


















 

Figure 4. Docking trajectory for the selected replica of barnase/barstar system. The presented replica 
reached the most accurate barnase/barstar complex structure. (a) iRMSD (interface RMSD) and 
LoRMSD (ligand only RMSD) values. Example simulation snapshots illustrate the plot. The ligand is 
presented in rainbow colors, the receptor in magenta. The lowest iRMSD model (1.9 A from x-ray 
structure) is presented on the right lower corner superimposed on the x-ray structure (the x-ray 
structure is shown in thick lines, the predicted model in thin lines). (b) ligand only RMSD (LoRMSD) 
values for all replicas. The thick red line presents selected replica. (c) exchange of system replicas 
between different temperatures driven by Replica Exchange Monte Carlo (REMC) system. The thick 
red line presents selected replica. The replica trajectory is also presented in the Movie S1. 
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Figure 5. Characterization of barnase/barstar flexibility in the docking simulation. The figure shows 
RMSF plots (upper panels) and contact maps (lower panels) for (a) the barnase receptor and (b) the 
barstar ligand. The RMSF profile (see Methods) and contact maps showing the frequency of contacts 
are derived from the entire simulation (derived from 10’000 models).  
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Figure 6. Characterization of barnase/barstar contacts. Panels show barnase/barstar models and 
contact maps for: (a) entire simulation (all, 10’000 models), (b) single selected replica (replica #6, 500 
models) that reached a near-native arrangement. In the maps, green circles mark the native contacts. 

 

Discussion 

The progress in predicting protein assemblies' structures is expected through closer 
integration of free docking approaches with template-based modeling techniques, refinement, 
scoring, and significant improvements in the underlying methodologies [2, 5]. This work 
demonstrates a significant improvement in the sampling of large-scale conformational 
transitions during global protein-protein docking. We show that modeling the large 
conformational changes is possible at a relatively low computational cost. The presented 
simulations took between 10 and 80 hours (depending on the system size) using a single 
standard CPU. The proposed modeling protocol can be used as the docking engine in 
template-based and integrative docking protocols using experimental structural data and 
additional information from various sources. We focused on the free docking of protein 
ligands with a highly flexible backbone in the present test simulations. Using unbound 
structures as the input, we produced acceptable accuracy models (iRMSD around 4 Å or 
lower) in all 12 cases. However, the selection procedure of the most accurate models needs 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432196
http://creativecommons.org/licenses/by-nc-nd/4.0/


further improvement. Namely, selecting the best ranked models led to acceptable models in 
about half of the tested cases.  

Presently, the most common approach to account for conformational changes in 
protein docking is using ENM [23–27, 35–37]. The applicability of ENM to modeling protein 
flexibility is limited to specific systems and depends on how collective the protein motions 
are. Our method presents a conceptually different approach that seems to be more realistic 
(see review discussing coarse-grained CABS dynamics in the context of ENM approaches 
[23]). We demonstrated that it is possible to simulate effectively free docking of highly 
flexible protein ligands to quite elastic protein receptor structures. Such a significant degree of 
flexibility was achieved using a highly efficient simulation engine based on the coarse-
grained representation of protein structures, Monte Carlo dynamics, and knowledge-based 
force field. CABS coarse-graining, enhanced by the discretized protein model and interaction 
patterns, significantly reduces the search space. Monte Carlo dynamics, enhanced by Replica 
Exchange annealing, leads to huge speed-up of the search procedures. Also a significant 
(although acceptable for many problems) flattening of energy surfaces by statistical potentials 
of CABS model simplifies simulations. As a result the flexible docking using CABS-dock is 
orders of magnitude faster than equivalent simulations based on classical modeling methods. 
Obviously the new method has also several limitations that have to be taken into 
consideration when designing new computational experiments. First, since the “ligand” 
protein is treated as a very elastic object (what is necessary to guarantee efficient search of the 
binding sites and poses) the cost of computations rapidly grows with the protein size. Thus, 
completely free global docking of protein ligands larger than in the present study (i.e. above 
130 residues) may be impractical. Second, the coarse graining of the sampling space and 
simplification of interaction patterns (so important for the huge acceleration of the 
simulations) makes the docking energetics less sensitive. For these reasons the clustering 
procedures, refinement of the resulting structures and final model selection becomes very 
challenging and needs further developments. Also speeding-up the entire protocol can be 
useful. We estimate that the simulations could be easily speeded-up at least 10 times or more 
through algorithm parallelization. The speed-up would enable making the protocol available 
as the publicly accessible and automated web service.  

In summary, we presented a proof of concept of free global docking with significant 
backbone flexibility. We believe that this work's result initiates a new and promising approach 
to the protein-protein docking problem. The most encouraging future development area 
includes using the developed methodology in template-based and integrative docking guided 
by partial template information and experimental data [2, 61].  
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