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Abstract

Functional near-infrared spectroscopy (fNIRS) measures the hemoglobin con-

centration changes associated with neuronal activity. Diffuse optical tomog-

raphy (DOT) consists of reconstructing the optical density changes measured

from scalp channels to the oxy-/deoxy-hemoglobin (i.e., HbO/HbR) concen-

tration changes within the cortical regions. In the present study, we adapted

a nonlinear source localization method developed and validated in the con-

∗Corresponding author at: Concordia University, Department of Physics, Loyola Sci-
ence Complex, 7141 Sherbrooke Street West Montréal, Québec, Canada, H4B 1R6. Tel:
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text of Electro- and Magneto-Encephalography (EEG/MEG): the Maximum

Entropy on the Mean (MEM), to solve the inverse problem of DOT recon-

struction. We first introduced depth weighting strategy within the MEM

framework for DOT reconstruction to avoid biasing the reconstruction re-

sults of DOT towards superficial regions. We also proposed a new initial-

ization of the MEM model improving the temporal accuracy of the original

MEM framework. To evaluate MEM performance and compare with widely

used depth weighted Minimum Norm Estimate (MNE) inverse solution, we

applied a realistic simulation scheme which contained 4000 simulations gener-

ated by 250 different seeds at different locations and 4 spatial extents ranging

from 3 to 40cm2 along the cortical surface. Our results showed that overall

MEM provided more accurate DOT reconstructions than MNE. Moreover, we

found that MEM was remained particularly robust in low signal-to-noise ra-

tio (SNR) conditions. The proposed method was further illustrated by com-

paring to functional Magnetic Resonance Imaging (fMRI) activation maps,

on real data involving finger tapping tasks with two different montages. The

results showed that MEM provided more accurate HbO and HbR reconstruc-

tions in spatial agreement with the main fMRI cluster, when compared to

MNE.

Keywords: fNIRS, Diffuse Optical Tomography (DOT), Maximum

Entropy on the Mean (MEM), Minimum Norm Estimation (MNE), Depth

weighting, Personalized Optimal Montage
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Highlights

• We introduced a new fNIRS reconstruction method - Maximum En-

tropy on the Mean.

• We implemented depth weighting strategy within the MEM framework.

• We improved the temporal accuracy of the original MEM reconstruc-

tion.

• Performances of MEM and MNE were evaluated with realistic simula-

tions and real data.

• MEM provided more accurate and robust reconstructions than MNE.

1. Introduction1

Functional Near-infrared spectroscopy (fNIRS) is an non-invasive func-2

tional neuroimaging modality. It detects changes in oxy-/deoxy-hemoglobin3

(i.e., HbO/HbR) concentration within head tissues through the measurement4

of near-infrared light absorption using sources and detectors placed on the5

surface of the head (Scholkmann et al., 2014; Yücel et al., 2021). In continu-6

ous wave fNIRS, the conventional way to transform variations in optical den-7

sity to HbO/HbR concentration changes at the level of each source-detector8

channel, is to apply the modified Beer Lambert Law (mBLL) (Delpy et al.,9

1988). This model assumes homogeneous concentration changes within the10

detecting region, i.e., ignoring the partial volume effects which indicates the11

absorption of light within the illuminated regions varies locally. This as-12

sumption reduces quantitative accuracy of HbO/HbR concentration changes13
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when dealing with focal hemodynamic changes (Boas et al., 2001; Strangman14

et al., 2003).15

In order to handle these important quantification biases associated with16

sensor level based analysis, diffuse optical tomography (DOT) has been pro-17

posed to reconstruct, from sensor level measures of the optical density, the18

fluctuations of HbO/HbR concentrations within the brain (Arridge, 1999).19

This technique not only provides better spatial localization accuracy and20

resolution of the underlying hemodynamic responses (Boas et al., 2004a;21

Joseph et al., 2006), but also avoids partial volume effect in classical mBLL,22

hence achieves better quantitative estimation of HbO/HbR concentration23

changes (Boas et al., 2001; Strangman et al., 2003). DOT has been applied24

to reconstruct hemodynamic responses in sensory and motor cortex during25

median-nerve stimulation (Dehghani et al., 2009; Hughes et al., 2004) and26

finger tapping (Boas et al., 2004a; Yamashita et al., 2016); to conduct visual27

cortex retinotopic mapping (Zeff et al., 2007; White and Culver, 2010; Egge-28

brecht et al., 2012) and to simultaneous image hemodynamic responses over29

the motor and visual cortex (White et al., 2009).30

To formalize DOT reconstruction, one needs to solve two main problems.31

The first one is the forward problem which estimates a forward model or sen-32

sitivity matrix that maps local absorption changes within the brain to varia-33

tions of optical density changes measured by each channel (Boas et al., 2002).34

The second problem is the inverse problem which aims at reconstructing the35

fluctuations of hemodynamic activity within the brain from scalp measure-36

ments (Arridge, 2011). The forward problem can be solved by generating a37

subject specific anatomical model, describing accurately propagation of light38

4
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within the head. Such anatomical model is obtained by segmenting anatom-39

ical Magnetic Resonance Imaging (MRI) data, typically into five tissues (i.e.,40

scalp, skull, cerebro-spinal fluid (CSF), white matter and gray matter), be-41

fore initializing absorption and scattering coefficients values for each tissue42

type and for each wavelength (Fang, 2010; Machado et al., 2018). Solving the43

inverse problem relies on solving an ill-posed problem which does not provide44

a unique solution, unless specific additional constraints are added. The most45

widely used inverse method in DOT is a linear approach based on Minimum46

Norm Estimate (MNE) originally proposed for solving the inverse problem of47

MagnetoencephaloGraphy(MEG) and Electroencephalography (EEG) source48

localization (Hämäläinen and Ilmoniemi, 1994). It minimizes the L2 norm49

of the reconstruction error along with Tikhonov regularization (Boas et al.,50

2004b; Zeff et al., 2007; Dehghani et al., 2009; Eggebrecht et al., 2012, 2014;51

