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Abstract 18 

Laboratory behavioural tasks are an essential research tool.  As questions asked of behaviour 19 

and brain activity become more sophisticated, the ability to specify and run richly structured 20 

tasks becomes more important.  An increasing focus on reproducibility also necessitates 21 

accurate communication of task logic to other researchers.  To these ends we developed 22 

pyControl, a system of open source hardware and software for controlling behavioural 23 

experiments comprising; a simple yet flexible Python-based syntax for specifying tasks as 24 

extended state machines, hardware modules for building behavioural setups, and a graphical 25 

user interface designed for efficiently running high throughput experiments on many setups in 26 

parallel, all with extensive online documentation.  These tools make it quicker, easier and 27 

cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates 28 

communication and reproducibility of behavioural experiments through a highly readable task 29 

definition syntax and self-documenting features. 30 

Resources 31 

Documentation:  https://pycontrol.readthedocs.io 32 

Repositories: https://github.com/pyControl 33 

User support: https://groups.google.com/g/pycontrol 34 
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Introduction 35 

Animal behaviour is of fundamental scientific interest, both in its own right and in relation to 36 

brain function (Krakauer et al., 2017).  Though understanding natural behaviour is the ultimate 37 

goal, the tight control offered by laboratory tasks remains an essential tool in characterising 38 

learning mechanisms. To serve the needs of contemporary neuroscience, hardware and 39 

software for controlling behavioural experiments should be both flexible and easy to use.  40 

Additionally, an increasing focus on reproducibility (Baker, 2016; International Brain 41 

Laboratory et al., 2020) necessitates that behaviour control systems facilitate communication 42 

and replication of behavioural paradigms across labs.  43 

Available commercial solutions often fall short of these desiderata.  Proprietary closed-source 44 

hardware and software make it difficult to extend or adapt functionality beyond explicitly 45 

implemented use cases.  Additionally, programming behavioural tasks on commercial systems 46 

can be surprisingly non-user-friendly, perhaps due to limitations of underlying legacy 47 

hardware.  Commercial hardware is also typically very expensive considering the level of 48 

technology it represents, disadvantaging researchers outside well-funded institutions (Marder, 49 

2013; Chagas, 2018), and constraining the ability to scale behavioural assays for high 50 

throughput. 51 

For these reasons, many groups implement their own behavioural hardware, either using low 52 

cost microcontrollers such as Arduinos or raspberry PI, or generic laboratory control software 53 

such as Labview (Devarakonda et al., 2016; O’Leary et al., 2018; Gurley, 2019; Bhagat et al., 54 

2020; Buscher et al., 2020).  Though highly flexible, building behavioural control systems from 55 

scratch has some disadvantages.  It results in much duplication of effort as a lot of the required 56 

functionality is generic across experiments.  Additionally, unless custom systems are well 57 

documented, it is hard for users to meaningfully share experimental protocols.  This is 58 

important because scientific publications do not consistently contain sufficient information to 59 

constrain the details of the task used, yet such details are often crucial for reproducing the 60 

behaviour.  Making task code public is therefore key to reproducibility, but this is only effective 61 

if it is readable and documented, as well as functional. 62 

To address these limitations, we developed pyControl; a system of open source hardware and 63 

software for controlling behavioural experiments.  We report the design and rationale of 64 

system components, validation experiments characterising system performance, and 65 

behavioural data illustrating applications in 3 widely used, contrasting behavioural paradigms: 66 

the 5-choice serial reaction time task (5-CSRTT) in operant chambers, sensory discrimination 67 

in head fixed animals, and a social decision-making task in a maze apparatus. 68 

 69 
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Results 70 

System overview 71 

pyControl consists of three components, the pyControl framework, hardware, and graphical 72 

user interface (GUI).  The framework implements the syntax used to program behavioural 73 

tasks.  User-created task definition files, written in Python, run directly on microcontroller 74 

hardware, supported by framework code that determines when user-defined functions are 75 

called.  This takes advantage of Micropython, a recently developed port of the popular high-76 

level language Python to microcontrollers. The framework handles functionality that is 77 

common across tasks, such as monitoring inputs, setting and checking timers, and streaming 78 

data back to the computer.  This minimises boilerplate code in task files, while ensuring that 79 

common functionality is implemented reliably and efficiently.  Combined with Python’s highly 80 

readable syntax, this results in task files that are quick and straightforward to write, but also 81 

easy to read and understand (Figure 1), promoting replicability and communication of 82 

behavioural experiments. 83 

pyControl hardware consists of a breakout board which interfaces a pyboard microcontroller 84 

with ports and connectors, and a set of devices such as nose-pokes, audio boards, LED 85 

drivers, rotary encoders, and stepper motor controllers that are connected to the breakout 86 

board to create behavioural setups.  Breakout boards connect to the computer via USB. 87 

Multiple breakout boards can be connected to a single computer, each controlling a separate 88 

behavioural setup.  pyControl implements a simple but robust mechanism for synchronising 89 

data with other systems such as cameras or physiology hardware. All hardware is fully open 90 

source, assembled hardware is available at low cost from the Open Ephys store. 91 

The GUI provides a graphical interface for setting up and running experiments, visualising 92 

behaviour and configuring setups, and is designed to facilitate high-throughput behavioural 93 

testing on many setups in parallel.  To promote replicability, the GUI implements self-94 

documenting features which ensure that all task files used to generate data are stored with 95 

the data itself, and that any changes to task parameters from default values are recorded in 96 

the data files. 97 

Task definition syntax 98 

Here we give an overview of the task definition syntax and how this contributes to the flexibility 99 

of the system.  Detailed information about task programming is provided in the documentation 100 

and set of example tasks is included with the GUI, including probabilistic reversal learning and 101 

random ratio instrumental conditioning. 102 
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pyControl tasks are implemented as state machines, the basic elements of which are states 103 

and events.  At any given time, the task is in one of the states, and the current state determines 104 

how the task responds to events.  Events may be generated externally, for example by the 105 

subject's actions, or internally by timers. 106 

Figure 1 shows the complete task definition code and the corresponding state diagram for a 107 

simple task in which pressing a button 3 times turns on an LED for 1 second.  The code first 108 

defines the hardware that will be used, lists the task’s state and event names, specifies the 109 

initial state, and initialises task variables.  110 

The code then specifies task behaviour by defining a state behaviour function for each state.  111 

Whenever an event occurs, the state behaviour function for the current state is called with the 112 

event name as an argument.  Special events called entry and exit occur when a state is 113 

entered and exited allowing actions to be performed on state transitions.  State behaviour 114 

functions typically comprise a set of if and else if statements that determine what happens 115 

from pyControl.utility import *  
from devices import *  
   
# Define hardware  
   
button = Digital_input('X1', rising_event='button_press')  
LED    = Digital_output('X2')  
   
# States and events.  
   
states = ['LED_on',  
          'LED_off']  
   
events = ['button_press']  
   
initial_state = 'LED_off'  
   
# Variables  
   
v.press_n = 0  
   
# State behaviour functions.  
   
def LED_off(event):  
    if event == 'button_press':  
        v.press_n = v.press_n + 1 
        print('Press number {}'.format(v.press_n)) 
        if v.press_n == 3:  
            goto_state('LED_on')  
   
def LED_on(event):  
    if event == 'entry':  
        LED.on()  
        timed_goto_state('LED_off', 1*second)  
        v.press_n = 0  
    elif event == 'exit':  
        LED.off()  
 

 

Figure 1.  Example task.  Complete task definition code (left panel) and corresponding state diagram 

(right panel) for a simple task that turns an LED on for 1 second when a button is pressed three times. 

