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Abstract 
 
Dynamics and functions of neural circuits depend on synaptic interactions 
mediated by receptors. Therefore, a comprehensive map of receptor organization 
is needed to understand how different functions may emerge across distinct 
cortical regions. Here we use in-vitro receptor autoradiography to measure the 
density of 14 neurotransmitter receptor types in 109 areas of macaque cortex. 
We integrate the receptor data with other anatomical, genetic and functional 
connectivity data into a common cortical space. We uncovered a principal 
gradient of increasing receptor expression per neuron aligned with cortical 
hierarchy from early sensory cortex to higher cognitive areas. A second gradient, 
primarily driven by 5-HT1A receptors, peaks in the anterior and subcallosal 
cingulate, suggesting that the macaque may be a promising animal model for 
major depressive disorder. The receptor gradients may enable rapid, reliable 
information processing in sensory cortical areas and slow, flexible integration of 
information in higher cognitive areas. 
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Introduction: 
 
Flexibility is a hallmark of biological intelligence. A key challenge in modern 
neuroscience is to discover the cellular, molecular and systems architecture that 
enables the brain to adapt flexibly and appropriately to a rapidly changing world. 
The creation of nearly complete maps of the brain’s connections across species 
at the macroscopic (Glasser et al., 2016), mesoscopic (Majka et al., 2020; 
Markov et al., 2014a; Oh et al., 2014) and microscopic levels (Scheffer et al., 
2020; White et al., 1986) has been a major achievement. However, connectivity 
alone is insufficient to explain neural circuit dynamics underlying brain functions, 
which depend on the type and timescale of synaptic transmission mediated by 
transmitter receptors. Therefore, connectomic approaches, which are blind to 
receptor types, may not be sufficient to understand the computational capabilities 
of the cortex.  The systematic mapping of multiple receptor densities across 
cortex would provide a crucial link between the molecular and systems 
organization of the cortex, complementing ongoing efforts to map the 
connectome. 
 
In comparison to rodents, macaques and humans share a very similar regional 
and laminar receptor profile (Zilles and Palomero-Gallagher, 2017a). Parallel 
recent advances in in-vivo neuroimaging (Milham et al., 2020, 2018) and 
mesoscale connectome mapping (Markov et al., 2014a, 2014b, 2013) have 
increased the translational potential of studies on the macaque brain. Integration 
of gold-standard neuroanatomy with in-vivo measures of cortical structure and 
function has great promise to help translation across species and scales of 
neuroscience, but is still in its infancy (Donahue et al., 2016; Froudist-Walsh et 
al., 2018, 2020; Hayashi et al., 2020; Rapan et al., 2020; Scholtens et al., 2014; 
Wang et al., 2020). The mapping of precise receptor and anatomical data to a 
cortical space that is accessible to neuroimaging researchers could dramatically 
accelerate our understanding across scales of how the brain works, from the 
synapse to distributed cognitive networks. 
 
While cortical microcircuits share a canonical organization, their properties vary 
gradually across the cortex in the form of macroscopic gradients (Wang, 2020). 
So far, little work has been done to compare gradients of distinct anatomical 
properties. The seemingly complex connectivity structure of the cortex can be 
well described by a small number of connectivity gradients (Margulies et al., 
2016), with patterns of connectivity smoothly changing across the cortex from 
early sensory areas to peaks in the higher areas of association cortex. Similar 
understanding of the brain’s large-scale receptor organization is beginning to 
emerge. In the mouse brain, subcortical neuromodulatory centres have been 
identified as ‘connector hubs’, that are well placed to influence interactions 
between networks (Coletta et al., 2020). Large-scale patterns of receptor 
expression have been recently described in the human brain (Goulas et al., 
2021; Zilles and Palomero-Gallagher, 2017b), but it is not known how the pattern 
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of receptor expression may relate to distributed cognitive networks, and the 
functions they produce.  
 
Here, we measured the density of 14 types of neurotransmitter receptors across 
109 areas of macaque cortex.  We mapped the data for these 14 receptors, as 
well as data on neuron density, dendritic tree size, dendritic spines, retrograde 
tract-tracing of cortical connections and in-vivo estimates of cortical 
microstructure and functional connectivity onto a common cortical space. We find 
that the receptor architecture of macaque cortex can be well described by a set 
of low-dimensional gradients. The principal receptor gradient defines a putative 
cortical hierarchy. Cortical areas high on the gradient had a higher density of 
receptors per neuron, more dendritic spines per pyramidal cell, larger dendrites, 
and a lower T1w/T2w ratio, indicative of less myelin. Receptor gradients also 
aligned with in-vivo functional connectivity gradients, suggesting a possible role 
for neuromodulatory receptors in shifting activity along cortical hierarchies and 
between higher cognitive networks.  
 
Results: 
 
Distributions of 14 receptor types across 109 regions of macaque cortex 

 

We first analyzed receptor distribution patterns for 14 receptors throughout the 
macaque brain using in-vitro receptor autoradiography, which enables the 
quantification of endogenous receptors in the cell membrane through the use of 
radioactive ligands (Palomero-Gallagher and Zilles, 2018a). Our analysis 
included three glutamatergic (AMPA, kainate, NMDA), three GABAergic (GABAA, 
GABAA/BZ,GABAB) and eight neuromodulatory (acetylcholine M1, M2, M3; 
serotonin 5-HT1A, 5-HT2, noradrenaline a1, a2, dopamine D1) receptors. In the raw 
data, several receptors reached highest densities in primary visual cortex  
(GABAA, acetylcholine M2, serotonin 5-HT2) (Zilles and Palomero-Gallagher, 
2017a)(Fig. S1). A distinct set of receptors reached highest densities in parts of 
the anterior cingulate, including all glutamatergic receptors, GABAB, serotonin 5-
HT1A, noradrenaline a1, and dopamine D1. M1, GABAA/Bz and α2 receptors are 
notable for having high densities in both cingulate cortex and V1. This suggests 
some shared anatomical patterns of expression across receptors.  
 
For each receptor, except for 5-HT1A, the cortical area with the highest density 
usually contained roughly two to five times as many receptors (per mg protein) as 
the least dense area (range 1.67-4.7, min 5-HT2, max M2). The exception was 
the 5-HT1A receptor, which reached a peak density of 1185 fmol/mg protein in 
area a24’ab of anterior cingulate cortex, over 17 times the density of 5-HT1A 
receptors in area V1 (Fig S1). The degree to which neurotransmitters affect 
neural activity depends on the density of receptors on the cell surface of a 
neuron (Lu et al., 2001). Receptor autoradiography quantifies the receptors in the 
cell membrane, but is blind to the neuron density.  However, the neuron density 
also varies by a factor of five across macaque cortex (Fig S1). We reasoned that 
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what matters functionally is receptor expression level per neuron, hence mapped 
the receptor data and previously published neuron density data (Collins et al., 
2010) to the Yerkes 19 cortical surface (Donahue et al., 2016), and estimated the 
receptor density per neuron across the cortex for all 14 receptor types (Fig. 1). 
Notably, although the density of several receptors peaks in V1 in the raw data, 
this is mostly erased when accounting for neuron density. This suggests that the 
high density of receptors in V1 is largely due to its exceptionally high neuron 
density (with the possible exception of the M2 receptor).   
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Figure 1. The density of 14 receptors per neuron across macaque cortex. A) Neuron density 
data from (Collins et al., 2010) was delineated on the cortex and used to normalise receptor data. 
B) The receptor density per neuron of 14 receptor types assessed with in-vitro receptor 
autoradiography. 
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The principal receptor gradient of macaque cortex 

 
Τo identify the principal patterns of spatial variation across receptors, we 
performed a principal components analysis (PCA) on the receptor density per 
neuron data. The first principal component (principal receptor gradient), spread 
from early visual cortex at one end, to association areas of anterior cingulate 
cortex, orbitofrontal cortex, lateral prefrontal and lateral parietal cortex at the 
other end. This component alone explained 81% percent of the variance in the 
receptor data, with the top five principal components sufficient to explain 95% 
(Fig 2A, Fig. S2, PCs1-5 explain 81.2%, 6.5%, 3.5%, 2.4% and 1.4% 
respectively). Projection of the data onto the first two principal components 
(“receptor space”) revealed a differentiation of areas into anatomo-functional 
clusters (Fig 2B), with visual, somatomotor, premotor, parietal, cingulate, 
prefrontal and orbitofrontal areas occupying distinct sections of the receptor 
space.  
 