Tremblay et al., 2018). Other strategies to solve DOT inverse problem have52

also been considered, such as sparse regularization using the L1 norm (Süzen53

et al., 2010; Okawa et al., 2011; Kavuri et al., 2012; Prakash et al., 2014;54

Tremblay et al., 2018) and Expectation Maximization (EM) algorithm (Cao55

et al., 2007). A non-linear method based on hierarchical Bayesian model for56

which inference is obtained through an iterative process (Shimokawa et al.,57

2012, 2013) has been proposed and applied on finger tapping experiments in58

(Yamashita et al., 2016).59

Maximum Entropy on the Mean (MEM) framework was first proposed by60

Amblard et al., 2004 and then applied and carefully evaluated by our group61

in the context of EEG/MEG source imaging (Grova et al., 2006; Chowdhury62

et al., 2013). The MEM framework was specifically designed and evaluated63
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for its ability to recover spatially extended generators (Heers et al., 2016;64

Pellegrino et al., 2016; Chowdhury et al., 2016; Grova et al., 2016). We65

recently demonstrated its excellent performances when dealing with focal66

sources (Hedrich et al., 2017) and when applied on clinical epilepsy data67

(Chowdhury et al., 2018; Pellegrino et al., 2020). In addition to its unique68

ability to recover the spatial extent of the underlying generators, we also69

demonstrated MEM’s excellent accuracy in low SNR conditions, with the70

ability to limit the influence of distant spurious sources (Chowdhury et al.,71

2016; Hedrich et al., 2017; Heers et al., 2016; Pellegrino et al., 2020; von72

Ellenrieder et al., 2016; Aydin et al., 2020).73

We believe that these important aspects should be carefully considered74

in the context of fNIRS reconstruction. The first one is the ability to ac-75

curately recover the spatial extent of the underlying hemodynamic activity76

for both focal and extended generators. The second one is to provide robust77

reconstruction results when data SNR decreases, especially when considering78

the fact that it is challenging to maintain a good intra-subject consistence79

using continuous-wave fNIRS due to its relatively low SNR (Chen et al.,80

2020). Therefore, our main objective was to adapt the MEM framework81

for fNIRS reconstruction and carefully evaluate its performance. Moreover,82

fNIRS reconstruction results tends to be biased towards more superficial re-83

gions, because the light sensitivity profile decreases exponentially with the84

depth of the generators (Strangman et al., 2013). To overcome this bias, we85

implemented and evaluated a depth weighted variant of the MEM framework.86

The article is organized as follows. The methodology of depth weighted87

MEM for DOT is first presented. Then, we described our validation frame-88
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work using realistic simulations and associated validation metrics. fNIRS89

reconstruction using MEM was compared with widely used depth weighted90

Minimum Norm Estimate (MNE) inverse solution. Finally, illustrations of91

the methods on finger tapping fNIRS data set acquired with two different92

montages from 6 healthy subjects are provided and compared with functional93

Magnetic Resonance Imaging (fMRI) results.94

2. Material and Methods95

2.1. fNIRS reconstruction96

To perform fNIRS reconstructions, the relationship between measured op-97

tical density changes on the scalp and wavelength specific absorption changes98

within head tissue is usually expressed using the following linear model (Ar-99

ridge, 1999):100

Y = AX + e (1)101

where Y is a matrix (p×t) which represents the wavelength specific measure-102

ment of optical density changes in p channels at t time samples. X (q × t)103

represents the unknown wavelength specific absorption changes in q locations104

along the cortex at time t. A (p × q) is called the light sensitivity matrix105

which is actually the forward model relating absorption changes in the head106

to optical density changes measured in each channel. Finally, e (p×t) models107

the additive measurement noise. Solving the fNIRS tomographic reconstruc-108

tion problem consists in solving an inverse problem which can be seen as the109

estimation of matrix X (i.e. the amplitude for each location q at time t).110

However, this problem is ill-posed and admits an infinite number of possible111
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solutions. Therefore, solving the DOT inverse problem requires adding ad-112

ditional prior information or regularization constraints to identify a unique113

solution.114

In DOT studies, anatomical constraints can be considered by defining the115

reconstruction solution space (i.e. where q is located ) within the gray matter116

volume (Boas and Dale, 2005) or along the cortical surface (Huppert et al.,117

2017; Machado et al., 2021). In EEG and MEG source localization studies118

(Dale and Sereno, 1993; Grova et al., 2006; Chowdhury et al., 2013), it also119

is common to constrain the reconstruction along the cortical surface. In this120

study, the reconstruction space was considered as the mid surface defined as121

the middle layer between gray matter/pial and gray/white matter interfaces122

(Fischl et al., 2002).123

2.2. Minimum Norm Estimation (MNE)124

Minimum norm estimation is one of the most widely used reconstruction125

methods in DOT (Zeff et al., 2007; Dehghani et al., 2009; White et al., 2009;126

White and Culver, 2010; Eggebrecht et al., 2012, 2014; Yamashita et al.,127

2016). Such estimation can be expressed using a Bayesian formulation which128

solves the inverse problem by estimating the posterior distribution P (X|Y ) =129

