
1

pyControl: Open source, Python based, hardware and software for 1

controlling behavioural neuroscience experiments. 2

Thomas Akam1,2*, Andy Lustig3, James Rowland4, Sampath K.T. Kapanaiah5, Joan Esteve-Agraz6, 3

Mariangela Panniello4,7, Cristina Marquez6, Michael Kohl4,7, Dennis Kätzel5, Rui M. Costa†,2,8, Mark 4

Walton†,1 5

1. Department of Experimental Psychology, University of Oxford, Oxford, UK 6

2. Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal 7

3. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA 8

4. Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK 9

5. Institute of Applied Physiology, Ulm University, Germany 10

6. Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones 11

Científicas), Sant Joan d’Alacant, Spain 12

7. Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK 13

8. Department of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia 14

University, New York, NY, USA. 15

† Equal contribution. 16

* thomas.akam@psy.ox.ac.uk 17

Abstract 18

Laboratory behavioural tasks are an essential research tool. As questions asked of behaviour 19

and brain activity become more sophisticated, the ability to specify and run richly structured 20

tasks becomes more important. An increasing focus on reproducibility also necessitates 21

accurate communication of task logic to other researchers. To these ends we developed 22

pyControl, a system of open source hardware and software for controlling behavioural 23

experiments comprising; a simple yet flexible Python-based syntax for specifying tasks as 24

extended state machines, hardware modules for building behavioural setups, and a graphical 25

user interface designed for efficiently running high throughput experiments on many setups in 26

parallel, all with extensive online documentation. These tools make it quicker, easier and 27

cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates 28

communication and reproducibility of behavioural experiments through a highly readable task 29

definition syntax and self-documenting features. 30

Resources 31

Documentation: https://pycontrol.readthedocs.io 32

Repositories: https://github.com/pyControl 33

User support: https://groups.google.com/g/pycontrol 34

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/
https://github.com/pyControl
https://groups.google.com/g/pycontrol
https://doi.org/10.1101/2021.02.22.432227

2

Introduction 35

Animal behaviour is of fundamental scientific interest, both in its own right and in relation to 36

brain function (Krakauer et al., 2017). Though understanding natural behaviour is the ultimate 37

goal, the tight control offered by laboratory tasks remains an essential tool in characterising 38

learning mechanisms. To serve the needs of contemporary neuroscience, hardware and 39

software for controlling behavioural experiments should be both flexible and easy to use. 40

Additionally, an increasing focus on reproducibility (Baker, 2016; International Brain 41

Laboratory et al., 2020) necessitates that behaviour control systems facilitate communication 42

and replication of behavioural paradigms across labs. 43

Available commercial solutions often fall short of these desiderata. Proprietary closed-source 44

hardware and software make it difficult to extend or adapt functionality beyond explicitly 45

implemented use cases. Additionally, programming behavioural tasks on commercial systems 46

can be surprisingly non-user-friendly, perhaps due to limitations of underlying legacy 47

hardware. Commercial hardware is also typically very expensive considering the level of 48

technology it represents, disadvantaging researchers outside well-funded institutions (Marder, 49

2013; Chagas, 2018), and constraining the ability to scale behavioural assays for high 50

throughput. 51

For these reasons, many groups implement their own behavioural hardware, either using low 52

cost microcontrollers such as Arduinos or raspberry PI, or generic laboratory control software 53

such as Labview (Devarakonda et al., 2016; O’Leary et al., 2018; Gurley, 2019; Bhagat et al., 54

2020; Buscher et al., 2020). Though highly flexible, building behavioural control systems from 55

scratch has some disadvantages. It results in much duplication of effort as a lot of the required 56

functionality is generic across experiments. Additionally, unless custom systems are well 57

documented, it is hard for users to meaningfully share experimental protocols. This is 58

important because scientific publications do not consistently contain sufficient information to 59

constrain the details of the task used, yet such details are often crucial for reproducing the 60

behaviour. Making task code public is therefore key to reproducibility, but this is only effective 61

if it is readable and documented, as well as functional. 62

To address these limitations, we developed pyControl; a system of open source hardware and 63

software for controlling behavioural experiments. We report the design and rationale of 64

system components, validation experiments characterising system performance, and 65

behavioural data illustrating applications in 3 widely used, contrasting behavioural paradigms: 66

the 5-choice serial reaction time task (5-CSRTT) in operant chambers, sensory discrimination 67

in head fixed animals, and a social decision-making task in a maze apparatus. 68

 69

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

3

Results 70

System overview 71

pyControl consists of three components, the pyControl framework, hardware, and graphical 72

user interface (GUI). The framework implements the syntax used to program behavioural 73

tasks. User-created task definition files, written in Python, run directly on microcontroller 74

hardware, supported by framework code that determines when user-defined functions are 75

called. This takes advantage of Micropython, a recently developed port of the popular high-76

level language Python to microcontrollers. The framework handles functionality that is 77

common across tasks, such as monitoring inputs, setting and checking timers, and streaming 78

data back to the computer. This minimises boilerplate code in task files, while ensuring that 79

common functionality is implemented reliably and efficiently. Combined with Python’s highly 80

readable syntax, this results in task files that are quick and straightforward to write, but also 81

easy to read and understand (Figure 1), promoting replicability and communication of 82

behavioural experiments. 83

pyControl hardware consists of a breakout board which interfaces a pyboard microcontroller 84

with ports and connectors, and a set of devices such as nose-pokes, audio boards, LED 85

drivers, rotary encoders, and stepper motor controllers that are connected to the breakout 86

board to create behavioural setups. Breakout boards connect to the computer via USB. 87

Multiple breakout boards can be connected to a single computer, each controlling a separate 88

behavioural setup. pyControl implements a simple but robust mechanism for synchronising 89

data with other systems such as cameras or physiology hardware. All hardware is fully open 90

source, assembled hardware is available at low cost from the Open Ephys store. 91

The GUI provides a graphical interface for setting up and running experiments, visualising 92

behaviour and configuring setups, and is designed to facilitate high-throughput behavioural 93

testing on many setups in parallel. To promote replicability, the GUI implements self-94

documenting features which ensure that all task files used to generate data are stored with 95

the data itself, and that any changes to task parameters from default values are recorded in 96

the data files. 97

Task definition syntax 98

Here we give an overview of the task definition syntax and how this contributes to the flexibility 99

of the system. Detailed information about task programming is provided in the documentation 100

and set of example tasks is included with the GUI, including probabilistic reversal learning and 101

random ratio instrumental conditioning. 102

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://micropython.org/
http://www.open-ephys.org/pycontrol
https://doi.org/10.1101/2021.02.22.432227

4

pyControl tasks are implemented as state machines, the basic elements of which are states 103

and events. At any given time, the task is in one of the states, and the current state determines 104

how the task responds to events. Events may be generated externally, for example by the 105

subject's actions, or internally by timers. 106

Figure 1 shows the complete task definition code and the corresponding state diagram for a 107

simple task in which pressing a button 3 times turns on an LED for 1 second. The code first 108

defines the hardware that will be used, lists the task’s state and event names, specifies the 109

initial state, and initialises task variables. 110

The code then specifies task behaviour by defining a state behaviour function for each state. 111

Whenever an event occurs, the state behaviour function for the current state is called with the 112

event name as an argument. Special events called entry and exit occur when a state is 113

entered and exited allowing actions to be performed on state transitions. State behaviour 114

functions typically comprise a set of if and else if statements that determine what happens 115

from pyControl.utility import *
from devices import *

Define hardware

button = Digital_input('X1', rising_event='button_press')
LED = Digital_output('X2')

States and events.

states = ['LED_on',
 'LED_off']

events = ['button_press']

initial_state = 'LED_off'

Variables

v.press_n = 0

State behaviour functions.

def LED_off(event):
 if event == 'button_press':
 v.press_n = v.press_n + 1
 print('Press number {}'.format(v.press_n))
 if v.press_n == 3:
 goto_state('LED_on')

def LED_on(event):
 if event == 'entry':
 LED.on()
 timed_goto_state('LED_off', 1*second)
 v.press_n = 0
 elif event == 'exit':
 LED.off()

Figure 1. Example task. Complete task definition code (left panel) and corresponding state diagram

(right panel) for a simple task that turns an LED on for 1 second when a button is pressed three times.

Detailed information about the task definition syntax is provided in the Programming Tasks

documentation.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/programming-tasks/
https://doi.org/10.1101/2021.02.22.432227

5

when different events occur in that state. Any valid Micropython code can be placed in a state 116

behaviour function, the only constraint being that it must execute fast as it will block further 117

state machine behaviour while executing. Users can define additional functions and classes 118

in the task definition file that can be called from state behaviour functions. For example, code 119

implementing a reversal learning task’s block structure might be separated from the state 120

machine code in a separate function, improving readability and maintainability. 121

As should be clear from the above, while pyControl makes it easy to specify state machines, 122

tasks are not strict finite state machines, in which the response to an event depends only on 123

the current state, but rather extended state machines in which variables and arbitrary code 124

can also determine behaviour. 125

We think this represents a good compromise between enforcing a specific structure on task 126

code, which promotes readability and reliability and allows generic functionality to be efficiently 127

implemented by the framework, while allowing users enough flexibility to compactly define a 128

diverse range of complex tasks. 129

A key framework component is the ability to set timers to trigger state transitions or events. 130

The timed_goto_state function, used in the example, triggers a transition to a specified state 131

after a specified delay. Other functions allow timers to trigger a specified event after a 132

specified delay, or to cancel, pause and un-pause timers that have already been set. 133