The density of receptors per neuron increases along the principal receptor 

gradient 

 
Receptor fingerprints allow for visualization of the unique pattern of receptors 
expressed in each cortical area (Geyer et al., 1998; Zilles et al., 2002a). Cortical 
area V1 (visual cortex), 3al (somatosensory cortex) and 12o (orbitofrontal cortex) 
lie near the bottom, middle and top of the principal receptor gradient, while 
occupying similar positions along the secondary gradient. Visualizing the 
receptor fingerprints of these areas allows us to visualize changes in receptor 
expression along the principal receptor gradient. The most striking change along 
the principal receptor gradient was a general increase in the size of the receptor 
fingerprint, which is indicative of an increase in receptor density per neuron 
across almost all receptors (Fig 2C). Neurons near the top of the gradient contain 
on average a 3-4 times higher receptor density than those near the bottom (Fig 
2D). The gradient closely tracked total receptors per neuron across brain areas 
(Fig 2D, r = 0.9953, p = 4x10-110).  We next investigated how the principal 
receptor gradient relates to other known macroscopic gradients of anatomical 
organization. 
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Figure 2. The principal receptor gradient captures total receptor density per neuron across 

macaque cortex. A) The first five principal components of the receptor per neuron data. B) The 
projection of brain regions onto the first two principal components of the receptor data (‘receptor 
space’). Brain regions clustered into rough anatomo-functional groups in receptor space. C) The 
receptor fingerprints of three areas at different points along the first principal component (i.e. the 
primary receptor gradient). The density of most receptors increases along the gradient, from are 
V1 to 3al and again to 12o. D) The first principal component closely follows the total receptor 
density per neuron.  
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The principal receptor gradient increases along the cortical hierarchy 

 

The cortical hierarchy describes an ordering in the cortex from areas that process 
basic sensory features of stimuli, low in the hierarchy, to areas that receive highly 
processed information, high in the hierarchy. Feedforward connections (from low 
to high areas in the hierarchy) tend to emerge from superficial cortical layers, 
while feedback connections (from high to low areas) tend to emerge from deep 
cortical layers (Markov et al., 2014b). Based on this knowledge, we recently 
estimated the cortical hierarchy of 40 cortical areas (Froudist-Walsh et al., 2020)  
using laminar retrograde tracing data (Felleman and Van Essen, 1991; Markov et 
al., 2014b). Here, we found a strong positive correlation between the principal 
receptor gradient and cortical hierarchy (r= 0.81, p = 8x10-8, all p-values 
Bonferroni corrected, Fig 3A). As the principal receptor gradient closely tracks 
the density of receptors per neuron, neurons lower in the cortical hierarchy 
(which process basic aspects of sensory stimuli) contain a relatively low number 
of receptors. In contrast, neurons near the top of the hierarchy (which receive 
multimodal information and contribute to complex cognitive functions) are 
endowed with a higher density of receptors, which may enable them to act with 
greater flexibility. 
 
 
The size of the dendritic tree and number of dendritic spines increases 

along the principal receptor gradient 

 
The striking increase in receptor density per neuron along the cortical hierarchy 
may require the emergence of a special cellular anatomy capable of housing 
such a high number of receptors. As pyramidal cells receive the vast majority of 
their synaptic contacts on the dendritic tree (Megıás et al., 2001; Spruston, 
2008), we investigated whether dendritic properties of neurons varied along the 
principal receptor gradient. Elston and colleagues measured the size of the 
dendritic tree and the number of dendritic spines on layer 3 pyramidal cells 
across dozens of areas of macaque cortex. Based on detailed descriptions and 
illustrations of the location of injections in those papers (Elston, 2001, 2000, 
2000; Elston et al., 2011a, 2011a, 2011b, 2010, 2009, 2005, 1999; Elston and 
Rockland, 2002; Elston and Rosa, 1998a, 1997, 1998b), we identified the 
macroanatomic locations for the dendritic analyses on the Yerkes19 cortical 
surface. This revealed a positive correlation between the principal receptor 
gradient and dendritic tree size (r = 0.73, p = 0.0007; Fig 3B), and between the 
principal receptor gradient and the number of dendritic spines per neuron (r = 
0.54, p = 0.04, Fig 3C). Thus, neurons that are higher up the principal receptor 
gradient contain larger dendritic trees, with more spines. This likely provides the 
neural real estate required to house a greater number of synaptic connections 
and receptors.   
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Figure 3. The anatomical foundations of the principal receptor gradient. A) The cortical 
hierarchy was estimated based on laminar connectivity data. There was a strong positive 
correlation between the principal receptor gradient and the cortical hierarchy. B and C) Dendritic 
tree size and spine count data were taken from a series of papers by Elston and colleagues (see 
text for references) and mapped to the common cortical space. Dendritic tree size and spines 
were both positively correlated with the principal receptor gradient.  
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Cortical areas and layers with high myelin content have low receptor 

density  

 

Myelin has an inhibitory effect on plasticity (McGee et al., 2005), and part of the 
role of myelin in development may be to stop the creation of unwanted 
connections (Braitenberg, 1962). The ratio of T1-weighted to T2-weighted signal 
is strongly correlated with levels of myelination in the cortical grey matter 
(Glasser and Essen, 2011).  We found a strong negative correlation between 
T1w/T2w ratio across the macaque cortex (obtained from Donahue et al., 2016) 
and the principal receptor gradient (Fig 4A, r = -0.72, p = 7x10-19). This suggests 
that neurons in cortical areas with a high myelin content express less 
neurotransmitter receptors.  
 

There is a lack of theoretical understanding of the relationship between the 
T1w/T2w contrast and cortical myelin, which may break down under certain 
conditions, such as pathology (MacKay and Laule, 2016). To further probe the 
relationship between cortical myelin and receptor density, we compared the 
densities of all 14 receptors across cortical layers in V1 to the pattern of laminar 
myelination and cell density (Fig 4B). The cell density grey level index (GLI, 
which represents the volume fraction of cell bodies) was similar across all layers 
except for low densities in layers I and VIb. Myelin was expressed most strongly 
in layers IVb and VIb, and generally to a higher degree in infragranular than 
supragranular layers. Most receptors had highest densities in layers II and III, 
followed by layer V. Some receptors, including NMDA, GABAA, GABAB, M2 and 
5HT2 also had high densities in layer IVc. Most receptor densities were low in 
layers I, VI and IVb. Thus, the receptor density pattern is opposite to the myelin 
density pattern across layers in area V1, particularly when accounting for 
differences in GLI levels across layers. Thus the receptor gradient, and receptor 
expression more generally, may be constrained by cortical myelination. 
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Figure 4. An inverse relationship between cortical myelin and receptor density. A) Cortical 
T1w/T2w ratio, a proposed marker for myelin content, is strongly negatively correlated with the 
principal receptor gradient across 109 cortical areas. B) Receptor-, cyto-, and myeloarchitecture 
of the macaque primary visual cortex (V1). The Grey Level Index, which represents a measure of 
the volume fraction of cell bodies, myelin density and receptor concentration (in fmol/mg protein) 
throughout the cortical depth is provided by the profile curve overlaid onto each section. Note that 
the scale has been optimized for each profile to provide the best visualization of changes in 
receptor densities throughout the cortical ribbon. Roman and Arabic numerals indicate cyto- and 
myeloarchitectonic layers, respectively. Positions of cytoarchitectonic layers were transferred to 
the neighboring receptor images. 
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The principal receptor gradient is significantly correlated with the two 

principal functional connectivity gradients 

 
We next asked whether the principal receptor gradient may shape in-vivo 
interactions between cortical areas. A principal gradient of functional connectivity 
has previously been described in human cortex based on fMRI data (Margulies et 
al., 2016). Recently, Xu and colleagues identified shared gradients of functional 
connectivity across human and macaque cortex. This relied on quantifying the 
similarity of connectivity of each cortical point to each of 27 homologous cortical 
areas (Methods). We observed significant correlations between the principal 
receptor gradient and both the first (Fig 5A, r = 0.53, p = 4x10-9) and second (Fig 
5B, r = 0.55, p = 4x10-10) functional connectivity gradients in macaque cortex. 
The two functional connectivity gradients appeared to reflect different aspects of 
the primary receptor gradient, with the first connectivity gradient ranging from 
early visual cortex to frontal and parietal areas, and the second ranging from 
primary somatosensory and motor areas to prefrontal cortex.  
 
