ineffective in directly inducing the expression of microglial TNF 459 

mRNA levels66 in vitro. 460 

Because Meth activated microglia in vivo, we tested the hypothesis that this activation 461 

could result from an interplay with other cell types. Reactive astrocytes67 are observed in 462 

several models of Meth exposure68-70, including human cerebral organoids71, and persistently 463 

associated with increased neurotoxicity and neuroinflammation, strengthening the likelihood 464 

of an astrocyte-mediated microglial response. Astrocytes seem to control immune activation 465 

via secretion of multiple molecular factors72,73. Among them, TNF emerged as an essential 466 

mediator of brain homeostasis48. Increased. We demonstrated that Meth increased TNF 467 

content in hippocampal astrocytes in vivo and in vitro, suggesting that TNF may play an 468 

important role in microglia activation by Meth-sensitized astrocytes. Indeed, it has been 469 

reported that an autocrine/paracrine TNF-dependent TNF receptor 1 activation promotes 470 

glutamate release from astrocytes50, while TNF inhibitors strongly reduce glutamate release 471 

in cultured astrocytes74. In line with this, we also observed that while Meth triggered rapid and 472 

sustained glutamate release from astrocytes obtained from wild-type mice, it failed to do so in 473 

astrocytes obtained from TNF-deficient mice. In addition, TNF downregulates the glutamate 474 
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transporter EAAT-2 on astrocytes, compromising glutamate clearance from the extracellular 475 

space, which contributes to an hyperglutamate state and promotes excitotoxic glutamate 476 

signaling75,76. Excitotoxicity associates positively with the progression of several 477 

neurodegenerative diseases77. Meth, by acting on the trace amine-associated receptor 1 478 

(TAAR1), induces excitotoxicity through downregulation of EAAT-2 transcription and activity in 479 

astrocytes78. In this context, our results strongly suggest that glutamate is a critical modulator 480 

in Meth-induced microglial activation. Corroborating this hypothesis, we observed that Meth 481 

failed to induce microgliosis and loss of risk-assessment behavior in TNF-deficient mice. 482 

Interestingly, TNF-deficient mice were previously reported to self-administer more Meth79, 483 

which according to our data, may also result from reduced astrocyte-microglia reactivity, and 484 

not only from increased dopamine availability, as previously suggested26.  485 

Astrocytes release glutamate through different pathways, including Ca2+-486 

dependent and -independent mechanisms52. The ER serves as a major source for astrocytic 487 

mobilization of intracellular Ca2+ via IP3R12,80. We evaluated the involvement of IP3 in Meth-488 

induced glutamate release from astrocytes and confirmed that it occurs in an IP3-dependent 489 

way. Accordingly, when we administered Meth to IP3R2-deficient mice, microgliosis and 490 

behavioral changes were prevented, suggesting that astrocytic IP3R/Ca2+ signaling is required 491 

for microglia activation triggered by Meth.  492 

Astrocytes were also recently demonstrated as critical modulators of the reward 493 

system, responding to amphetamine-elicited dopaminergic signaling and regulating excitatory 494 

neurotransmission through ATP/adenosine activation of neuronal A1 adenosine receptors81. 495 

Our results provide further mechanistic insight reinforcing the astrocytes' role in reward and 496 

addiction by regulating microglial reactivity. 497 

Collectively, our findings show that astrocytes cause the activation of microglia in acute 498 

Meth-exposure via glutamate release in a TNF/IP3R2-Ca2+-dependent manner (Fig. 5), 499 

leading to behavioural alterations. Comprehending how microglial reactivity and 500 

neuroinflammation will adapt throughout prolonged exposure to Meth, particularly during 501 

withdrawal, will further increase the translational significance of our findings and contribute to 502 

identifying novel molecular targets with therapeutic value in psychostimulant abuse.  503 
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Figure Legends 846 
 847 

Figure 1. Meth triggers microglial expansion in the brain. 848 

 849 

A: Volcano plot depicting differentially expressed genes of isolated microglia from brains of 850 

mice administered with Meth vs Saline (n=3 mice). Non-differentially expressed genes are 851 

shown with gray dots, red dots represent significantly upregulated genes and blue dots 852 

represent downregulated genes. 853 

B: Top 10 enriched pathways revealed by Wikiphatways, KEEG and Reactome databases 854 

using Gen Set Enrichment Analysis (GSEA). 855 

C: Network analysis of enriched gene sets involved in cell cycle. Network represents the top 856 

of 50 upregulated genes related to cell cycle, upon Meth treatment. 857 

D: Representative confocal imaging of striatal or hippocampal sections from mice 858 

administered with binge Meth or saline (CT) and immunostained for Iba-1. Graphs display the 859 
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number of Iba1+ cells with mean and SEM (3/4 sections per animal from n=3 mice).  *p<0.05 860 