To make things happen in parallel with the main state set of the task, the user can define an 134

all_states function which is called, with the event name as an argument, whenever an event 135

occurs irrespective of the state the task is in. This can be used in combination with timers and 136

variables to implement task behaviour that occurs independently from or interacts with the 137

main state set. For example to make something happen after a specified duration, irrespective 138

of the current state, the user can set a timer to trigger an event after the required duration, and 139

use the all_states function to perform the required action whenever the event occurs. 140

pyControl provides a set of functions for generating random variables, and maths functions 141

are available via the Micropython maths module. Though Micropython implements a large 142

subset of the core Python language (see the Micropython docs), it is not possible to use 143

packages such as Numpy or Scipy as they are too large to fit on a microcontroller. 144

Framework implementation 145

The pyControl framework consists of approximately 1000 lines of Python code. Figure 2 146

shows a simplified diagram of information flow between system components. Hardware inputs 147

and elapsing timers place events in a queue where they await processing by the state 148

machine. When events are processed, they are placed in a data output queue along with any 149

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://docs.micropython.org/en/latest/library/index.html
https://doi.org/10.1101/2021.02.22.432227

6

state transitions and user print statements that they generate. This design allows different 150

framework update processes to be prioritised by urgency, rather than by the order in which 151

they become necessary, ensuring the framework responds at low latency even under heavy 152

load (see validation experiments below). Top priority is given to processing hardware 153

interrupts, secondary priority to passing events from the event queue to the state machine and 154

processing their consequences, lowest priority to sending and receiving data from the 155

computer. 156

Digital inputs are detected by hardware interrupts and can be configured to generate separate 157

framework events on rising and/or falling edges. Analog inputs can stream continuous data 158

to the computer and trigger framework events when the signal goes above and/or below a 159

specified threshold. 160

Hardware 161

A typical pyControl hardware setup consists of a computer running the GUI, connected via 162

USB to one or more breakout boards, each of which controls a single behavioural setup 163

(Figure 3A). As task code runs on the microcontroller, the computer does not need to be 164

powerful. We typically use standard office desktops running Windows. We have not 165

systematically tested the maximum number of setups that can be controlled from one 166

computer but have run 24 in parallel without issue. 167

The breakout board interfaces a pyboard microcontroller (an Arm Cortex M4 running at 168

168MHz with 192KB RAM) with a set of behaviour ports used to connect devices that make 169

up behavioural setups, and BNC connectors, indicator LEDs and user pushbuttons (Figure 170

3B). Each behaviour port is an RJ45 connector (compatible with standard network cables) 171

with power lines (ground, 5V, 12V), two digital inputs/output (DIO) lines that are directly 172

Figure 2. Framework diagram. Diagram showing the flow of information between different

components of the framework and the GUI while a task is running. Right panel shows the priority

with which processes occur in the framework update loop.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

7

connected to microcontroller pins, and two driver lines for switching higher current loads. The 173

driver lines are low side drivers (i.e. they connect the negative side of the load to ground) that 174

can switch currents up to 150mA at voltages up to 12V, with clamp diodes to the 12V rail to 175

support inductive loads such as solenoids. Two ports have an additional driver line and two 176

have an additional DIO. Six of the behaviour port DIO lines can alternatively be used as 177

analog inputs and two as analog outputs. Three ports support UART and two support I2C 178

serial communication over their DIO lines. 179

A variety of devices have been developed that connect to the ports, including nose-pokes, 180

levers, audio boards, rotary encoders, stepper motor drivers, lickometers and LED drivers 181

(Figures S2-4). Each has its own driver file that defines a Python class for controlling the 182

device. For detailed information about devices see the hardware docs. The hardware 183

repository also contains open source designs for operant boxes and sound attenuating 184

chambers. 185

Though it is possible to specify the hardware that will be used directly in a task file as shown 186

in figure 1, it is typically done in a separate hardware definition file that is imported by the task. 187

This avoids redundancy when many tasks are run on the same setup. Additionally, abstracting 188

devices used in a task from the specific pins/ports they are connected to, allows the same task 189

to run on different setups as long as their hardware definitions instantiate the required devices. 190

See figures S2-4 for hardware definitions and corresponding hardware diagrams for the 191

example applications detailed below. 192

Figure 3. pyControl hardware. A) Diagram of a typical pyControl hardware setup, a single

computer connects to multiple breakout boards, each of which controls one behavioural setup. Each

behavioural setup is comprised of devices connected to the breakout board RJ45 behaviour ports

using standard network cables. B) Breakout board interfacing the pyboard microcontroller with a set

of behaviour ports, BNC connectors, indicator LEDs and user buttons. See supplementary figures

S2-4 for hardware configurations used in the behavioural experiments reported in this manuscript,

along with their associated hardware definition files. For more information see the hardware docs.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/
https://pycontrol.readthedocs.io/en/latest/user-guide/hardware/
https://doi.org/10.1101/2021.02.22.432227

8

The design choice of running tasks on a microcontroller, and the specific set of devices 193

developed to date, impose some constraints on experiments supported by the hardware. The 194

limited computational resources preclude generating complex visual stimuli, making pyControl 195

unsuitable for most visual physiology in its current form. The devices for playing audio are 196

aimed at general behavioural neuroscience applications, and may not be suitable for some 197

auditory neuroscience applications. One uses the pyboard’s internal DAC for stimulus 198

generation, and hence is limited to simple sounds such as sine waves or noise. Another plays 199

WAV files from an SD card, allowing for diverse stimuli but limited to 44KHz sample rate. 200

To extend the functionality of pyControl to application not supported by the existing hardware, 201

it is straightforward to interface setups with user created or commercial devices. This requires 202

creating an electrical connection between the devices and defining the inputs and outputs in 203

the hardware definition. Triggering external hardware from pyControl, or task events from 204

external devices, is usually achieved by connecting the device to a BNC connector on the 205

breakout board, and using the standard pyControl digital input or output classes. More 206

complex interactions with external devices may involve multiple inputs and outputs and/or 207

serial communication. In this case the electrical connection is typically made to a behaviour 208

port, as these carry multiple signal lines. A port adapter board, which breaks out an RJ45 209

connector to a screw terminal, simplifies connecting wires. Alternatively, if more complex 210

custom circuitry is required, e.g. to interface with a sensor, it may make sense to design a 211

custom printed circuit board with an RJ45 connector, similar to existing pyControl devices, as 212

this is more scalable and robust than implementing the circuit on a breadboard. To simplify 213

instantiating devices comprising multiple inputs and outputs, or controlling devices which 214

require dedicated code, users can define a Python class representing the device. These are 215

typically simple classes which instantiate the relevant pyControl input and output objects as 216

attributes, and may have methods containing code for controlling the device, e.g. to generate 217

serial commands. More information is provided in the hardware docs, and the design files and 218

associated code for existing pyControl devices provide a useful starting point for new designs. 219

Alla Karpova’s lab at Janelia Research Campus have independently developed and open 220

sourced several pyControl compatible devices (Github). 221

For neuroscience applications, straightforward and failsafe synchronisation between 222

behavioural data and other hardware such as cameras or physiology recordings is essential. 223

pyControl implements a simple but robust method for this. Sync pulses are sent from 224

pyControl to the other systems, which each record the pulse times in their own reference 225

frame. The pulse train has random inter-pulse intervals which ensures a unique match 226

between pulse sequences recorded on each system, so it is always possible to identify which 227

pulse corresponds to which even if pulses are missing (e.g. due to forgetting to turn a system 228

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/Karpova-Lab
https://doi.org/10.1101/2021.02.22.432227

9

on until after the start of a session). This also makes it unambiguous whether two files come 229

from the same session in the event of a file name mix-up. A Python module is provided for 230

converting times between different systems using the sync pulse times recorded by each. For 231

more information see the synchronisation docs. 232

Graphical User Interface 233

The GUI provides two ways of setting up and running tasks; the Run task and Experiments 234

tabs, as well as a Setups tab used to name and configure hardware setups. 235

The Run task tab allows the user to quickly upload and run a task on a single setup. It is 236

typically used for prototyping tasks and testing hardware, but can also be used to acquire data. 237

The values of task variables can be modified before the task is started or while the task is 238

running. During the run, a log of events, state entries, and user print statements is displayed, 239

and the events, states, and any analog signals are plotted live in scrolling plot panels. 240

The Experiments tab is used for running experiments on multiple setups in parallel, and is 241

designed to facilitate high-throughput experiments where multiple users run cohorts of animals 242

through a set of boxes. An experiment consists of a set of subjects run in parallel on the same 243

task. If different subjects need to be run in parallel on different tasks this can be achieved by 244

opening multiple instances of the GUI. 245

To configure an experiment the user specifies which subjects will run on which setups, and 246

the values of any variables that will be modified before the task starts. Variables can be set 247

to the same value for all subjects or for individual subjects. Variables can be specified as 248

Persistent, causing their value to be stored on the computer at the end of the session, and 249

subsequently set to the same value the next time the experiment is run. Variables can be 250

specified as Summary, causing their values to be displayed in a table at the end of the 251

framework run and copied to the clipboard in a format that can be pasted directly into a 252

spreadsheet, for example to record the number of trials and rewards for each subject. 253

Experiment configurations can be saved and subsequently loaded. 254

When an experiment is run, the experiments tab changes from the configure experiment 255

interface to a run experiment interface. The session can be started and stopped individually 256

for each subject or simultaneously for all subjects. While each setup is running, a log of 257

events, state entries, and user print statements is displayed, along with the current state, most 258

recent event and print statement (Figure 4). Variable values can be viewed and modified for 259

individual subjects during the session. A tabbed plot window can be opened showing live 260

scrolling plots of the events, states and analog signals for each subject, and individual 261

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/synchronisation/
https://doi.org/10.1101/2021.02.22.432227