The shared functional connectivity gradients were used by Xu and colleagues to 
identify corresponding points in human and macaque cortex that best preserved 
global cortical connectivity patterns (Xu et al., 2020). This provided a cross-
species functional alignment, which was used to align the canonical seven 
cognitive networks of Yeo, Krienen and colleagues (Yeo et al., 2011) from the 
human cortex to the macaque cortex (Xu et al., 2020) (Fig 5C). We used this 
cross-species functional alignment to identify the receptor gradient expression 
across cognitive networks. The overlap of each area of the Julich Macaque Brain 
Atlas with the seven cognitive networks is quantified in Supplementary Table 1. 
We excluded the ‘limbic’ network due to the lack of vertices with receptor data, 
and focused on the remaining six networks. We found that the principal receptor 
gradient clearly separated the sensory (visual and somatomotor)	networks, which 
had low receptor gradient scores, from the higher cognitive networks (dorsal 
attention, salience, frontoparietal and default mode), which had relatively higher 
gradient scores (Fig 5D-F). Almost all areas of the visual and somatosensory 
networks had negative gradient scores, while areas in the higher cognitive 
networks encompassed a range of positive and negative values (Fig 5D,E). 
Taken in conjunction with findings above, this suggests that higher cognitive 
networks contain neurons with a relatively high density of receptors, which may 
contribute to their flexibility of function. 
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Figure 5. The principal receptor gradient underlies the principal gradients of in-vivo 

functional connectivity. A and B) The first and second gradients of functional connectivity 
across macaque cortex were calculated in (Xu et al., 2020). Both gradients were significantly 
correlated with the principal receptor gradient. C) The canonical cognitive networks of Yeo, 
Krienen and colleagues (Yeo et al., 2011) mapped to the macaque cortex by Xu and colleagues 
using cross-species functional alignment (Xu et al., 2020). D) The cognitive networks mapped 
into receptor space. E) The distribution of receptor PC1 scores for vertices in each cognitive 
network shown on a raincloud plot (Allen et al., 2019). The ‘limbic’ network was excluded, due to 
a lack of receptor data. F) The mean principal component score of the principal receptor gradient 
within each cognitive network.  
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The secondary receptor gradient reflects variation in serotonin 5-HT1A 

receptors between higher order cortical areas 

The secondary receptor gradient separated higher order cortical areas (Fig 6A). 
Parietal areas such as LIPv lay at one end of the gradient, while cingulate areas 
such as 24ab and 25 lay at the other (Fig 6A). Visualization of the receptor 
fingerprints for representative areas revealed a striking difference in the serotonin 
5-HT1A receptor density, as well as differences in the GABAA density and AMPA-
kainate/NMDA ratio between areas at opposite ends of the secondary receptor 
gradient (Fig 6B). This was confirmed by correlations with secondary receptor 
gradient (Fig 6C) and with visualization of the coefficients of the secondary 
principal component (Fig S2). Areas at the top of the secondary receptor 
gradient, located in the subcallosal and anterior cingulate cortex, had a 
particularly high 5-HT1A receptor density.  There was no strong relationship 
between serotonin 5-HT2 expression and the secondary receptor gradient (Supp. 
Fig. 3). The 5-HT1A is the principal serotonin receptor that has a predominantly 
hyperpolarizing effect on neurons in the cortex (Celada et al., 2013). 
Interestingly, major depressive disorder is associated with reduced serotonin 
signaling, and deep brain stimulation of the subcallosal white matter has been 
shown to be an effective treatment of depression in humans (Mayberg et al., 
2005). Therefore, our finding provides a potential anatomical and molecular 
explanation for why selective serotonin reuptake inhibitors (SSRIs) reduce 
glucose metabolism in the subgenual cingulate in human patients with 
depression.  
 
The secondary receptor gradient separates the dorsal attention network 

from the default mode network and salience network 

We then investigated whether the secondary receptor gradient also 
corresponded to gradients of functional connectivity. Indeed, the secondary 
receptor gradient was significantly correlated with the third functional connectivity 
gradient (Fig 6D), with both gradients anchored in the lateral parietal cortex and 
precuneus. In contrast to the principal receptor gradient, which aligns with the 
cortical hierarchy, the secondary receptor gradient separates parietal and 
cingulate areas, which contribute to higher cognitive functions, and could thus 
facilitate switching between higher cognitive states in the brain. 
 
We then analyzed the secondary receptor gradient score of each cognitive 
network (Fig 6E). There was a strong negative weighting in the dorsal attention 
network, and strong positive weighting in regions of the default mode network. 
These two higher cognitive networks typically are anticorrelated (Chai et al., 
2012; Fox et al., 2005; Kelly et al., 2008; Yeo et al., 2015). Additionally, there 
was a strong positive loading in the salience network, which has been proposed 
to act as a ‘switch’ between default mode network activity and task-engaging 
frontoparietal network activity (Menon and Uddin, 2010). Thus, the secondary 
receptor gradient, and in particular the 5-HT1A receptor expression pattern may 
capture a mechanism by which the cortex can switch between higher cognitive 
states dominated by the dorsal attention network or the default mode network. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432173
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 6. The secondary receptor gradient tracks differences in serotonin receptor 

densities between higher cognitive areas of cortex. A) Receptor PC2 (the secondary receptor 
gradient). B) Receptor fingerprints of areas 24ab and LIPv, which occupy opposing positions 
along the secondary gradient. The total receptor density per neuron is similar between the two 
areas, but there is an obvious difference in 5-HT1A receptor density per neuron. C) Receptor PC2 
was positively correlated with 5-HT1A receptor density and the ratio of AMPA and kainate to 
NMDA receptors. Receptor PC2 was also negatively correlated with the GABAA receptor density. 
D) Left. The third functional connectivity gradient. Right. The secondary receptor gradient was 
strongly correlated with the third functional connectivity gradient. E) The secondary receptor 
gradient separates the dorsal attention network from the default mode and salience networks. 
Left, cognitive networks in receptor space. Middle, distribution of receptor PC2 scores within the 
default mode, salience and dorsal attention networks. Right. Mean receptor PC2 scores for each 
cognitive network.  
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Macaque 5-HT1A receptor and human HTR1A gene expression peak in the 

default mode and salience networks 

 

We then investigated the correspondence between human HTR1A gene 
expression and macaque 5-HT1A receptor expression. The HTR1A gene codes 
for the 5-HT1A receptor. To do this we examined gene expression from the Allen 
Human Brain Atlas. This contains mRNA expression from hundreds of 
anatomical locations, with the left cortical hemisphere heavily sampled across 6 
individual brains (Hawrylycz et al., 2012). We mapped gene expression onto a 
comprehensive 180 area multimodal parcellation of the human cortex (Glasser et 
al., 2016). HTR1A gene expression peaked in anterior/medial temporal cortex, 
insula, subcallosal/anterior cingulate and areas of postero-medial cortex 
(posterior cingulate/precuneus) (Fig 7A). We reverse-translated this map to the 
macaque cortex using cross-species functional alignment (Xu et al., 2020) (Fig 
7A, Methods). There was a strong positive correlation between human HTR1A 
gene and macaque 5-HT1A receptor expression (r = 0.66, p = 6x10-15, Fig 7B). 
Both human HTR1A gene and macaque 5-HT1A receptors were expressed 
similarly across cognitive networks, with the order of gene/receptor expression 
preserved (from lowest to highest expression: visual, somatomotor, dorsal 
attention, frontoparietal, default, salience; Fig 7C,D). Note that this expression is 
largely captured by the first two receptor gradients. The low expression in visual 
and somatomotor networks is captured by the principal receptor gradient. The 
ordering of the higher cognitive networks is captures by the secondary receptor 
gradient.  
 

