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Abstract

Functional near-infrared spectroscopy (fNIRS) measures the hemoglobin con-

centration changes associated with neuronal activity. Diffuse optical tomog-

raphy (DOT) consists in reconstructing the optical density changes measured

from scalp channels to the near-infrared light attenuation changes within the

cortical regions. In the present study, we adapted a nonlinear source localiza-

tion method developed and validated in the context of Electro- and Magneto-
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Encephalography (EEG/MEG): the Maximum Entropy on the Mean (MEM),

to solve the inverse problem of DOT reconstruction. We first introduced

depth weighting strategy within the MEM framework for DOT reconstruc-

tion to avoid biasing the reconstruction results of DOT towards superficial

regions. We also proposed a new initialization of the MEM model improving

the temporal accuracy of the original MEM framework. To evaluate MEM

performance and compare with widely used depth weighted Minimum Norm

Estimate (MNE) inverse solution, we applied a realistic simulation scheme

which contained 4000 simulations generated by 250 different seeds at differ-

ent locations and 4 spatial extents ranging from 3 to 40cm2 along the cortical

surface. Our results showed that overall MEM provided more accurate DOT

reconstructions than MNE. Moreover, we found that MEM was remained

particularly robust in low signal-to-noise ratio (SNR) conditions. The pro-

posed method was further illustrated, by comparing to functional Magnetic

Resonance Imaging (fMRI) activation maps, on real data involving finger

tapping tasks with two different montages. The results showed that MEM

provided more accurate HbO and HbR reconstructions in spatial agreement

with the fMRI main cluster, when compared to MNE.

Keywords: NIRS, Diffuse Optical Tomography (DOT), Maximum

Entropy on the Mean (MEM), Minimum Norm Estimation (MNE), Depth

weighting, Personalized Optimal Montage
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Highlights

• We introduced a new NIRS reconstruction method - Maximum Entropy

on the Mean.

• We implemented depth weighting strategy within the MEM framework.

• We improved the temporal accuracy of the original MEM reconstruc-

tion.

• Performances of MEM and MNE were evaluated with realistic simula-

tions and real data.

• MEM provided more accurate and robust reconstructions than MNE.

1. Introduction

Near-infrared spectroscopy (NIRS) is an non-invasive functional neuroimag-

ing modality. It detects changes in oxy- and deoxy-hemoglobin (HbO/HbR)

concentration within head tissues through the measurement of near-infrared

light absorption using sources and detectors placed on the surface of the

head (Scholkmann et al., 2014). In continuous wave NIRS, the conventional

way to transform variations in optical density to HbO/HbR concentration

changes at the level of each source-detector channel, is to apply the modi-

fied Beer Lambert Law (mBLL) (Delpy et al., 1988). This model assumes

homogeneous concentration changes within the detecting region, i.e. ignor-

ing the partial volume effects which indicates the absorption of light within

the illuminated regions varies locally. This assumption introduces serious
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and systematic errors when dealing with focal hemodynamic changes (Boas

et al., 2001; Strangman et al., 2003).

In order to handle these important quantification biases associated with

sensor level based analysis, diffuse optical tomography (DOT) has been pro-

posed to reconstruct the fluctuations of HbO/HbR concentrations within the

brain (Arridge, 1999). This technique not only provides better spatial local-

ization and resolution of the underlying hemodynamic responses (Boas et al.,

2004a; Joseph et al., 2006), but also avoids partial volume effect in classical

mBLL, thus, achieves better quantitative estimation of HbO/HbR concentra-

tion changes (Boas et al., 2001; Strangman et al., 2003). Some applications

of DOT to reconstruct brain hemodynamic responses on real NIRS data have

been applied to reconstruct hemodynamic responses on motor cortex during

median-nerve stimulation (Dehghani et al., 2009; Hughes et al., 2004), finger

tapping (Boas et al., 2004a; Yamashita et al., 2016), visual cortex retinotopic

mapping (Zeff et al., 2007; White and Culver, 2010; Eggebrecht et al., 2012)

and simultaneous imaging over the motor and visual cortex (White et al.,

2009).

In order to formalize DOT reconstruction, one needs to solve two main

problems. The first one is the so-called forward problem which generates

a forward model or sensitivity matrix that maps local absorption changes

within the brain to variations of optical density changes measured by each

channel (Boas et al., 2002). The second problem is the so-called inverse prob-

lem which aims at reconstructing the fluctuations of hemodynamic activity

within the brain from scalp measurements (Arridge, 2011). The forward

problem can be solved by generating a subject specific anatomical model,
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describing accurately propagation of light within the head. Such anatomical

model is obtained by segmenting anatomical Magnetic Resonance Imaging

(MRI) data, typically into five tissues (i.e. scalp, skull, cerebro-spinal fluid

(CSF), white matter and gray matter), before initializing absorption and

scattering coefficients values for each tissue type and for each wavelength

(Fang, 2010; Machado et al., 2018). Solving the inverse problem is more dif-

ficult since it relies on solving an ill-posed problem which does not provide a

unique solution, unless specific additional constraints are added. The most

widely used inverse method in DOT is a linear approach based on Minimum

Norm Estimate (MNE) originally proposed for solving the inverse problem of

MagnetoencephaloGraphy(MEG) and Electroencephalography (EEG) source

localization (Hämäläinen and Ilmoniemi, 1994). It minimizes the L2 norm

of the reconstruction error along with Tikhonov regularization (Boas et al.,

2004b; Zeff et al., 2007; Dehghani et al., 2009; Eggebrecht et al., 2012, 2014;

Tremblay et al., 2018). Other strategies to solve DOT inverse problem have

been also considered, such as sparse regularization using the L1 norm (Süzen

et al., 2010; Okawa et al., 2011; Kavuri et al., 2012; Prakash et al., 2014;

Tremblay et al., 2018) and Expectation Maximization (EM) algorithm (Cao

et al., 2007). A non-linear method based on hierarchical Bayesian model for

which inference is obtained through an iterative process has been proposed

by (Shimokawa et al., 2012, 2013) and applied on finger tapping experiments

in (Yamashita et al., 2016).

Maximum Entropy on the Mean (MEM) framework was first proposed by

(Amblard et al., 2004) and then applied and carefully evaluated by our group

in the context of EEG/MEG source imaging (Grova et al., 2006; Chowdhury
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et al., 2013). The MEM framework was specifically designed and evaluated

for its ability to recover spatially extended generators (Heers et al., 2016;

Pellegrino et al., 2016; Chowdhury et al., 2016; Grova et al., 2016), whereas

we recently demonstrated excellent performances when dealing with focal

sources as well (Hedrich et al., 2017) and when applied on clinical epilepsy

data (Chowdhury et al., 2018; Pellegrino et al., 2020).

Inspired by these studies, our main objective was to adapt the MEM

framework for DOT and carefully evaluate its performance. NIRS recon-

struction tends to bias DOT reconstructions towards more superficial re-

gions, especially because light sensitivity profile decreases exponentially with

the depth of the generators (Strangman et al., 2013). To reduce this bias, we

implemented and evaluated a depth weighted variant of the MEM framework.

NIRS DOT using MEM was carefully evaluated using realistic simulations of

NIRS data.

The article is organized as follows. The methodology of depth weighted

MNE and depth weighted MEM for DOT is first presented. Then, we de-

scribed our validation framework using realistic simulations and associated

validation metrics. Finally, illustrations of the methods on finger tapping

NIRS data set acquired with two different montages from 6 healthy subjects

are provided and compared with functional Magnetic Resonance Imaging

(fMRI) results.
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2. Material and Methods

2.1. NIRS reconstruction

To perform DOT reconstructions, the relationship between measured op-

tical density changes on the scalp and wavelength specific absorption changes

within head tissue is usually expressed using the following linear model (Ar-

ridge, 1999):

Y = AX + e (1)

where Y is a matrix (p×t) which represents the wavelength specific measure-

ment of optical density changes in p channels at t time samples. X (q × t)

represents the unknown wavelength specific absorption changes in q locations

along the cortex at time t. A (p × q) is called the sensitivity matrix which

is actually the forward problem relating absorption changes in the head to

optical density changes measured by each channel. Finally, e (p× t) models

the additive measurement noise. Solving the NIRS tomographic reconstruc-

tion problem consists in solving an inverse problem which can be seen as the

estimation of matrix X (i.e. the amplitude for each location q at time t).

However, this problem is ill-posed and admits an infinite number of possible

solutions. Therefore, solving the DOT inverse problem requires adding ad-

ditional prior information or regularization constraints to identify a unique

solution.

Anatomical constraints can first be considered by defining the reconstruc-

tion solution space (i.e. where q is located ) within the gray matter volume

(Boas and Dale, 2005). In EEG and MEG source localization studies (Dale

and Sereno, 1993; Grova et al., 2006; Chowdhury et al., 2013), it is common

to constrain the reconstruction along the cortical surface. In this study, the
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reconstruction space was considered as the mid surface defined as the mid-

dle layer between gray matter/pial and gray/white matter interfaces (Fischl

et al., 2002).