10

subjects’ plots can be undocked to allow behaviour of multiple subjects to be visualised 262

simultaneously. 263

The GUI is implemented entirely in Python using the PyQt GUI framework and PyQtGraph 264

plotting library. The GUI is cross platform and has been used on Windows, Mac and Linux, 265

though most development and testing has been under Windows. The code is organised into 266

modules for communication with the pyboard, different GUI components, and data 267

visualisation. 268

pyControl data 269

Data from pyControl sessions are saved as text files (see figure S1 for an example). When a 270

session starts, information including the subject, task and experiment names, and start data 271

and time, are written to the data file. While the task is running, all events and state transitions 272

are saved automatically with millisecond timestamps. The user can output additional data by 273

using the print function in their task file. This outputs the printed line to the computer, where 274

it is displayed in the log and saved to the data file, along with a timestamp. In decision making 275

tasks, we typically print one line each trial indicating the trial number, the subject’s choice and 276

trial outcome, along with any other relevant task variables. If an error occurs while the 277

framework is running, a traceback reporting the error and line number in the task file where it 278

Figure 4. pyControl GUI. The GUI’s Experiments tab is shown on the left running a multi-subject

experiment, with the experiment’s plot window open on the right showing the recent states and events

for one subject. For images of the other GUI functionality see the GUI docs.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/
https://doi.org/10.1101/2021.02.22.432227

11

occurred is displayed in the log and written to the data file. Continuous data from analog inputs 279

is saved in separate binary files. 280

In addition to data files, task definition files used to generate data are copied to the 281

experiment’s data folder, with a file hash appended to the file name that is also recorded in 282

the corresponding session’s data file. This ensures that every task file version used in an 283

experiment is automatically saved with the data, and it is always possible to uniquely identify 284

the specific task file used for a particular session. If any variables are changed from default 285

values in the task file this is automatically recorded in the session’s data file. These automatic 286

self-documenting features are designed to promote replicability of pyControl experiments. We 287

encourage users to treat the versioned task files as part of the experiment’s data and include 288

them in data repositories. 289

Modules are provided for importing data files into Python for analysis and for visualising 290

sessions offline. Importing a data file creates a Session object with attributes containing the 291

session’s information and data. For convenience, two representations of the state and event 292

data are generated; i) a dictionary whose keys are event and state names, and values are 293

numpy arrays with the corresponding event or state-entry times, and ii) a list of events and 294

state-entries in the order they occurred, whose elements are named tuples with the event/state 295

name and timestamp as attributes. For more information see the data docs. 296

Framework Performance 297

To validate the performance of the pyControl framework we measured the system’s response 298

latency and timing accuracy. Response latency was assessed using a task which set a digital 299

output to match the state of a digital input driven by a square wave signal. We recorded the 300

input and output signals and plot the distribution of latencies between the two signals across 301

all rising and falling edges (Figure 5A,B). In a ‘low load’ condition where the pyboard was not 302

processing other inputs, response latency was 556 ± 17 μs (mean ± SD). This latency reflects 303

the time to detect the change in the input, trigger a state transition, and update the output 304

during processing of the ‘entry’ event in the new state. We also measured response latency 305

in a ‘high load’ condition where the pyboard was additionally monitoring two digital inputs each 306

generating framework events in response to edges occurring as Poisson processes with an 307

average rate of 200 Hz, and acquiring signal from two analog inputs at 1 kHz sample rate 308

each. In this high load condition, the response latency was 859 ± 241 μs (mean ± SD), the 309

longest latency recorded was 3.3 ms with 99.6% of latencies <2 ms. 310

To assess timing accuracy, we used a task which turned on a digital output for 10 ms when a 311

rising edge was received on a digital input. The input was driven by a 51 Hz square wave to 312

ensure that the timing of input edges drifted relative to the framework’s 1ms clock ticks. We 313

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/pycontrol-data/
https://doi.org/10.1101/2021.02.22.432227

12

plot the distribution of errors between the measured durations of the output pulses and the 314

10ms target duration (Figure 5C,D). In the low load condition, timing errors were 315

approximately uniformly distributed across 1 ms (mean error -220 μs, SD 282 μs), as expected 316

given the 1ms resolution of the pyControl framework clock ticks. In the high load condition, 317

timing variability was only slightly increased (mean -10 μs, SD 353 μs), with the largest 318

recorded error 1.9 ms and 99.5% of errors <1 ms. Overall, these data show that the 319

framework’s latency and timing accuracy are sufficient for the great majority of neuroscience 320

applications, even when operating under loads substantially higher than experienced in typical 321

tasks. 322

Figure 5. Framework Performance. A) Distribution of latencies for the pyControl framework to

respond to a change in a digital input by changing the level of a digital output. B) As A but under a

high load condition (see main text). C) Distribution of pulse duration errors when framework

generates a 10ms pulse. D) As C but under a high load condition. E) Effect of Micropython garbage

collection on pyControl timers. Signals are two digital outputs, one toggled on and off every 1ms

(blue), and one every 5ms (orange), using pyControl timers. The 1ms timer that that elapsed during

garbage collection (indicated by grey shading) was processed once garbage collection had finished,

causing a short delay. Garbage collection had no effect on the 5ms timer that was running but did

not elapse during garbage collection. F) Effect of garbage collection on pyControl inputs. A signal

comprising 1ms pulses every 10ms was received by 3 pyControl digital inputs. Input 1 was

configured to generated framework events on rising edges (green), input 2 on falling edges (red),

and input 3 on both rising (blue) and falling (orange) edges. Garbage collection (indicated by grey

shading) was triggered 1ms before an input pulse. Inputs 1 and 2 both generated their event that

occurred during garbage collection with the correct timestamp. If multiple events occur on a single

digital input during a single garbage collection, only the last event is generated correctly, causing the

missing rising event on input 3.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

13

Users who require very tight timing/latency performance should be aware of Micropython’s 323

automatic garbage collection. Garbage collection is triggered when needed to free up memory 324

and takes a couple of milliseconds. Normal code execution is paused during garbage 325

collection, though interrupts (used to register external inputs and update the framework clock) 326

run as normal. pyControl timers that elapse during garbage collection are processed once it 327

has completed (Figure 5E). Timers that are running but do not elapse during garbage 328

collection are unaffected. Digital inputs that occur during garbage collection are registered 329

with the correct timestamp (Figure 5F), but will only be processed once garbage collection has 330

completed. The only situation where events may be missed due to garbage collection is if a 331

single digital input receives multiple event-triggering edges during a single garbage collection, 332

in which case only the last event is processed correctly (Figure 5F). To avoid garbage 333

collection affecting critical processing, the user can manually trigger garbage collection at a 334

time when it will not cause problems (see Micropython docs), for example during the inter-trial 335

interval. In the latency and timing accuracy validation experiments (Figure 5A-D), garbage 336

collection was triggered by the task code at a point in the task where it did not affect the 337

measurements. 338

A final constraint is that as each event takes time to process, there is a maximum continuous 339

event rate above which the framework cannot process events as fast as they occur, causing 340

the event queue to grow until available memory is exhausted. This rate will depend on the 341

processing triggered by each event, but is approximately 960Hz for digital inputs triggering 342

state transitions but no additional processing. In practice we have never encountered this 343

when running behavioural tasks as average event rates are typically orders of magnitude lower 344

and transiently higher rates are buffered by the queue. 345

 Application examples 346

We illustrate how pyControl is used in practice with example applications in operant box, head-347

fixed and maze-based tasks. Task and hardware definition files for these experiments are 348

provided in the manuscripts data repository. For additional use cases see also (Korn et al., 349

2021; Akam et al., 2021; Koralek and Costa, 2020; Nelson et al., 2020; Blanco-Pozo et al., 350

2021; van der Veen et al., 2021; Barros et al., 2021; Samborska et al., 2021; Kilonzo et al., 351

2021; Strahnen et al., 2021). 352

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://docs.micropython.org/en/latest/library/gc.html
https://doi.org/10.1101/2021.02.22.432227

14

Figure 6. 5-choice serial reaction time task. A) Trapezoidal operant box with 5-choice wall (poke-

holes shown illuminated) within a sound-attenuated cubicle. B) High throughput training setup

comprising 24 operant boxes. C, D) Performance measures on the 5-CSRTT during protocols

challenging either sustained attention - by shortening the SD or delivering a sound distraction during

the wating time (C) or motor impulsivity - by extending the ITI to a fixed (fITI) or variable (vITI) length

(D). Protocols used are indicated by x-axes. Note the rather selective decrease of attentional

performance (accuracy, %omissions) or impulse control (%prematures) achieved by the respective

challenges. E) Validation of the possibility to detect cognitive enhancement in the 5-CSRTT (9s-fITI

challenge) by application of atomoxetine, which increased attentional accuracy and decreased

premature responding, as predicted. Asterisks in (C-E) indicate significant within-subject

comparisons relative to the baseline (2 s SD, 5 s fITI; C-D) or the vehicle (E) condition (paired-

samples t-test). * P < 0.05, * P < 0.01, * P < 0.001. Error bars display s.e.m. Note that two mice of

the full cohort (N = 8) did not participate in all challenges as they required more training time to reach

the baseline stage.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

15

5-choice serial reaction time task (5-CSRT) 353

The 5-CSRT is a longstanding and widely used assay for measuring sustained visual attention 354

and motor impulsivity in rodents (Carli et al., 1983; Bari et al., 2008). The subject must detect 355

a brief flash of light presented pseudorandomly in one of five nose-poke ports, and report the 356

stimulus location by poking the port, to trigger a reward delivered to a receptacle on the 357

opposite wall. 358

We developed a custom operant box for the 5-CSRT (Figure 6 A,B), discussed in detail in a 359

separate manuscript (Kapaniah, Akam. Kätzel et al. in prep). The pyControl hardware 360

comprised a breakout board connected to a 5-poke board, which integrates the IR beams and 361

stimulus LEDs for the 5 choice ports on a single PCB, a single poke board for the reward 362

receptacle, an audio board, and a stepper motor board to control a peristaltic pump for reward 363

delivery (Figure S2). 364

To validate the setup, a cohort of 8 C57BL/6 mice was trained in the 5-CSRTT using a staged 365

training procedure (see Methods). The baseline protocol reached at the end of training used 366

a stimulus duration (SD) of 2 s and a 5 s inter-trial interval (ITI) from the end of reward 367

consumption to the presentation of the next stimulus. These task parameters were then 368

manipulated to challenge subject’s ability to either maintain sustained attention, or withhold 369

impulsive premature responses. Attention was challenged in three conditions: by decreasing 370

the SD to either 1 s or 0.8 s, or by an auditory distraction of 70 dB white noise, played between 371