P (Y |X)P (X)
P (Y )

(i.e. the probability distribution of parameter X conditioned on130

data Y ). A solution can be computed by imposing Gaussian distribution131

priors on the generators X (P (X) = N(0,Σ−1
s )) and the noise e (P (e) =132

N(0,Σ−1
d )). Σd is the inverse of the noise covariance which could be estimated133

from baseline recordings. Σs is the inverse of the source covariance which is134

assumed to be an identity matrix in conventional MNE.135

The Maximum a Posteriori (MAP) estimator of the posterior distribution136
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P (X|Y ) can be obtained using maximum likelihood estimation:137

X̂MNE = argmin
(
||(Y − AX)||2Σd

+ λ||X||2Σs

)
= (ATΣdA+ λΣs)

−1ATΣdY
(2)138

where X̂MNE is the reconstructed absorption changes along the cortical sur-139

face. λ is a hyperparameter to regularize the inversion using the priori mini-140

mum norm constraint ||X||2Σs
. In this study, we applied the standard L-Curve141

method to estimate this λ as suggested in (Hansen, 2000).142

2.3. Depth weighted MNE143

Standard MNE solutions assumes Σs = I, which then tends to bias the144

inverse solution towards the generators exhibiting large sensitivity in the for-145

ward model, therefore the most superficial ones (Fuchs et al., 1999). When146

compared to EEG-MEG source localization, such bias is even more pro-147

nounced in fNIRS since within the forward model light sensitivity values148

decrease exponentially with the depth (Strangman et al., 2013). This bias149

can be compensated by scaling the source covariance matrix such that the150

variances are equalized (van der Sluis, 1969; Fuchs et al., 1999). In the con-151

text of DOT, depth weighted MNE has been proposed by Culver et al., 2003152

as an approach to compensate this effect and applied in different studies (Zeff153

et al., 2007; Dehghani et al., 2009; White et al., 2009; Eggebrecht et al., 2012,154

2014). In practice, depth weighting can be formulated differently, here we155

consider a generalized expression for the implementation of depth weighted156

MNE as proposed in Lin et al., 2006. It consists in initializing the source157

covariance matrix as Σ
−1/2
s = Λ, resulting in a so called depth weighted MNE158

9
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solution, described as follows:159

X̂dMNE = argmin
(
||(Y − AX)||2Σd

+ λ||X||2Σs

)
= (ATΣdA+ λ(ΛΛt)−1)−1ATΣdY

diag(Λ) =
1

diag ((ATΣdA))ω

(3)160

Depth weighted MNE solution takes into account the forward model A for161

each position in the brain and therefore penalizes most superficial regions162

exhibiting larger amplitude in A, by enhancing the contribution to deeper163

regions. ω is a weighting parameter tuning the amount of depth compen-164

sation to be applied. The larger is ω, the more depth compensation is con-165

sidered. ω = 0 would therefore refer to no depth compensation and an166

identity source covariance model. ω = 0.5 refers to standard depth weight-167

ing approach mentioned above. In the present study, we carefully evalu-168

ated the impact of this parameter on DOT accuracy with a set of ω values169

(i.e. ω = 0, 0.1, 0.3, 0.5, 0.7 and 0.9).170

2.4. Maximum Entropy on the Mean (MEM) for fNIRS 3D reconstruction171

2.4.1. MEM framework172

The main contribution of this study is the first adaptation and evalua-173

tion of MEM method (Amblard et al., 2004; Grova et al., 2006; Chowdhury174

et al., 2013) to perform DOT reconstructions in fNIRS. Within the MEM175

framework, the intensity of x, i.e. amplitude of X at each location q in Eq.1,176

is considered as a random variable, described by the following probability177

distribution dp(x) = p(x)dx. The Kullback-Leibler divergence or ν-entropy178

of dp(x) relative to a prior distribution dν(x) is defined as,179

Sv(dp(x)) = −
∫
x

log

(
dp(x)

dν(x)

)
dp(x) = −

∫
x

f(x)log(f(x))dν(x) (4)180
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where f(x) is the ν-density of dp(x) defined as dp(x) = f(x)dν(x). Following181

a Bayesian approach to introduce the data fit, we denote Cm as the set of182

probability distributions on x that explains the data on average:183

Y − [A|Iq]

Edp[x]

e

 = 0, dp ∈ Cm (5)184

where Y represents the measured optical density changes, Edp[x] =
∫
xdp(x)185

represents the statistical expectation of x under the probability distribution186

dp, and Iq is an identity matrix of (q × q) dimension. Therefore, within the187

MEM framework, a unique solution of dp(x) could be obtained,188

dp∗(x) = argmaxdp(x)∈Cm (Sv(dp(x))) (6)189

The solution of dp∗(x) can be solved by maximizing the ν-entropy which190

is a convex function. It is equivalent to minimize an unconstrained concave191

Lagrangian function i.e., L(dp(x), κ, λ), along with two Lagrangian constraint192

parameters, i.e., κ and λ. It is finally equivalent to maximize a cost function193