2.2. Minimum Norm Estimation (MNE)

Minimum norm estimation is one of the most widely used reconstruction

methods in DOT (Zeff et al., 2007; Dehghani et al., 2009; White et al., 2009;

White and Culver, 2010; Eggebrecht et al., 2012, 2014; Yamashita et al.,

2016). Such estimation can be expressed using a Bayesian formulation which

solves the inverse problem by estimating the posterior distribution P (X|Y ) =

P (Y |X)P (X)
P (Y )

(i.e. the probability distribution of parameter X conditioned on

data Y ). A solution can be estimated by imposing Gaussian distribution

priors on the generators X (P (X) = N(0,Σ−1
s )) and the noise e (P (e) =

N(0,Σ−1
d )). Σd is the inverse of the noise covariance which could be estimated

from baseline recordings. Σs is the inverse of the source covariance which is

assumed to be an identity matrix in conventional MNE.

The Maximum A Posteriori (MAP) estimator of the posterior distribution

P (X|Y ) can be obtained using maximum likelihood estimation:

X̂MNE = argmin
(
||(Y − AX)||2Σd

+ λ||X||2Σs

)
= (ATΣdA+ λΣs)

−1ATΣdY
(2)

where X̂MNE is the reconstructed absorption changes along the cortical sur-

face (i.e. mid surface). λ is a hyperparameter to regularize the inversion

using the priori minimum norm constraint ||X||2Σs
. In this study, we applied

the standard L-Curve method to estimate this λ as suggested in (Hansen,

2000).
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2.3. Depth weighted MNE

Standard MNE solutions assumes Σs = I which tends to bias the results

towards most superficial regions. When compared to EEG-MEG source local-

ization, such bias is even more pronounced in NIRS since within the forward

model light sensitivity values decrease exponentially with the depth (Strang-

man et al., 2013). Depth-weighted MNE has been first proposed as an ap-

proach to compensate this effect in DOT (Culver et al., 2003) and applied in

(Zeff et al., 2007; Dehghani et al., 2009; White et al., 2009; Eggebrecht et al.,

2012, 2014). Here we consider a more generalized expression as proposed in

(Lin et al., 2006). It consists in initializing the source covariance matrix as

Σ
−1/2
s = Λ, resulting in a so called depth weighted MNE solution, described

as follows:

X̂dMNE = argmin
(
||(Y − AX)||2Σd

+ λ||X||2Σs

)
= (ATΣdA+ λ(ΛΛt)−1)−1ATΣdY

diag(Λ) =
1

diag ((ATΣdA))ω

(3)

Depth weighted MNE solution therefore penalizes most superficial regions,

by enhancing the contribution to deeper regions. ω is a weighting parameter

tuning the amount of depth compensation to be applied. The larger is ω,

the more depth compensation is considered. ω = 0 would therefore refer to

no depth compensation and an identity source covariance model. ω = 0.5

refers to standard depth weighting approach mentioned above. In the present

study, we carefully evaluated the impact of this parameter on DOT accuracy

with a set of ω values (i.e. ω = 0, 0.1, 0.3, 0.5, 0.7 and 0.9).
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2.4. Maximum Entropy on the Mean (MEM) for NIRS 3D reconstruction

2.4.1. MEM framework

The main contribution of this study is the first adaptation and evaluation

of MEM method (Amblard et al., 2004; Grova et al., 2006; Chowdhury et al.,

2013) to perform DOT reconstructions in NIRS. Within the MEM framework,

the intensity of x, i.e. amplitude of X at each location q in Eq.1, is considered

as a random variable, described by the following probability distribution

dp(x) = p(x)dx. The Kullback-Leibler divergence or ν-entropy of dp(x)

relative to a prior distribution dν(x) is defined as,

Sv(dp(x)) = −
∫
x

log

(
dp(x)

dν(x)

)
dp(x) = −

∫
x

f(x)log(f(x))dν(x) (4)

where f(x) is the ν-density of dp(x) defined as dp(x) = f(x)dν(x). Following

the Bayesian approach, to introduce the data fit, we denote Cm as the set of

probability distributions on x that explains the data on average:

Y − [A|Iq]

Edp[x]

e

 = 0, dp ∈ Cm (5)

where Y represents the measured optical density changes, Edp[x] =
∫
xdp(x)

represents the statical expectation of x under the probability distribution dp,

and Iq is an identity matrix with dimension of (q× q). Therefore, within the

MEM framework, a unique solution of dp(x) could be obtained,

dp∗(x) = argmaxdp(x)∈Cm (Sv(dp(x))) (6)

2.4.2. Construction of the prior distribution

To define the prior distribution dν(x) mentioned above, we assumed that

brain activity can be depicted by a set of K non-overlapping and independent

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432263
http://creativecommons.org/licenses/by-nc-nd/4.0/


cortical parcels. Then the reference distribution dν(x) is modeled as,

dν(x) =
K∏
k=1

[(1− αk)δ(xk) + αkN(µk,Σk)]dxk, 0 < αk < 1 (7)

Each cortical parcel k is characterized by an activation state, defined by the

hidden variable Sk, describing if the parcel is active or not. Therefore we

denote αk as the probability of kth parcel to be active, i.e.Prob(Sk = 1). δk

is a Dirac function that allows to “switch off” the parcel when considered

as inactive (i.e.Sk = 0). N(µk,Σk) is a Gaussian distribution, describing the

distribution of absorptions changes within the kth parcel, when the parcel is

considered as active (Sk = 1).

This type of spatial clustering of the cortical surface intoK non-overlapping

parcel was obtained using a data driven parcellization (DDP) technique (La-

palme et al., 2006). DDP consisted in first applying a projection method, the

multivariate source prelocalization (MSP) technique (Mattout et al., 2005),

estimating a probability like coefficient (MSP score) between 0 and 1 for each

dipolar source on the cortical mesh, characterizing the contribution of each

source to the data, followed by region growing around local MSP maxima.

Once the parcellization is done, the prior distrubution dν(x) is then a joint

distribution expressed as the multiplication of individual distribution of each

parcel in Eq.7 assuming statistical independence between parcels.

dν(x) = dν1(q1)dν2(q2)...dνk(qk)...dνK(qK) (8)

where dν(x) is the joint probability distribution of the prior, dνk(qk) is the

individual distribution of the parcel k described as Eq.7.

To initialize the prior in Eq.7, µk which is the mean of the Gaussian

distribution, N(µk,Σk), was set to zero. Σk at each time point t, i.e. Σk(t),
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was defined by Eq.9 according to (Chowdhury et al., 2013),

Σk(t) = η(t)Wk(σ)TWk(σ)

η(t) = 0.05
1

Pk

∑
i∈Pk

X̂2
MNE(i, t)

(9)

where Wk(σ) is a spatial smoothness matrix, defined by (Friston et al., 2008),

which controls the local spatial smoothness within the parcel according to

the geodesic surface neighborhood order. Same value of σ = 0.6 was used as

in (Chowdhury et al., 2013). η(t) was defined as 5% of the averaged energy

of MNE solution within each parcel Pk at time t.

We can substitute this initialization into Eq.7 to construct the prior dis-

tribution dν(x). It can be proved that the ν-entropy in Eq.4 is strictly a

concave function that needs to be maximized under constraints in Eq.5. Fi-

nally, solving the optimization described in Eq.6 is equivalent to maximizing

an unconstrained strictly concave Lagrangian function. Please refer to (Am-

blard et al., 2004; Chowdhury et al., 2013, 2016) for further details.

2.4.3. Depth weighted MEM

In addition to adapting MEM for NIRS reconstruction, in this study,

we also implemented for the first time, depth weighting within the MEM

framework. Two depth weighting parameters, ω1 and ω2, were involved in

this process. ω1 was used to depth weight the source covariance matrix of

each parcel k in Eq.9. ω2 was applied to solve the depth weighted MNE,

as described in Eq.3, before using those prior to initialize the source covari-

ance model within each parcel of the MEM model. Therefore, the standard

MNE solution X̂MNE(i, t) in Eq.9 was replaced by the depth weighted ver-

sion of MNE solution X̂dMNE(i, t) described by Eq.3. Consequently, the
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depth weighted version of Σk(t) in Eq.9 for prior initialization is defined as,

Σk(t)dw = ΛPk
η(t)dwWk(σ)TWk(σ)

η(t)dw = 0.05
1

Pk

∑
i∈Pk

X̂2
dMNE(i, t)

(10)

where ΛPk
is the depth weighting matrix for each pacel k, in which ω1 was

involved to construct this scaling matrix as described in Eq.3. This initial-

ization followed the logic that depth weighting is in fact achieved by scaling

the source covariance matrix. The other depth weighting parameter, ω2, was

considered when solving X̂dMNE(i, t), therefore avoiding biasing the initial-

ization of the source covariance with a standard MNE solution.

To comprehensively compare MEM and MNE and also to investigate the

behavior of depth weighting, we first evaluated the reconstruction perfor-

mance of MNE with different ω (i.e. step of 0.1 from 0 to 0.9). Then two

of these values (i.e. ω = 0.3 and 0.5) were selected for the comparison with

MEM since they performed better than the others. Note that the follow-

ing expressions of depth weighted MEM will be denoted as MEM(ω1, ω2) to

represent the depth weighting strategies.