Detailed information about the task definition syntax is provided in the Programming Tasks 

documentation.   
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when different events occur in that state.  Any valid Micropython code can be placed in a state 116 

behaviour function, the only constraint being that it must execute fast as it will block further 117 

state machine behaviour while executing.  Users can define additional functions and classes 118 

in the task definition file that can be called from state behaviour functions.  For example, code 119 

implementing a reversal learning task’s block structure might be separated from the state 120 

machine code in a separate function, improving readability and maintainability. 121 

As should be clear from the above, while pyControl makes it easy to specify state machines, 122 

tasks are not strict finite state machines, in which the response to an event depends only on 123 

the current state, but rather extended state machines in which variables and arbitrary code 124 

can also determine behaviour. 125 

We think this represents a good compromise between enforcing a specific structure on task 126 

code, which promotes readability and reliability and allows generic functionality to be efficiently 127 

implemented by the framework, while allowing users enough flexibility to compactly define a 128 

diverse range of complex tasks. 129 

A key framework component is the ability to set timers to trigger state transitions or events.   130 

The timed_goto_state function, used in the example, triggers a transition to a specified state 131 

after a specified delay.  Other functions allow timers to trigger a specified event after a 132 

specified delay, or to cancel, pause and un-pause timers that have already been set. 133 

To make things happen in parallel with the main state set of the task, the user can define an 134 

all_states function which is called, with the event name as an argument, whenever an event 135 

occurs irrespective of the state the task is in. This can be used in combination with timers and 136 

variables to implement task behaviour that occurs independently from or interacts with the 137 

main state set.  For example to make something happen after a specified duration, irrespective 138 

of the current state, the user can set a timer to trigger an event after the required duration, and 139 

use the all_states function to perform the required action whenever the event occurs. 140 

pyControl provides a set of functions for generating random variables, and maths functions 141 

are available via the Micropython maths module.  Though Micropython implements a large 142 

subset of the core Python language (see the Micropython docs), it is not possible to use 143 

packages such as Numpy or Scipy as they are too large to fit on a microcontroller. 144 

Framework implementation 145 

The pyControl framework consists of approximately 1000 lines of Python code.  Figure 2 146 

shows a simplified diagram of information flow between system components.  Hardware inputs 147 

and elapsing timers place events in a queue where they await processing by the state 148 

machine.  When events are processed, they are placed in a data output queue along with any 149 
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state transitions and user print statements that they generate.  This design allows different 150 

framework update processes to be prioritised by urgency, rather than by the order in which 151 

they become necessary, ensuring the framework responds at low latency even under heavy 152 

load (see validation experiments below).  Top priority is given to processing hardware 153 

interrupts, secondary priority to passing events from the event queue to the state machine and 154 

processing their consequences, lowest priority to sending and receiving data from the 155 

computer. 156 

Digital inputs are detected by hardware interrupts and can be configured to generate separate 157 

framework events on rising and/or falling edges.  Analog inputs can stream continuous data 158 

to the computer and trigger framework events when the signal goes above and/or below a 159 

specified threshold. 160 

Hardware 161 

A typical pyControl hardware setup consists of a computer running the GUI, connected via 162 

USB to one or more breakout boards, each of which controls a single behavioural setup 163 

(Figure 3A).  As task code runs on the microcontroller, the computer does not need to be 164 

powerful. We typically use standard office desktops running Windows. We have not 165 

systematically tested the maximum number of setups that can be controlled from one 166 

computer but have run 24 in parallel without issue. 167 

The breakout board interfaces a pyboard microcontroller (an Arm Cortex M4 running at 168 

168MHz with 192KB RAM) with a set of behaviour ports used to connect devices that make 169 

up behavioural setups, and BNC connectors, indicator LEDs and user pushbuttons (Figure 170 

3B).  Each behaviour port is an RJ45 connector (compatible with standard network cables) 171 

with power lines (ground, 5V, 12V), two digital inputs/output (DIO) lines that are directly 172 

Figure 2.  Framework diagram.  Diagram showing the flow of information between different 

components of the framework and the GUI while a task is running.  Right panel shows the priority 

with which processes occur in the framework update loop.  
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connected to microcontroller pins, and two driver lines for switching higher current loads.  The 173 

driver lines are low side drivers (i.e. they connect the negative side of the load to ground) that 174 

can switch currents up to 150mA at voltages up to 12V, with clamp diodes to the 12V rail to 175 

support inductive loads such as solenoids.  Two ports have an additional driver line and two 176 

have an additional DIO.  Six of the behaviour port DIO lines can alternatively be used as 177 

analog inputs and two as analog outputs.  Three ports support UART and two support I2C 178 

serial communication over their DIO lines. 179 

A variety of devices have been developed that connect to the ports, including nose-pokes, 180 

levers, audio boards, rotary encoders, stepper motor drivers, lickometers and LED drivers 181 

(Figures S2-4).  Each has its own driver file that defines a Python class for controlling the 182 

device.  For detailed information about devices see the hardware docs.  The hardware 183 

repository also contains open source designs for operant boxes and sound attenuating 184 

chambers.   185 

Though it is possible to specify the hardware that will be used directly in a task file as shown 186 

in figure 1, it is typically done in a separate hardware definition file that is imported by the task.  187 

This avoids redundancy when many tasks are run on the same setup.  Additionally, abstracting 188 

devices used in a task from the specific pins/ports they are connected to, allows the same task 189 

to run on different setups as long as their hardware definitions instantiate the required devices.  190 

See figures S2-4 for hardware definitions and corresponding hardware diagrams for the 191 

example applications detailed below. 192 

 
Figure 3.  pyControl hardware.  A) Diagram of a typical pyControl hardware setup, a single 

computer connects to multiple breakout boards, each of which controls one behavioural setup.  Each 

behavioural setup is comprised of devices connected to the breakout board RJ45 behaviour ports 

using standard network cables.  B) Breakout board interfacing the pyboard microcontroller with a set 

of behaviour ports, BNC connectors, indicator LEDs and user buttons. See supplementary figures 

S2-4 for hardware configurations used in the behavioural experiments reported in this manuscript, 

along with their associated hardware definition files. For more information see the hardware docs. 
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The design choice of running tasks on a microcontroller, and the specific set of devices 193 

developed to date, impose some constraints on experiments supported by the hardware. The 194 

limited computational resources preclude generating complex visual stimuli, making pyControl 195 

unsuitable for most visual physiology in its current form.  The devices for playing audio are 196 

aimed at general behavioural neuroscience applications, and may not be suitable for some 197 

auditory neuroscience applications.  One uses the pyboard’s internal DAC for stimulus 198 

generation, and hence is limited to simple sounds such as sine waves or noise.  Another plays 199 

WAV files from an SD card, allowing for diverse stimuli but limited to 44KHz sample rate.   200 

To extend the functionality of pyControl to application not supported by the existing hardware, 201 

it is straightforward to interface setups with user created or commercial devices.  This requires 202 

creating an electrical connection between the devices and defining the inputs and outputs in 203 

the hardware definition.  Triggering external hardware from pyControl, or task events from 204 

external devices, is usually achieved by connecting the device to a BNC connector on the 205 

breakout board, and using the standard pyControl digital input or output classes.  More 206 

complex interactions with external devices may involve multiple inputs and outputs and/or 207 

serial communication.  In this case the electrical connection is typically made to a behaviour 208 

port, as these carry multiple signal lines.  A port adapter board, which breaks out an RJ45 209 

connector to a screw terminal, simplifies connecting wires.  Alternatively, if more complex 210 

custom circuitry is required, e.g. to interface with a sensor, it may make sense to design a 211 

custom printed circuit board with an RJ45 connector, similar to existing pyControl devices, as 212 

this is more scalable and robust than implementing the circuit on a breadboard.  To simplify 213 

instantiating devices comprising multiple inputs and outputs, or controlling devices which 214 

require dedicated code, users can define a Python class representing the device.  These are 215 

typically simple classes which instantiate the relevant pyControl input and output objects as 216 

attributes, and may have methods containing code for controlling the device, e.g. to generate 217 

serial commands.  More information is provided in the hardware docs, and the design files and 218 

associated code for existing pyControl devices provide a useful starting point for new designs.  219 

Alla Karpova’s lab at Janelia Research Campus have independently developed and open 220 

sourced several pyControl compatible devices (Github). 221 

For neuroscience applications, straightforward and failsafe synchronisation between 222 

behavioural data and other hardware such as cameras or physiology recordings is essential.  223 

pyControl implements a simple but robust method for this.  Sync pulses are sent from 224 

pyControl to the other systems, which each record the pulse times in their own reference 225 

frame.  The pulse train has random inter-pulse intervals which ensures a unique match 226 

between pulse sequences recorded on each system, so it is always possible to identify which 227 

pulse corresponds to which even if pulses are missing (e.g. due to forgetting to turn a system 228 
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on until after the start of a session). This also makes it unambiguous whether two files come 229 

from the same session in the event of a file name mix-up.  A Python module is provided for 230 

converting times between different systems using the sync pulse times recorded by each.  For 231 

more information see the synchronisation docs. 232 

Graphical User Interface 233 

The GUI provides two ways of setting up and running tasks; the Run task and Experiments 234 

tabs, as well as a Setups tab used to name and configure hardware setups.  235 

The Run task tab allows the user to quickly upload and run a task on a single setup.  It is 236 

typically used for prototyping tasks and testing hardware, but can also be used to acquire data.  237 