5-HT1A receptor expression across cortex is largely conserved across 

species 

 

We then assessed the pattern of 5-HT1A receptor expression across cortex in the 
human, macaque and rat using in-vitro receptor autoradiography (Fig 7E). In the 
human, 5-HT1A receptor expression peaked in area 25 (subcallosal cingulate), 
with high density in other anterior cingulate and frontal regions and low density in 
motor and visual cortex. This general pattern was also true in macaque and rat 
cortex. However, the peak of 5-HT1A receptor density appears to shift slightly 
from area 25 to neighboring parts of anterior cingulate in the macaque, with a 
similar shift even more apparent in the rat. In the rat, the gradient of 5-HT1A 
receptor density across cortex was generally similar to that seen in the macaque 
and human, but was somewhat flatter.  
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Figure 7. Serotonin 5-HT1A receptor expression across the human, macaque and rat cortex. 
A) We mapped human HTR1A gene expression data (Hawrylycz et al., 2012) to the human 
cortex and then to the macaque cortex using cross-species functional alignment. B) Human gene 
expression and macaque receptor expression for the 5-HT1A receptor were positively correlated. 
C and D) Human HTR1A gene expression and macaque 5-HT1A receptor expression are 
expressed similarly across cognitive networks, peaking in the Default Mode and Salience 
networks. E) The density of 5-HT1A receptors (in fmol/mg protein) across multiple areas of 
human, macaque and rat cortex. 5-HT1A receptor density is high in subcallosal or anterior 
cingulate in all species, although the area with peak density shifts slightly across species. 
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Discussion 
 
In this work, we measured expression of 14 receptor types per neuron across 
109 regions of macaque cortex, and described their general organizational 
principles. We discovered a principal gradient of cortical receptor expression 
along the cortical hierarchy that accounted for about 80% of variance in the entire 
receptor dataset. This ‘principal receptor gradient’ tracked the increased 
expression of all receptor types from early sensory cortex to regions of cortex 
contributing to higher cognitive processes. We identified a plausible neural 
architecture to house this increased receptor density. Brain regions with more 
receptors per neuron contained pyramidal cells with larger dendritic trees, more 
dendritic spines, and displayed a lower T1w/T2w ratio in MRI scans, indicative of 
reduced grey matter myelin. The inverse relationship between receptor density 
and myelin was confirmed across layers in V1. The patterns of receptor 
expression were strongly correlated with in-vivo gradients of functional 
connectivity, suggesting a neurochemical basis for large-scale cortical 
connectivity patterns. The secondary receptor gradient was largely driven by 
expression of the serotonin 5-HT1A receptor. The pattern of macaque 5-HT1A 
receptor expression across cortex was very similar to human 5HT1A receptor and 
gene expression, and to a lesser degree to rat 5HT1A receptor expression. The 
second gradient segregated the dorsal attention from the default mode network 
and salience network. This suggests the possibility of a serotonergic basis for a 
switch between external and internal modes of attention. 
 
In recent years, the description of cortical organization in terms of gradients of 
gradually changing properties (Braitenberg, 1962; Sanides, 1962) has returned to 
fashion (Wang, 2020). Gradients of connectivity (Margulies et al., 2016; Xu et al., 
2020), cell-type densities (Kim et al., 2017), receptor expression (Goulas et al., 
2021) and gene expression (Burt et al., 2018; Fulcher et al., 2019) have been 
described. Many of these properties vary along an axis that aligns with the 
cortical hierarchy, which can be estimated based on patterns of laminar 
connectivity (Felleman and Van Essen, 1991; Froudist-Walsh et al., 2020; 
Markov et al., 2014b; Theodoni et al., 2020). One of the mysteries of such 
organization is how gradual changes in anatomical properties can lead to the 
emergence of strikingly different functions. Here we described a principal 
receptor gradient in macaque cortex that increased along the hierarchy. Along 
the principal receptor gradient, we show that neurons that are further up the 
hierarchy express on average 4 times higher densities of neurotransmitter 
receptors than neurons at the lowest end of the hierarchy. This includes not only 
the ubiquitous excitatory glutamate and inhibitory GABA receptors, but also 8 
types of neuromodulatory receptors. We found that neurons with more receptors 
also contain much larger dendritic trees and more spines, are thus anatomically 
equipped to integrate information from a larger number of sources. This 
coincides with the increased neuronal timescales with which neurons in higher 
areas integrate information (Chaudhuri et al., 2015; Gao et al., 2020; Hasson et 
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al., 2008; Murray et al., 2014; Raut et al., 2020). This extra receptor capacity may 
endow neurons in higher cortical areas with the ability to respond flexibly when 
faced with changing demands. In contrast, the receptor-light neurons of early 
sensory cortex may receive relatively little modulation, which may ensure that 
sensory stimuli are processed reliably in different contexts.  
 
The second receptor gradient was dominated by serotonin 5-HT1A receptor 
expression. This peaked in the cingulate cortex, with high expression in the 
subcallosal cingulate, which is a principal target of deep brain stimulation for 
treating depression. The extremely high expression of 5-HT1A receptors in this 
same brain regions provides a plausible explanation for why deep brain 
stimulation of the subcallosal cingulate and selective serotonin reuptake 
inhibitors (SSRIs) have almost identical effects on cerebral blood flow (Mayberg 
et al., 2005, 2000). SSRIs increase the activation of 5-HT1A receptors, which are 
most prominently expressed in subcallosal and anterior cingulate (Fig 7), where 
they act to reduce neural activity and counteract the increased glucose 
metabolism seen in patients with depression in this area (Mayberg, 2003, 1997). 
Although gene expression is not always a good predictor of receptor expression 
(Arnatkeviciute et al., 2019; Schwanhäusser et al., 2011), a previous study using 
PET found that gene and receptor expression are closely aligned for the 5-HT1A 
receptor in humans (Beliveau et al., 2017). Here, using exquisite resolution of in-
vitro autoradiography, we found that 5-HT1A receptor density in the macaque was 
very similar to the HTR1A gene expression and receptor expression in humans 
(Fig 7). The pattern of 5-HT1A receptor expression in the rat also peaked in the 
cingulate cortex, however the gradient of expression was flatter in the rat than in 
the macaque or human brain. Notably,  the laminar receptor expression pattern 
in the rat differs considerably from that observed in human or macaque cortex 
(Zilles and Palomero-Gallagher, 2017a), and serotonin receptors are expressed 
on different cell types between the mouse and human (Hodge et al., 2019). The 
differences between the primate and rodent receptor expression across brain 
areas, layers and cell types suggest caution when designing and interpreting 
rodent models of depression. In contrast, the closely overlapping serotonin 
receptor anatomy between macaque monkey and human reported here, 
suggests that, the macaque may be a promising animal model for depression.  
 