2.4.4. Accuracy of temporal dynamics

The last contribution of this study was to improve the temporal accuracy

of MEM solutions. In classical MEM (Chowdhury et al., 2013) approach,

X̂MNE(i, t) in Eq.9 was globally normalized by dividing by max
i∈Ω,t∈T

(X̂MNE(i, t)),

where Ω represents all the possible locations along the cortical surface and

T is the whole time segment. Therefore, the constructed prior along the

time actually contained the temporal scaled dynamics from MNE solution.

To remove this effect, we performed local normalization for X̂dMNE(i, t) at
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each time instance t, i.e. by dividing by max
i∈Ω

(X̂dMNE(i, t)). This new feature

would preserve the spatial information provided by prior distribution, while

allowing MEM to estimate the temporal dynamics only from the data.

2.5. Validation of the proposed DOT methods

We evaluated the performance of the two DOT methods proposed (MEM

and MNE), first within a fully controlled environment involving the use of

realistic simulations of NIRS data, followed by evaluations on real data ac-

quired with a well controlled finger tapping paradigm. For realistic simula-

tions, theoretical task-induced HbO/HbR concentration changes were sim-

ulated within cortical surface regions with a variety of locations, areas and

depths. Corresponding optical density changes in the channel space were then

computed by applying a dedicated NIRS forward model, before adding real

resting state NIRS baseline signal as realistic physiological noise at different

signal to noise ratio (SNR) levels. Realistic baseline data were obtained from

the actual NIRS acquisition of a single subject during resting state. In a sec-

ond phase, we also evaluated the reconstruction performance of the proposed

methods on real data set, that are, NIRS data acquired on healthy partic-

ipants during block designed finger tapping tasks, with two different NIRS

sensors montages (i.e. the full double density montage and the personalized

optimal montage).

2.5.1. MRI and fMRI Data acquisitions

Anatomical MRI data were acquired on 6 healthy subjects (25± 6 years

old, right-handed male) and considered to generate realistic anatomical head

models. The subjects have signed written informed consent forms for this
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study which was approved by the Central Committee of Research Ethics of

the Minister of Health and Social Services Research Ethics Board, Qubec,

Canada. MRI data were acquired in a GE 3T scanner at the PERFORM

Center of Concordia University, Montral, Canada. T1-weighted anatomical

images were acquired with the 3D BRAVO sequence (1 × 1 × 1 mm3, 192

axial slices, 256× 256 matrix), whereas T2-weighted anatomical images were

acquired using the 3D Cube T2 sequence (1× 1× 1 mm3 voxels, 168 sagittal

slices, 256 × 256 matrix). Functional MRI data was acquired in a GE 3T

scanner using the gradient echo EPI sequence (3.7 × 3.7 × 3.7 mm3 voxels,

32 axial slices, TE = 25 ms, TR = 1, 900 ms).

Besides, participants also underwent functional MRI acquisition during

finger opposition tapping tasks. The subject was asked to sequentially tape

the left thumb against the other digits at 2Hz. For NIRS acquisition using

the double density montage (1 participant), the finger tapping paradigm

consisted in 10 blocks of 30s tapping task and each of them was followed

by a 30 to 35s resting period. For NIRS acquisition involving NIRS optimal

montage (5 participants), 20 blocks were acquired with the task period of 10s

and the resting period ranging from 30s to 60s. fMRI Z-maps were generated

by standard first-level fMRI analysis using FEAT from FSL software (Smith

et al., 2004; Jenkinson et al., 2012).

2.5.2. NIRS Data acquisition

NIRS acquisitions were done at the PERFORM Center of Concordia

University using a Brainsight NIRS device (Rogue-Research Inc, Montreal,

Canada), equipped with 16 dual wavelength sources (685nm and 830nm), 32

detectors and 16 proximity detectors.
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We considered a first acquisition involving a full Double Density (DD)

montage which is a widely used montage in NIRS acquisitions providing

sufficiently dense coverage for local DOT (Kawaguchi et al., 2007). A 10

minutes resting state session was acquired to add realistic physiology noise

used in the realistic simulations. The subject was seating on a comfortable

armchair and instructed to keep the eyes open and to remain awake. The

optodes of the full DD montage (i.e. 8 sources and 10 detectors resulting

in 50 NIRS channels) are showed in Fig.1e. It is composed of 6 second-

order distance channels(1.5cm), 24 third-order channels(3cm) and 12 fourth-

order channels with 3.35cm distance. Channels with 4.5cm distances were

excluded since they were associated with too low SNR when checking the

raw finger tapping data. In addition, we also added one proximity detector

paired for each source to construct the close distance channel (0.7cm) in

order to measure superficial signals within extra-cerebral tissues. To place

the montage with respect to the region of interest, the center of the montage

was aligned with the center of the right ”hand knob” area projected on the

scalp surface and then each optodes were projected on the scalp surface (see

Fig.1d).

For personalized optimal montage cases, we followed the methodology

we previously reported in (Machado et al., 2018). First, the hand knob

within right primary motor cortex was drawn manually along the cortical

surface and defined as a target region of interest (ROI) using the Brainstorm

software (Tadel et al., 2011)(Available at http://neuroimage.usc.edu/

brainstorm). Then we applied our optimal montage algorithm (Machado

et al., 2014, 2018) in order to estimate personalized montages, Fig.7a, built
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Fig.1. NIRS measurement montage and the anatomical model considered for DOT for-

ward model estimation. (a) Anatomical 3D MRI segmented in five tissues, namely, scalp

(green), skull (brown), CSF (light green), gray matter (purple) and white matter (black).

(b) Optical fluence of one optode calculated through Monte Carlo simulation of Photons

within this head model, using MCXLab. (c) Sensitivity profile of the whole montage in

volume space. (d) Sensitivity profile, i.e. the summation of sensitivity map of all channels,

along the cortical surface. Green dots represent detectors, including one proximity detec-

tor 0.7 cm for each source, and red dots represent sources. (e) double-density montage

considered for this acquisition. There were 50 channels in total, 12 of 3.8 cm (black), 24

of 3 cm (blue), 6 of 1.5 cm (yellow) and 8 of close distance 0.7cm proximities channel.
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to maximize a priori NIRS sensitivity and spatial overlap between channels

with respect to the target ROI. To ensure good spatial overlap between chan-

nels for 3D reconstruction, we constructed personalized optimal montages

composed of 3 sources and 15 detectors (see Fig.7b). The source-detector

distance was set to vary from 2cm to 4.5cm and each source was constrained

such that it has to construct channels with at least 13 detectors. Finally,

we also manually added 1 proximity channel, located at the center of the 3

sources.

All montages (Double Density and optimal montages) were built to cover

the right motor cortex. Knowing NIRS channels positions estimated on the

MRI of each participant, we used a 3D neuronavigation system (Brainsight

TMS navigation system, Rogue-Research Inc, Montreal) to guide the installa-

tion of the sensors on the scalp. Finally every sensor was glued on the scalp

using a clinical adhesive, collodion, to prevent motion (Yücel et al., 2014;

Machado et al., 2018). The same finger tapping task paradigm described

above was considered for DD and optimal montage NIRS acquisitions.

2.5.3. NIRS forward model

T1 and T2 weighted images were processed using FreeSurfer (Fischl et al.,

2002) and Brain Extraction Tool2 (BET2) (Smith et al., 2004) in FMRIB

Software Library (FSL) to segment the head into 5 tissues (i.e. scalp, skull,

Cerebrospinal fluid (CSF), gray matter and white matter see Fig.1a).

Optical coefficients of the two wavelengths considered during our NIRS

acquisition, 685nm and 830nm, were assigned to each tissue type mentioned

above. Fluences of light for each optode (see Fig.1b) was estimated by Monte

Carlo simulations with 108 photons using MCXLAB developed by (Fang
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and Boas, 2009; Yu et al., 2018) (http://mcx.sourceforge.net/cgi-bin/

index.cgi). Sensitivity values were computed using the adjoint formulation

and were normalized by the Rytov approximation (Arridge, 1999).

For each source-detector pair of our montages, corresponding light sensi-

tivity map was first estimated in a volume space, and then further constrained

to the 3D mask of gray matter tissue (see Fig.1c), as suggested in (Boas and

Dale, 2005). Then, these sensitivity values within the gray matter volume

were projected along the cortical surface (see Fig.1d and Fig.7c) using the

Voronoi based method proposed by (Grova et al., 2006). This volume to

surface interpolation method has the ability to preserve sulco-gyral morphol-

ogy (Grova et al., 2006). After the interpolation, the sensitivity value of

each vertex of the surface mesh represents the mean sensitivity of the cor-

responding volumetric Voronoi cell (i.e. a set of voxels that have closest

distances to a certain vertex than to all other vertices). We considered the

mid-surface from FreeSurfer as the cortical surface. This surface was then

further downsampled to 25, 000 vertices.