The values of task variables can be modified before the task is started or while the task is 238 

running.  During the run, a log of events, state entries, and user print statements is displayed, 239 

and the events, states, and any analog signals are plotted live in scrolling plot panels. 240 

The Experiments tab is used for running experiments on multiple setups in parallel, and is 241 

designed to facilitate high-throughput experiments where multiple users run cohorts of animals 242 

through a set of boxes.  An experiment consists of a set of subjects run in parallel on the same 243 

task.  If different subjects need to be run in parallel on different tasks this can be achieved by 244 

opening multiple instances of the GUI. 245 

To configure an experiment the user specifies which subjects will run on which setups, and 246 

the values of any variables that will be modified before the task starts.  Variables can be set 247 

to the same value for all subjects or for individual subjects.  Variables can be specified as 248 

Persistent, causing their value to be stored on the computer at the end of the session, and 249 

subsequently set to the same value the next time the experiment is run.  Variables can be 250 

specified as Summary, causing their values to be displayed in a table at the end of the 251 

framework run and copied to the clipboard in a format that can be pasted directly into a 252 

spreadsheet, for example to record the number of trials and rewards for each subject.  253 

Experiment configurations can be saved and subsequently loaded.     254 

When an experiment is run, the experiments tab changes from the configure experiment 255 

interface to a run experiment interface.  The session can be started and stopped individually 256 

for each subject or simultaneously for all subjects.  While each setup is running, a log of 257 

events, state entries, and user print statements is displayed, along with the current state, most 258 

recent event and print statement (Figure 4).  Variable values can be viewed and modified for 259 

individual subjects during the session.  A tabbed plot window can be opened showing live 260 

scrolling plots of the events, states and analog signals for each subject, and individual 261 
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subjects’ plots can be undocked to allow behaviour of multiple subjects to be visualised 262 

simultaneously. 263 

The GUI is implemented entirely in Python using the PyQt GUI framework and PyQtGraph 264 

plotting library.  The GUI is cross platform and has been used on Windows, Mac and Linux, 265 

though most development and testing has been under Windows.  The code is organised into 266 

modules for communication with the pyboard, different GUI components, and data 267 

visualisation.   268 

pyControl data 269 

Data from pyControl sessions are saved as text files (see figure S1 for an example).  When a 270 

session starts, information including the subject, task and experiment names, and start data 271 

and time, are written to the data file.  While the task is running, all events and state transitions 272 

are saved automatically with millisecond timestamps.  The user can output additional data by 273 

using the print function in their task file.  This outputs the printed line to the computer, where 274 

it is displayed in the log and saved to the data file, along with a timestamp.  In decision making 275 

tasks, we typically print one line each trial indicating the trial number, the subject’s choice and 276 

trial outcome, along with any other relevant task variables.  If an error occurs while the 277 

framework is running, a traceback reporting the error and line number in the task file where it 278 

 
Figure 4.  pyControl GUI.  The GUI’s Experiments tab is shown on the left running a multi-subject 

experiment, with the experiment’s plot window open on the right showing the recent states and events 

for one subject. For images of the other GUI functionality see the GUI docs. 
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occurred is displayed in the log and written to the data file. Continuous data from analog inputs 279 

is saved in separate binary files. 280 

In addition to data files, task definition files used to generate data are copied to the 281 

experiment’s data folder, with a file hash appended to the file name that is also recorded in 282 

the corresponding session’s data file.  This ensures that every task file version used in an 283 

experiment is automatically saved with the data, and it is always possible to uniquely identify 284 

the specific task file used for a particular session.  If any variables are changed from default 285 

values in the task file this is automatically recorded in the session’s data file.  These automatic 286 

self-documenting features are designed to promote replicability of pyControl experiments.  We 287 

encourage users to treat the versioned task files as part of the experiment’s data and include 288 

them in data repositories. 289 

Modules are provided for importing data files into Python for analysis and for visualising 290 

sessions offline.  Importing a data file creates a Session object with attributes containing the 291 

session’s information and data.  For convenience, two representations of the state and event 292 

data are generated; i) a dictionary whose keys are event and state names, and values are 293 

numpy arrays with the corresponding event or state-entry times, and ii) a list of events and 294 

state-entries in the order they occurred, whose elements are named tuples with the event/state 295 

name and timestamp as attributes.  For more information see the data docs. 296 

Framework Performance 297 

To validate the performance of the pyControl framework we measured the system’s response 298 

latency and timing accuracy.  Response latency was assessed using a task which set a digital 299 

output to match the state of a digital input driven by a square wave signal. We recorded the 300 

input and output signals and plot the distribution of latencies between the two signals across 301 

all rising and falling edges (Figure 5A,B).  In a ‘low load’ condition where the pyboard was not 302 

processing other inputs, response latency was 556 ± 17 μs (mean ± SD).  This latency reflects 303 

the time to detect the change in the input, trigger a state transition, and update the output 304 

during processing of the ‘entry’ event in the new state. We also measured response latency 305 

in a ‘high load’ condition where the pyboard was additionally monitoring two digital inputs each 306 

generating framework events in response to edges occurring as Poisson processes with an 307 

average rate of 200 Hz, and acquiring signal from two analog inputs at 1 kHz sample rate 308 

each.  In this high load condition, the response latency was 859 ± 241 μs (mean ± SD), the 309 

longest latency recorded was 3.3 ms with 99.6% of latencies <2 ms.   310 

To assess timing accuracy, we used a task which turned on a digital output for 10 ms when a 311 

rising edge was received on a digital input.  The input was driven by a 51 Hz square wave to 312 

ensure that the timing of input edges drifted relative to the framework’s 1ms clock ticks.  We 313 
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plot the distribution of errors between the measured durations of the output pulses and the 314 

10ms target duration (Figure 5C,D).  In the low load condition, timing errors were 315 

approximately uniformly distributed across 1 ms (mean error -220 μs, SD 282 μs), as expected 316 

given the 1ms resolution of the pyControl framework clock ticks.  In the high load condition, 317 

timing variability was only slightly increased (mean -10 μs, SD 353 μs), with the largest 318 

recorded error 1.9 ms and 99.5% of errors <1 ms. Overall, these data show that the 319 

framework’s latency and timing accuracy are sufficient for the great majority of neuroscience 320 

applications, even when operating under loads substantially higher than experienced in typical 321 

tasks.   322 

 

Figure 5.  Framework Performance.  A) Distribution of latencies for the pyControl framework to 

respond to a change in a digital input by changing the level of a digital output.  B) As A but under a 

high load condition (see main text).  C) Distribution of pulse duration errors when framework 

generates a 10ms pulse.  D) As C but under a high load condition.  E) Effect of Micropython garbage 

collection on pyControl timers.  Signals are two digital outputs, one toggled on and off every 1ms 

(blue), and one every 5ms (orange), using pyControl timers.  The 1ms timer that that elapsed during 

garbage collection (indicated by grey shading) was processed once garbage collection had finished, 

causing a short delay.  Garbage collection had no effect on the 5ms timer that was running but did 

not elapse during garbage collection.  F) Effect of garbage collection on pyControl inputs.  A signal 

comprising 1ms pulses every 10ms was received by 3 pyControl digital inputs.  Input 1 was 

configured to generated framework events on rising edges (green), input 2 on falling edges (red), 

and input 3 on both rising (blue) and falling (orange) edges.  Garbage collection (indicated by grey 

shading) was triggered 1ms before an input pulse.  Inputs 1 and 2 both generated their event that 

occurred during garbage collection with the correct timestamp. If multiple events occur on a single 

digital input during a single garbage collection, only the last event is generated correctly, causing the 

missing rising event on input 3. 
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Users who require very tight timing/latency performance should be aware of Micropython’s 323 

automatic garbage collection.  Garbage collection is triggered when needed to free up memory 324 

and takes a couple of milliseconds. Normal code execution is paused during garbage 325 

collection, though interrupts (used to register external inputs and update the framework clock) 326 

run as normal.  pyControl timers that elapse during garbage collection are processed once it 327 

has completed (Figure 5E).  Timers that are running but do not elapse during garbage 328 

collection are unaffected.  Digital inputs that occur during garbage collection are registered 329 

with the correct timestamp (Figure 5F), but will only be processed once garbage collection has 330 

completed.  The only situation where events may be missed due to garbage collection is if a 331 

single digital input receives multiple event-triggering edges during a single garbage collection, 332 

in which case only the last event is processed correctly (Figure 5F).  To avoid garbage 333 

collection affecting critical processing, the user can manually trigger garbage collection at a 334 

time when it will not cause problems (see Micropython docs), for example during the inter-trial 335 

interval.  In the latency and timing accuracy validation experiments (Figure 5A-D), garbage 336 

collection was triggered by the task code at a point in the task where it did not affect the 337 

measurements. 338 

A final constraint is that as each event takes time to process, there is a maximum continuous 339 

event rate above which the framework cannot process events as fast as they occur, causing 340 

the event queue to grow until available memory is exhausted.  This rate will depend on the 341 

processing triggered by each event, but is approximately 960Hz for digital inputs triggering 342 

state transitions but no additional processing.  In practice we have never encountered this 343 

when running behavioural tasks as average event rates are typically orders of magnitude lower 344 

and transiently higher rates are buffered by the queue. 345 

 Application examples 346 

We illustrate how pyControl is used in practice with example applications in operant box, head-347 

fixed and maze-based tasks.  Task and hardware definition files for these experiments are 348 

provided in the manuscripts data repository.  For additional use cases see also (Korn et al., 349 