D(λ) which is described as,194

D(λ) = λTY − Fv(ATλ)− 1

2
λTΣ−1

d (Σ−1
d )

T
λ (7)195

where Σ−1
d is the noise covariance matrix. Fv represents the free energy196

associated with reference dν (x). It is important to mention that D(λ) is now197

an optimization problem within a space of dimension equal to the number of198

sensors. Therefore, if we estimate λ∗ = argmaxλD(λ), the unique solution199

of MEM framework is then obtained from the gradient of the free energy.200

X̂MEM = ∇ξF
∗
ν (ξ)|ξ=ATλ∗ (8)201

For further details on MEM implementation and theory we refer the reader202

to (Amblard et al., 2004; Grova et al., 2006; Chowdhury et al., 2013).203
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2.4.2. Construction of the prior distribution for MEM estimation204

To define the prior distribution dν(x) mentioned above, we assumed that205

brain activity can be depicted by a set of K non-overlapping and independent206

cortical parcels. Then the reference distribution dν(x) can be modeled as,207

dν(x) =
K∏
k=1

[(1− αk)δ(xk) + αkN(µk,Σk)]dxk, 0 < αk < 1 (9)208

Each cortical parcel k is characterized by an activation state, defined by the209

hidden variable Sk, describing if the parcel is active or not. Therefore we210

denote αk as the probability of kth parcel to be active, i.e., Prob(Sk = 1). δk211

is a Dirac function that allows to “switch off” the parcel when considered as212

inactive (i.e., Sk = 0). N(µk,Σk) is a Gaussian distribution, describing the213

distribution of absorptions changes within the kth parcel, when the parcel214

is considered as active (Sk = 1). This prior model, which is specific to our215

MEM inference, offers a unique opportunity to switch off some parcels of the216

model, resulting in accurate spatial reconstructions of the underlying activity217

patterns with their spatial extent, as carefully studied and compared with218

other Bayesian methods in Chowdhury et al., 2013.219

The spatial clustering of the cortical surface into K non-overlapping par-220

cel was obtained using a data driven parcellization (DDP) technique (La-221

palme et al., 2006). DDP consisted in first applying a projection method, the222

multivariate source prelocalization (MSP) technique (Mattout et al., 2005),223

estimating a probability like coefficient (MSP score) between 0 and 1 for each224

vertex of the cortical mesh, characterizing its contribution to the data. DDP225

is then obtained by using a region growing algorithm, along the tessellated226

cortical surface, starting from local MSP maxima. Once the parcellization is227
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done, the prior distrubution dν(x) is then a joint distribution expressed as228

the multiplication of individual distribution of each parcel in Eq.9 assuming229

statistical independence between parcels,230

dν(x) = dν1(q1)dν2(q2)...dνk(qk)...dνK(qK) (10)231

where dν(x) is the joint probability distribution of the prior, dνk(qk) is the232

individual distribution of the parcel k described as Eq.9.233

To initialize the prior in Eq.9, µk which is the mean of the Gaussian234

distribution, N(µk,Σk), was set to zero. Σk at each time point t, i.e. Σk(t),235

was defined by Eq.11 according to (Chowdhury et al., 2013),236

Σk(t) = η(t)Wk(σ)TWk(σ)

η(t) = 0.05
1

Pk

∑
i∈Pk

X̂2
MNE(i, t)

(11)237

where Wk(σ) is a spatial smoothness matrix, defined by (Friston et al., 2008),238

which controls the local spatial smoothness within the parcel according to239

the geodesic surface neighborhood order. Same value of σ = 0.6 was used as240

in (Chowdhury et al., 2013). η(t) was defined as 5% of the averaged energy241

of MNE solution within each parcel Pk at time t. Finally, we can substitute242

this initialization into Eq.9 to construct the prior distribution dν(x), and243

then obtain the MEM solution using Eq.8.244

It is worth mentioning that we did not use MNE solution as the prior245

of µk in Eq.9 at all, which was actually initialized to 0 in our framework.246

We only used 5% of the averaged energy of MNE solution, over the parcel247

k, to set the prior for covariance Σk. The posterior estimation of parameter248

µk was estimated from the Bayesian framework by conditioning with data.249
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Moreover, the prior of MEM framework is a mixture of activation probability250

αk and a Gaussian distribution (see Eq.9), in which the prior for αk was251

informed by a spatio-temporal extension of the MSP score (see Chowdhury252

et al., 2013 for further details). These aspects completely differentiate MEM253

from approaches that iteratively update reconstruction results initialized by254

a MNE solution.255

2.4.3. Depth weighted MEM256

In addition to adapting MEM for fNIRS reconstruction, we also imple-257

mented for the first time, depth weighting within the MEM framework. Two258

depth weighting parameters, ω1 and ω2, were involved in this process. ω1259

was used to apply depth weighting on the source covariance matrix Σk of260

each parcel k in Eq.11. ω2 was applied to solve the depth weighted MNE, as261

described in Eq.3, before using those prior to initialize the source covariance262

model within each parcel of the MEM model. Therefore, the standard MNE263

solution X̂MNE(i, t) in Eq.11 was replaced by the depth weighted version264

of MNE solution X̂dMNE(i, t) described by Eq.3. Consequently, the depth265

weighted version of Σk(t) is now defined as,266

Σk(t)dw = ΛPk
η(t)dwWk(σ)TWk(σ)