2.5.4. NIRS data preprocessing

Using the coefficient of variation (Schmitz et al., 2005; Schneider et al.,

2011; Eggebrecht et al., 2012; Piper et al., 2014), channels exhibiting a stan-

dard deviation larger than 8% of the signal mean were rejected. Superficial

physiological fluctuations were regressed out at each channel using the aver-

age of all proximity channels’ (0.7cm) signals (Zeff et al., 2007). All channels

were then band-pass filtered between 0.01Hz and 0.1Hz using a 3rd order

Butterworth filter. Changes in optical density (i.e.∆OD) were calculated

using the conversion to log-ratio. Finally, ∆OD of finger tapping data were
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block averaged within the period of −10s to 60s around the task onsets.

Note that since sensors were glued with collodion we observed very minimal

motion during the acquisitions.

2.5.5. Realistic Simulation of NIRS Data

To carefully evaluate depth weighted MNE and MEM methods for DOT,

we simulated a variety of realistic NIRS data in the channel space, gener-

ated by cortical generators with different locations, areas and depths. As

presented in Fig.2a, we defined three sets of evenly distributed seeds within

the field of view of DOT reconstruction. The locations were selected with

respect to the depth relative to the skull, namely we simulated 100 ”super-

ficial seeds”, 100 ”middle seeds” and 50 ”deep seeds”. The cortical regions

in which we simulated an hemodynamic response were generated by region

growing around seeds, along the cortical surface. To simulate generators

with different spatial extents, we considered four levels of neighborhood or-

ders, growing geodesically along the cortical surface, resulting in spatial ex-

tents ranging from Se = 3, 5, 7, 9 (corresponding areas of 3 to 40 cm2). For

simplification, these cortical regions within which an hemodynamic response

was simulated will be denoted as ‘generator’ in this paper. For each vertex

within a ‘generator’, a canonical Hemodynamic Response Function (HRF)

was convoluted with the experiment paradigm which consisted in one block

of 20s task surrounded by 60s pre-/post- baseline period (Fig.2b). Simulated

HbO/HbR fluctuations within the theoretical generator (Fig.2c) were then

converted to the corresponding absorption changes of two wavelengths (i.e.

685nm and 830nm). After applying the forward model matrix A in Eq.1, we

estimated the simulated, noise free, task induced ∆OD in all channels.
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∆OD of real resting state data were then used to add realistic fluctu-

ations (noise) to these simulated signals. Over the 10min of recording, we

randomly selected 10 baseline epochs of 120s each, free from any motion

artifact. Realistic simulations were obtained by adding the average of these

10 real baseline epochs to the theoretical noise-free simulated ∆OD, at five

SNR levels (i.e. SNR = 5, 3, 2, 1). SNR was calculated through the following

equation,

SNRλ =
max(abs(∆ODλ[0, t1]))

mean(std(∆ODλ[−t0, 0]))
(11)

where ∆ODλ[0, t1] is the optical density changes of a certain wavelength λ in

all channels during the period from 0s to t1 = 60s. std(∆ODλ[−t0, 0]) is the

standard deviation of ∆ODλ during baseline period along all channels. Sim-

ulated trials for each of four different SNR levels are illustrated in Fig.2.d. A

total number of 4000 realistic simulations were considered for this evaluation

study, i.e., 250 (seeds)× 4 (spatial extents)× 4 (SNR levels).

2.5.6. Validation metric

Following the validation metrics described in (Grova et al., 2006; Chowd-

hury et al., 2013, 2016; Hedrich et al., 2017), we applied 4 quantitative met-

rics to access the spatial and temporal accuracy of NIRS 3D reconstructions.

Area Under the Receiver Operating Characteristic (ROC) curve

(AUC) was used to assess general reconstruction accuracy considering both

sensitivity and specificity. Minimum geodesic distance (Dmin) mea-

suring the geodesic distance, following the circumvolutions of the cortical

surface, from the vertex that exhibited maximum of reconstructed activity

to the border of the ground truth. Spatial Dispersion (SD) assessed the

spatial spread of the estimated ‘generator’ distribution and the localization
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Fig.2. Workflow describing our proposed realistic NIRS simulation framework.(a) 100

Superficial seeds (black dots), 100 Middle seeds (red dots), 50 Deep seeds (blue dots)

with spatial extent of Se = 3, 5, 7, 9 neighbourhood order within the field of view. (b)

Convolution of a canonical HRF model with an experimental block paradigm (60s before

and 50s after the onset). (c) Simulated theoretical HbO/HbR fluctuations along the

cortical surface within the corresponding generator. (d) Realistic simulations obtained by

applying the DOT forward model and addition of the average of 10 trials of real NIRS

background measurements at 830nm. Time course of ∆OD of all channels with SNR of

5, 3, 2 and 1 respectively are shown

error. Shape error(SE) evaluated the temporal accuracy of the reconstruc-

tion. Further details on the computation of those four validation metrics are

reported in Supplementary material S1.
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3. Results

We first investigated the effects of depth weighting factor ω selection for

depth weighted MNE. To do so, we evaluated spatial and temporal perfor-

mances of DOT reconstruction and decided to apply the best ω for depth

weighted MNE, ω = 0.3 and 0.5, in subsequent conducted analyses. Please

refer to the Supplementary material S2 and Fig.S1 for the details. Through-

out all of the quantitative evaluations among different methods involving

different depth weighting factors ω in the results section, Wilcoxon signed

rank test was applied to test the significance of the paired differences be-

tween each comparison. For each statistical test, we reported the median

value of paired differences, together with its p-value (Bonferroni corrected).

We are showing only results at 830nm for simulations, whereas we found

similar trends for 685nm (results not shown).

3.1. Evaluation of MEM v.s. MNE using realistic simulations

Comparison of the performance of MEM and MNE on superficial re-

alistic simulations are presented in Table.1 and Fig.3, for 4 levels of spa-

tial extent (Se = 3, 5, 7, 9), using boxplot distribution of the 4 validation

metrics. We evaluated three depth weighted implementations of MEM,

MEM(ω1 = 0.3, ω2 = 0.3), MEM(0.3, 0.5) and MEM(0.5, 0.5), as well as

two depth weighted implementations of MNE, MNE(0.3) and MNE(0.5).

For spatial accuracy, results evaluated using Dmin, we obtained median

Dmin values of 0mm for all methods, indicating the peak of the reconstructed

map, was indeed accurately localized inside the simulated generator.

When considering the spatial extent of the generators using AUC, for
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focal generators such as Se = 3 and 5, we found significant larger AUC

(see Table.1) for MEM(0.3, 0.3) and MEM(0.3, 0.5) when compare to the

most accurate version of MNE, i.e. MNE(0.3). When considering more

extended generators, i.e. Se = 7 and 9, MEM(0.3, 0.5) and MEM(0.5, 0.5)

achieved significantly larger AUC than MNE(0.3). However, the AUC of

MNE(0.5) was significantly larger than MEM(0.3, 0.3) when Se = 7 as well

as significantly larger than MEM(0.3, 0.5) and MEM(0.5, 0.5) when Se = 9.

In terms of spatial extent of the estimated generator distribution and

the localization error, MEM provided significantly smaller SD among all the

comparisons. Finally, for temporal accuracy of the reconstruction represented

by SE, MNE provided significantly lower values, but with a small difference

(e.g. 0.01 or 0.02), than MEM among all comparisons when Se = 3, 5.

Similar comparison between MEM and MNE were conducted respectively

for middle seed simulated generators and deep seed simulated generators.

Results are reported in supplementary material (Fig.S2 and Table.S1 for

middle seeds, Fig.S3 and Table.S2 for deep seeds).

To further illustrate the performance of MEM and MNE as a function of

the depth of the generator, we are presenting some reconstruction results in

Fig.4. Three generators with a spatial extent of Se = 5, were selected for

this illustration. They were all located around the right ”hand knob” area,

and were generated from a superficial, middle and deep seed respectively.