2021; Akam et al., 2021; Koralek and Costa, 2020; Nelson et al., 2020; Blanco-Pozo et al., 350 

2021; van der Veen et al., 2021; Barros et al., 2021; Samborska et al., 2021; Kilonzo et al., 351 

2021; Strahnen et al., 2021).   352 
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Figure 6. 5-choice serial reaction time task. A) Trapezoidal operant box with 5-choice wall (poke-

holes shown illuminated) within a sound-attenuated cubicle. B) High throughput training setup 

comprising 24 operant boxes. C, D) Performance measures on the 5-CSRTT during protocols 

challenging either sustained attention - by shortening the SD or delivering a sound distraction during 

the wating time (C) or motor impulsivity - by extending the ITI to a fixed (fITI) or variable (vITI) length 

(D).  Protocols used are indicated by x-axes.  Note the rather selective decrease of attentional 

performance (accuracy, %omissions) or impulse control (%prematures) achieved by the respective 

challenges. E) Validation of the possibility to detect cognitive enhancement in the 5-CSRTT (9s-fITI 

challenge) by application of atomoxetine, which increased attentional accuracy and decreased 

premature responding, as predicted. Asterisks in (C-E) indicate significant within-subject 

comparisons relative to the baseline (2 s SD, 5 s fITI; C-D) or the vehicle (E) condition (paired-

samples t-test). * P < 0.05, * P < 0.01, * P < 0.001. Error bars display s.e.m. Note that two mice of 

the full cohort (N = 8) did not participate in all challenges as they required more training time to reach 

the baseline stage.   
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5-choice serial reaction time task (5-CSRT) 353 

The 5-CSRT is a longstanding and widely used assay for measuring sustained visual attention 354 

and motor impulsivity in rodents (Carli et al., 1983; Bari et al., 2008).  The subject must detect 355 

a brief flash of light presented pseudorandomly in one of five nose-poke ports, and report the 356 

stimulus location by poking the port, to trigger a reward delivered to a receptacle on the 357 

opposite wall. 358 

We developed a custom operant box for the 5-CSRT (Figure 6 A,B), discussed in detail in a 359 

separate manuscript (Kapaniah, Akam. Kätzel et al. in prep).  The pyControl hardware 360 

comprised a breakout board connected to a 5-poke board, which integrates the IR beams and 361 

stimulus LEDs for the 5 choice ports on a single PCB, a single poke board for the reward 362 

receptacle, an audio board, and a stepper motor board to control a peristaltic pump for reward 363 

delivery (Figure S2). 364 

To validate the setup, a cohort of 8 C57BL/6 mice was trained in the 5-CSRTT using a staged 365 

training procedure (see Methods). The baseline protocol reached at the end of training used 366 

a stimulus duration (SD) of 2 s and a 5 s inter-trial interval (ITI) from the end of reward 367 

consumption to the presentation of the next stimulus.  These task parameters were then 368 

manipulated to challenge subject’s ability to either maintain sustained attention, or withhold 369 

impulsive premature responses.  Attention was challenged in three conditions: by decreasing 370 

the SD to either 1 s or 0.8 s, or by an auditory distraction of 70 dB white noise, played between 371 

0.5 s and 4.5 s of the 5 s ITI.  In all three attention challenges, the accuracy with which subjects 372 

selected the correct port – the primary measure of sustained attention – decreased (P < 0.05; 373 

paired t-tests comparing accuracy under the prior baseline protocol to accuracy under the 374 

challenge condition, Figure 6C). Also, as expected, omissions (i.e. failures to poke any port in 375 

the response window) increased (P < 0.05, t-test).  In the attention challenges, the rate of 376 

premature responses - the primary measure of impulsivity, remained either unchanged (1 s 377 

SD challenge, auditory distraction; P > 0.1, t-test) or changed to a comparatively small extent 378 

(0.8 s SD challenge, P < 0.01, t-test).  Similarly, when impulsivity was challenged by extending 379 

the ITI, to either a 9 s fixed ITI (fITI) or to a pseudo-randomly varied ITI length (vITI), premature 380 

responses increased strongly (P < 0.05, t-test), while attentional accuracy and omissions did 381 

not (Figure 6D).  This specificity of effects of the challenges was as good – if not better – than 382 

that achieved by us previously in a commercial set-up (Med Associates, Inc.) (Grimm et al., 383 

2018). 384 

We further validated the task implementation by replicating effects of a pharmacological 385 

treatment – atomoxetine - that has been shown to reduce impulsivity in the 5-CSRTT (Navarra 386 

et al., 2008; Paterson et al., 2011).  Using the 9 s fITI impulsivity challenge, we found that 2 387 
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mg/kg atomoxetine could reliably reduce premature responding and increase attentional 388 

accuracy (P < 0.05, paired t-test comparing performance under vehicle vs. atomoxetine; 389 

Figure 6E), consistent with its previously described effect in this rodent task (Navarra et al., 390 

2008; Paterson et al., 2011; Pillidge et al., 2014; Fitzpatrick and Andreasen, 2019).  391 

  392 

 

 
Figure 7.   Vibrissae-based object localisation task.  A) Diagram of the behavioural set up. Head-

fixed mice were positioned on a treadmill with their running speed monitored by a rotary encoder. A 

pole was moved into the whisker field by a linear motor, with the anterior-posterior location controlled 

using a stepper motor.  Water rewards were delivered via a spout positioned in front of the animal 

and licks to the spout were detected using an electrical lickometer. B) Trial structure: before stimulus 

presentation, the stepper motor moved into the trial position (anterior or posterior). Next, the linear 

motor translated the stepper motor and the attached pole close to the mouse’s whisker pad, starting 

the stimulation period. A lick window (during Go trials), or withhold window (during NoGo trials) 

started after the pole was withdrawn. FA = false alarm; CR = correct rejection. C) pyControl 

simultaneously recorded running speed (top trace) and licks (black dots) of the animals, as well as 

controlling stimulus presentation (blue and red bars for Go and NoGo stimuli) and solenoid opening 

(black crosses). D) Percentage of correct trials for 3 mice over the training period. Mice were 

considered expert on the task after reaching 75% correct trials (dotted line) and maintaining such 

performance for 3 consecutive days. E) Detected licks before, during and after tactile stimulation, 

during an early session before the mouse has learned the task, sorted by trial type: HIT trials (blue), 

CORRECT REJECTION trials (green), FALSE ALARMS trials (red), and MISS trials (black). Each 

row is a trial, each dot is a detected lick. Correct trials for this session were 47.9% of total trials. F) 

As E  but for data from the same mouse after reaching the learning threshold (correct trials = 89.3% 

of total trials). 
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Vibrissae-based object localisation task: 393 

We illustrate pyControl’s utility for head-fixed behaviours with a version of the vibrissae-based 394 

object localisation task (O’Connor et al., 2010).  Head-fixed mice used their vibrissae 395 