0.5 s and 4.5 s of the 5 s ITI. In all three attention challenges, the accuracy with which subjects 372

selected the correct port – the primary measure of sustained attention – decreased (P < 0.05; 373

paired t-tests comparing accuracy under the prior baseline protocol to accuracy under the 374

challenge condition, Figure 6C). Also, as expected, omissions (i.e. failures to poke any port in 375

the response window) increased (P < 0.05, t-test). In the attention challenges, the rate of 376

premature responses - the primary measure of impulsivity, remained either unchanged (1 s 377

SD challenge, auditory distraction; P > 0.1, t-test) or changed to a comparatively small extent 378

(0.8 s SD challenge, P < 0.01, t-test). Similarly, when impulsivity was challenged by extending 379

the ITI, to either a 9 s fixed ITI (fITI) or to a pseudo-randomly varied ITI length (vITI), premature 380

responses increased strongly (P < 0.05, t-test), while attentional accuracy and omissions did 381

not (Figure 6D). This specificity of effects of the challenges was as good – if not better – than 382

that achieved by us previously in a commercial set-up (Med Associates, Inc.) (Grimm et al., 383

2018). 384

We further validated the task implementation by replicating effects of a pharmacological 385

treatment – atomoxetine - that has been shown to reduce impulsivity in the 5-CSRTT (Navarra 386

et al., 2008; Paterson et al., 2011). Using the 9 s fITI impulsivity challenge, we found that 2 387

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

16

mg/kg atomoxetine could reliably reduce premature responding and increase attentional 388

accuracy (P < 0.05, paired t-test comparing performance under vehicle vs. atomoxetine; 389

Figure 6E), consistent with its previously described effect in this rodent task (Navarra et al., 390

2008; Paterson et al., 2011; Pillidge et al., 2014; Fitzpatrick and Andreasen, 2019). 391

 392

Figure 7. Vibrissae-based object localisation task. A) Diagram of the behavioural set up. Head-

fixed mice were positioned on a treadmill with their running speed monitored by a rotary encoder. A

pole was moved into the whisker field by a linear motor, with the anterior-posterior location controlled

using a stepper motor. Water rewards were delivered via a spout positioned in front of the animal

and licks to the spout were detected using an electrical lickometer. B) Trial structure: before stimulus

presentation, the stepper motor moved into the trial position (anterior or posterior). Next, the linear

motor translated the stepper motor and the attached pole close to the mouse’s whisker pad, starting

the stimulation period. A lick window (during Go trials), or withhold window (during NoGo trials)

started after the pole was withdrawn. FA = false alarm; CR = correct rejection. C) pyControl

simultaneously recorded running speed (top trace) and licks (black dots) of the animals, as well as

controlling stimulus presentation (blue and red bars for Go and NoGo stimuli) and solenoid opening

(black crosses). D) Percentage of correct trials for 3 mice over the training period. Mice were

considered expert on the task after reaching 75% correct trials (dotted line) and maintaining such

performance for 3 consecutive days. E) Detected licks before, during and after tactile stimulation,

during an early session before the mouse has learned the task, sorted by trial type: HIT trials (blue),

CORRECT REJECTION trials (green), FALSE ALARMS trials (red), and MISS trials (black). Each

row is a trial, each dot is a detected lick. Correct trials for this session were 47.9% of total trials. F)

As E but for data from the same mouse after reaching the learning threshold (correct trials = 89.3%

of total trials).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

17

Vibrissae-based object localisation task: 393

We illustrate pyControl’s utility for head-fixed behaviours with a version of the vibrissae-based 394

object localisation task (O’Connor et al., 2010). Head-fixed mice used their vibrissae 395

(whiskers) to discriminate the position of a pole moved into the whisker field at one of two 396

different anterior-posterior locations (Figure 7A). The anterior ‘Go’ location indicated that 397

licking in a response window after stimulus presentation would deliver a water reward, while 398

the posterior ‘NoGo’ location indicated that licking in the response window would trigger a 399

timeout (Figure 7B). Unlike in the original task mice were positioned on a treadmill allowing 400

them to run. Although running was not required to perform the task, we observed 10-20 s 401

running bouts alternated with longer stationary periods (Figure 7C), in line with previous 402

reports (Ayaz et al., 2019). pyControl hardware used to implement the setup comprised a 403

breakout board, a stepper motor driver to control the anterior-posterior position of the stimulus, 404

a lickometer, and a rotary encoder to measure running speed (Figure S3). 405

Mice were first familiarised with the experimental setup by head-fixing them on the treadmill 406

for increasingly long periods of time (5-20 min) over three days. From the fourth day, mice 407

underwent a “detection training”, during which the pole was only presented in the Go position, 408

and water automatically delivered after each stimulus presentation. We then progressively 409

introduced NoGo trials, and made water delivery contingent on the detection of one or more 410

licks in the response window. Subjects reached 75% correct performance within five to nine 411

days from the first training session, at which point, they were trained for at least three further 412

days to make sure that they had reliably learned the task (Figure 7D). Early in training, mice 413

frequently licked prior to and during stimulus presentation, as well as during the response 414

window, on both Go and NoGo trials (Figure 7E). Following learning, licking prior to and during 415

stimulus presentation was greatly reduced, and mice licked robustly during the response 416

window on Go trials and withheld licking on NoGo trials, performing a high percentage of Hit 417

and Correct Rejection trials (Figure 7F). 418

Social decision-making task: 419

Our final application example is a maze-based social decision making task for mice, adapted 420

from that developed for rats by Márquez et al. (2015). In this task a ‘focal’ animal’s choices 421

determine reward delivery for a ‘recipient’ animal, allowing preference for ‘prosocial’ vs ‘selfish’ 422

choices to be examined. The behavioural apparatus comprised an automated double T-maze 423

(Figure S4). Each T-maze consisted of a central corridor with nose-poke ports on each side 424

(choice area) and two side arms each with a food receptacle connected to a pellet dispenser 425

at the end (Figure 8A,B). Access from the central choice area to the side arms was controlled 426

by pneumatic doors. 427

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

18

Figure 8. Social decision making task. .A) Top view of double T maze apparatus showing two

animals interacting during social decision making. B) Setup diagram; In each T maze, nose pokes

are positioned on either side of the central choice area. Sliding pneumatic doors give access to the

side arms of each maze (top and bottom in diagram) where pellet dispensers deliver food rewards.

Six IR beams (depicted as grey and red circles connected by a dotted red line) detect the position of

the animals to safely close the doors once access to an arm is secured. C) Focal animal individual

training showing the number of trials completed per minute (left panel) and side bias (right panel)

across days of training. D) As C but for the recipient animal. E) Social decision making task. The

trial starts with both animals in the central arm. The recipient animal has learnt in previous individual

training to poke the port on the upper side of the diagram to give access to a food pellet in the

corresponding reward area. During the social task the recipient animal’s ports no longer control the

doors but the animal can display food seeking behaviour by repeatedly poking the previously trained

port. The focal animal has previously learned in individual training to collect food from the reward

areas on both sides (top and bottom of diagram) by poking the corresponding port in the central

choice area to activate the doors. During social decision making, the focal animal can either choose

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

19

 The task comprised two separate stages: (1) Individual training; where animals learn to open 428

doors by poking the ports in the central arms and retrieve pellets in the side arms. (2) Social 429

testing; where the decisions of the focal animal control the doors in both mazes, and hence 430

determine rewards for both itself and the recipient animal in the other maze. 431

The individual training protocols were different for the focal and recipient animals. During 432

individual training for the focal animal, a single poke in either port in the central arm opened 433

the corresponding door, allowing access to a side arm. Accessing either side arm was 434

rewarded with a pellet at the food receptacle in the arm. Under this schedule subjects 435

increased their rate of completing trials over 7 training days (Figure 8C, repeated measures 436

ANOVA F(6,42)=12.566 p=0.000004) without developing a bias for either side of the maze (P 437

> 0.27 for all animals, t-test). During individual training for the recipient animal, only one of 438

the nose-poke ports in the central arm was active, and the number of pokes required to open 439

the corresponding door increased over 13 days of training, with 4 pokes eventually required 440

to access the side arm to obtain a pellet in the food receptacle. Under this schedule the 441

recipient animals developed a strong preference for the active poke over the course of training 442

(Figure 8D right panel, repeated measures ANOVA F(12,24)=3.908 p=0.002), with 443

approximately 95% of pokes directed to the active side by the end of training. 444

During social testing, the two animals were placed in the double T-maze, one in each T, 445

separated by a transparent perforated partition that allowed the animals to interact using all 446

sensory modalities. The doors in the recipient animal’s maze were no longer controlled by the 447

recipient animal’s pokes, but were rather yoked to the doors of the focal animal, such that a 448

single poke to either port in the focal animals choice area opened the doors in both mazes on 449

the corresponding side. As in individual training, the focal animal was rewarded for accessing 450

either side, while the recipient animal was rewarded only when it accessed one side of the 451

maze. The choice made by the focal animal therefore determined whether the recipient animal 452

received reward, so the focal animal could either make ‘pro-social’ choices which rewarded 453

the ‘prosocial’ port, giving both animals access to the side (upper on diagram) of their respective

mazes where both receive reward, or can choose the ‘selfish’ port, giving both animals access to the

other side (lower on diagram) where only the focal animal receives reward. F) Raster plot showing

behaviour of a pair of animals over one session during early social testing. Nose pokes are

represented by vertical lines, and colour coded according to the role of each mouse and choice type

(grey – recipient’s pokes, which are always directed towards the prosocial side, blue – focal’s pokes

in the prosocial choice port , red – focal’s pokes in selfish port). Note that latency for focal choice

varies depending on the trial, allowing the recipient to display its food seeking behaviour or not.