The first column in Fig.4 shows the location and the size of the simulated

generator, considered as our ground truth. The generator constructed from

the superficial seed only covered the corresponding gyrus, whereas the gener-

ators constructed from the middle seed, included parts of the sulcus and the
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Fig.3. Evaluation of the performances of MEM and MNE using realistic simulations in-

volving superficial seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation

of the distribution of four validation metrics for three depth weighted strategies of MEM

and two depth weighted strategies of MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5)

in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) in black. Results

were obtained after DOT reconstruction of 830nm ∆OD.

gyrus. Finally, when considering the deep seed, the simulated generated cov-

ered both walls of the sulcus, extended just a little on both gyri. For superfi-

cial case, MEM(0.3, 0.3) and MEM(0.3, 0.5) provided similar performances in

term of visualization of the results and quantitative evaluation (AUC = 0.96,

Dmin = 0mm, SD = 1.94mm, 2.15mm, SE = 0.03). When compared to

MNE(0.3) and MNE(0.5), they clearly provided less accurate reconstruc-

tions, spreading too much around the true generator, as confirmed by vali-

dation metric, exhibiting notably quite large SD values (AUC = 0.86, 0.89,

Dmin = 0mm, SD = 9.84mm, 14.63mm, SE = 0.02). When considering

the simulation obtained with the middle seed, MEM(0.3, 0.5) retrieved ac-

curately the gyrus part of the generator but missed the sulcus component,
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Table1. Wilcoxon signed rank test results of reconstruction performance comparison of

MEM and MNE in superficial seeds case. Median values of paired difference were showed

in the table. p values were corrected for multiple comparisons using Bonferroni correction,

* indicates p < 0.01 and ** represents p < 0.001. Median of the paired difference of each

validation metrics is color coded as follows: green: MEM is significantly better than MNE,

red: MNE is significantly better than MEM and gray: non-significance.

since less depth compensation was considered. When increasing depth sensi-

tivity, MEM(0.5, 0.5) clearly outperformed all other methods, by retrieving

both the gyrus and sulcus aspects of the generators, resulting in the largest

AUC = 0.98 and the lowest SD = 2.93mm. MNE(0.3) was not able to re-

cover the deepest aspects of the generator as well, but also exhibited a large

spread outside the ground truth area, with severe false positive, as suggested

by a large SD = 9.69mm. MNE(0.5) was able to find the main cluster

well, but it exhibited the largest spread, SD = 10.16mm. When considering

the generators obtained from the deep seed, MNE(0.3) only reconstructed

part of gyrus, missing completely the main sulcus aspect of the generator,

resulting in low AUC of 0.57 and large SD of 10.34mm. MEM(0.3, 0.5) was
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not able to recover the deepest aspects of the sulcus, but reconstructed ac-

curately the sulci walls, resulting in an AUC of 0.89 and a SD of 2.71mm.

MEM(0.5, 0.5) recovered the deep simulated generator very accurately, as

demonstrated by the excellent scores (AUC = 0.97, SD = 2.11mm) when

compared to MNE(0.5). For those three simulations, all methods recovered

the underlying time course of the activity with similar accuracy (i.e. similar

SE values). In supplementary material, we added Video.1, illustrating the

behavior of all the simulations and all methods, following the same layout

provided in Fig.4.

3.2. Effects of depth weighting on the reconstructed generator as a function

of the depth and size of the simulated generators

To summarize the effects of depth weighting in 3D NIRS reconstructions,

we further investigated the validation metrics, AUC, SD and SE, as a function

of depth and size of the simulated generators. Dmin was not included due

to the fact that we did not find clear differences among methods throughout

all simulation parameters from the previous results. In the top row of Fig.5,

250 generators created from all 250 seeds with a spatial extent of Se = 5

were selected to demonstrate the performance of different versions of depth

weighting as a function of the average depth of the generator. Whereas

in the bottom row of Fig.5, we involved 400 generators constructed from

all 100 superficial seeds with 4 different spatial extent of Se = 3, 5, 7, 9,

to illustrate the performance of different versions of depth weighting as a

function of the size of the generator. According to AUC, depth weighting

was indeed necessary for all methods when the generator moved to deeper

regions (e.g.> 2cm) as well as when the size was larger than 20cm2. Moreover,

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432263
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig.4. Comparisons of the reconstruction maps using MEM and MNE in realistic simu-

lations. Three theoretical regions with spatial extent Se = 5 ( 11cm2) were selected near

the hand knob at different depth. The first column presents the locations and the size

of the generator along the cortical surface. (a) Superficial seed case with reconstructed

maps reconstructed using all MEM and MNE implementations considered in this study.

(b) Middle seed case with reconstructed maps reconstructed using all MEM and MNE

implementations considered in this study. (c) Deep seed case with reconstructed maps

reconstructed using all MEM and MNE implementations considered in this study. 20%

inflated and zoomed maps were showed on the left corner of each figure. 100% inflated

right hemisphere were showed on the right side. All the maps were normalized by their

own global maximum and no threshold was applied.

any version of MEM always exhibited clearly less false positives, as indicated

by SD values, than all of MNE versions, whatever was the depth or the

size of the underlying generator. We found no clear trend and difference of
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temporal accuracy (i.e. SE) among methods when reconstructing generators

of different depth and size generators.

Fig.5. Effects of depth weighting on the depth and size of the simulated generators. First

row demonstrates the validation matrices, AUC, SD and SE, as a function of depth of

generators. We selected 250 generators created from all 250 seeds with a spatial extent

of SD = 5. Depth was calculated by the average of minimum Euclidean distance from

each vertex, within each generator, to the head surface. Second row demonstrates the

validation matrices, AUC, SD and SE, as a function of size of generators. Involving 400

generators which constructed from 100 superficial seeds with 4 different spatial extend of

Se = 3, 5, 7, 9. Line fittings were performed via a 4 knots spline function to estimate the

smoothed trend and the shade areas represent 95% confident interval. Color coded points

represent the values of validation matrices of all involved generators. Note that we did

not present Dmin since there were no clear differences among methods according to the

previous results.
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3.3. Robustness of 3D reconstructions to the noise level

Whereas all previous investigation were obtained from simulations ob-

tained with a SNR of 5, in this section we compared the effect of the SNR

level in Fig.6, on depth weighted versions of MNE and MEM, for superfi-

cial seeds only and generators of spatial extent Se = 5. We only compared

MEM(0.3, 0.5) and MNE(0.5) considering the observation from previous re-

sults that these two methods were overall exhibiting best performances in

this condition. Regarding Dmin, paired differences were not significant but

MNE exhibited more Dmin values above 0mm than MEM at all SNR lev-

els, suggesting that MNE regularly missed the source, whereas MEM always

located the maximum of activity within the simulated generator. Regard-

ing AUC, MEM(0.3, 0.5) managed to provide values higher than 0.8 at all

SNR levels, whereas MNE(0.5) failed to recover accurately the generator for

SNR = 1. Besides, in Table.2, we found that difference of AUC between

MEM and MNE increased when SNR level decreased, suggesting more ro-

bustness of MEM when decreasing the SNR level. The difference of SD also

increased when SNR levels decreased. Moreover, MEM exhibited stable SD

values, except at SNR = 1. Finally, for both methods, decreasing SNR levels

resulted in less accurate time course estimation (SE increased), slightly more

for MEM when compared to MNE.

3.4. Evaluation of MEM and MNE on real NIRS data

For all finger tapping NIRS data considered for our evaluation (1 sub-

jects with the double density montage, 5 subjects with optimal montage),

two wavelength (i.e. 685nm and 830nm) were reconstructed first and then

converted to HbO/HbR concentration changes along cortical surface using
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Fig.6. Evaluation of the performances of MEM and MNE at four different SNR levels.

Boxplot representation of the distribution of four validation metrics for MEM(0.3, 0.5)

and MNE(0.5) involving superficial seeds with spatial extent Se = 5. SNR levels (SNR =

1, 2, 3, 5) were represented using different colors.

Table.2. Reconstruction performance comparison of MEM and MNE with different SNR

levels. Median of paired difference of validation metric (i.e. AUC, Dmin, SD and SE)

values of Se = 5 were showed in the table following the SNR increase from 1 to 5. **

indicates corrected p < 0.001.
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specific absorption coefficients. All the processes from NIRS preprocessing

to 3D reconstruction were completed in Brainstorm (Tadel et al., 2011) us-

ing the NIRSTORM plugin developed by our team (https://github.com/

Nirstorm). For full double density montage, reconstructed HbR amplitudes

were reversed to positive phase and normalized to their own global maximum,

to facilitate comparisons. In Fig.7.a, we showed the reconstructed HbR maps

at the peak of the time course (i.e. 31s) of MEM and MNE by consider-

ing the 4 depth weighted versions, previously evaluated, i.e. MEM(0.3, 0.3),

MEM(0.3, 0.5), MNE(0.3) and MNE(0.5). The two depth weighted version of

MEM clearly localized well the ”hand knob” region, while exhibiting very lit-

tle false positives in its surrounding. On the other hand, both depth weighted

version of MNE clearly overestimated the size of the hand knob region and

were also showing some distant possibly spurious activity. The Z-map ob-

tained during the corresponding fMRI task is presented on Fig.7.b, after

projection of the volume Z-map on the cortical surface. Fig.7.c showed the

time courses within the black patch which represented the ”hand knob”.

Each line represents the reconstructed time course at one vertex of the hand

knob region and the amplitude were normalized by the peak value within the

whole region.