(unpaired t test). Scale bars, 50μm. 861 

E: Flow cytometry analyses of microglia cells (CD11b+ CD45Low) isolated from the brains of 862 

mice administered with binge Meth or saline (CT) (n=5 animals for each group). The graph 863 

 displays the percentage of microglia cells with mean and SEM. *p<0.05 (unpaired t test). 864 

F: Expression of MHCII by flow cytometry in microglia (CD11b+ CD45Low) isolated from the 865 

brains of mice administered with binge Meth or saline (CT) (n=5 animals for each group). The 866 

graph displays the frequency of microglial cells expressing the MHCII marker with mean and 867 

SEM.  *p<0.05 (unpaired t test).  868 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432170doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432170


25 

 

Figure 2. Microglia activation triggered by Meth requires Astrocytes. 869 

 870 

A: Fluorescence imaging of CD11b (red) in primary cortical microglia incubated with 871 

microbeads (green) and treated with 100μM Meth for 24h (n=3 independent cultures). Graph 872 

(means and SEM) displays phagocytic efficiency. *p<0.05 (unpaired t test). Scale bar, 10μm. 873 

B: Fluorescence imaging of primary cortical microglia incubated with the CellRox® green 874 

reagent and treated with 100μM Meth for 24h (n=3 independent cultures). Graph (means and 875 

SEM) displays the CellRox® intensity normalized to the Control values (unpaired t test). Scale 876 

bar, 10μm. 877 

C: Fluorescence imaging of primary cortical microglia immunolabeled for iNOS (green) treated 878 

with 100μM Meth for 24h (n=3 independent cultures). Graph (means and SEM) displays iNOS 879 

intensity normalized to the Control values (unpaired t test). Scale bar, 10μm.  880 

D: qRT-PCR for IL-1, IL-6 or TNF from primary cortical microglia treated with 100μM Meth 881 

for 3h or 24h (n=3 independent cultures). Graphs (means and SEM) display the indicated 882 

transcripts' mRNA expression levels (unpaired t test). 883 

E: Fluorescence imaging of arginase in primary cortical microglia treated with 100μM Meth for 884 

24h (n=3 independent cultures). Graph (means and SEM) displays arginase intensity 885 

normalized to the CT values (unpaired t test). Scale bar, 10μm.  886 

F: qRT-PCR for IL-10 or TGF from primary cortical microglia treated with 100μM Meth for 3h 887 

or 24h (n=3 independent cultures). Graphs (means and SEM) display the indicated transcripts' 888 

mRNA expression levels (unpaired t test).  889 

G: Fluorescence imaging of primary cortical microglia (n=3 independent cultures) incubated 890 

with the  CellRox® green reagent and then exposed to conditioned media from primary cortical 891 

astrocytes (ACM) treated with 100μM Meth or not (CT). Graph (means and SEM) displays the 892 

CellRox intensity normalized to the ACM CT values. *p<0.05 (unpaired t test). Scale bar, 893 

10μm. 894 

H: qRT-PCR for iNOS (C), IL-1 (D), IL-6 (E), or TNF (F) from primary cortical microglia 895 

exposed to ACM CT or ACM Meth for 24h (n=3-5 independent cultures). Graphs (means and 896 

SEM) display the mRNA fold change for the indicated transcripts.  897 
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Figure 3. Meth activates microglia via astrocytic TNF production. 898 

 899 

A: Confocal imaging of hippocampal sections from mice treated with Meth or saline (CT) and 900 

immunostained for GFAP (green) and TNF (red). Graphs display the GFAP/TNF colocalization 901 

puncta (upper graph) or GFAP intensity (bottom graph) normalized to the CT values (3/4 902 

sections per animal from n=3 mice).  *p<0.05 (unpaired t test). Scale bars, 50μm 903 

B: Primary cortical astrocytes from WT or TNF KO mice expressing the glutamate release 904 