(whiskers) to discriminate the position of a pole moved into the whisker field at one of two 396 

different anterior-posterior locations (Figure 7A).  The anterior ‘Go’ location indicated that 397 

licking in a response window after stimulus presentation would deliver a water reward, while 398 

the posterior ‘NoGo’ location indicated that licking in the response window would trigger a 399 

timeout (Figure 7B).  Unlike in the original task mice were positioned on a treadmill allowing 400 

them to run.  Although running was not required to perform the task, we observed 10-20 s 401 

running bouts alternated with longer stationary periods (Figure 7C), in line with previous 402 

reports (Ayaz et al., 2019).  pyControl hardware used to implement the setup comprised a 403 

breakout board, a stepper motor driver to control the anterior-posterior position of the stimulus, 404 

a lickometer, and a rotary encoder to measure running speed (Figure S3).  405 

Mice were first familiarised with the experimental setup by head-fixing them on the treadmill 406 

for increasingly long periods of time (5-20 min) over three days. From the fourth day, mice 407 

underwent a “detection training”, during which the pole was only presented in the Go position, 408 

and water automatically delivered after each stimulus presentation. We then progressively 409 

introduced NoGo trials, and made water delivery contingent on the detection of one or more 410 

licks in the response window. Subjects reached 75% correct performance within five to nine 411 

days from the first training session, at which point, they were trained for at least three further 412 

days to make sure that they had reliably learned the task (Figure 7D).  Early in training, mice 413 

frequently licked prior to and during stimulus presentation, as well as during the response 414 

window, on both Go and NoGo trials (Figure 7E).  Following learning, licking prior to and during 415 

stimulus presentation was greatly reduced, and mice licked robustly during the response 416 

window on Go trials and withheld licking on NoGo trials, performing a high percentage of Hit 417 

and Correct Rejection trials (Figure 7F). 418 

Social decision-making task: 419 

Our final application example is a maze-based social decision making task for mice, adapted 420 

from that developed for rats by Márquez et al. (2015).  In this task a ‘focal’ animal’s choices 421 

determine reward delivery for a ‘recipient’ animal, allowing preference for ‘prosocial’ vs ‘selfish’ 422 

choices to be examined. The behavioural apparatus comprised an automated double T-maze 423 

(Figure S4). Each T-maze consisted of a central corridor with nose-poke ports on each side 424 

(choice area) and two side arms each with a food receptacle connected to a pellet dispenser 425 

at the end (Figure 8A,B).  Access from the central choice area to the side arms was controlled 426 

by pneumatic doors. 427 
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Figure 8.   Social decision making task.  .A) Top view of double T maze apparatus showing two 

animals interacting during social decision making. B) Setup diagram; In each T maze, nose pokes 

are positioned on either side of the central choice area.  Sliding pneumatic doors give access to the 

side arms of each maze (top and bottom in diagram) where pellet dispensers deliver food rewards. 

Six IR beams (depicted as grey and red circles connected by a dotted red line) detect the position of 

the animals to safely close the doors once access to an arm is secured. C)  Focal animal individual 

training showing the number of trials completed per minute (left panel) and side bias (right panel) 

across days of training.  D) As C but for the recipient animal.  E) Social decision making task.  The 

trial starts with both animals in the central arm.  The recipient animal has learnt in previous individual 

training to poke the port on the upper side of the diagram to give access to a food pellet in the 

corresponding reward area.  During the social task the recipient animal’s ports no longer control the 

doors but the animal can display food seeking behaviour by repeatedly poking the previously trained 

port.  The focal animal has previously learned in individual training to collect food from the reward 

areas on both sides (top and bottom of diagram) by poking the corresponding port in the central 

choice area to activate the doors.  During social decision making, the focal animal can either choose 
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 The task comprised two separate stages: (1) Individual training; where animals learn to open 428 

doors by poking the ports in the central arms and retrieve pellets in the side arms.  (2) Social 429 

testing; where the decisions of the focal animal control the doors in both mazes, and hence 430 

determine rewards for both itself and the recipient animal in the other maze. 431 

The individual training protocols were different for the focal and recipient animals.  During 432 

individual training for the focal animal, a single poke in either port in the central arm opened 433 

the corresponding door, allowing access to a side arm.   Accessing either side arm was 434 

rewarded with a pellet at the food receptacle in the arm. Under this schedule subjects 435 

increased their rate of completing trials over 7 training days (Figure 8C, repeated measures 436 

ANOVA F(6,42)=12.566 p=0.000004) without developing a bias for either side of the maze (P 437 

> 0.27 for all animals, t-test).  During individual training for the recipient animal, only one of 438 

the nose-poke ports in the central arm was active, and the number of pokes required to open 439 

the corresponding door increased over 13 days of training, with 4 pokes eventually required 440 

to access the side arm to obtain a pellet in the food receptacle.  Under this schedule the 441 

recipient animals developed a strong preference for the active poke over the course of training 442 

(Figure 8D right panel, repeated measures ANOVA F(12,24)=3.908 p=0.002), with 443 

approximately 95% of pokes directed to the active side by the end of training. 444 

During social testing, the two animals were placed in the double T-maze, one in each T, 445 

separated by a transparent perforated partition that allowed the animals to interact using all 446 

sensory modalities.  The doors in the recipient animal’s maze were no longer controlled by the 447 

recipient animal’s pokes, but were rather yoked to the doors of the focal animal, such that a 448 

single poke to either port in the focal animals choice area opened the doors in both mazes on 449 

the corresponding side.  As in individual training, the focal animal was rewarded for accessing 450 

either side, while the recipient animal was rewarded only when it accessed one side of the 451 

maze.  The choice made by the focal animal therefore determined whether the recipient animal 452 

received reward, so the focal animal could either make ‘pro-social’ choices which rewarded 453 

the ‘prosocial’ port, giving both animals access to the side (upper on diagram) of their respective 

mazes where both receive reward, or can choose the ‘selfish’ port, giving both animals access to the 

other side (lower on diagram) where only the focal animal receives reward. F)  Raster plot showing 

behaviour of a pair of animals over one session during early social testing. Nose pokes are 

represented by vertical lines, and colour coded according to the role of each mouse and choice type 

(grey – recipient’s pokes, which are always directed towards the prosocial side, blue – focal’s pokes 

in the prosocial choice port , red – focal’s pokes in selfish port). Note that latency for focal choice 

varies depending on the trial, allowing the recipient to display its food seeking behaviour or not. 

Circles indicate the moment where each animal visits the food-receptacle in their reward arm. Focal 

animals are always rewarded, and the colour of the filled circle indicates the type of trial after decision 

(blue – prosocial choice, red – selfish choice). Grey circles indicate time of receptacle visit for 

recipients, where filled circles correspond to prosocial trials, where recipient is also rewarded, and 

open circles to selfish trials, where no pellet is delivered.  
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both it and the recipient, or ‘selfish’ choices which rewarded only the focal animal.  As a proof 454 

of concept, we show nose pokes and reward deliveries from a pair of interacting mice from 455 

one social session (Figure 8F).  A full analysis of the social behaviour in this task will be 456 

published separately (Esteve-Agraz and Marquez, in preparation). 457 

Discussion 458 

pyControl is an open source system for running behavioural experiments, whose principal 459 

strengths are: 1. a flexible and intuitive Python based syntax for programming tasks.  2.  460 

Inexpensive, simple and extensible behavioural hardware that can be purchased commercially 461 

or assembled by the user.  3.  A GUI designed for efficiently running high throughput 462 

experiments on many setups in parallel from a single computer. 4. Extensive online 463 

documentation and user support. 464 

pyControl can contribute to behavioural neuroscience in two important ways: First, it makes it 465 

quicker, easier and cheaper to implement a wide range of behavioural tasks and run them at 466 

scale.  Second, it facilitates communication and reproducibility of behavioural experiments, 467 

both because the task definition syntax is highly readable, and because self-documenting 468 

features ensure that the exact task version and parameters used to generate data are 469 

automatically stored with the data itself. 470 

pyControl’s strengths and limitations stem from underlying design choices.  We will discuss 471 

these primarily in relation to two widely used open source systems for experiment control in 472 

neuroscience Bpod (Josh Sanders) and Bonsai  (Lopes et al., 2015).  Bpod is a useful point 473 

of comparison as it is probably the most similar project to pyControl in terms of functionality 474 

and implementation, Bonsai because it represents a very different but powerful formalism for 475 

controlling experiments that is often complementary.  Space constraints preclude detailed 476 

comparison with other projects, but see (Devarakonda et al., 2016; O’Leary et al., 2018; Kim 477 

et al., 2019; Gurley, 2019; Saunders and Wehr, 2019; Bhagat et al., 2020; Buscher et al., 478 

2020). 479 

Both pyControl and Bpod provide a state-machine-based task definition syntax in a high-level 480 

programming language, run the state machine on a microcontroller, have commercially 481 

available open source hardware, graphical interfaces for controlling experiments, and are 482 

reasonably mature systems with a substantial user base beyond the original developers.  483 

Despite these commonalities, there are significant differences which it is useful for prospective 484 

users to understand.   485 

The first is that in pyControl, user created task definition code runs directly on a pyboard 486 

microcontroller, supported by framework code that determines when user defined functions 487 
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are called.  This contrasts with Bpod, where user code written in either Matlab (Bpod) or 488 