Results obtained on 5 subjects for acquisition involving personalized op-

timal NIRS montage and corresponding DOT reconstructions are presented

in Fig.8. For every subject, fMRI Z-maps are presented along the left hemi-

sphere only and thresholded at Z > 3.1 (p < 0.001, Bonferroni corrected),

The most significant fMRI cluster along M1 and S1 was delineated using

a black profile. Reconstruction maps at the corresponding HbO/HbR peak
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Fig.7. Application of MEM versus MNE reconstruction of HbR during a finger tapping

task on one healthy subject. (a) Reconstructed maps of HbR (e.g. 20% inflation on the

left and 100% inflation on the right side.) from MEM and MNE with different depth

compensations. Each map was normalized by its own global maximum. (b) fMRI Z-map

results projected along the cortical surface. (c) Reconstructed time courses of HbR within

the hand knob region from MEM and MNE. Note that the hand knob region, represented

by the black profile, was also matched well with the mean cluster of fMRI activation map

on primary motor cortex. No statistical threshold was applied on NIRS reconstructions.
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Fig.8. Personalized NIRS montage and comparisons between MEM and MNE reconstruc-

tions with respect to fMRI Z-map at individual level. a) the region of interest defined as

the hand knob, b) optimal montage targeting the ROI consisting 3 sources (red) and 15

detectors(green) and one proximity (in the center of sources not shown), c) normalized

sensitivity profile of the optimal montage which calculated as the sum of all channels sensi-

tivity along the cortical surface, d) optimal montage glued on the scalp of the one subject,

using collodion. fMRI Z-map of each subject during finger tapping task (threshold with

Z > 3.1, Bonferroni corrected), black profile represents the main cluster along M1 and

S1. MEM reconstruction maps at the corresponding HbO/HbR peak times, using depth

weighted option 0.3, 0.3. MNE reconstruction maps, at the corresponding HbO/HbR peak

times, using depth weighted option 0.3. Reconstructed time courses within the black pro-

file, solid lines represent the main time courses and the shade areas represent standard

deviation within the region of interest. Reconstructed time courses were normalized by

the maximum amplitude, for each method respectively, before averaging.
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timings are showed in the middle of each subject panel. MEM provided accu-

rate HbO and HbR reconstructions in spatial agreement with the main fMRI

cluster, whereas there were almost no overlapping between MNE reconstruc-

tion and fMRI main cluster for subject 1, 2 and 3. For the other two subjects,

both methods provided good level of spatial overlap with fMRI main cluster,

MEM was providing more focalized results, and MNE reported more false

positives outside the presumed activation region (fMRI cluster). In the end,

averaged reconstructed time courses within the fMRI main cluster region are

showed with standard deviation as error bar. Similarly to simulations results,

MEM exhibited overall very similar time course estimations than MNE in all

cases. Considering the task duration was 10s, the reconstructed peak timing

of HbO/HbR appeared accurately within the range of 10s to 20s.

4. Discussion

4.1. Spatial accuracy of 3D NIRS reconstruction using MEM

In the present study, we first adapted MEM framework into the context

of 3D NIRS reconstruction and extensively validated its performance. The

spatial performance of reconstructions can be considered in two aspects, 1)

correctly localizing the main cluster of the reconstructed map close enough to

the ground truth area, 2) accurately recovering the spatial extent of the gen-

erator. According to our comprehensive evaluations of the proposed depth-

weighted implementations of MEM and MNE methods, accurate localization

was overall not difficult to achieve for our proposed realistic NIRS simula-

tions and SNR levels, as demonstrated using Dmin measuring the geodesic

distance proved by our results. Almost all methods provided median value of
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Dmin to be 0mm in all simulation conditions except at lowest SNR = 1 val-

ues. On the other hand, we believe that recovering the actual spatial extent

of the underlying generator is actually the most challenging task in NIRS

reconstruction, especially since we know that from the fMRI literature the

expected hemodynamic response elicited by a task is usually relatively ex-

tended. Looking for the results of MNE on both realistic simulations and real

finger tapping tasks, either from visual inspection (e.g.Fig.4, Fig.7 and Fig.8)

or quantitative evaluation by SD (e.g. Fig.3, Table.1 and supplementary sec-

tion S2), we found that MNE maps usually reconstructed activities largely

overestimating the size of the underlying generator. MEM was specifically

developed, in the context of EEG/MEG source imaging, as a method able

to recover the spatial extent of the underlying generators, which has been

proved not to be the case for MNE-based approaches (Chowdhury et al.,

2013, 2016; Grova et al., 2016; Hedrich et al., 2017; Pellegrino et al., 2020).

This important properties was again successfully demonstrated in our results

on NIRS reconstructions. MEM provided accurate spatial extent estimations

when evaluating visually on the reconstructed maps or considering AUC and

SD metrics, among different size and depth of the simulated generators and

for real data during finger tapping tasks.

4.2. Importance of depth weighting in 3D NIRS reconstruction

Biophysics models of light diffusion in living tissue are clearly showing

that, at all source-detector separations, light sensitivity decreases exponen-

tially with depth (Strangman et al., 2013), at all source-detector separations.

The general solution to grant the ability of sensitivity compensation in DOT

reconstruction is to introduce depth weighting during the reconstruction. In
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this study, we carefully investigated the impact of depth weighting effects on

DOT reconstruction, as a function of the location and the spatial extent of

the underlying generators. As our understanding, the weighting parameter

ω played a role in tuning the ”effective field of view (FOV)” for reconstruc-

tions, which means that for smaller ω values, MNE will be ”blind” to the

deep regions even if these regions are inside or close to the true generator.

Indeed, our results are showing that depth weighted values like ω = 0.0 and

0.1 were so small that they squeezed the ”effective FOV” only to superficial

regions such as the gyral crown (as suggested by low AUC values). On the

other hand, higher ω values like 0.7 and 0.9 would bias too much the im-

portance of deep generators and consequently, the most superficial aspects

of the underlying generators were not recovered. According to our detailed

evaluation on MNE Fig.S1, ω = 0.3 and 0.5 seemed to be good candidates

offering the best trade off. However, MNE(0.5) reported higher spatial dis-

persion than MNE(0.3). Depth weighing was also important when recovering

more extended generators (> 20cm2, Fig.5), for both MNE and MEM, since

those extended generators were covering both superficial and deep regions.

4.3. Implementation of depth weighting within the MEM framework

In this study, we are proposing for the first time a depth weighting strat-

egy within the MEM framework, by introducing two parameters: ω1 acting

on scaling the source covariance matrix, and ω2 tuning the initialization of

the reference for MEM. When compared to depth weighted MNE, the MEM

framework proposed here for NIRS reconstruction demonstrated its ability

to reconstruct, different depth of focal generators as well as larger size gen-

erators, with better accuracy and less false positives (as illustrated in Fig.5).
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When considering deeper focal generators (depth > 2cm), MEM(0.5, 0.5)

clearly outperformed all other methods (see AUC and SD values in Fig 5).

In terms of temporal accuracy, MNE and MEM provided overall similar level

of accuracy, which is an important result given the fact the MEM is a non

linear operator of the time courses. In summary, for a large range of depth

and spatial extent of the underlying generators, MEM methods always ex-

hibited accurate results (large AUC values) and less false positives (lower SD

values) when compared to MNE methods.

In practice, we would suggest to consider either ω2 = 0.3 or 0.5 for the

initialization of MEM in all cases and only tune ω1 according to the ex-

pected amount of compensations. This is due to the fact that MNE(0.3 or

0.5) provided a generally good reconstruction with larger true positive rate

in most scenarios, therefore providing MEM an accurate reference model

(dν(x)) to start with. Even when considering the most focal simulated gen-

erators (Se = 3) case (see Fig.3, Table.1 and Fig.5), MEM(0.3, 0.3) and

MEM(0.3, 0.5) were actually exhibiting very similar performances. Our pro-

posed suggestion to tune ω1 and ω2 parameters was actually further con-

firmed when considered results obtained from real data. For both montages,

MEM(0.3, 0.3) results in excellent spatial agreement with fMRI Z-maps.

4.4. Implementation of depth weighting comparing to other similar approaches

Note that depth weighted strategy was originally introduced in DOT by

(Culver et al., 2003) and had also been considered in other DOT studies ei-

ther using MNE (Zeff et al., 2007; Dehghani et al., 2009; White et al., 2009;

Eggebrecht et al., 2012, 2014) or a hierarchical Bayesian DOT algorithm

(Yamashita et al., 2016). A spatially-variant regularization parameter β was
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applied to the regularization matrix. Different values of β were reported

in these studies. For instance, β = 0.1 was used in (Zeff et al., 2007; De-

hghani et al., 2009; Eggebrecht et al., 2014) whereas (Eggebrecht et al., 2012)

used β = 0.01. Finally, 2.3 × 104 and 2.5 × 104 were considered for motor

task and resting-state in (Yamashita et al., 2016) to control the minimum

sensitivity for depth compensation to be the average sensitivity of around

2cm depth from the scalp. We introduced the depth weighting parameter

ω which mapped the amount of compensation from 0 to 1 (as described in

Eq.3). This is also a standard procedure introduced in EEG/MEG source

localization studies (Fuchs et al., 1999; Lin et al., 2006).

4.5. Temporal accuracy of 3D NIRS reconstruction using MEM

Another important contribution of this study was that we improved the

temporal accuracy time courses estimated within the MEM framework, re-

sulting in similar temporal accuracy than MNE. For instance, the largest

significant SE difference between MEM and MNE was only 0.02 for Se = 3

and 0.01 for Se = 5. Corresponding time course estimations are also re-

ported for MEM and MNE in real data (Fig.7 and Fig.8), suggesting again

very similar performances. For instance SE between MEM and MNE HbO

time course was estimated as 0.02 for Sub05 in Fig.8, suggesting only small

difference during the undershoot of the response (22s to 30s). Moreover, we

found no significant SE differences between MEM and MNE for more ex-

tended generators (Se = 7,9). These findings are important considering that

MNE is just a linear projection therefore the shape of the reconstruction will

directly depend on the averaged signal at the channel level. On the other

hand, MEM is a nonlinear technique, applied at every time sample, and not
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optimized for the estimation of resulting time courses.