FRET biosensor (FLIPE) were exposed to Meth 100µM. Time-lapses of CFP/FRET ratio 905 

changes for the FLIPE biosensor (normalized at 0 min) shows the maximum effect of Meth in 906 

both genotypes and are coded according to the scale (n=3-8 cells pooled across 2-3 907 

independent experiments). Scale bars, 10μm 908 

C: Primary cortical astrocytes expressing the glutamate release FRET biosensor (FLIPE) were 909 

exposed to Meth, BAPTA-AM (10µM) + Meth 100µM (upper panels), XestosponginC (XeC; 910 

500nM) + Meth 100µM (middle panels) or Tetanus toxin (Tet; 500nM) + Meth (bottom panels). 911 

Time-lapses of CFP/FRET ratio changes for the FLIPE biosensor (normalized at 0 min) show 912 

the maximum effect of Meth and are coded according to the scale (n=5-7 cells pooled across 913 

3 independent experiments). *p<0.05 (two-way ANOVA vs CT 0 min); # p<0.05 (two-way 914 

ANOVA vs CT Meth). Scale bars, 10μm. 915 

D: Fluorescence imaging of primary cortical microglia immunolabeled for iNOS and treated 916 

with glutamate 100µM (n=3 independent cultures). Graph (means and SEM) displays iNOS 917 

intensity normalized to the CT. *p<0.05 (Mann-Whitney test). Scale bar, 10μm. 918 

E: Primary cortical microglia expressing the ROS FRET biosensor (HSP) were exposed to 919 

glutamate 100µM. Time-lapses of CFP/FRET ratio changes for the HSP biosensor 920 

(normalized at 0 min) shows the maximum effect of Meth and are coded according to the scale 921 

(n=5 cells pooled across two independent experiments). *p<0.05. Scale bars, 10μm.  922 

F: Primary cortical microglia from WT or TNF KO mice expressing the ROS FRET biosensor 923 

HSP were incubated with ACM CT and then exposed to ACM Meth 100µM. Time-lapses of 924 

CFP/FRET ratio changes for the HSP biosensor (normalized at 0 min) show the maximum 925 

effect of Meth and are coded according to the scale (n=4 cells pooled across two independent 926 

experiments). *p<0.05, §non-significant. Scale bars, 10μm.  927 
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Figure 4. TNF or IP3R2 deficiency prevents Meth-induced microgliosis and behavioral 928 

changes 929 

 930 

A: Confocal imaging of striatal or hippocampal sections from WT, IP3R2 KO, or TNF KO mice 931 

administered with binge Meth (3/4 sections per animal from n=3 mice) or saline (CT; n=3) and 932 

immunostained for Iba-1. Graphs (means and SEM) display the number of Iba-1+ cells 933 

*p<0.001 WT-CT vs. WT-Meth; §non-significant (IP3R2 KO-CT vs. IP3R2 KO-Meth and #non-934 

significant TNF KO-CT vs. TNF KO-Meth). Two-way ANOVA with the Sidak post hoc analysis. 935 

Scale bars, 50μm.  936 

B: Flow cytometry analysis of microglia cells (CD11b+ CD45Low) isolated from WT, IP3R2 937 

KO, or TNF KO mice injected with Meth or saline (CT) (n=5-9 animals per group). The graph 938 

displays the percentage of microglia cells with mean and SEM. *p<0.05 WT-CT vs. WT-Meth; 939 

§non-significant IP3R2 KO-CT vs. IP3R2 KO-Meth and #non-significant TNF KO-CT vs. TNF 940 

KO-Meth.  Two-way ANOVA with Fisher's LSD post hoc analysis. 941 

C: WT, IP3R2 KO, and TNF KO animals were evaluated in the EPM 24 hours after being a 942 

binge pattern of Meth or saline (CT) administration (n=6-13 animals). CT and Meth-treated 943 

mice displayed significant differences in the time spent in the open arms (OA) in the distance 944 

traveled in the OA, and in total distance traveled. Graphs display means and SEM. *p<0.05, 945 

WT-CT vs. WT-Meth; §non-significant IP3R2 KO-CT vs. IP3R2 KO-Meth and #non-significant 946 

TNF KO-CT vs. TNF KO-Meth. Two-way ANOVA with the Sidak post hoc analysis.  947 
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Figure 5. Meth-induced microglia activation occurs via astrocytes. 948 

 949 

A: Exposure to Meth induces astrocytic sensitization (1). Meth-sensitized astrocytes secrete 950 

soluble factors (2) that will act on microglia cells, inducing their activation.  951 

B: In astrocytes, Meth triggers the production (1) and secretion (2) of TNF. TNF acts on 952 

astrocytic TNF receptors in an autocrine/paracrine manner, leading to the activation of PLC 953 