In contrast to the principal receptor gradient, which separates early sensory from 
higher cognitive areas, the second receptor gradient segregated higher cognitive 
networks. In particular, the second gradient separated the dorsal attention 
network from the default mode network and salience network. Association cortex 
is often divided into four distributed cognitive networks (dorsal attention, salience, 
frontoparietal, default), with a fifth higher cognitive network, the ‘limbic network’ 
often included within the default network (Uddin et al., 2019). These networks 
each occupy parts of the frontal, parietal and temporal lobes, and in several 
patches of cortex appear in a consistent order along the cortical surface 
(Margulies et al., 2016). The dorsal attention network usually lies closest to 
sensory areas, and is highly active when attention must be focused on external 
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stimuli (Corbetta and Shulman, 2002). The default mode network lies furthest 
away from sensory areas, and is deactivated during similar tasks, but highly 
active during tasks that require a disconnection of attention from the external 
world, such as autobiographical memory, or imagination (Andrews-Hanna et al., 
2014; Buckner et al., 2008; Raichle, 2015; Shulman et al., 1997; Spreng and 
Grady, 2009). Activity in these two networks is often anticorrelated (Chai et al., 
2012; Fox et al., 2005; Kelly et al., 2008; Yeo et al., 2015), in line with their 
opposing roles in cognition. The frontoparietal network (known by several other 
names, including the multiple demand system, the cognitive control network and 
the central executive network (Uddin et al., 2019)), lies between these two 
networks and may dynamically couple with either, depending on task demands 
(Dixon et al., 2018; Spreng et al., 2010). In line with this intermediate role, the 
frontoparietal network lay between the dorsal attention and default mode 
networks along the secondary receptor gradient.  
 
Previous models have suggested that the antagonism between the dorsal 
attention network and the default mode network may result from direct long-
range excitatory connections that target inhibitory neurons in the opposing 
network (Anticevic et al., 2012). We propose that the cognitive networks may 
represent distinct attractor states of the large-scale system, which can be seen 
as relatively stable patterns of spatiotemporal activity. Based on our findings, 
release of serotonin would engage inhibitory 5-HT1A receptors principally in the 
default-mode network, and the salience network. Previous evidence suggests 
that the salience network acts as a switch from the default mode network to 
frontoparietal networks focused on external attention (Menon, 2011; Menon and 
Uddin, 2010). Serotonin neuron activity closely resembles a “surprise” signal 
(Matias et al., 2017), and surprising stimuli activate the salience network (Menon, 
2015), which may engage the dorsal attention network to focus attention 
externally towards such stimuli. The distribution of 5-HT1A receptors on excitatory 
and inhibitory cell types (Puig et al., 2010; Puig and Gulledge, 2011; Xiang and 
Prince, 2003) in the default mode and salience networks may determine whether 
serotonin release has a similar effect on both networks. The 5-HT1A receptor is 
thought to dominate cortical serotonin processing under normal conditions, due 
to its high affinity for serotonin compared to 5-HT2 receptors (Hoyer et al., 1986a, 
1986b, 1985). In contrast, the 5-HT2 system is engaged by massive serotonin 
release under extreme conditions (Carhart-Harris and Nutt, 2017), when attention 
needs to be rapidly shifted to external events. Accordingly, the excitatory effects 
of the 5-HT2 receptors may complement the 5-HT1A effects by preferentially 
exciting the dorsal attention and frontoparietal networks (Fig S3). This is 
compatible with recent findings that genes for neuromodulatory receptors are 
expressed at cortical locations that may affect the flow of brain states over time 
(Shine et al., 2019), and suggests a specific mechanism for shifting activity 
between cardinal cognitive networks. 
 
The receptor architecture of human cortex has recently been described (Zilles 
and Palomero-Gallagher, 2017b), with dimensionality-reduction techniques 
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finding a gradient comparable to the principal receptor gradient we present here 
(Goulas et al., 2021; Zilles and Palomero-Gallagher, 2017b). However, there are 
a few key differences with the present study. First, we study macaque cortex, 
which allows for comparison with gold-standard invasive anatomy, imaging and 
physiology data. Second, analyzing the macaque cortex allowed us to combine 
receptor autoradiography data with neuron density across cortex (Collins et al., 
2010). This enabled us to estimate the density of 14 types of receptor per 
neuron, which is important to understand the functional significance of changes 
in receptor densities. One clear result that emerges from processing the data in 
this manner is that several receptors that have high density (in the raw data) in 
V1 do so principally because of the remarkably high neuron density in that area. 
Third, we were able to bring multiple invasive anatomical and in-vivo functional 
datasets into a common space, which enabled us to identify the anatomical 
structure underpinning the receptor gradients, as well as discover the potential 
significance of such gradients in guiding functional communication in the cortex.  
 
Recent developments in large-scale recording techniques have highlighted the 
distributed nature of cognitive functions. Despite these advances, our theoretical 
understanding of how distinct cognitive functions emerge across different areas 
of the cortex is limited. The large-scale receptor data presented here can provide 
an anatomical basis for future large-scale models of neuromodulation of brain 
connectivity (Deco et al., 2018), activity and cognitive function (Cano-Colino et 
al., 2014; Froudist-Walsh et al., 2020) and for understanding the emergence of 
flexible higher cognition along the cortical hierarchy. 
 
Methods: 
 
In-Vitro Receptor Autoradiography of the Macaque Cortex 
 

We analysed the brains of three adult male Macaca fascicularis 
specimens (between 6 and 8 years old; body weight between 5.2 and 6.6 kg) 
obtained from Covance Preclinical Services GmbH, Münster, where they were 
used as control animals for pharmaceutical studies performed in compliance with 
legal requirements. All experimental protocols were in accordance with the 
guidelines of the European laws for the care and use of animals for scientific 
purposes. 

Animals were sacrificed by means of an intravenous lethal dose of sodium 
pentobarbital. Brains were removed immediately from the skull, and brain stem 
and cerebellum were dissected off in close proximity to the cerebral peduncles. 
Hemispheres were separated and then cut into a rostral and a caudal block by a 
cut in the coronal plane of sectioning within the central sulcus. These blocks 
were frozen in isopentane at -40°C to -50°C, and then stored in airtight plastic 
bags at -70°C. Each block was serially sectioned in the coronal plane (section 
thickness 20 µm) using a cryostat microtome (CM 3050, Leica, Germany). 
Sections were thaw-mounted on gelatine-coated slides, freeze-dried overnight 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432173
http://creativecommons.org/licenses/by-nc/4.0/


and processed for visualization of receptors, cell bodies (Merker, 1983) or myelin  
(Gallyas, 1979).  

Quantitative in vitro receptor autoradiography was applied to label 14 
receptors from different neurotransmitter systems according to previously 
published protocols (Palomero-Gallagher and Zilles, 2018b; Zilles et al., 2002b; 
Supplementary Table 1), and encompassing a preincubation to rehydrate 
sections, a main incubation with a tritiated ligand in the presence of or without a 
non-labeled displacer, and a final rinsing step to terminate binding. Incubation 
with the displacer enabled to determine the proportion of displaceable, non-
specific binding, which was less than 5% of the total binding. Thus, total binding 
is considered to be equivalent of specific binding. Sections were dried in a cold 
stream of air, exposed together with plastic scales of known radioactivity against 
tritium-sensitive films (Hyperfilm, Amersham) for 4-18 weeks depending on the 
receptor type. 

Ensuing autoradiographs were processed by densitometry with a video-
based image analysing technique (Palomero-Gallagher and Zilles, 2018b; Zilles 
et al., 2002b). For details of the method, please see (Palomero-Gallagher and 
Zilles, 2018b; Zilles et al., 2002b). The mean receptor density for each area was 
determined by density profiles extracted vertical to the cortical surface over a 
series of 3–5 sections per receptor type and animal using Matlab-based in house 
software (Palomero-Gallagher and Zilles, 2018b). Identification of cortical areas 
and layers was carried out by comparison with the adjacent cell-body stained 
histological sections. Finally, autoradiographs were pseudo-colour coded by 
linear contrast enhancement and assignment of equally spaced density ranges to 
a spectral arrangement of eleven colours for visualization purposes. 
 