4.6. SNR robustness of the reconstruction performance using MEM

To further investigate the effects of SNR on both reconstruction meth-

ods, we performed the comparisons along 4 different SNR levels, i.e. SNR =

1, 2, 3, 5. As shown in Fig.6 and Table.2, we found that MEM was more

robust than MNE when dealing with simulated signals at lower SNR values.

This is actually a very important result since when reconstructing HbO/HbR

responses, one has to consider at least two ∆OD of two different wavelengths

(e.g. 685nm and 830nm). For the simulation results, we reported reconstruc-

tion results obtained from 830nm data, whereas when considering real data

(Fig.7 and Fig.8), we had to convert the reconstruction absorption changes

at 685nm and 830nm into HbO/HbR concentration changes. Therefore, our

final results were influenced by the SNR of all involved wavelengths.

There are also SNR variability between subjects as shown in Fig.8. With

a good SNR level in Sub05, both MEM and MNE could reconstruct the

main cluster of the activation, but MNE provided much more false positive

activation outside the ROI. When considering relatively lower SNR cases,

e.g. Sub02 and Sub03, MEM recovered the activation similar to fMRI map.

In those cases, MNE not only reported suspicious activation pattern but also

suffered to even correctly reconstruct the peak amplitude inside the presumed

ROI. Our results suggesting MEM robustness in low SNR conditions for DOT

are actually aligned with similar findings suggested for EEG/MEG source

imaging, when considering source localization of single trial data (Chowdhury

et al., 2018).
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4.7. Comprehensive evaluation and comparison of the reconstruction perfor-

mance using MEM and MNE

To perform a detailed evaluation of our proposed NIRS reconstructions

methods, we developed a fully controlled simulation environment, similar to

the one proposed by our team to validate EEG/MEG source localization

methods (Chowdhury et al., 2013, 2016; Hedrich et al., 2017). Indeed such

environment provided us access to a ground truth, which is not possible when

considering real NIRS data set. Previous studies validated tomography re-

sults (Eggebrecht et al., 2014; Yamashita et al., 2016) by comparing with

fMRI activation map which can indeed be considered as a ground truth, but

only for well controlled and reliable paradigms. Since fMRI also measures

a signal of hemodynamic origin, it is reasonable to check the concordance

between fMRI results and DOT reconstructions. Therefore, as preliminary

illustrations, we also compared our MEM and MNE results to fMRI Z-maps

obtained during finger tapping tasks on 6 healthy participants, suggesting

qualitatively excellent performances of MEM when compared to MNE. Fur-

ther quantitative comparison between fMRI and NIRS 3D reconstruction,

was out of the scope of this paper and will be considered in future studies.

4.8. Sampling size of NIRS reconstructions

As opposed to several other NIRS tomography studies that reconstruct

NIRS responses within a 3D volume space, here we proposed to use the

mid-cortical surface as anatomical constraint to guide DOT reconstruction.

However, the maximum spatial resolution of our surface based reconstruction

was similar to the volume based one. Indeed, DOT reconstruction within a

volume space usually down-sampled light sensitivity maps to either 2× 2×
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2 mm3 (Eggebrecht et al., 2014), 3× 3× 3 mm3 (Eggebrecht et al., 2012) or

4×4×4 mm3 (Yamashita et al., 2016) matrices, resulting the down-sampled

voxel volume ranging from 8mm3 to 64mm3. In our case, when projecting

from volume space into cortical surface space, a unique set of voxels were

assigned to each vertex along the cortical surface according to the Voronoi

based projection method (Grova et al., 2006). Considering the mid-surface

resolution (i.e. 25, 000 vertices) used in this study, the average volume of

a Voronoi cell was 25mm3, which is falling within the same volume range.

Therefore we can conclude that both volume-based and surface-based NIRS

reconstructions as implemented here would result in similar sampling of the

reconstruction space.

4.9. NIRS montage for 3D reconstructions

In studies such as (Zeff et al., 2007; White and Culver, 2010; Zhan et al.,

2012; Eggebrecht et al., 2012, 2014), a high density montage was considered

which was proved to be able to provide higher spatial resolution and robust-

ness to low SNR conditions (White and Culver, 2010). In the present study,

we first considered a full double density montage, as proposed in (Kawaguchi

et al., 2007), to generate realistic simulations first and then to analyze finger

tapping results on real data acquired on one subject. DD montage has been

involved in several inverse modelling studies such as (Kawaguchi et al., 2004;

Sakakibara et al., 2016; Machado et al., 2018). We therefore considered that

using the full double density montage in this study in terms of validating

and comparing methods was important. Besides, we also illustrated, in 5

other subjects, MEM performance when considering real data set acquired

by optimal montages, exhibiting a large amount of local spatial overlap be-
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tween channels. In this case, probe design was optimized to maximize the

sensitivity to the hand knob ROI, while also ensuring sufficient spatial over-

lap between sensors (e.g. at least 13 detectors had to construct channels

with each of the three sources, and the channel distance was ranging from

2cm to 4.5cm, see Fig.8a). We have previously demonstrated in (Machado

et al., 2018) that even if high density montages can be considered as a gold

standard for DOT reconstruction, personalized optimal montage (Machado

et al., 2014, 2018) have ability to deliver accurate reconstructions along the

cortical surface. Finally, evaluating the performance of MEM when consid-

ering high density NIRS montage would be of great interest but was out of

the scope of this present study.

4.10. Availability of the proposed MEM framework

Several software have been proposed to provide NIRS reconstruction

pipelines, for instance the NeuroDOT (Eggebrecht et al., 2014, 2019), At-

lasViewer(Aasted et al., 2015) and NIRS-SPM(Ye et al., 2009). To en-

sure an easy access of our MEM methodology to our community, we de-

veloped and released a NIRS processing toolbox - NIRSTORM (https:

//github.com/Nirstorm), as a plugin of Brainstorm software (Tadel et al.,

2011), which is a renown software package dedicated for EEG/MEG analysis

and source imaging. Our package NIRSTORM offering standard preprocess-

ing, analysis and visualization as well as more advanced features such as opti-

mal montage design, access to forward model estimation using MCXlab(Fang

and Boas, 2009; Yu et al., 2018) and the MNE and MEM implementations

considered in this study.
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4.11. Limitations and Perspectives

(Tremblay et al., 2018) had comprehensively compared a variety of NIRS

reconstruction methods using large number of realistic simulations. Since

introducing MEM was our main goal of this study, we did not consider such

wide range of methodological comparisons. We decided to carefully compare

MEM with MNE since MNE remains the main method considered for DOT,

and is available in several software packages. As suggested in (Tremblay et al.,

2018), DOT reconstruction methods based on Tikhonov regularization, such

as least square regularization in MNE, usually allow great sensitivity, but

performed poorly in term of spatial extent, usually largely overestimating

the size of the underlying generator. On the other hand, L1-based regular-

ization (Süzen et al., 2010; Okawa et al., 2011; Kavuri et al., 2012; Prakash

et al., 2014) could achieve more focal solutions with high specificity but much

lower sensitivity. As showed in our results, the proposed MEM framework

allows reaching good sensitivity and accurate reconstruction of the spatial

extent of the underlying generator. Bayesian model averaging (BMA) orig-

inally proposed for EEG source imaging by (Trujillo-Barreto et al., 2004),

allows accurate DOT reconstructions with less false positives when com-

pared to MNE. Similarly, we carefully compared MEM to Bayesian multiple

priors approaches in (Chowdhury et al., 2013) in the context of MEG source

imaging. Such comparison of more advanced DOT reconstruction methods,

including also the one proposed by (Yamashita et al., 2016), would be of

great interest but was out of the scope of this study.

Moreover, some studies (Eggebrecht et al., 2012; Yamashita et al., 2016)

proposed to constrain the reconstruction space to both scalp and cortex when
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trying to disentangle brain NIRS response from superficial layers signals (skin

and muscle layers). These methods extended the linear model into the lin-

ear combination of cortex sources and scalp sources with their corresponding

forward models. Since this is the first time we implement MEM framework

into NIRS, we did not consider this procedure in order to focus our imple-

mentation on standard cortical reconstructions. However, we indeed applied

short distance channel regression at the sensor level in this study to remove

the physiological noise measured from the scalp (Zeff et al., 2007). In the fu-

ture, we will investigate the performance of MEM when reconstructing both

reconstructing NIRS signal of both cortical and superficial layers origins.