η(t)dw = 0.05
1

Pk

∑
i∈Pk

X̂2
dMNE(i, t)

(12)267

where ΛPk
is the depth weighting matrix for each pacel k, in which ω1 was268

involved to construct this scaling matrix as described in Eq.3. This initial-269

ization followed the logic that depth weighting is in fact achieved by scaling270

the source covariance matrix. The other depth weighting parameter, ω2, was271
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considered when solving X̂dMNE(i, t), therefore avoiding biasing the initial-272

ization of the source covariance with a standard MNE solution.273

To comprehensively compare MEM and MNE and also to investigate the274

behavior of depth weighting, we first evaluated the reconstruction perfor-275

mance of MNE with different ω2 (i.e. step of 0.1 from 0 to 0.9). Then two276

of these values (i.e. ω2 = 0.3 and 0.5) were selected for the comparison with277

MEM since they performed better than the others. Note that the follow-278

ing expressions of depth weighted MEM will be denoted as MEM(ω1, ω2) to279

represent the different depth weighting strategies.280

2.4.4. Accuracy of temporal dynamics281

The last contribution of this study was to improve the temporal accuracy282

of MEM solutions. In classical MEM approach (Chowdhury et al., 2013),283

X̂MNE(i, t) in Eq.12 was globally normalized by dividing by max
i∈Ω,t∈T

(X̂MNE(i, t)),284

where Ω represents all the possible locations along the cortical surface and285

T is the whole time segment. Therefore, the constructed prior along the286

time actually contained the temporal scaled dynamics from MNE solution.287

To remove this effect, we performed local normalization for X̂dMNE(i, t) at288

each time instance t, i.e., by dividing by max
i∈Ω

(X̂dMNE(i, t)). This new feature289

would preserve the spatial information provided by prior distribution, while290

allowing MEM to estimate the temporal dynamics only from the data.291

2.5. Validation of fNIRS reconstruction methods292

We evaluated the performance of the two fNIRS reconstruction methods293

(i.e., MEM and MNE), first within a fully controlled environment involving294

the use of realistic simulations of fNIRS data, followed by evaluations on real295
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data acquired with a well controlled finger tapping paradigm. Two different296

fNIRS montages were considered in those two proposed evaluations.297

Montage 1: A full Double Density (DD) montage (see Fig.1) which is298

a widely used fNIRS montage, was considered given that it allows sufficient299

dense spatial coverage of fNIRS channel to allow local DOT (Kawaguchi300

et al., 2007). One healthy subject underwent fNIRS acquisitions with this301

DD montage, involving the two following sessions,302

• A 10 minutes resting state session was acquired to add realistic physiol-303

ogy noise to be considered in our realistic simulations. The subject was304

seating on a comfortable armchair and instructed to keep the eyes open305

and to remain awake. The optodes of the full DD montage (i.e. 8 sources306

and 10 detectors resulting in 50 fNIRS channels) are presented in Fig.1e.307

The montage composed of 6 second-order distance channels(1.5cm), 24308

third-order channels(3cm) and 12 fourth-order channels with 3.35cm309

distance. In addition, we also added one proximity detector paired for310

each source to construct close distance channels (0.7cm) in order to311

measure superficial signals within extra-cerebral tissues. To place the312

montage with respect to the region of interest, the center of the mon-313

tage was aligned with the center of the right ”hand knob” area, which314

controls the left hand movement (Raffin et al., 2015), projected on the315

scalp surface and then each optodes were projected on the scalp surface316

(see Fig.1d).317

• The subject was asked to sequentially tap the left thumb against the318

other digits around 2Hz, therefore the main elicited hemodynamic re-319

sponse was indeed expected over the right hand knob area. The finger320
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tapping paradigm consisted in 10 blocks of 30s tapping task and each321

of them was followed by a 30 to 35s resting period. The beginning/end322

of each block was informed by an auditory cue.323
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Fig.1. fNIRS measurement montage 1 and the anatomical model considered for DOT

forward model estimation. (a) Anatomical 3D MRI segmented in five tissues, namely,

scalp (green), skull (brown), CSF (light green), gray matter (purple) and white matter

(black). (b) Optical fluence of one optode calculated through Monte Carlo simulation

of Photons within this head model, using MCXLab. (c) Sensitivity profile of the whole

montage in volume space. (d) Sensitivity profile, i.e. the summation of sensitivity map

of all channels, along the cortical surface. Green dots represent detectors, including one

proximity detector 0.7 cm for each source, and red dots represent sources. (e) double-

density montage 1 considered for this acquisition. There were 50 channels in total, 12

of 3.8 cm (black), 24 of 3 cm (blue), 6 of 1.5 cm (yellow) and 8 of close distance (0.7cm)

channels.
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Montage 2: A personalized optimal montage (see Fig.8) following the324