Creation of surface representation of cyto- and receptor-architectonic atlas and 
receptor data. 
 
One-hundred-and-nine cortical areas were defined based on their receptor- and 
cyto-architecture, as described in (Impieri et al., 2019; Niu et al., 2021, 2020; 
Rapan et al., 2020) and upcoming publications on the prefrontal cortex, cingulate 
and occipital lobe. We call this parcellation the Julich Macaque Brain Atlas. The 
location and extent of the cortical areas were delineated in the 3D space of the 
Yerkes19 surface (Donahue et al., 2016) by LR, MN and NPG using the 
connectome workbench software 
(https://www.humanconnectome.org/software/connectome-workbench) by 
carefully aligning boundaries to macroanatomical landmarks identified using the 
cytoarchitecture. The location of all regions on the Yerkes19 surface were 
independently checked and verified by MN, SFW, LR and NPG. 3D 
reconstruction of the hemisphere was obtained using the Connectome 
Workbench software. Additionally, the mean receptor densities of all 14 receptor 
types have been projected onto the corresponding area on the Yerkes19 surface 
for visualization. 
 
Creation of surface representation of regions for neural density data. 
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Collins and colleagues measured the neural density across the macaque cortex 
(Collins et al., 2010) using the isotropic fractionator method (Herculano-Houzel 
and Lent, 2005). In that paper, the cortex is presented as a flat-map divided into 
sections in their Figure 2 and S3. We used these maps, along with several sulcal, 
gyral and areal landmarks provided in their Figure 2 to estimate the location of 
each cortical section (i.e. the Vanderbilt sections) on the Yerkes19 surface. This 
was performed by SFW and independently verified by LR, MN and NPG. This 
allowed us to estimate the neural density in each of the 109 areas of the Julich 
Macaque Brain Atlas. For each area in the Julich Macaque Brain Atlas, we took a 
weighted average of the neural density in each of the overlapping Vanderbilt 
sections, weighted by the number of vertices of overlap. The neuron density data 
was originally in units of neurons per gram, and the receptor density data in 
fmol/mg protein. To estimate the receptor density in fmol per neuron, we used 
the previously reported figure that 8% of brain tissue is protein (McIlwain and 
Bachelard, 1972). This amounts to multiplying by a constant, and does not affect 
the calculation of the gradients via principal components analysis or the 
correlations with other maps. 
 
Receptor gradients 
 
To identify the receptor gradients, we z-scored the receptors-per-neuron data 
and performed a principal components analysis. Z-scoring ensured that high 
density receptors would not dominate the principal components. 
 
Cortical hierarchy and retrograde tracing data 
 
The cortical connectivity data were obtained from Henry Kennedy (Lyon, France) 
and are available at core-nets.org. The retrograde tracing data was obtained 
following injections into 40 cortical regions using consistent methods in the same 
laboratory. This ensures high quality and consistency of weighted and directed 
connectivity data (Kennedy et al., 2013). This database is regularly updated with 
new connectivity data (Markov et al., 2014a). We recently estimated the cortical 
hierarchy using this data, based on the laminar patterns of connections (Froudist-
Walsh et al., 2020). For details of the method, please see (Froudist-Walsh et al., 
2020; Markov et al., 2014b). The parcellation for this connectivity data (the Lyon 
Macaque Brain Atlas; known in BALSA as the M132 atlas) has previously been 
made available on the Yerkes19 surface (Donahue et al., 2016). We used this to 
fill in hierarchy values on the surface. We then estimated the receptor gradient 
values within each area of the Lyon Macaque Brain Atlas, weighted by the extent 
of overlap with each area of the Julich Macaque Brain Atlas. 
 
 
Creation of surface representation of dendritic data. 
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Elston and colleagues measured the dendritic tree length and spine density of 
layer III pyramidal neurons in a series of studies. In order to compare this data 
with the receptor data, we first mapped the injected regions as described by 
Elston and colleagues onto the Yerkes19 template. Borders for injection sites in 
the series of papers by Elston and colleagues were drawn on the Yerkes19 
template by SFW. Direct comparison with the hand-drawn maps was possible for 
areas V1, V2, MT, LIPv, 7a, V4, TEO, STP, IT, Ant. Cing., Post. Cing, TEpd, 
12vl, A1, 3b, 4, 5, 6, 7b, 9, 13, 46, 7m (Elston, 2001; Elston et al., 2011a, 2010, 
2009, 2005, 1999; Elston and Rockland, 2002; Elston and Rosa, 1998a, 1997). 
Direct comparison with the anatomical drawings was supplemented by 
additionally comparing the drawn locations with the anatomical references cited 
therein, and, where possible, atlases available within connectome workbench 
that were cited in the studies by Elston. Areas 10, 11 and 12 (Elston, 2000) were 
described with reference to (Preuss and Goldman-Rakic, 1991). The injection in 
area TEa, as described in (Elston et al., 2001) used the maps in (Seltzer and 
Pandya, 1978) for area definition. We used these maps to approximate the 
injection location. Area STP, injected in (Elston, 2001; Elston et al., 1999) was 
identified with the corresponding region STPp in the atlas of Felleman and Van 
Essen (Felleman and Van Essen, 1991). Area FEF was identified according to 
the description in (Elston and Rosa, 1998b), lying on the anterior bank of the 
medial aspect of the arcuate sulcus. All identified injection sites on the cortical 
surface were independently verified by MN, LR and NPG. The receptor principal 
component score was averaged within all vertices in each injection site in order 
to compare dendritic and receptor data. 
 
 
Cortical T1w/T2w data 
 
The T1w/T2w data was acquired by (Donahue et al., 2016), and was downloaded 
from the BALSA neuroimaging website (Van Essen et al., 2017). To compare the 
T1w/T2w data with the receptor data, we simply averaged the T1w/T2w signal 
within each of the 109 areas of the Julich Macaque Brain Atlas. 
 
 
Functional connectivity data 
 
Xu and colleagues recently identified matching functional connectivity gradients 
in human and macaque cortex (Xu et al., 2020). These matched gradients were 
used to develop a mapping between human and macaque cortex that best aligns 
points (vertices) in macaque and human cortex according to their global 
functional connectivity patterns (Xu et al., 2020). Here we used the human-to-
macaque mapping developed in that manuscript. We provide some details of 
how that mapping was calculated.  
 
Resting-state fMRI data from 19 macaque monkeys was collected with no 
contrast agent in Oxford (Noonan et al., 2014). These data were downloaded 
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from the PRIME-DE database (Milham et al., 2018) and pre-processed using a 
Human Connectome Project-like pipeline (Xu et al., 2015, 2019, 2018). Similarly, 
minimally preprocessed human resting-state fMRI data from the Human 
Connectome Project was used (Glasser et al., 2013).  
 
Gradients of functional connectivity were defined using the diffusion map method 
(Coifman and Lafon, 2006; Margulies et al., 2016). Diffusion maps rely on a 
measure of similarity between each cortical point. In previous studies, the 
similarity of functional connectivity patterns between cortical vertices was used to 
define the similarity matrix (Margulies et al., 2016). To compare macaque and 
human cortex, a cross-species joint-similarity matrix had to be used as input to 
the diffusion mapping.   
 
The diagonal blocks of the joint-similarity matrix (corresponding to similarity of 
human to human cortical vertices, and monkey to monkey cortical vertices) were 
based on (cosine) similarity of functional connectivity patterns, as in previous 
studies (Margulies et al., 2016). To create a similarity measure between each 
point on the macaque cortex and each point on the human cortex, 27 landmark 
regions were used (related to the approach by (Mars et al., 2018)). These had 
previously been identified as homologous regions between human and macaque 
monkeys (Mars et al., 2011; Neubert et al., 2014; Sallet et al., 2013; Van Essen 
and Dierker, 2007). For each species, the similarity between the functional 
connectivity patterns of each vertex and each landmark were calculated (for a 
similar approach, see (Mars et al., 2018)). Then the human vertex to monkey 
vertex similarity could be calculated by assessing how their connectivity 
resembled that of the 27 landmark regions. The matrix containing this (cosine) 
similarity for each pair of human and monkey vertices, and its transpose, made 
up the off-diagonal squares of the joint-similarity matrix.  
 