(3). TNF-induced PLC activation produces the second messenger IP3 (4) that interacts with 954 

IP3 receptors on the ER (5). Activation of IP3R2 promotes Ca2+-mobilization from the ER into 955 

the cytosol (6), consequently increasing glutamate release (7). Increased glutamate and TNF 956 

content in the extracellular milieu promotes the activation of microglia (8). TNF: Tumor 957 

necrosis factor; PLC: Phospholipase C; IP3: Inositol (1,3,4) phosphate; ER: Endoplasmic 958 

reticulum; Ca2+: Calcium ions.  959 
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Supplementary Figure 1.  960 

 961 

A: Schematic representation of binge Meth administration.  962 

B: WT, IP3R2 KO, and TNF KO mice were administered saline (CT) or Meth. The whisker 963 

plots represent the median (line within the box), maximum (top whisker) and minimum (bottom 964 

whisker) values of mice's body temperature during the Meth administration protocol. 965 

Temperatures were evaluated at 13 time points, each point represents the mean temperature 966 

(n=3 animals per group) for one timepoint.  967 

C: Venn’s diagrams representing cluster analysis comparing the 207 Meth-altered genes 968 

cluster found in our RNA.-seq analysis, with clusters previously reported for healthy38,39, 969 

aging40, disease-associated (DAM)41, injured40, drug exposed microglia42,43, or with clusters 970 

previously associated to specific microglia functions38. Comparisons were conducted by 971 

contingency analysis, using the Fisher’s exact test and the Baptista-Pike method to calculate 972 

the odds-ratio. Significance was set at p<0.05. A comprehensive list of the shared genes in 973 

each case is available in Suppl. Table 7.  974 
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Supplementary Figure 2.  975 

 976 

A: Flow cytometry analyses macrophages (CD11b+ CD45high) isolated from the brains of 977 

mice injected with Meth or saline (CT) (n=5 animals for each group). Graphs display with mean 978 

and SEM of the percentage of macrophages, the percentage of macrophages expressing 979 

activation markers such as Ly6C+ and Ly6C+CCR2+. 980 

B: Primary cortical microglia cells incubated with the CellRox green reagent and treated with 981 

1µM LPS (n=3 different cultures). Graph (means and SEM) displays the CellRox intensity 982 

normalized to the control values (unpaired t test). Scale bar, 10μm. 983 

C: Fluorescence imaging of primary cortical microglia immunolabeled for iNOS treated with 984 

1µM LPS (n=3 independent cultures). Graph (means and SEM) displays iNOS intensity 985 

normalized to the Control values (unpaired t test). Scale bar, 10μm.  986 

D: Viability of astrocytes were examined by Hoechst staining under 100μM Meth. Graph 987 

represent (means and SEM) the percentage of cell viability upon Meth exposure compared to 988 

control (CT) condition. 989 

E: Viability of microglial cells were examined by Hoechst staining under 100μM Meth. Graph 990 

represent (means and SEM) the percentage of cell viability upon Meth exposure compared to 991 

control (CT) condition. 992 

F: Viability of microglia were examined by Hoechst staining under ACM Meth exposure. Graph 993 

represent (means and SEM) the percentage cell viability upon ACM Meth exposure compared 994 

to control condition (ACM CT).  995 
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Supplementary Figure 3.  996 

 997 

A: Primary cortical microglia expressing the ROS FRET biosensor (HSP) were incubated with 998 

ACM CT (left panel) and then exposed to ACM Meth (right panel). Time-lapses of CFP/FRET 999 

ratio changes for the HSP biosensor (normalized at 0 min) are shown according to the scale 1000 

(n=4 cells pooled across two independent experiments). Scale bars, 10μm. 1001 

B: Fluorescence imaging of primary cortical microglia immunolabeled for iNOS (green) and F-1002 

actin (grey; labeled with Alexa Fluor 647 Phalloidin obtained from Thermo Scientific (MA, 1003 

USA)) and treated with ACM CT or ACM Meth for 24h (n=3 independent experiments). Graph 1004 

(means and SEM) displays iNOS intensity normalized to the ACM CT. *p<0.05 (unpaired t 1005 

test). Scale bar, 10μm. 1006 

C: Primary cortical astrocytes expressing the glutamate release FRET biosensor (FLIPE) were 1007 

exposed to TNF (50nM). Time-lapses of CFP/FRET ratio changes for the FLIPE biosensor 1008 