methodology we previously reported in Machado et al., 2018. First, the325

hand knob within right primary motor cortex was drawn manually along the326

cortical surface and defined as a target region of interest (ROI) using the327

Brainstorm software (Tadel et al., 2011). Then we applied optimal montage328

estimation (Machado et al., 2014, 2018) in order to estimate personalized329

montages, built to maximize a priori fNIRS sensitivity and spatial overlap330

between channels with respect to the target ROI. To ensure good spatial331

overlap between channels for local 3D reconstruction, we constructed person-332

alized optimal montages composed of 3 sources and 15 detectors (see Fig.7b).333

The source-detector distance was set to vary from 2cm to 4.5cm and each334

source was constrained such that it has to create channels with at least 13335

detectors. Finally, we also manually added 1 proximity channel, located at336

the center of the 3 sources. Five subjects underwent fNIRS acquisitions with337

personalized optimal montage during a similar finger tapping task as the one338

for montage 1, in which 20 blocks were acquired by alternating a task (period339

of 10s) and a resting state period ranging from 30s to 60s.340

All 6 subjects have signed written informed consent forms for this study341

which was approved by the Central Committee of Research Ethics of the Min-342

ister of Health and Social Services Research Ethics Board, Québec, Canada.343

2.5.1. MRI and fMRI Data acquisitions344

Anatomical MRI data were acquired on those 6 healthy subjects (25± 6345

years old, right-handed) and were considered to generate realistic anatomical346

head models. MRI data were acquired in a GE 3T scanner at the PERFORM347

Center of Concordia University, Montréal, Canada. T1-weighted anatomical348

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.02.22.432263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432263
http://creativecommons.org/licenses/by-nc-nd/4.0/


images were acquired using the 3D BRAVO sequence (1 × 1 × 1 mm3, 192349

axial slices, 256× 256 matrix), whereas T2-weighted anatomical images were350

acquired using the 3D Cube T2 sequence (1× 1× 1 mm3 voxels, 168 sagittal351

slices, 256× 256 matrix).352

Participants also underwent functional MRI acquisition (without fNIRS)353

while performing the same finger opposition tasks considered in fNIRS. fMRI354

acquisition consisted in a gradient echo EPI sequence (3.7 × 3.7 × 3.7 mm3
355

voxels, 32 axial slices, TE = 25 ms, TR = 2, 000 ms). fMRI Z-maps were356

generated by standard first-level fMRI analysis using FEAT from FSL v6.0.0357

software (Smith et al., 2004; Jenkinson et al., 2012).358

2.5.2. fNIRS Data acquisition359

fNIRS acquisitions were conducted at the PERFORM Center of Con-360

cordia University using a Brainsight fNIRS device (Rogue Research Inc.,361

Montréal, Canada), equipped with 16 dual wavelength sources (685nm and362

830nm), 32 detectors and 16 proximity detectors (for short distance chan-363

nels). All montages (i.e., double density and optimal montages) were in-364

stalled to cover the right motor cortex. Knowing a priori the exact positions365

of fNIRS channels estimated on the anatomical MRI of each participant, we366

then used a 3D neuronavigation system (Brainsight TMS navigation system,367

Rogue Research Inc.) to guide the installation of the sensors on the scalp.368

Finally, every sensor was glued on the scalp using a clinical adhesive, collo-369

dion, to prevent motion and ensure good contact to the scalp (Yücel et al.,370

2014; Machado et al., 2018).371
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2.5.3. fNIRS forward model estimation372

T1 and T2 weighted anatomical images were processed using FreeSurfer373

V6.0 (Fischl et al., 2002) and Brain Extraction Tool2 (BET2) (Smith et al.,374

2004) in FMRIB Software Library (FSL) to segment the head into 5 tissues375

(i.e. scalp, skull, Cerebrospinal fluid (CSF), gray matter and white matter376

see Fig.1a).377

Same optical coefficients used in (Yücel et al., 2014; Machado et al., 2018)378

for the two wavelengths considered during our fNIRS acquisition, 685nm379

and 830nm, were assigned to each tissue type mentioned above. Fluences380

of light for each optode (see Fig.1b) was estimated by Monte Carlo simula-381

tions with 108 photons using MCXLAB developed by Fang and Boas, 2009;382

Yu et al., 2018 (http://mcx.sourceforge.net/cgi-bin/index.cgi). Sen-383

sitivity values were then computed using the adjoint formulation and were384

normalized by the Rytov approximation (Arridge, 1999).385

For each source-detector pair of our montages, the corresponding light386

sensitivity map was first estimated in a volume space, and then further con-387

strained to the 3D mask of gray matter tissue (see Fig.1c), as suggested in388

Boas and Dale, 2005. Then, these sensitivity values within the gray mat-389

ter volume were projected along the cortical surface (see Fig.1d and Fig.7c)390

using the Voronoi based method proposed by (Grova et al., 2006). We con-391

sidered the mid-surface from FreeSurfer as the cortical surface. This surface392

was downsampled to 25, 000 vertices. This volume to surface interpolation393

method has the ability to preserve sulco-gyral morphology (Grova et al.,394

2006). After the interpolation, the sensitivity value of each vertex of the395

surface mesh represents the mean sensitivity of the corresponding volumetric396
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Voronoi cell (i.e., a set of voxels that have closest distances to a certain vertex397

than to all other vertices).398

2.5.4. fNIRS data preprocessing399

Using the coefficient of variation of the fNIRS data, channels exhibiting a400

standard deviation larger than 8% of the signal mean were rejected (Schmitz401

et al., 2005; Schneider et al., 2011; Eggebrecht et al., 2012; Piper et al., 2014).402