This cross-species joint-similarity matrix was used as input to the diffusion map. 
This produced shared cross-species gradients of functional connectivity. To 
create the point-to-point cross-species mapping, these functional connectivity 
gradients were used as input to multimodal surface matching (MSM) (Robinson 
et al., 2014), the method recently used to define a high-quality parcellation of 
human cortex based on multimodal imaging features (Glasser et al., 2016). Once 
this mapping is established, it can be used to transfer maps or parcellations 
across species. Xu et al demonstrated the accuracy of this method through 
accurate alignment of myelin maps across species. However, even for best-
matching homologous points of cortex, there are cross-species differences in 
functional connectivity patterns. These cross-species functional connectivity 
differences are greater for associative than sensory regions of cortex (Xu et al., 
2020).  
 
The definition of seven cognitive networks in human cortex by Yeo, Krienen and 
colleagues has become a standard network definition in the field (Yeo et al., 
2011). Some authors have since suggested that the limbic network in fact forms 
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part of the default mode network, leaving six canonical cognitive networks (Uddin 
et al., 2019). Xu et al transferred the cognitive networks defined in (Yeo et al., 
2011) from human to macaque using this cross-species functional alignment (Xu 
et al., 2020). We used this human-to-monkey mapping to identify the receptor 
expression across cognitive networks. Due sparse receptor mapping in the limbic 
network, we excluded this cognitive network from analysis. 
 
Human gene expression data 
 
Human gene expression data was downloaded from the Allen Human Brain Atlas 
(Hawrylycz et al., 2012). We analyzed data from hundreds of microarray samples 
across the left cortical hemispheres of six donors (5 male, 1 female). We 
replicated the methods in (Burt et al., 2018) using in-house code in Matlab 
(github.com/seanfw/genemapper), with the following exceptions:  1) Instead of 
using the MNI coordinates supplied by the Allen Institute, we used the native-
space sample coordinates, and performed a surface registration of the individual 
brains to the HCP group average surface. Surface registration is well suited to 
detect the sulcal patterns of postmortem brains, and relatively unaffected by 
nonlinear deformations to subcortical structures and white matter (such as 
squishing) that can affect postmortem brains. 2) Rather than mapping genes to 
brain areas for each subject and then averaging across subjects, we mapped 
genes to brain areas for all subjects together. This reduces the need to 
interpolate values for brain areas that contain no samples, but may be more 
vulnerable to individual differences in gene expression. Similar to (Arnatkeviciute 
et al., 2019), we found that the spatial patterns of gene expression were similar 
regardless of whether the gene expression data were normalized by z-scoring 
across samples or across genes. We extracted the HTR1A gene expression 
pattern, and mapped this to the macaque cortex using the cross-species 
functional alignment detailed above (Xu et al., 2020).  
 
Statistical analysis 
 
Following mapping of all data to a common space, Pearson correlations were 
performed between the receptor principal components and each of the other 
data-types mentioned above. P-values were Bonferroni corrected based on the 
number of correlations between receptor gradients and structural or functional 
maps.  
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Supplementary Figures: 
 

 
Figure S1. A steep gradient of 5-HT1A receptors in macaque cortex.  The ratio of densities for 
neurons and each receptor type, formed by the area with maximum density divided by the area 
with minimal density. 
 
 

 
Figure S2. Principal components of the receptor data. Top. The variance explained (left) and 
cumulative variance explained (right) of each principal component. The top five principal 
components explained 95% of the variance in the data. The principal component coefficients for 
each receptor type contributing to principal component 1 (left) and principal component 2 (right).  
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Figure S3. The serotonin 5-HT1A and 5-HT2 receptor density in higher cognitive networks. 

Top-left. The Yeo-Krienen et al cognitive networks in macaque cortex). Right. The mean receptor 
density for 5-HT1A receptors and 5-HT2 receptors in the higher cognitive networks. Note, both 
receptor types were weakly expressed (per neuron) in the sensory networks. Bottom-left. There 
was no significant correlation between 5-HT2 expression and receptor PC2.
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Supplementary Table 1.  Overlap of regions of the Julich Macaque Brain Atlas with the 7 cognitive networks of Yeo, 
Krienen et al in the macaque cortex. Overlap is expressed as a fraction. 
 

 Visual SomMot DorsAtt Salience Limbic FPN Default 
10d 0 0 0 0 0.34 0 0.66 
10md 0 0 0 0 0 0 1 
10mv 0 0 0 0 0.11 0 0.89 
10o 0 0 0 0 0.28 0 0.72 
11l 0 0 0 0 0.83 0.17 0 
11m 0 0 0 0 0.9 0 0.1 
12l 0 0 0 0 0 0 1 