Circles indicate the moment where each animal visits the food-receptacle in their reward arm. Focal

animals are always rewarded, and the colour of the filled circle indicates the type of trial after decision

(blue – prosocial choice, red – selfish choice). Grey circles indicate time of receptacle visit for

recipients, where filled circles correspond to prosocial trials, where recipient is also rewarded, and

open circles to selfish trials, where no pellet is delivered.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

20

both it and the recipient, or ‘selfish’ choices which rewarded only the focal animal. As a proof 454

of concept, we show nose pokes and reward deliveries from a pair of interacting mice from 455

one social session (Figure 8F). A full analysis of the social behaviour in this task will be 456

published separately (Esteve-Agraz and Marquez, in preparation). 457

Discussion 458

pyControl is an open source system for running behavioural experiments, whose principal 459

strengths are: 1. a flexible and intuitive Python based syntax for programming tasks. 2. 460

Inexpensive, simple and extensible behavioural hardware that can be purchased commercially 461

or assembled by the user. 3. A GUI designed for efficiently running high throughput 462

experiments on many setups in parallel from a single computer. 4. Extensive online 463

documentation and user support. 464

pyControl can contribute to behavioural neuroscience in two important ways: First, it makes it 465

quicker, easier and cheaper to implement a wide range of behavioural tasks and run them at 466

scale. Second, it facilitates communication and reproducibility of behavioural experiments, 467

both because the task definition syntax is highly readable, and because self-documenting 468

features ensure that the exact task version and parameters used to generate data are 469

automatically stored with the data itself. 470

pyControl’s strengths and limitations stem from underlying design choices. We will discuss 471

these primarily in relation to two widely used open source systems for experiment control in 472

neuroscience Bpod (Josh Sanders) and Bonsai (Lopes et al., 2015). Bpod is a useful point 473

of comparison as it is probably the most similar project to pyControl in terms of functionality 474

and implementation, Bonsai because it represents a very different but powerful formalism for 475

controlling experiments that is often complementary. Space constraints preclude detailed 476

comparison with other projects, but see (Devarakonda et al., 2016; O’Leary et al., 2018; Kim 477

et al., 2019; Gurley, 2019; Saunders and Wehr, 2019; Bhagat et al., 2020; Buscher et al., 478

2020). 479

Both pyControl and Bpod provide a state-machine-based task definition syntax in a high-level 480

programming language, run the state machine on a microcontroller, have commercially 481

available open source hardware, graphical interfaces for controlling experiments, and are 482

reasonably mature systems with a substantial user base beyond the original developers. 483

Despite these commonalities, there are significant differences which it is useful for prospective 484

users to understand. 485

The first is that in pyControl, user created task definition code runs directly on a pyboard 486

microcontroller, supported by framework code that determines when user defined functions 487

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://sites.google.com/site/bpoddocumentation/home
https://bonsai-rx.org/
https://doi.org/10.1101/2021.02.22.432227

21

are called. This contrasts with Bpod, where user code written in either Matlab (Bpod) or 488

Python (PyBpod) is translated into instructions passed to the microcontroller, which itself runs 489

firmware implemented in the lower-level language C++. These two approaches offer distinct 490

advantages and disadvantages. 491

Running user Python code directly on the microcontroller avoids separating the task logic into 492

two conceptually distinct levels – flexible code written in a high-level language that runs on the 493

computer, and the more constrained set of operations supported by the microcontroller 494

firmware. Our understanding of how this works in Bpod is that the high level user code 495

implements a loop over trials where each loop defines a finite state machine for the current 496

trial - specifying for each state which outputs are on, and which events trigger transitions to 497

which other states, then uploads this information to the microcontroller, runs the state machine 498

until it reaches an exit condition indicating the end of the trial, and finally receives information 499

from the microcontroller about what happened before starting the next trial’s loop. The 500

microcontroller firmware implements some functionality beyond a strict finite state machine 501

formalism, including timers and event counters that are not tied to a particular state, but does 502

not support arbitrary user code or variables. We suggest readers consult the relevant 503

documentation (pyControl, Bpod, PyBpod) and example tasks (pyControl, Bpod, pyBpod) to 504

compare syntaxes directly. A second advantage of running user code directly on the 505

microcontroller is that the user has direct access from their task code to microcontroller 506

functionality such as serial communication. A third is that the pyControl framework (as well 507

as the GUI) is written in Python rather than C++, facilitating code maintenance, and lowering 508

the barrier to users extending system functionality. 509

The two principal disadvantages of running the task entirely on the microcontroller are: 1) 510

although modern microcontrollers are very capable, their resources are more limited than a 511

computer - which constrains how computationally and memory intensive task code can be and 512

precludes using modules such as Numpy. 2) Lack of access to the computer from task code, 513

for example to interact with other programs or display custom plots. To address these 514

limitations, we are currently developing an application programming interface (API) to allow 515

pyControl tasks running on the microcontroller to interact with user code running on the 516

computer. This will work via the user defining a Python class with methods that get called at 517

the start and end of the run for initial setup and post-run clean-up, as well as an update method 518

called regularly during the run with any new data received from the board as an argument. 519

There are also differences in hardware design. The two most significant are; 1) The pyControl 520

breakout board tries to make connectors (behaviour ports and BNC) as flexible as possible at 521

the cost of not being specialised for particular functions. Bpod tends to use a given connector 522

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/programming-tasks/
https://sites.google.com/site/bpoddocumentation/bpod-user-guide/protocol-writing
https://pybpod.readthedocs.io/en/latest/getting-started/writing-protocols.html
https://github.com/pyControl/code/tree/master/tasks/example
https://github.com/sanworks/Bpod_Gen2/tree/master/Examples/Protocols
https://github.com/pybpod/pybpod-api/tree/master/examples/state_machine_examples
https://doi.org/10.1101/2021.02.22.432227

22

for a specific function - e.g. it has separate behaviour ports and module ports, with the former 523

designed for controlling a nose-poke, and the latter for UART serial communication with 524

external modules. Practically, this means that pyControl exposes microcontroller pins (which 525

often support multiple functions) directly on connectors whereas Bpod tends to incorporate 526

intervening circuitry such as electrical isolation for BNC connectors and serial line driver ICs 527

on module ports. 2) Bpod uses external modules, each with its own microcontroller and C++ 528

firmware, for functions which pyControl implements using the microcontroller on the breakout 529

board, specifically; analog input and output, I2C serial communication, and acquiring signal 530

from a rotary encoder. These design choices make pyControl hardware simpler and cheaper. 531

Purchased commercially the Bpod state machine costs $765, compared to €250 for the 532

pyControl breakout board, and Bpod external modules each cost hundreds of dollars. This is 533

not to say that pyControl necessarily represent better value; a given Bpod module may offer 534

more functionality (e.g. more channels, higher sample rates). But the two systems do 535

represent different design approaches. 536

Both the pyControl and pyBpod GUI’s support configuring and running experiments on multiple 537

setups in parallel from a single computer, while the Matlab based Bpod GUI controls a single 538

setup at a time. Their user interfaces are each very different; the respective user guides 539

(pyControl, Bpod, PyBpod) give the best sense for the different approaches. We think it is a 540

strength of the pyControl GUI, reflecting the relative simplicity of the underlying code base, 541

that scientist users not originally involved in the development effort have made substantial 542

contributions to its functionality (see GitHub pull requests). 543

Bonsai (Lopes et al., 2015) represents a very different formalism for experiment control that is 544

not based around state machines. Instead, the Bonsai user designs a dataflow by arranging 545

and connecting nodes in a graphical interface, where nodes may represent data sources, 546

processing steps, or outputs. Bonsai can work with a diverse range of data types including 547

video, audio, analog and digital signals. Multiple data streams can be processed in parallel 548

and combined via a rich set of operators including arbitrary user code. Bonsai is very powerful, 549

and it is likely that any task implemented in pyControl could also be implemented in Bonsai. 550

The reverse is certainly not true, as Bonsai can perform computationally demanding real time 551

processing on high dimensional data such as video, which is not supported by pyControl. 552

Nonetheless, in applications where either system could be used, there are reasons why 553

prospective users might consider pyControl: 1) pyControl’s task definition syntax may be more 554

intuitive for tasks where (extended) state machines are a natural formalism. The reverse is 555

true for tasks requiring parallel processing of multiple complex data streams. 2) pyControl is 556

explicitly designed for efficiently running high throughput experiments on many setups in 557

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/user-guide/graphical-user-interface/
https://sites.google.com/site/bpoddocumentation/bpod-user-guide/function-reference-beta
https://pybpod.readthedocs.io/en/latest/getting-started/basic-usage.html
https://github.com/pyControl/code/pulls?q=is%3Apr
https://doi.org/10.1101/2021.02.22.432227

23

parallel. Though it is possible to control multiple hardware setups from a single Bonsai 558

dataflow, Bonsai does not explicitly implement the concept of a multi-setup experiment so the 559

user must duplicate dataflow components for each setup themselves. As task parameters 560

and data file names are specified across multiple nodes in the dataflow, configuring these for 561

a cohort of subjects can be laborious - though it is possible to automate this by calling Bonsai’s 562

command line interface from user created Python scripts. 3) pyControl hardware modules can 563

simplify the physical construction of behavioural setups. Though Bonsai itself is software, 564

some compatible behavioural hardware has been developed by the Champalimaud 565

Foundation Hardware Platform (https://www.cf-hw.org/harp), which offers tight timing 566

synchronisation and close integration with Bonsai, though documentation is currently limited. 567