Python (PyBpod) is translated into instructions passed to the microcontroller, which itself runs 489 

firmware implemented in the lower-level language C++.  These two approaches offer distinct 490 

advantages and disadvantages.   491 

Running user Python code directly on the microcontroller avoids separating the task logic into 492 

two conceptually distinct levels – flexible code written in a high-level language that runs on the 493 

computer, and the more constrained set of operations supported by the microcontroller 494 

firmware.  Our understanding of how this works in Bpod is that the high level user code 495 

implements a loop over trials where each loop defines a finite state machine for the current 496 

trial - specifying for each state which outputs are on, and which events trigger transitions to 497 

which other states, then uploads this information to the microcontroller, runs the state machine 498 

until it reaches an exit condition indicating the end of the trial, and finally receives information 499 

from the microcontroller about what happened before starting the next trial’s loop.  The 500 

microcontroller firmware implements some functionality beyond a strict finite state machine 501 

formalism, including timers and event counters that are not tied to a particular state, but does 502 

not support arbitrary user code or variables.  We suggest readers consult the relevant 503 

documentation (pyControl, Bpod, PyBpod) and example tasks (pyControl, Bpod, pyBpod) to 504 

compare syntaxes directly.  A second advantage of running user code directly on the 505 

microcontroller is that the user has direct access from their task code to microcontroller 506 

functionality such as serial communication.  A third is that the pyControl framework (as well 507 

as the GUI) is written in Python rather than C++, facilitating code maintenance, and lowering 508 

the barrier to users extending system functionality. 509 

The two principal disadvantages of running the task entirely on the microcontroller are: 1) 510 

although modern microcontrollers are very capable, their resources are more limited than a 511 

computer - which constrains how computationally and memory intensive task code can be and 512 

precludes using modules such as Numpy. 2) Lack of access to the computer from task code, 513 

for example to interact with other programs or display custom plots.  To address these 514 

limitations, we are currently developing an application programming interface (API) to allow 515 

pyControl tasks running on the microcontroller to interact with user code running on the 516 

computer.  This will work via the user defining a Python class with methods that get called at 517 

the start and end of the run for initial setup and post-run clean-up, as well as an update method 518 

called regularly during the run with any new data received from the board as an argument. 519 

There are also differences in hardware design.  The two most significant are; 1) The pyControl 520 

breakout board tries to make connectors (behaviour ports and BNC) as flexible as possible at 521 

the cost of not being specialised for particular functions.  Bpod tends to use a given connector 522 
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for a specific function - e.g. it has separate behaviour ports and module ports, with the former 523 

designed for controlling a nose-poke, and the latter for UART serial communication with 524 

external modules.  Practically, this means that pyControl exposes microcontroller pins (which 525 

often support multiple functions) directly on connectors whereas Bpod tends to incorporate 526 

intervening circuitry such as electrical isolation for BNC connectors and serial line driver ICs 527 

on module ports.  2)  Bpod uses external modules, each with its own microcontroller and C++ 528 

firmware, for functions which pyControl implements using the microcontroller on the breakout 529 

board, specifically; analog input and output, I2C serial communication, and acquiring signal 530 

from a rotary encoder. These design choices make pyControl hardware simpler and cheaper.  531 

Purchased commercially the Bpod state machine costs $765, compared to €250 for the 532 

pyControl breakout board, and Bpod external modules each cost hundreds of dollars.  This is 533 

not to say that pyControl necessarily represent better value; a given Bpod module may offer 534 

more functionality (e.g. more channels, higher sample rates).  But the two systems do 535 

represent different design approaches. 536 

Both the pyControl and pyBpod GUI’s support configuring and running experiments on multiple 537 

setups in parallel from a single computer, while the Matlab based Bpod GUI controls a single 538 

setup at a time.  Their user interfaces are each very different; the respective user guides 539 

(pyControl, Bpod, PyBpod) give the best sense for the different approaches.  We think it is a 540 

strength of the pyControl GUI, reflecting the relative simplicity of the underlying code base, 541 

that scientist users not originally involved in the development effort have made substantial 542 

contributions to its functionality (see GitHub pull requests). 543 

Bonsai (Lopes et al., 2015) represents a very different formalism for experiment control that is 544 

not based around state machines.  Instead, the Bonsai user designs a dataflow by arranging 545 

and connecting nodes in a graphical interface, where nodes may represent data sources, 546 

processing steps, or outputs.  Bonsai can work with a diverse range of data types including 547 

video, audio, analog and digital signals.  Multiple data streams can be processed in parallel 548 

and combined via a rich set of operators including arbitrary user code.  Bonsai is very powerful, 549 

and it is likely that any task implemented in pyControl could also be implemented in Bonsai. 550 

The reverse is certainly not true, as Bonsai can perform computationally demanding real time 551 

processing on high dimensional data such as video, which is not supported by pyControl.    552 

Nonetheless, in applications where either system could be used, there are reasons why 553 

prospective users might consider pyControl:  1) pyControl’s task definition syntax may be more 554 

intuitive for tasks where (extended) state machines are a natural formalism.  The reverse is 555 

true for tasks requiring parallel processing of multiple complex data streams. 2)  pyControl is 556 

explicitly designed for efficiently running high throughput experiments on many setups in 557 
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parallel.  Though it is possible to control multiple hardware setups from a single Bonsai 558 

dataflow, Bonsai does not explicitly implement the concept of a multi-setup experiment so the 559 

user must duplicate dataflow components for each setup themselves.  As task parameters 560 

and data file names are specified across multiple nodes in the dataflow, configuring these for 561 

a cohort of subjects can be laborious - though it is possible to automate this by calling Bonsai’s 562 

command line interface from user created Python scripts. 3) pyControl hardware modules can 563 

simplify the physical construction of behavioural setups.  Though Bonsai itself is software, 564 

some compatible behavioural hardware has been developed by the Champalimaud 565 

Foundation Hardware Platform (https://www.cf-hw.org/harp), which offers tight timing 566 

synchronisation and close integration with Bonsai, though documentation is currently limited.  567 

In practice, we think the two systems are often complementary; for example we use Bonsai in 568 

our workflow for acquiring and compressing video data from sets of pyControl operant boxes 569 

(Github), and we hope to integrate them more closely in future.  570 

pyControl is under active development.  We are currently prototyping a home-cage training 571 

system which integrates a pyControl operant box with a mouse home-cage, via an access 572 

control module which allows socially housed animals to individually access the operant box to 573 

train themselves with minimal user intervention.  We are also developing hardware to enable 574 

much larger scale behavioural setups, such as complex maze environments with up to 68 575 

behaviour ports per setup.  As discussed above, we are finalising an API to allow pyControl 576 

tasks to interact with user Python code running on the computer.   577 

In summary, pyControl is a user friendly and flexible tool addressing a commonly encountered 578 

use case in behavioural neuroscience; defining behavioural tasks as extended state 579 

machines, running them efficiently as high throughput experiments, and communicating task 580 

logic to other researchers. 581 
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 597 

Methods 598 

pyControl task files used in all experiments, and data and analysis code for the performance 599 

validation experiments, are included in the manuscript’s data and code repository.   600 

Framework performance validation 601 

Framework performance was characterised using pyboards running Micropython version 1.13 602 

and pyControl version 1.6.  Electrical signals used to characterise response latency and timing 603 

accuracy (Figure 5) were recorded at 50 kHz using a Picoscope 2204A USB oscilloscope.  604 

To assess response latency (Figure 5A,B), a pyboard running the task file input_follower.py 605 

received a 51 Hz square wave input generate by the picoscope’s waveform generator.  The 606 

task turned an output on and off to match the state of the input signal. The latency distribution 607 

was assessed by recording 50 seconds of the input and output signals and evaluating the 608 

latency between the signals at each rising and falling edge.   609 

Key Resources Table 

Reagent 
type 
(species) 
or 
resource 

Designation Source or reference 

Ide
ntif
ier
s 

Additional 
information 

Software  
 pyControl 
code 

 https://github.com/pyControl
/code 

  

 Repository 
containing 
pyControl GUI 
and framework 
code. 