12m 
 

0 0 0 0.05 0 0.7 0.25 
12o 0 0 0 0.02 0.24 0.03 0.7 
12r 0 0 0 0 0.26 0.14 0.6 
13b 0 0 0 0 0.99 0 0.01 
13l 0 0 0 0 1 0 0 
13m 0 0 0 0 1 0 0 
14r 0 0 0 0 0.78 0 0.22 
44 0 0 0.45 0 0 0.34 0.21 
45A 0 0 0 0 0 0.25 0.75 
45B 0 0 0 0 0 0.62 0.38 
4a 0 0.87 0.1 0.03 0 0 0 
4m 0 1 0 0 0 0 0 
4p 0 0.99 0 0.01 0 0 0 
8Ad 0 0 0 0.27 0 0.72 0.01 
8Av 0 0 0.01 0 0 0.98 0.01 
8Bd 0 0 0 0 0 0 1 
8Bm 0 0 0 0 0 0 1 
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8Bs 0 0 0 0.25 0 0.35 0.4 
9d 0 0 0 0.14 0 0.08 0.78 
9m 0 0 0 0 0 0 1 
a46d 0 0 0 0 0 0.53 0.47 
a46dr 0 0 0 0 0.05 0.27 0.67 
a46v 0 0 0 0 0 0.79 0.21 
a46vr 0 0 0 0 0.07 0.25 0.68 
F2d 0 0.21 0.48 0.07 0 0.24 0 
F2v 0 0.02 0.5 0 0 0.18 0.3 
F3 0 0.3 0 0.42 0 0.06 0.22 
F4d 0 0.36 0.63 0.02 0 0 0 
F4s 0 0 0.68 0 0 0.32 0 
F4v 0 0.1 0 0.9 0 0 0 
F5d 0 0 0 0.67 0 0.22 0.12 
F5s 0 0 0.44 0.12 0 0.13 0.31 
F5v 0 0 0 0.35 0 0.08 0.57 
F6 0 0 0 0 0 0.23 0.77 
F7d 0 0 0 0 0 0.18 0.82 
F7i 0 0 0 0 0 0.11 0.89 
F7s 0 0 0 0 0 0.08 0.92 
p46d 0 0 0 0 0 1 0 
p46dr 0 0 0 0.58 0 0.42 0 
p46v 0 0 0 0 0 1 0 
p46vr 0 0 0 0 0 0.67 0.33 
1 0 0.92 0 0.08 0 0 0 
2 0 0.98 0 0.02 0 0 0 
3al 0 0.81 0 0.17 0 0.01 0.02 
3am 0 1 0 0 0 0 0 
3bl 0 0.93 0 0.06 0 0 0 
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3bm 0 1 0 0 0 0 0 
AIP 0 0.05 0.95 0 0 0 0 
DP 0.42 0 0.55 0 0 0.03 0 
LIPd 0 0 0.82 0 0 0.18 0 
LIPv 0 0 1 0 0 0 0 
LOP 0 0 1 0 0 0 0 
MIPd 0 0.47 0.53 0 0 0 0 
MIPv 0 0.06 0.94 0 0 0 0 
Opt 0 0 0.29 0 0 0.71 0 
PEc 0 0.31 0.69 0 0 0 0 
PEci 0 1 0 0 0 0 0 
PEipe 0 0.79 0.21 0 0 0 0 
PEipi 0 0.08 0.92 0 0 0 0 
PEl 0 0.92 0.08 0 0 0 0 
PEla 0 1 0 0 0 0 0 
PF 0 0.23 0.43 0.34 0 0 0 
PFG 0 0 1 0 0 0 0 
PFop 0 0.36 0.06 0.58 0 0 0 
PG 0 0 0.75 0 0 0.25 0 
PGm 0 0 0.3 0.5 0 0.02 0.18 
PGop 0 0 0.65 0.31 0 0.04 0 
PIP 0.02 0 0.98 0 0 0 0 
PPt 0 0 0.02 0 0 0.98 0 
TSA 0 1 0 0 0 0 0 
V6Adl 0 0 1 0 0 0 0 
V6Adm 0 0 0.31 0 0 0.4 0.29 
V6Avl 0 0 0.95 0 0 0.05 0 
V6Avm 0.01 0 0.01 0 0 0.53 0.45 
V6l 0.57 0 0.43 0 0 0 0 
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V6m 0.72 0 0.04 0 0 0.23 0 
VIP 0 0.02 0.98 0 0 0 0 
V1 1 0 0 0 0 0 0 
V2d 0.92 0 0 0 0 0 0.08 
V2v 0.99 0 0 0 0 0 0 
V3A 0.95 0 0.05 0 0 0 0 
V3d 0.92 0 0.08 0 0 0 0 
V3v 1 0 0 0 0 0 0 
V4dl 0.96 0 0.04 0 0 0 0 
V4dm 0.24 0 0.76 0 0 0 0 
V4v 0.92 0 0 0 0 0 0.06 
23c 0 0.96 0 0.04 0 0 0 
23d 0 0.33 0 0.55 0 0.06 0.06 
24ab 0 0 0 0 0 0 1 
24c 0 0 0 0 0 0 1 
24d 0 0.26 0 0.68 0 0.06 0 
25 0 0 0 0 0.74 0 0.26 
29/30 0 0 0 0.02 0 0 0.5 
31 0 0.63 0.04 0.33 0 0 0 
a24ab 0 0 0 0.29 0 0.17 0.54 
a24c 0 0 0 0.06 0 0.38 0.56 
d23ab 0 0 0 0.51 0 0.02 0.48 
p24ab 0 0.01 0 0.94 0 0.06 0 
p32 0 0 0 0 0 0 1 
s32 0 0 0 0 0.08 0 0.92 
v23ab 0 0 0 0 0 0 0.96 
MT 0.07 0.09 0.21 0.11 0 0.09 0.44 
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Supplementary Table 2: Incubation protocols. 
Transmitter Receptor Ligand (nM) Displacer Incubation buffer Pre-

incubation 
Main 
incubation 

Final rinsing 

Glutamate AMPA [3H]-AMPA 
(10.0) 

Quisqualate 
(10 μM)  

50 mM Tris-acetate (pH 7.2) 
+ 100 mM KSCN* 

3x10 min,  
4°C 

45 min,  
4°C 

1) 4x4 sec 
2) Acetone/glutaraldehyde 

(100 ml + 2,5 ml), 2x2 sec, 4°C 
 NMDA [3H]-MK801 

(3.3) 
(+)MK-801 
(100 μM) 

50 mM Tris-acetate (pH 7.2) 
+ 50 μM glutmate + 30 μM glycine* + 
50 μM spermidine* 

15 min,  
4°C 

60 min,  
22°C 

1) 2x5 min, 4°C 
2) Distilled water, 1x22°C 

 Kainate [3H]-Kainate 
(9.4) 

SYM 2081 
(100 μM) 

50 mM Tris-acetate (pH 7.2) 
+ 10 mM Ca2+-acetate* 

3x10 min, 
4°C 

45 min,  
4°C 

1) 3x4 sec 
2) Acetone/glutaraldehyde 

(100 ml + 2,5 ml), 2x2 sec, 
22°C GABA GABAA [3H]-Muscimol 

(7.7) 
GABA 
(10 μM) 

50 mM Tris-citrate (pH 7.0) 3x5 min,  
4°C 

40 min,  
4°C 

1) 3x3 sec, 4°C 
2) Distilled water, 1x22°C 

 GABAB [3H]-CGP 54626 
(2.0) 

CGP 55845 
(100 μM) 

50 mM Tris-HCl (pH 7.2) 
+ 2.5 mM CaCl2 

3x5 min,  
4°C 

60 min,  
4°C 

1) 3x2 sec, 4°C 
2) Distilled water, 1x22°C 

 BZ [3H]-Flumazenil 
(1.0) 

Clonazepam 
(2 μM) 

170 mM Tris-HCl (pH 7.4) 15 min,  
4°C 

60 min,  
4°C 

1) 2x1 min, 4°C 
2) Distilled water, 1x22°C 

Acetylcholine M1 [3H]-Pirenzepine 
(1.0) 

Pirenzepine 
(2 μM) 

Modified Krebs buffer (pH 7.4) 15 min,  
4°C 

60 min,  
4°C 

1) 2x1 min, 4°C 
2) Distilled water, 1x22°C 

 M2 [3H]-Oxotremorine-M 
(1.7) 

Carbacol 
(10 μM) 

20 mM HEPES-Tris (pH 7.5) 
+ 10 mM MgCl2 + 300 nM Pirenzepine 

20 min,  
22°C 

60 min,  
22°C 

1) 2x2 min, 4°C 
2) Distilled water, 1x22°C 

 M3 [3H]-4-DAMP 
(1.0) 

Atropine 
sulfate 
(10 μM) 

50 mM Tris-HCl (pH 7.4) 
+ 0.1 mM PSMF + 1mM EDTA 

15 min,  
22° C 

45 min,  
22° C 

1) 2x5 min, 4° C 
2) distilled water,  1x22°C 

Noradrenaline α1 [3H]-Prazosin 
(0.2) 

Phentolamine 
Mesylate 
(10 μM) 

50 mM Na/K-phosphate buffer (pH 
7.4) 

15 min,  
22°C 

60 min,  
22°C 

1) 2x5 min, 4°C 
2) Distilled water, 1x22°C 

 α2 [3H]-UK 14,304 
(0,64) 

Phentolamine 
Mesylate 
(10 μM) 

50 mM Tris-HCl (pH 7.7) 
+ 100 μM MnCl2 

15 min,  
22°C 

90 min,  
22°C 

1) 5 min, 4°C 
2) Distilled water, 1x22°C 

Serotonin 5-HT1A [3H]-8-OH-DPAT 
(1.0) 

5-Hydroxy-
tryptamine 
(1 μM) 

170 mM Tris-HCl (pH 7.4) 
+ 4 mM CaCl2* + 0.01% ascorbate* 

30 min,  
22°C 

60 min,  
22°C 

1) 5 min, 4°C 
2) Distilled water, 3x22°C 

 5-HT2 [3H]-Ketanserin 
(1.14) 

Mianserin 
(10 μM) 

170 mM Tris-HCl (pH 7.7) 30 min,  
22°C 

120 min,  
22°C 

1) 2x10 min, 4°C 
2) Distilled water, 3x22°C 

Dopamine D1 [3H]-SCH 23390 
(1.67) 

SKF 83566 
(1 μM) 

50 mM Tris-HCl (pH 7.4) 
+ 120 mM NaCl + 5 mM KCl + 2 mM 
CaCl2 + 1 mM MgCl2  

20 min,  
22°C 

90 min, 
22°C 

1) 2x20 min, 4°C 
2) Distilled water, 1x22°C 
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* Compound only included in buffer solution for the in the main incubation 
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