Superficial physiological fluctuations were regressed out at each channel using403

the average of all proximity channels’ (0.7cm) signals (Zeff et al., 2007). All404

channels were then band-pass filtered between 0.01Hz and 0.1Hz using a 3rd405

order Butterworth filter. Changes in optical density (i.e., ∆OD) were calcu-406

lated using the conversion to log-ratio. Finally, ∆OD of finger tapping data407

were block averaged around the task onsets. Note that since sensors were408

glued with collodion, we observed very minimal motion during the acquisi-409

tions. Real background signal considered to generate realistic simulations410

also underwent the same preprocessing.411

2.5.5. Realistic Simulations of fNIRS Data412

We first considered realistic simulations of fNIRS data to evaluate DOT413

methods within a fully controlled environment. To do so, theoretical task-414

induced HbO/HbR concentration changes were simulated within cortical sur-415

face regions with a variety of locations, areas and depths. Corresponding416

optical density changes in the channel space were then computed by apply-417

ing the corresponding fNIRS forward model, before adding real resting state418

fNIRS baseline signal as realistic physiological noise at different signal to419

noise ratio (SNR) levels.420
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As presented in Fig.2a, we defined three sets of evenly distributed seeds421

within the field of view of DOT reconstruction. The locations were selected422

with respect to the depth relative to the skull, namely we simulated 100 ”su-423

perficial seeds”, 100 ”middle seeds” and 50 ”deep seeds”. The cortical regions424

in which we simulated an hemodynamic response were generated by region425

growing around those seeds, along the cortical surface. To simulate genera-426

tors with different spatial extents (denoted here as Se), we considered four427

levels of neighborhood orders, growing geodesically along the cortical sur-428

face, resulting in spatial extents ranging from Se = 3, 5, 7, 9 (corresponding429

areas of 3 to 40 cm2). For simplification, these cortical regions within which430

an hemodynamic response was simulated will be denoted as ”generators” in431

this paper. For each vertex within a ”generator”, a canonical Hemodynamic432

Response Function (HRF) was convoluted with a simulated experimental433

paradigm which consisted in one block of 20s task surrounded by 60s pre-434

/post- baseline period (Fig.2b). Simulated HbO/HbR fluctuations within435

the theoretical generator (Fig.2c) were then converted to the corresponding436

absorption changes of two wavelengths (i.e., 685nm and 830nm). After ap-437

plying the forward model matrix A in Eq.1, we estimated the simulated,438

noise free, task induced ∆OD in all channels.439

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.02.22.432263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432263
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig.2. Workflow describing our proposed realistic fNIRS simulation framework.(a) 100

Superficial seeds (black dots), 100 Middle seeds (red dots), 50 Deep seeds (blue dots)

with spatial extent of Se = 3, 5, 7, 9 neighbourhood order within the field of view. (b)

Convolution of a canonical HRF model with an experimental block paradigm (60s before

and 50s after the onset). (c) Simulated theoretical HbO/HbR fluctuations along the

cortical surface within the corresponding generator. (d) Realistic simulations obtained by

applying the fNIRS forward model and addition of the average of 10 trials of real fNIRS

background measurements at 830nm. Time course of ∆OD of all channels with SNR of

5, 3, 2 and 1 respectively are presented

∆OD of real resting state data were then used to add realistic fluctuations440

(noise) to these simulated signals. Over the 10min of recording, we randomly441

selected 10 baseline epochs of 120s each, free from any motion artifact by442
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visual inspection. To mimic a standard fNIRS block average response, realis-443

tic simulations were obtained by adding the average of these 10 real baseline444

epochs to the theoretical noise-free simulated ∆OD, at five SNR levels (i.e.445

SNR = 5, 3, 2, 1). SNR was calculated through the following equation,446

SNRλ =
max(abs(∆ODλ[0, t1]))

mean(std(∆ODλ[−t0, 0]))
(13)447

where ∆ODλ[0, t1] is the optical density changes of a certain wavelength λ448

in all channels during the period from 0s to t1 = 60s. std(∆ODλ[−t0, 0])449

is the standard deviation of ∆ODλ during baseline period along all chan-450

nels. Simulated trials for each of four different SNR levels are illustrated in451

Fig.2d. A total number of 4000 realistic simulations were considered for this452

evaluation study, i.e., 250 (seeds)× 4 (spatial extents)× 4 (SNR levels). Note453

that resting state fNIRS baseline signal was preprocessed before adding to454

the simulated signals.455

2.5.6. Validation metric456

Following the validation metrics described in (Grova et al., 2006; Chowd-457

hury et al., 2013, 2016; Hedrich et al., 2017), we applied 4 quantitative met-458

rics to access the spatial and temporal accuracy of fNIRS 3D reconstructions.459

Further details on the computation of those four validation metrics are re-460

ported in Supplementary material S1.461

• Area Under the Receiver Operating Characteristic (ROC)462

curve (AUC) was used to assess general reconstruction accuracy con-463

sidering both sensitivity and specificity. AUC score was estimated as464

the area under the ROC curve, which was obtained by plotting sensi-465
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tivity as a function of (1- specificity). AUC ranges from 0 to 1, the466