Hardware 
 pyControl 
hardware 

 https://github.com/pyControl
/hardware 

  

 Repository 
containing 
pyControl 
hardware 
designs 

Document
ation 

 pyControl 
Docs 

 https://pycontrol.readthedoc
s.io 

  
 pyControl 
documentation 

Data  
Data 
repository 

https://github.com/pyControl/
manuscript 

 

Repository 
containing 
pyControl task 
files, data and 
analysis code 
associated with 
the manuscript. 
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To assess timing accuracy (Figure 5C,D), a pyboard running the task file triggered_pulses.py 610 

received a 51Hz square wave input generate by the picoscope’s waveform generator.  The 611 

task triggered a 10ms output pulse whenever a rising edge occurred in the input signal.  The 612 

output signals was recorded for 50 s and the duration of each output pulses was measured to 613 

assess the distribution of timing errors. 614 

In both cases the experiments were performed separately in a low load and high load 615 

condition.  In the low load condition the task was not monitoring any other inputs.  In the high 616 

load condition, the task was additionally acquiring data from two analog inputs at 1 kHz sample 617 

rate each, and monitoring two digital inputs, each of which was generating framework events 618 

in response to edges occurring as a Poisson process with average rate 200 Hz.  These 619 

Poisson input signals were generated by a second pyboard running the task 620 

poisson_generator.py. 621 

To assess the effect of garbage collection on pyControl timers (Figure 5E), the task file 622 

gc_timer_test.py was run on a pyboard.  This uses pyControl timers to toggle one digital output 623 

on and off every 1 ms and another every 5ms.  The resulting signals were recorded using the 624 

picoscope and plotted around a garbage collection episode identified by visually inspecting 625 

the 1 ms timer signal. 626 

To  assess the effect of garbage collection on digital input processing (Figure 5F), a signal 627 

comprising 1ms pulses every 10ms was generated using the picoscope, and connected to 3 628 

digital inputs on a pyboard running the task gc_inputs_test.py.  The task configures one input 629 

to generate events on rising edges, one on falling edges and one on both rising and falling 630 

edges, and uses a pyControl timer to trigger garbage collection 1ms before a subset of the 631 

input pulses.  Event times recorded by pyControl were plotted to generate the figure.  632 

Analysis and plotting of the framework validation data was performed in Python using code 633 

included in the data repository. 634 

Application examples 635 

5 choice serial reaction time task: 636 

Animals 637 

The 5-CSRTT experiment used a cohort of 8 male C57BL/6 mice, aged 3-4 months at the 638 

beginning of training. Animals were group-housed (2-3 mice per cage) in Type II-Long 639 

individually ventilated cages (Greenline, Tecniplast, G), enriched with sawdust, sizzle-nestTM, 640 

and cardboard houses (Datesand, UK), and subjected to a 13 h light / 11 h dark cycle. Mice 641 

were kept under food-restriction at 85-95% of their average free-feeding weight which was 642 
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measured over 3 d immediately prior to the start of food-restriction at the start of the 643 

behavioural training. Water was available ad libitum. 644 

This experiment was performed in accordance to the German Animal Rights Law 645 

(Tierschutzgesetz) 2013 and approved by the Federal Ethical Review Committee 646 

(Regierungsprädsidium Tübingen) of Baden-Württemberg. 647 

Behavioural hardware 648 

The design of the operant boxes for the 5-CSRTT setups will be discussed in detail in a 649 

separate manuscript (Kapaniah, Akam, Kätzel et al. in prep).  Briefly, the box had a trapezoidal 650 

floorplan with the 5 choice wall at the wide end and reward receptacle at the narrow end of 651 

the trapezoid, to minimize the floor area and hence reduce distractions.  The side-walls and 652 

roof were made of transparent acrylic to allow observation of the animal, the remaining walls 653 

were made from opaque PVC to minimize visual distractions (Figure 6a).  Design files for the 654 

operant box, and peristaltic and syringe pumps for reward delivery, are at 655 

https://github.com/KaetzelLab/Operant-Box-Design-Files. Potentially distracting features 656 

(house light, cables) were located outside of the box and largely invisible from the inside. The 657 

pyControl hardware used and the associated hardware definition is shown in figure S2.  The 658 

operant box was enclosed by a sound attenuating chamber, custom made in 20mm melamine-659 

coated MDF, adapted from a design in the hardware repository.  The pyControl breakout 660 

boards, and other PCBs that were not integrated into the box itself, were mounted on the 661 

outside of the sound attenuating chamber, and a CCTV camera was mounted on the ceiling 662 

to monitor behavior. 663 

 5-CSRTT training 664 

The 5-CSRTT training protocol was similar to what we described previously (Grimm et al., 665 

2018; van der Veen et al., 2021). In brief, after initiation of food-restriction, mice were 666 

accustomed to the reward (strawberry milk, MüllermilchTM, G) in their home cage and in the 667 

operant box (2-3 exposures each). Then, mice were trained on a simplified operant cycle in 668 

which all holes of the 5-poke wall were illuminated for an unlimited time, and the mouse could 669 

poke into any one of them to illuminate the reward receptacle on the opposite wall and 670 

dispense a 40 l milk reward. Once mice attained at least 30 rewards each in two consecutive 671 

sessions, they were moved to the 5-CSRTT task.  672 

During 5-CSRTT training, mice transitioned through five stages of increasing difficulty, based 673 

on reaching performance criteria in each stage (Table 1).  The difficulty of each stage was 674 

determined by the length of time the stimulus was presented (stimulus duration, SD) and the 675 
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length of the inter-trial interval (ITI) between the end of the previous trial and the stimulus 676 

presentation on the next trial. 677 

The ITI was initiated when the subject exited the reward receptacle after collection of a reward, 678 

or by the end of a time-out period (see below). The ITI was followed by illumination of one hole 679 

on the 5-choice wall for the SD determined by the training stage. A poke in the correct port 680 

during the stimulus, or during a subsequent 2s hold period, was counted as a correct 681 

response, illuminating the reward receptacle and dispensing 20 l of milk.  If the subject either 682 

poked into any hole during the ITI (premature response), poked into a non-illuminated hole 683 

during the SD or hold period (incorrect response), or failed to poke during the trial (omission), 684 

the trial was not rewarded but instead terminated with a 5 s time-out during which the house 685 

light was turned off. The relative numbers of each response type were used as performance 686 

indicators measuring premature responding [%premature = 100*(number of premature 687 

responses)/(number of trials)], sustained attention [accuracy = 100*(number of correct 688 

responses)/(number of correct and incorrect responses)], and lack of participation 689 

[%omissions = 100*(number of omissions)/(number of trials)]. In all stages and tests, sessions 690 

lasted 30 min and were performed once daily at the same time of day.  691 

Test days with behavioural challenges were interleaved with at least one training day on the 692 

baseline stage (stage 5; see Table 1 for parameters of all stages). For pharmacological 693 

5-CSRTT  training 

  Task Parameters Criteria for stage transition (2 consecutive days) 

Stage SD (s) ITI (s) # correct % correct % accuracy %omissions 

S1 20 2 >= 30 >= 40 - - 

S2 8 2 >= 40 >= 50 - - 

S3 8 5   >= 80 <= 50 

S4 4 5   >= 80 <= 50 

S5 2 5   >= 80 <= 50 

Challenges 

C1 2 9 Impulsivity challenge 

C2 1 5 Attention challenge 1 

C3 0.8 5 Attention challenge 2 

C4 2 5 Distraction: 1s white noise within 0.5-4.5s of ITI 

C5 2 7, 9, 11, 13 Variable ITI: pseudo-random, equal distribution 
 

Table 1. 5-CSRTT Training and challenge stages. The parameters stimulus duration (SD) and 

intertrial-interval (ITI, waiting time before stimulus) are listed for each of the 5 training stages (S1-5) 

and the subsequent challenge protocols on which performance was tested for 1 day each (C1-5). 