In practice, we think the two systems are often complementary; for example we use Bonsai in 568

our workflow for acquiring and compressing video data from sets of pyControl operant boxes 569

(Github), and we hope to integrate them more closely in future. 570

pyControl is under active development. We are currently prototyping a home-cage training 571

system which integrates a pyControl operant box with a mouse home-cage, via an access 572

control module which allows socially housed animals to individually access the operant box to 573

train themselves with minimal user intervention. We are also developing hardware to enable 574

much larger scale behavioural setups, such as complex maze environments with up to 68 575

behaviour ports per setup. As discussed above, we are finalising an API to allow pyControl 576

tasks to interact with user Python code running on the computer. 577

In summary, pyControl is a user friendly and flexible tool addressing a commonly encountered 578

use case in behavioural neuroscience; defining behavioural tasks as extended state 579

machines, running them efficiently as high throughput experiments, and communicating task 580

logic to other researchers. 581

Acknowledgments 582

T.A. thanks current and former members of the Champalimaud hardware and software 583

platforms; Jose Cruz, Ricardo Ribeiro, Carlos Mão de Ferro and Matthieu Pasquet for 584

discussions and technical assistance, and Filipe Carvalho and Lídia Fortunato of Open Ephys 585

Production Site for hardware assembly and distribution. C.M. thanks Victor Rodriguez for 586

assistance developing the social decision making apparatus. M.P. and M.K. thank Dr Ana 587

Carolina Bottura de Barros and Dr Severin Limal for assistance with the Vibrissae-based 588

object localisation task. 589

Author Contributions 590

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://www.cf-hw.org/harp
https://github.com/ThomasAkam/Point_Grey_Bonsai_multi_camera_acquisition
https://doi.org/10.1101/2021.02.22.432227

24

Developed hardware: T.A. Developed software: T.A., A.L., J.R. Designed and ran behavioural 591

experiments: S.K., J.E-A, M.P, C.M, M.K, D.K. Wrote the manuscript: T.A, S.K., J.E-A, M.P, 592

C.M, M.K, D.K. Edited the manuscript: R.M.C., M.W. 593

Competing Interests 594

T.A. has a consulting contract with Open Ephys Production Site who sell assembled pyControl 595

hardware. The other authors have no competing interests to report. 596

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

25

 597

Methods 598

pyControl task files used in all experiments, and data and analysis code for the performance 599

validation experiments, are included in the manuscript’s data and code repository. 600

Framework performance validation 601

Framework performance was characterised using pyboards running Micropython version 1.13 602

and pyControl version 1.6. Electrical signals used to characterise response latency and timing 603

accuracy (Figure 5) were recorded at 50 kHz using a Picoscope 2204A USB oscilloscope. 604

To assess response latency (Figure 5A,B), a pyboard running the task file input_follower.py 605

received a 51 Hz square wave input generate by the picoscope’s waveform generator. The 606

task turned an output on and off to match the state of the input signal. The latency distribution 607

was assessed by recording 50 seconds of the input and output signals and evaluating the 608

latency between the signals at each rising and falling edge. 609

Key Resources Table

Reagent
type
(species)
or
resource

Designation Source or reference

Ide
ntif
ier
s

Additional
information

Software
 pyControl
code

 https://github.com/pyControl
/code

 Repository
containing
pyControl GUI
and framework
code.

Hardware
 pyControl
hardware

 https://github.com/pyControl
/hardware

 Repository
containing
pyControl
hardware
designs

Document
ation

 pyControl
Docs

 https://pycontrol.readthedoc
s.io

 pyControl
documentation

Data
Data
repository

https://github.com/pyControl/
manuscript

Repository
containing
pyControl task
files, data and
analysis code
associated with
the manuscript.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/pyControl/manuscript
https://doi.org/10.1101/2021.02.22.432227

26

To assess timing accuracy (Figure 5C,D), a pyboard running the task file triggered_pulses.py 610

received a 51Hz square wave input generate by the picoscope’s waveform generator. The 611

task triggered a 10ms output pulse whenever a rising edge occurred in the input signal. The 612

output signals was recorded for 50 s and the duration of each output pulses was measured to 613

assess the distribution of timing errors. 614

In both cases the experiments were performed separately in a low load and high load 615

condition. In the low load condition the task was not monitoring any other inputs. In the high 616

load condition, the task was additionally acquiring data from two analog inputs at 1 kHz sample 617

rate each, and monitoring two digital inputs, each of which was generating framework events 618

in response to edges occurring as a Poisson process with average rate 200 Hz. These 619

Poisson input signals were generated by a second pyboard running the task 620

poisson_generator.py. 621

To assess the effect of garbage collection on pyControl timers (Figure 5E), the task file 622

gc_timer_test.py was run on a pyboard. This uses pyControl timers to toggle one digital output 623

on and off every 1 ms and another every 5ms. The resulting signals were recorded using the 624

picoscope and plotted around a garbage collection episode identified by visually inspecting 625

the 1 ms timer signal. 626

To assess the effect of garbage collection on digital input processing (Figure 5F), a signal 627

comprising 1ms pulses every 10ms was generated using the picoscope, and connected to 3 628

digital inputs on a pyboard running the task gc_inputs_test.py. The task configures one input 629

to generate events on rising edges, one on falling edges and one on both rising and falling 630

edges, and uses a pyControl timer to trigger garbage collection 1ms before a subset of the 631

input pulses. Event times recorded by pyControl were plotted to generate the figure. 632

Analysis and plotting of the framework validation data was performed in Python using code 633

included in the data repository. 634

Application examples 635

5 choice serial reaction time task: 636

Animals 637

The 5-CSRTT experiment used a cohort of 8 male C57BL/6 mice, aged 3-4 months at the 638

beginning of training. Animals were group-housed (2-3 mice per cage) in Type II-Long 639

individually ventilated cages (Greenline, Tecniplast, G), enriched with sawdust, sizzle-nestTM, 640

and cardboard houses (Datesand, UK), and subjected to a 13 h light / 11 h dark cycle. Mice 641

were kept under food-restriction at 85-95% of their average free-feeding weight which was 642

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

27

measured over 3 d immediately prior to the start of food-restriction at the start of the 643

behavioural training. Water was available ad libitum. 644

This experiment was performed in accordance to the German Animal Rights Law 645

(Tierschutzgesetz) 2013 and approved by the Federal Ethical Review Committee 646

(Regierungsprädsidium Tübingen) of Baden-Württemberg. 647

Behavioural hardware 648

The design of the operant boxes for the 5-CSRTT setups will be discussed in detail in a 649

separate manuscript (Kapaniah, Akam, Kätzel et al. in prep). Briefly, the box had a trapezoidal 650

floorplan with the 5 choice wall at the wide end and reward receptacle at the narrow end of 651

the trapezoid, to minimize the floor area and hence reduce distractions. The side-walls and 652

roof were made of transparent acrylic to allow observation of the animal, the remaining walls 653

were made from opaque PVC to minimize visual distractions (Figure 6a). Design files for the 654

operant box, and peristaltic and syringe pumps for reward delivery, are at 655

https://github.com/KaetzelLab/Operant-Box-Design-Files. Potentially distracting features 656

(house light, cables) were located outside of the box and largely invisible from the inside. The 657

pyControl hardware used and the associated hardware definition is shown in figure S2. The 658

operant box was enclosed by a sound attenuating chamber, custom made in 20mm melamine-659

coated MDF, adapted from a design in the hardware repository. The pyControl breakout 660

boards, and other PCBs that were not integrated into the box itself, were mounted on the 661

outside of the sound attenuating chamber, and a CCTV camera was mounted on the ceiling 662

to monitor behavior. 663

 5-CSRTT training 664

The 5-CSRTT training protocol was similar to what we described previously (Grimm et al., 665

2018; van der Veen et al., 2021). In brief, after initiation of food-restriction, mice were 666

accustomed to the reward (strawberry milk, MüllermilchTM, G) in their home cage and in the 667

operant box (2-3 exposures each). Then, mice were trained on a simplified operant cycle in 668

which all holes of the 5-poke wall were illuminated for an unlimited time, and the mouse could 669

poke into any one of them to illuminate the reward receptacle on the opposite wall and 670

dispense a 40 l milk reward. Once mice attained at least 30 rewards each in two consecutive 671

sessions, they were moved to the 5-CSRTT task. 672

During 5-CSRTT training, mice transitioned through five stages of increasing difficulty, based 673

on reaching performance criteria in each stage (Table 1). The difficulty of each stage was 674

determined by the length of time the stimulus was presented (stimulus duration, SD) and the 675

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/KaetzelLab/Operant-Box-Design-Files
https://github.com/pyControl/hardware/tree/master/Sound_attenuating_chamber_small
https://doi.org/10.1101/2021.02.22.432227

28

length of the inter-trial interval (ITI) between the end of the previous trial and the stimulus 676

presentation on the next trial. 677

The ITI was initiated when the subject exited the reward receptacle after collection of a reward, 678

or by the end of a time-out period (see below). The ITI was followed by illumination of one hole 679

on the 5-choice wall for the SD determined by the training stage. A poke in the correct port 680

during the stimulus, or during a subsequent 2s hold period, was counted as a correct 681

response, illuminating the reward receptacle and dispensing 20 l of milk. If the subject either 682

poked into any hole during the ITI (premature response), poked into a non-illuminated hole 683

during the SD or hold period (incorrect response), or failed to poke during the trial (omission), 684

the trial was not rewarded but instead terminated with a 5 s time-out during which the house 685

light was turned off. The relative numbers of each response type were used as performance 686

indicators measuring premature responding [%premature = 100*(number of premature 687

responses)/(number of trials)], sustained attention [accuracy = 100*(number of correct 688

responses)/(number of correct and incorrect responses)], and lack of participation 689

[%omissions = 100*(number of omissions)/(number of trials)]. In all stages and tests, sessions 690

lasted 30 min and were performed once daily at the same time of day. 691

Test days with behavioural challenges were interleaved with at least one training day on the 692

baseline stage (stage 5; see Table 1 for parameters of all stages). For pharmacological 693

5-CSRTT training

 Task Parameters Criteria for stage transition (2 consecutive days)

Stage SD (s) ITI (s) # correct % correct % accuracy %omissions

S1 20 2 >= 30 >= 40 - -

S2 8 2 >= 40 >= 50 - -

S3 8 5 >= 80 <= 50

S4 4 5 >= 80 <= 50

S5 2 5 >= 80 <= 50

Challenges

C1 2 9 Impulsivity challenge

C2 1 5 Attention challenge 1

C3 0.8 5 Attention challenge 2

C4 2 5 Distraction: 1s white noise within 0.5-4.5s of ITI

C5 2 7, 9, 11, 13 Variable ITI: pseudo-random, equal distribution

Table 1. 5-CSRTT Training and challenge stages. The parameters stimulus duration (SD) and

intertrial-interval (ITI, waiting time before stimulus) are listed for each of the 5 training stages (S1-5)

and the subsequent challenge protocols on which performance was tested for 1 day each (C1-5).