Overall one advantage of the MEM framework is its flexibility. Since the

core structure of the MEM framework is to provide a unique reconstruction

map by maximizing the entropy relative to a reference source distribution,

one could implement its own reference for specific usage. For instance, as we

did in this paper, the reference distribution considered the depth weighting

MNE solution and spatial smoothing. Note that in this study we applied

MEM independently for the two wavelengths and then calculated HbO/HbR

concentration changes after reconstruction, whereas one could directly solve

HbO/HbR concentration changes along with reconstructions. Such proce-

dure has been suggested by (Li et al., 2004), by incorporating signals from

the two wavelength within the same DOT reconstruction model. In the fu-

ture, the MEM framework would allow to easily implement such a fusion

model, as suggested (Chowdhury et al., 2015) in the context of MEG/EEG

fusion algorithms. Whereas our MEM-based EEG/MEG fusion allows to

reach more reliability in the source imaging results (Chowdhury et al., 2018),
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we will consider such an approach to estimate directly HbO/HbR fluctuations

from the two wavelengths signals.

Additionally, there are other extensions of MEM framework such as wavelet

based MEM (i.e.wMEM) which could reconstruct specific frequency bands

(Lina et al., 2014). Implementing wMEM localization for NIRS, would al-

low us to target specifically the DOT reconstruction of oscillatory/rhythmic

NIRS activities in different frequency bands.

In the end, considering the main contribution of this study was to intro-

duce the MEM framework for 3D NIRS reconstruction, we decided to first

carefully evaluate the performance of MEM, using well controlled realistic

simulations. Therefore, we also included few real data set reconstructions to

illustrate the performance of the MEM reconstruction, whereas quantitative

evaluation of MEM reconstructions on larger database will be considered in

our future investigations. Indeed it would be interesting to involve more

subjects as well as quantitative evaluations in the future.

5. Conclusion

In the present paper, we proposed a new NIRS reconstruction method -

Maximum Entropy on the Mean (MEM). We first implemented depth weight-

ing into MEM framework and improved its temporal accuracy. To carefully

validate the method, we applied a large number (n = 4000) of realistic sim-

ulations with various spatial extents and depths. We also evaluated the

robustness of the method when dealing with low SNR signals. The com-

parison of the proposed method with the widely used depth weighted MNE

was performed by applying four different quantification validation metrics.
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We showed that MEM framework could provide more accurate and robust

reconstruction results, relatively stable for a large range of spatial extents,

depths and SNRs of the underlying generator. Moreover, we implemented

the proposed method into a new NIRS processing plugin - NIRSTORM in

Brainstorm software to provide the access of the method to users for appli-

cations, validations and comparisons.
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Supplementary material

S1. Validation metrics

Here is a detailed description of the four validation metrics considered in

our evaluation. Except the shape error (SE), other metrics were all calculated

at the time instant τ when the simulated ∆OD time course reached its peak

value (e.g. 12.2s after onset).

Area Under the Receiver Operating Characteristic (ROC) curve

(AUC) was used to assess general detection accuracy of the reconstruction

methods. We used a specific version of AUC that has been proposed in

(Grova et al., 2006) in order not to bias results towards false positives.

Minimum geodesic distance (Dmin) was represented by the geodesic

distance, following the circumvolutions of the cortical surface, of the vertex

that exhibited maximum of reconstructed activity to the border of the ‘gen-

erator’. It should be 0 when the peak of the reconstruction map was located

inside the simulated cortical region.

Spatial Dispersion (SD) assessed the spatial spread of the estimated

‘generator’ distribution and the localization error using Eq.12. The ideal

value (i.e. SD = 0), was achieved when no activation was reconstructed

outside the theoretical ‘generator’. The larger the SD was, the more spatially

spreading were the reconstructed maps.

SD =

√√√√√√√
K∑
i=1

(
minj∈Θ(D2(i, j))X̂2(i, τ)

)
K∑
i=1

(
X̂2(i, τ)

) (12)

where minj∈Θ(D2(i, j)) is the minimum Euclidean distance between the ver-
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tex i to the vertex j which is located inside the simulated ‘generator’ (Θ).

X̂2(i, τ) is the power of the amplitude of reconstructed time course on vertex

i at time τ . K is the total number of vertices within the reconstruction field

of view.

Shape error(SE) evaluated the temporal accuracy of the reconstruction.

Reconstructed time courses within the simulation ‘generator’ were averaged

and normalized. The root mean square of the difference between this time

course and the normalized theoretical time course was estimated and denoted

as SE in Eq.13 as introduced in (Chowdhury et al., 2013)

SE =

√√√√ 1

T

T∑
t

(
Xth(t)

max(|Xth(t)|)
− meanj∈Θ(X̂(j, t))

max(|meanj∈Θ(X̂(j, t))|)

)2

(13)

where T is length of the time course. Xth(t) is the theoretical time course of

the simulation. meanj∈Θ(X̂(j, t)) is the averaged mean of the reconstructed

time courses within the ‘generator’.

S2. Effects of depth weighting on MNE

We first investigated the effects of depth weighting factor ω selection for

depth weighted MNE. To do so, we evaluated spatial and temporal perfor-

mances of DOT reconstruction. As presented in Fig.S1, we compared depth

weighted MNE using depth weighting factors ω = 0, 0.1, 0.3, 0.5, 0.7, 0.9 in

superficial seeds case. In general, ω = 0.3 and 0.5 provided overall the most

accurate results (i.e. median AUC > 0.8 and Dmin = 0mm ). For focal

generators(i.e. Se = 3, 5), ω = 0.3 performed better than ω = 0.5 consider-

ing it was providing significantly lower SD. However, in extended generators
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(i.e. Se = 7, 9), reconstructions with ω = 0.5 were exhibiting more accurate

results, consisting in significantly positive AUC difference (0.05 and 0.08,

p < 0.001) and significantly positive SD difference (2.24 and 2.06, p < 0.001).

ω = 0 and 0.1 only provided AUC higher than 0.8 in the case of Se = 3,

whereas ω = 0.7 and 0.9 failed in all cases and even the median values of

Dmin were significantly larger (median values around 2-3 cm). From these

results, we decided to consider only the depth weighting values ω = 0.3 and

0.5 for depth weighting MNE in the comparisons with the MEM.

Fig.S1. Evaluation of the performances of depth weighted MNE for different depth weight-

ing factors ω = 0, 0.1, 0.3, 0.5, 0.7, 0.9. Distribution of validation metrics (AUC, Dmin , SD

and SE) are displayed using boxplot representations, for simulations involving superficial

seeds only and for spatial extents Se = 3, 5, 7, 9.

S3. MEM v.s. MNE with realistic simulations involving middle and deep

seeds

In Fig.S2 and Table.S1, we showed the comparison of MEM and MNE

in middle seeds case. First of all, we found that more depth compensa-

tion was required to provide good reconstructions in all scenarios. Thus,
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MEM(0.5, 0.5) was compared to the best of MNE - MNE(0.5). Non-significant

AUC and Dmin differences were found between them. However, MEM(0.5, 0.5)

provided significant lower SD than MNE(0.5), median value of difference

of SD = −5.33, −4.80, −5.00, −4.95, p < 0.001 for Se = 3, 5, 7, 9 re-

spectively. Fig.S3 and Table.S2 presented the comparison of them in deep

seeds case. Similarly, no significant AUC and Dmin differences were found.

MEM(0.5, 0.5) provided significant lower SD than MNE(0.5), median value of

difference of SD = −6.39, −6.33, −6.97, −5.52, P < 0.001 for Se = 3, 5, 7, 9

respectively. For temporal performance in these two cases, similar to Fig.3,

MNE(0.5) gave significant lower SE (−0.01 or −0.02, p < 0.001) than MEM

when Se = 3, 5 (small difference). No significant different SE was found in

Se = 7, 9.
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Fig.S2. Evaluation of the performances of MEM and MNE using realistic simulations

involving middle seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation

of the distribution of four validation metrics for three depth weighted strategies of MEM

and two depth weighted strategies of MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5)

in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) in black. Results

were obtained after DOT reconstruction of 830nm ∆OD.
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Table.S1. Wilcoxon signed rank test results of reconstruction performance comparison of

MEM and MNE in middle seeds case. Median values of paired difference were showed in

the table. p values were corrected for multiple comparisons using Bonferroni correction,

* indicates p < 0.01 and ** represents p < 0.001. Median of the paired difference of each

validation metrics is color coded as follows: green: MEM is significantly better than MNE,

red: MNE is significantly better than MEM and gray: non-significance.
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Fig.S3. Evaluation of the performances of MEM and MNE using realistic simulations

involving deep seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation of

the distribution of four validation metrics for three depth weighted strategies of MEM and

two depth weighted strategies of MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5) in

green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) in black. Results were

obtained after DOT reconstruction of 830nm ∆OD.
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Table.S2. Wilcoxon signed rank test results of reconstruction performance comparison

of MEM and MNE in deep seeds case. Median values of paired difference were showed in

the table. p values were corrected for multiple comparisons using Bonferroni correction,

* indicates p < 0.01 and ** represents p < 0.001. Median of the paired difference of each

validation metrics is color coded as follows: green: MEM is significantly better than MNE,

red: MNE is significantly better than MEM and gray: non-significance.
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