(normalized at 0 min) are shown according to the scale (n=6 cells pooled across two 1009 

independent experiments). Scale bars, 10μm. 1010 

D: qRT-PCR for TNF, IL-1β and IL-6 from the striatum or hippocampus of mice administered 1011 

with saline or binge Meth and sacrificed 24h after (n=4-5 mice per group). Graphs (means and 1012 

SEM) display the fold change of indicated transcripts. *p<0.05 and **p<0.01 (unpaired t test).  1013 

E: Primary cortical astrocytes expressing the endoplasmic reticulum calcium release FRET 1014 

biosensor (D1ER) were exposed to Meth (100µM) (upper panels; blue circles) or TNF (50nM) 1015 

(bottom panels; red circles). Time-lapses of CFP/FRET ratio changes for the D1ER biosensor 1016 

(normalized at 0 min) are shown according to the scale (n=3-4 cells pooled across 2-3 1017 

independent experiments). Scale bars, 10μm. 1018 

F: Primary cortical astrocytes expressing the glutamate release FRET biosensor (FLIPE) were 1019 

exposed to TNF (50nM) (upper panels; black circles) or XestosponginC (500nM) + TNF 1020 

(50nM) (bottom panels; lilac circles). Time-lapses of CFP/FRET ratio changes for the FLIPE 1021 

biosensor (normalized at 0 min) are shown according to the scale (n=4 cells pooled across 1022 

two independent experiments). Scale bars, 20μm.  1023 
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Supplementary Figure 4.  1024 

 1025 

A: WT animals were evaluated in the EPM 24 hours after being administered with saline (CT) 1026 

or binge Meth (n=11-13 animals per group). CT and Meth-treated mice displayed significant 1027 

differences in the frequency of stretch-attend postures (SAP). The graph displays the mean and 1028 

SEM. **p<0.01 (unpaired t test).  1029 

 B: WT animals were evaluated in the EPM 24 hours after being administered with saline (CT) 1030 

or binge Meth (n=11-13 animals per group). CT and Meth-treated mice displayed significant 1031 

differences in the frequency of protected head dipping. The graph displays the mean and SEM. 1032 

*p<0.05 (unpaired t test). 1033 

C: WT animals were evaluated in the EPM 24 hours after being administered with saline (CT) 1034 

or binge Meth (n=11-13 animals per group). CT and Meth-treated mice displayed no 1035 

differences regarding the latency to enter in open arms. The graph displays the mean and 1036 

SEM.  1037 
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Supplementary Table 4. Antibodies used for immunohistochemistry 

 

 

 

 

 

 

 

Antibody Dilution Company  

GFAP 1:500 Abcam (CAM, UK)  

Iba-1 1:500  Wako (CA, USA)  

TNF 1:500 Peprotech (LND, UK)  

Anti-mouse Alexa 488 1:1000 Life Technologies (CA, USA)  

Anti-rabbit Alexa 568 1:1000 Life Technologies (CA, USA)  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432170doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432170


34 

 

Supplementary Table 5. Antibodies used for immunocytochemistry 

 

 

 

 

 

 

 

Antibody Dilution Company  

Arginase 1 1:100 Santa Cruz Biotechnology (TX, USA)   

CD11b 1:200 Abcam (CAM, UK)  

iNOS 1:200 Santa Cruz Biotechnology (TX, USA)    

Anti-mouse Alexa 488 1:1000 Life Technologies (CA, USA)  

Anti-rabbit Alexa 568 1:1000 Life Technologies (CA, USA)    
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Supplementary Table 6. Primer sequences used in qRT-PCR  

 

Primer Forward (5’ - 3’) Reverse (5’ - 3’) 

IL-10 ATCCGGGGTGACAATAACTG TGTCCAGCTGGTCCTTCTTT 

IL-1β TAAGCCAACAAGTGGTATTC AGGTATAGATTCTTCCCCTTG 

IL-6 ACTCATCTTGAAAGCACTTG GTCCACAAACTGATATGCTTAG 

iNOS AGCCGTAACAAAGGAAATAG ATGCTGGAACATTTCTGATG 

TGF-β TGAGTGGCTGTCTTTTGACG GTTTGGGACTGATCCCATTG 

TNF-α CTCACACTCAGATCATCTTC GAGAACCTGGGAGTAGATAAG 

Ywhaz GATGAAGCCATTGCTGAACTTG GTCTCCTTGGGTATCCGATGTC 
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