For the training stages, performance criteria which had to be met by an animal on two consecutive 

days to move to the next stage are listed on the right. See Methods for the definition of these 

performance parameters. 
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validation, atomoxetine (Tomoxetine hydrochloride, Tocris, UK) diluted in sterile saline (0.2 694 

mg/ml) or saline vehicle were injected i.p. at 10 l/g mouse injection volume 30 min before 695 

testing started. For atomoxetine vs. vehicle within-subject comparison, two tests were 696 

conducted separated by one week, whereby four animals received atomoxetine on the first 697 

day, while the other four received vehicle and vice versa for the second day. Effects of 698 

challenges (compared to performance on the prior day with baseline training) and atomoxetine 699 

(compared to performance under vehicle) were assessed by paired-samples t-tests.  700 

Behavioural data gathered in the 5-CSRTT was analysed with Excel and SPSS26.0 (IBM Inc., 701 

US). 702 

Vibrissae-based object localisation task: 703 

Animals 704 

Subjects were three female mice expressing the calcium-sensitive protein GCaMP6s in 705 

excitatory neurons, derived by mating the floxed Ai94(TITL-GCaMP6s)-D line (Jackson 706 

Laboratories; stock number 024742) with the CamKII-tta (Jackson Laboratories; stock number 707 

003010).  Animal husbandry and experimental procedures were approved and conducted in 708 

accordance with the United Kingdom Animals (Scientific Procedures) Act 1986 under project 709 

license P8E8BBDAD and personal licenses from the Home Office. 710 

Behavioural hardware 711 

Mice were head-fixed on a treadmill fashioned from a 24 cm diameter Styrofoam cylinder 712 

covered with 1.5 mm thick neoprene. An incremental optical encoder (Broadcom HEDS-713 

5500#A02; RS Components) was used in conjunction with a pyControl rotary encoder adapter 714 

to monitor mouse running speed. The pole used for object detection was a blunt 18G needle 715 

mounted, via a 3d-printed arm, onto a stepper motor  (RS PRO Hybrid 535-0467; RS 716 

Components). The stepper motor was mounted onto a motorized linear stage (DDSM100/M;  717 

Thorlabs) used to move the pole toward and away from the whisker pad (controlled by a  K-718 

Cube Brushless DC Servo Driver (KBD101; Thorlabs).  The pyControl hardware used and the 719 

associated hardware definition is shown in figure S3. 720 

Surgery 721 

6-10 week old mice were anesthetised with isoflurane (0.8-1.2% in 1 L/min oxygen) and 722 

implanted with custom titanium headplates for head-fixation and 4 mm diameter cranial 723 

windows for imaging as described previously (Chong et al., 2019).  Peri- and post-operative 724 
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analgesia was used (meloxicam 5mg/kg and buprenorphine 0.1 mg/kg) and mice were 725 

carefully monitored for 7 days post-surgery.  726 

Behavioural training 727 

Following recovery from surgery, mice were habituated to head-fixation (Chong et al., 2019) 728 

prior to training on the vibrissa-based object localisation task as detailed in the results section.  729 

Data were analysed using MATLAB (Mathworks). 730 

Social decision making task: 731 

Animals 732 

12 male C57BL6/J mice (Charles River, France) were used, aged 3 months at the beginning 733 

of the experiment.  Animals were group-housed (4 animals per cage) and maintained with ad 734 

libitum access to food and water in a 12 – 12 h reversed light cycle (lights off at 8 am) at the 735 

Animal Facility of the Instituto de Neurociencias of Alicante. Short food restrictions (2 h before 736 

the behavioural testing) were performed in the early phases of individual training to increase 737 

motivation for food-seeking behaviour, otherwise animals were tested with ab libitum chow 738 

available in their home cage.  All experimental procedures were performed in compliance with 739 

institutional Spanish and European regulations, as approved by the Universidad Miguel 740 

Hernández Ethics committee.   741 

Behavioural hardware 742 

The Social decision making task was performed in a double maze, where two animals, the 743 

focal and the recipient, would interact and work to obtain food rewards. The outer walls of the 744 

double maze were of white laser cut acrylic. Each double maze was divided by a transparent 745 

and perforated wall creating the individual mazes for each mouse. For each individual maze, 746 

inner walls separating central choice and side reward areas, contained the mechanisms for 747 

sliding doors, 3D printed nose-pokes and position detectors. These inner walls were made of 748 

transparent laser cut acrylic, in order to allow visibility of the animal in the side arms of the 749 

maze. Walls of the central choice area were frosted to avoid reflections that could interfere 750 

with automated pose estimation of the interacting animals in this area. 751 

Each double T-maze behavioural setup was positioned inside a custom-made sound isolation 752 

box, with an infra-red sensitive camera (PointGrey Flea3 -U3-13S2M CS, Canada) positioned 753 

above the maze to track the animals’ location. The chamber was illuminated with dim white 754 

light (4 lux) and infra-red illumination located on the ceiling of the sound attenuating chamber.  755 

The pyControl hardware configuration and associated hardware definition file are shown in 756 
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figure S4.  Food pellet rewards were dispensed using pellet dispensers made of 3D printed 757 

and laser cut parts actuated by a stepper motor (NEMA 42HB34F08AB, e-ika electrónica y 758 

robótica, Spain) controlled by a pyControl stepper driver board, placed outside the sound 759 

isolation box and delivering the pellets to the 3D printed food receptacles through a silicon 760 

tube.  Design files for the pellet dispenser and receptacles are at 761 

https://github.com/MarquezLab/Hardware. The sliding doors that control access to the side 762 

arms were actuated by pneumatic cylinders (Cilindro ISO 6432, Vestonn Pneumatic, Spain) 763 

placed below the base of the maze, providing silent and smooth horizontal movement of the 764 

doors. These were in turn controlled via solenoid valves (8112005201, Vestonn Pneumatic, 765 

Spain)  interfaced with pyControl using an optocoupled relay board (Cebek- T1, Fadisel, 766 

Spain).  The speed of the opening/closing of the doors could be independently regulated by 767 

adjusting the pressure of the compressed air to the solenoid valves. 768 

Behavioural training 769 

Individual training and social decision making protocols are described in the results section. 770 

All behavioural experiments and were performed during the first half of the dark phase of the 771 

cycle.  Data were analysed with Python (Python Software Foundation, v3.6.5) and statistical 772 

analysis performed with IBM SPSS Statistics (version 26).  773 
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Supplementary Figures 868 

I Experiment name  : run_task 
I Task name : example_task 
I Task file hash : 2791769213 
I Setup ID : COM1 
I Subject ID : m001 
I Start date : 2021/09/17 10:30:59 
 
S {"LED_on": 1, "LED_off": 2} 
 
E {"button_press": 3} 
 
D 0 2 
D 2699 3 
P 2700 Press number 1 
D 4879 3 
P 4880 Press number 2 
D 5340 3 
P 5341 Press number 3 
D 5341 1 
D 6341 2 
V 13463 press_n 2 
D 20338 3 
P 20339 Press number 3 
D 20339 1 
D 21339 2 
 

Figure S1 (related to figure 1).  Example data file.  Text file generated by running the example task 869 

shown in figure 1.  Lines beginning I contain information about the session including subject, task and 870 

experiment names, start date and time. The single line beginning S is a JSON object (also a Python 871 

dict) containing the state names and corresponding IDs used below in the data file. The single line 872 

beginning E is a JSON object containing the event names and corresponding IDs. Lines beginning D 873 

are data lines generated while the framework was running, with format D timestamp ID where 874 

timestamp is the time in milliseconds since the start of the framework run and ID is a state ID 875 

(indicating a state transition) or an event ID (indicating an event occurred).  Lines beginning P are the 876 

output of print statements with format P timestamp printed output.  The line beginning V indicates the 877 

value of a task variable that has been set by the user while the task was running, along with a 878 

timestamp. 879 
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 881 

 882 

Figure S2 (related to figure 6).  Hardware configuration for 5-choice serial reaction time task. 883 

Diagram of hardware modules used to implement the 5-CSRT task.  A breakout board is connected to 884 

a Five-poke board which integrates the IR beams and LEDs for the ports on the 5 choice wall onto a 885 

single PCB controlled from two behaviour ports, a stepper motor controller is used with a custom 886 

made 3D printed peristaltic pump for reward delivery, a single poke board is used for the reward 887 

receptacle with a 12v LED module used for house light connected to its solenoid output connector, 888 

and an audio board for generating auditory stimuli.  The hardware definition for this setup is provided 889 

in the manuscript’s code repository (link). 890 
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 892 

 893 

Figure S3 (related to figure 7).   Hardware configuration for vibrissae-based object localisation 894 

task. Diagram of the hardware modules used to implement the head-fixed vibrissae-based object 895 

localisation task.  A breakout board is connected to a rotary encoder module, used to measure running 896 

speed, a lickometer, used to detect licks and control the reward solenoid, a stepper motor controller 897 

used to set the anterior-posterior position of the stimulus, and a controller for the linear stage used to 898 

move the stimulus in and out of the whisker field.  The hardware definition for this setup is provided in 899 

the manuscript’s code repository (link). 900 
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 902 

Figure S4 (related to figure 8).   Hardware configuration for social decision making task.  Diagram 903 

of the hardware modules used to implement the double T maze apparatus for the social decision making 904 

task.  A port expander is used to provide additional IO lines for IR beams, stepper motor controller 905 

boards are used to control custom made pellet dispensers, and a relay interface board is used to control 906 

the solenoids actuating the pneumatic doors. The hardware definition for this setup is provided in the 907 

manuscript’s code repository (link). 908 
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