For the training stages, performance criteria which had to be met by an animal on two consecutive

days to move to the next stage are listed on the right. See Methods for the definition of these

performance parameters.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

29

validation, atomoxetine (Tomoxetine hydrochloride, Tocris, UK) diluted in sterile saline (0.2 694

mg/ml) or saline vehicle were injected i.p. at 10 l/g mouse injection volume 30 min before 695

testing started. For atomoxetine vs. vehicle within-subject comparison, two tests were 696

conducted separated by one week, whereby four animals received atomoxetine on the first 697

day, while the other four received vehicle and vice versa for the second day. Effects of 698

challenges (compared to performance on the prior day with baseline training) and atomoxetine 699

(compared to performance under vehicle) were assessed by paired-samples t-tests. 700

Behavioural data gathered in the 5-CSRTT was analysed with Excel and SPSS26.0 (IBM Inc., 701

US). 702

Vibrissae-based object localisation task: 703

Animals 704

Subjects were three female mice expressing the calcium-sensitive protein GCaMP6s in 705

excitatory neurons, derived by mating the floxed Ai94(TITL-GCaMP6s)-D line (Jackson 706

Laboratories; stock number 024742) with the CamKII-tta (Jackson Laboratories; stock number 707

003010). Animal husbandry and experimental procedures were approved and conducted in 708

accordance with the United Kingdom Animals (Scientific Procedures) Act 1986 under project 709

license P8E8BBDAD and personal licenses from the Home Office. 710

Behavioural hardware 711

Mice were head-fixed on a treadmill fashioned from a 24 cm diameter Styrofoam cylinder 712

covered with 1.5 mm thick neoprene. An incremental optical encoder (Broadcom HEDS-713

5500#A02; RS Components) was used in conjunction with a pyControl rotary encoder adapter 714

to monitor mouse running speed. The pole used for object detection was a blunt 18G needle 715

mounted, via a 3d-printed arm, onto a stepper motor (RS PRO Hybrid 535-0467; RS 716

Components). The stepper motor was mounted onto a motorized linear stage (DDSM100/M; 717

Thorlabs) used to move the pole toward and away from the whisker pad (controlled by a K-718

Cube Brushless DC Servo Driver (KBD101; Thorlabs). The pyControl hardware used and the 719

associated hardware definition is shown in figure S3. 720

Surgery 721

6-10 week old mice were anesthetised with isoflurane (0.8-1.2% in 1 L/min oxygen) and 722

implanted with custom titanium headplates for head-fixation and 4 mm diameter cranial 723

windows for imaging as described previously (Chong et al., 2019). Peri- and post-operative 724

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

30

analgesia was used (meloxicam 5mg/kg and buprenorphine 0.1 mg/kg) and mice were 725

carefully monitored for 7 days post-surgery. 726

Behavioural training 727

Following recovery from surgery, mice were habituated to head-fixation (Chong et al., 2019) 728

prior to training on the vibrissa-based object localisation task as detailed in the results section. 729

Data were analysed using MATLAB (Mathworks). 730

Social decision making task: 731

Animals 732

12 male C57BL6/J mice (Charles River, France) were used, aged 3 months at the beginning 733

of the experiment. Animals were group-housed (4 animals per cage) and maintained with ad 734

libitum access to food and water in a 12 – 12 h reversed light cycle (lights off at 8 am) at the 735

Animal Facility of the Instituto de Neurociencias of Alicante. Short food restrictions (2 h before 736

the behavioural testing) were performed in the early phases of individual training to increase 737

motivation for food-seeking behaviour, otherwise animals were tested with ab libitum chow 738

available in their home cage. All experimental procedures were performed in compliance with 739

institutional Spanish and European regulations, as approved by the Universidad Miguel 740

Hernández Ethics committee. 741

Behavioural hardware 742

The Social decision making task was performed in a double maze, where two animals, the 743

focal and the recipient, would interact and work to obtain food rewards. The outer walls of the 744

double maze were of white laser cut acrylic. Each double maze was divided by a transparent 745

and perforated wall creating the individual mazes for each mouse. For each individual maze, 746

inner walls separating central choice and side reward areas, contained the mechanisms for 747

sliding doors, 3D printed nose-pokes and position detectors. These inner walls were made of 748

transparent laser cut acrylic, in order to allow visibility of the animal in the side arms of the 749

maze. Walls of the central choice area were frosted to avoid reflections that could interfere 750

with automated pose estimation of the interacting animals in this area. 751

Each double T-maze behavioural setup was positioned inside a custom-made sound isolation 752

box, with an infra-red sensitive camera (PointGrey Flea3 -U3-13S2M CS, Canada) positioned 753

above the maze to track the animals’ location. The chamber was illuminated with dim white 754

light (4 lux) and infra-red illumination located on the ceiling of the sound attenuating chamber. 755

The pyControl hardware configuration and associated hardware definition file are shown in 756

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

31

figure S4. Food pellet rewards were dispensed using pellet dispensers made of 3D printed 757

and laser cut parts actuated by a stepper motor (NEMA 42HB34F08AB, e-ika electrónica y 758

robótica, Spain) controlled by a pyControl stepper driver board, placed outside the sound 759

isolation box and delivering the pellets to the 3D printed food receptacles through a silicon 760

tube. Design files for the pellet dispenser and receptacles are at 761

https://github.com/MarquezLab/Hardware. The sliding doors that control access to the side 762

arms were actuated by pneumatic cylinders (Cilindro ISO 6432, Vestonn Pneumatic, Spain) 763

placed below the base of the maze, providing silent and smooth horizontal movement of the 764

doors. These were in turn controlled via solenoid valves (8112005201, Vestonn Pneumatic, 765

Spain) interfaced with pyControl using an optocoupled relay board (Cebek- T1, Fadisel, 766

Spain). The speed of the opening/closing of the doors could be independently regulated by 767

adjusting the pressure of the compressed air to the solenoid valves. 768

Behavioural training 769

Individual training and social decision making protocols are described in the results section. 770

All behavioural experiments and were performed during the first half of the dark phase of the 771

cycle. Data were analysed with Python (Python Software Foundation, v3.6.5) and statistical 772

analysis performed with IBM SPSS Statistics (version 26). 773

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/MarquezLab/Hardware
https://doi.org/10.1101/2021.02.22.432227

32

References 774

Akam, T., Rodrigues-Vaz, I., Marcelo, I., Zhang, X., Pereira, M., Oliveira, R.F., Dayan, P., 775
and Costa, R.M. (2021). The Anterior Cingulate Cortex Predicts Future States to Mediate 776
Model-Based Action Selection. Neuron 109, 149-163.e7. 777

Ayaz, A., Stäuble, A., Hamada, M., Wulf, M.-A., Saleem, A.B., and Helmchen, F. (2019). 778
Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nat. 779
Commun. 10, 2585. 780

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nat. News 533, 452. 781

Bari, A., Dalley, J.W., and Robbins, T.W. (2008). The application of the 5-choice serial 782
reaction time task for the assessment of visual attentional processes and impulse control in 783
rats. Nat. Protoc. 3, 759–767. 784

Barros, A.C.B. de, Baruchin, L.J., Panayi, M.C., Nyberg, N., Samborska, V., Mealing, M.T., 785
Akam, T., Kwag, J., Bannerman, D.M., and Kohl, M.M. (2021). Retrosplenial cortex is 786
necessary for spatial and non-spatial latent learning in mice. 787

Bhagat, J., Wells, M.J., Harris, K.D., Carandini, M., and Burgess, C.P. (2020). Rigbox: An 788
Open-Source Toolbox for Probing Neurons and Behavior. ENeuro 7. 789

Blanco-Pozo, M., Akam, T., and Walton, M. (2021). Dopamine reports reward prediction 790
errors, but does not update policy, during inference-guided choice. 791

Buscher, N., Ojeda, A., Francoeur, M., Hulyalkar, S., Claros, C., Tang, T., Terry, A., Gupta, 792
A., Fakhraei, L., and Ramanathan, D.S. (2020). Open-source raspberry Pi-based operant 793
box for translational behavioral testing in rodents. J. Neurosci. Methods 342, 108761. 794

Carli, M., Robbins, T.W., Evenden, J.L., and Everitt, B.J. (1983). Effects of lesions to 795
ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; 796
implications for theories of dorsal noradrenergic bundle function based on selective attention 797
and arousal. Behav. Brain Res. 9, 361–380. 798

Chagas, A.M. (2018). Haves and have nots must find a better way: The case for open 799
scientific hardware. PLOS Biol. 16, e3000014. 800

Chong, E.Z., Panniello, M., Barreiros, I., Kohl, M.M., and Booth, M.J. (2019). Quasi-801
simultaneous multiplane calcium imaging of neuronal circuits. Biomed. Opt. Express 10, 802
267–282. 803

Devarakonda, K., Nguyen, K.P., and Kravitz, A.V. (2016). ROBucket: A low cost operant 804
chamber based on the Arduino microcontroller. Behav. Res. Methods 48, 503–509. 805

Fitzpatrick, C.M., and Andreasen, J.T. (2019). Differential effects of ADHD medications on 806
impulsive action in the mouse 5-choice serial reaction time task. Eur. J. Pharmacol. 847, 807
123–129. 808

Grimm, C.M., Aksamaz, S., Schulz, S., Teutsch, J., Sicinski, P., Liss, B., and Kätzel, D. 809
(2018). Schizophrenia-related cognitive dysfunction in the Cyclin-D2 knockout mouse model 810
of ventral hippocampal hyperactivity. Transl. Psychiatry 8, 1–16. 811

Gurley, K. (2019). Two open source designs for a low-cost operant chamber using 812
Raspberry PiTM. J. Exp. Anal. Behav. 111, 508–518. 813

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

33

International Brain Laboratory, Aguillon-Rodriguez, V., Angelaki, D.E., Bayer, H.M., 814
Bonacchi, N., Carandini, M., Cazettes, F., Chapuis, G.A., Churchland, A.K., Dan, Y., et al. 815
(2020). A standardized and reproducible method to measure decision-making in mice. 816
BioRxiv 2020.01.17.909838. 817

Kilonzo, K., van der Veen, B., Teutsch, J., Schulz, S., Kapanaiah, S.K.T., Liss, B., and 818
Kätzel, D. (2021). Delayed-matching-to-position working memory in mice relies on NMDA-819
receptors in prefrontal pyramidal cells. Sci. Rep. 11, 8788. 820

Kim, B., Kenchappa, S.C., Sunkara, A., Chang, T.-Y., Thompson, L., Doudlah, R., and 821
Rosenberg, A. (2019). Real-time experimental control using network-based parallel 822
processing. ELife 8, e40231. 823

Koralek, A.C., and Costa, R.M. (2020). Sustained dopaminergic plateaus and noradrenergic 824
depressions mediate dissociable aspects of exploitative states. BioRxiv 822650. 825

Korn, C., Akam, T., Jensen, K.H.R., Vagnoni, C., Huber, A., Tunbridge, E.M., and Walton, 826
M.E. (2021). Distinct roles for dopamine clearance mechanisms in regulating behavioral 827
flexibility. Mol. Psychiatry. 828

Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., and Poeppel, D. (2017). 829
Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron 93, 480–490. 830

Lopes, G., Bonacchi, N., Frazão, J., Neto, J.P., Atallah, B.V., Soares, S., Moreira, L., Matias, 831
S., Itskov, P.M., Correia, P.A., et al. (2015). Bonsai: an event-based framework for 832
processing and controlling data streams. Front. Neuroinformatics 9. 833

Marder, E. (2013). The haves and the have nots. ELife 2, e01515. 834

Márquez, C., Rennie, S.M., Costa, D.F., and Moita, M.A. (2015). Prosocial Choice in Rats 835
Depends on Food-Seeking Behavior Displayed by Recipients. Curr. Biol. 25, 1736–1745. 836

Navarra, R., Graf, R., Huang, Y., Logue, S., Comery, T., Hughes, Z., and Day, M. (2008). 837
Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice 838
serial reaction time test. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 34–41. 839

Nelson, A., Abdelmesih, B., and Costa, R.M. (2020). Corticospinal neurons encode complex 840
motor signals that are broadcast to dichotomous striatal circuits. BioRxiv 841
2020.08.31.275180. 842

O’Connor, D.H., Clack, N.G., Huber, D., Komiyama, T., Myers, E.W., and Svoboda, K. 843
(2010). Vibrissa-Based Object Localization in Head-Fixed Mice. J. Neurosci. 30, 1947–1967. 844

O’Leary, J.D., O’Leary, O.F., Cryan, J.F., and Nolan, Y.M. (2018). A low-cost touchscreen 845
operant chamber using a Raspberry PiTM. Behav. Res. Methods 50, 2523–2530. 846

Paterson, N.E., Ricciardi, J., Wetzler, C., and Hanania, T. (2011). Sub-optimal performance 847
in the 5-choice serial reaction time task in rats was sensitive to methylphenidate, 848
atomoxetine and d-amphetamine, but unaffected by the COMT inhibitor tolcapone. Neurosci. 849
Res. 69, 41–50. 850

Pillidge, K., Porter, A.J., Vasili, T., Heal, D.J., and Stanford, S.C. (2014). Atomoxetine 851
reduces hyperactive/impulsive behaviours in neurokinin-1 receptor ‘knockout’ mice. 852
Pharmacol. Biochem. Behav. 127, 56–61. 853

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

34

Samborska, V., Butler, J.L., Walton, M.E., Behrens, T.E., and Akam, T. (2021). 854
Complementary Task Representations in Hippocampus and Prefrontal Cortex for 855
Generalising the Structure of Problems. BioRxiv 2021.03.05.433967. 856

Saunders, J.L., and Wehr, M. (2019). Autopilot: Automating behavioral experiments with lots 857
of Raspberry Pis. BioRxiv 807693. 858

Strahnen, D., Kapanaiah, S.K.T., Bygrave, A.M., Liss, B., Bannerman, D.M., Akam, T., 859
Grewe, B.F., Johnson, E.L., and Kätzel, D. (2021). Highly task-specific and distributed neural 860
connectivity in working memory revealed by single-trial decoding in mice and humans. 861

van der Veen, B., Kapanaiah, S.K.T., Kilonzo, K., Steele-Perkins, P., Jendryka, M.M., 862
Schulz, S., Tasic, B., Yao, Z., Zeng, H., Akam, T., et al. (2021). Control of impulsivity by Gi-863
protein signalling in layer-5 pyramidal neurons of the anterior cingulate cortex. Commun. 864
Biol. 4, 1–16. 865

 866

 867

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

35

Supplementary Figures 868

I Experiment name : run_task
I Task name : example_task
I Task file hash : 2791769213
I Setup ID : COM1
I Subject ID : m001
I Start date : 2021/09/17 10:30:59

S {"LED_on": 1, "LED_off": 2}

E {"button_press": 3}

D 0 2
D 2699 3
P 2700 Press number 1
D 4879 3
P 4880 Press number 2
D 5340 3
P 5341 Press number 3
D 5341 1
D 6341 2
V 13463 press_n 2
D 20338 3
P 20339 Press number 3
D 20339 1
D 21339 2

Figure S1 (related to figure 1). Example data file. Text file generated by running the example task 869

shown in figure 1. Lines beginning I contain information about the session including subject, task and 870

experiment names, start date and time. The single line beginning S is a JSON object (also a Python 871

dict) containing the state names and corresponding IDs used below in the data file. The single line 872

beginning E is a JSON object containing the event names and corresponding IDs. Lines beginning D 873

are data lines generated while the framework was running, with format D timestamp ID where 874

timestamp is the time in milliseconds since the start of the framework run and ID is a state ID 875

(indicating a state transition) or an event ID (indicating an event occurred). Lines beginning P are the 876

output of print statements with format P timestamp printed output. The line beginning V indicates the 877

value of a task variable that has been set by the user while the task was running, along with a 878

timestamp. 879

 880

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.22.432227

36

 881

 882

Figure S2 (related to figure 6). Hardware configuration for 5-choice serial reaction time task. 883

Diagram of hardware modules used to implement the 5-CSRT task. A breakout board is connected to 884

a Five-poke board which integrates the IR beams and LEDs for the ports on the 5 choice wall onto a 885

single PCB controlled from two behaviour ports, a stepper motor controller is used with a custom 886

made 3D printed peristaltic pump for reward delivery, a single poke board is used for the reward 887

receptacle with a 12v LED module used for house light connected to its solenoid output connector, 888

and an audio board for generating auditory stimuli. The hardware definition for this setup is provided 889

in the manuscript’s code repository (link). 890

 891

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/pyControl/manuscript/blob/master/Five%20choice%20serial%20reaction%20time%20task/pyControl%20files/5_CSRTT_hardware_definition.py
https://doi.org/10.1101/2021.02.22.432227

37

 892

 893

Figure S3 (related to figure 7). Hardware configuration for vibrissae-based object localisation 894

task. Diagram of the hardware modules used to implement the head-fixed vibrissae-based object 895

localisation task. A breakout board is connected to a rotary encoder module, used to measure running 896

speed, a lickometer, used to detect licks and control the reward solenoid, a stepper motor controller 897

used to set the anterior-posterior position of the stimulus, and a controller for the linear stage used to 898

move the stimulus in and out of the whisker field. The hardware definition for this setup is provided in 899

the manuscript’s code repository (link). 900

 901

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/pyControl/manuscript/blob/master/vibrissa%20based%20object%20detection%20task/pyControl%20files/hardware_definition.py
https://doi.org/10.1101/2021.02.22.432227

38

 902

Figure S4 (related to figure 8). Hardware configuration for social decision making task. Diagram 903

of the hardware modules used to implement the double T maze apparatus for the social decision making 904

task. A port expander is used to provide additional IO lines for IR beams, stepper motor controller 905

boards are used to control custom made pellet dispensers, and a relay interface board is used to control 906

the solenoids actuating the pneumatic doors. The hardware definition for this setup is provided in the 907

manuscript’s code repository (link). 908

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.02.22.432227doi: bioRxiv preprint

https://github.com/pyControl/manuscript/blob/master/social%20decision%20making%20task/pyControl%20files/hardware_definition_double_T_maze.py
https://doi.org/10.1101/2021.02.22.432227