higher it is the more accurate the reconstruction is.467

• Minimum geodesic distance (Dmin) measuring the geodesic dis-468

tance in millimeters, following the circumvolutions of the cortical sur-469

face, from the vertex that exhibited maximum of reconstructed activity470

to the border of the ground truth. Low Dmin values indicate better471

accuracy in estimating the location of the generator.472

• Spatial Dispersion (SD) assessed the spatial spread of the estimated473

generator distribution and the localization error. It is expressed in mil-474

limeters. A reconstructed map with either large spatial spread around475

the ground truth or large localization error would result in large SD476

values.477

• Shape error(SE) evaluated the temporal accuracy of the reconstruc-478

tion. It was calculated as the root mean square of the difference between479

the normalized reconstructed time course and the normalized ground480

truth time course. Low SE values indicate high temporal accuracy of481

the reconstruction.482

2.6. Statistics483

Throughout all of the quantitative evaluations among different methods484

involving different depth weighting factors ω in the results section, Wilcoxon485

signed rank test was applied to test the significance of the paired differences486

between each comparison. For each statistical test, we reported the median487

value of paired differences, together with its p-value (Bonferroni corrected).488
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We are only showing results at 830nm for simulations, since the ones from489

690nm under the same SNR level would have provided similar reconstructed490

spatiotemporal maps except for the reversed amplitudes. However, recon-491

struction results on real data indeed involved both wavelengths.492

3. Results493

3.1. Evaluation of MEM v.s. MNE using realistic simulations494

We first investigated the effects of depth weighting factor ω2 selection495

for depth weighted MNE. To do so, we evaluated spatial and temporal per-496

formances of DOT reconstruction for a set of ω2 (step of 0.1 from 0 to 0.9).497

Based on those results reported in the Supplementary material S2 and Fig.S1,498

we decided to considered that most accurate fNIRS reconstructions were ob-499

tained when considering ω2 = 0.3 and 0.5 for depth weighted MNE. Therefore500

only those two values were further considered for comparison with MEM re-501

constructions.502

Comparison of the performance of MEM and MNE on superficial realistic503

simulations are presented in Table.1 and Fig.3, for 4 levels of spatial extent504

(Se = 3, 5, 7, 9), using boxplot distribution of the 4 validation metrics. We505

evaluated 3 depth weighted implementations of MEM, namely, MEM(ω1 =506

0.3, ω2 = 0.3), MEM(0.3, 0.5) and MEM(0.5, 0.5), as well as 2 depth weighted507

implementations of MNE, namely, MNE(0.3) and MNE(0.5).508

For spatial accuracy, results evaluated using Dmin, we obtained median509

Dmin values of 0mm for all methods, indicating the peak of the reconstructed510

map, was indeed accurately localized inside the simulated generator. It is511

worth mentioning that MEM(0.5, 0.5) provided few Dmin values larger than512
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0mm in Se = 3 and Se = 5 cases, which consisted of superficial and focal513

generators. Since MEM accurately estimated the spatial extent, more depth514

weighting considered for MEM(0.5, 0.5) could results in focal and deeper515

reconstruction, hence resulting in non-zero Dmin values. On the other hand,516

MNE would over-estimate the size of the underlying generators, therefore517

resulting in 0mm Dmin, but larger SD values in similar conditions.518

When considering the general reconstruction accuracy using AUC, for519

focal generators such as Se = 3 and 5, we found significant larger AUC (see520

Table.1) for MEM(0.3, 0.3) and MEM(0.3, 0.5) when compared to the most521

accurate version of MNE, i.e., MNE(0.3). When considering more extended522

generators, i.e., Se = 7 and 9, MEM(0.3, 0.5) and MEM(0.5, 0.5) achieved523

significantly larger AUC than MNE(0.3). However, the AUC of MNE(0.5)524

was significantly larger than MEM(0.3, 0.3) for Se = 7 as well as significantly525

larger than MEM(0.3, 0.5) and MEM(0.5, 0.5) for Se = 9.526

In terms of spatial extent of the estimated generator distribution and527

the localization error, MEM provided significantly smaller SD values among528

all the comparisons. Finally, for temporal accuracy of the reconstruction529

represented by SE, MNE provided significantly lower values, but with a small530

difference (e.g., 0.01 or 0.02, see results on real data as a reference of this531

effect size), than MEM among all comparisons when Se = 3, 5.532
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Fig.3. Evaluation of the performances of MEM and MNE using realistic simulations in-

volving superficial seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation

of the distribution of four validation metrics for three depth weighted strategies of MEM

and two depth weighted strategies of MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5)

in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) in black. Results

were obtained after DOT reconstruction of 830nm ∆OD.
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Table1. Wilcoxon signed rank test results of reconstruction performance comparison of

MEM and MNE in superficial seeds case. Median values of paired difference are presented

in the table. p values were corrected for multiple comparisons using Bonferroni correction,

* indicates p < 0.01 and ** represents p < 0.001. Median of the paired difference of each

validation metrics is color coded as follows: green: MEM is significantly better than MNE,

red: MNE is significantly better than MEM and gray: non-significance.

Similar comparison between MEM and MNE were conducted respectively533

for middle seed simulated generators and deep seed simulated generators. Re-534

sults were overall reporting similar trends when comparing MEM and MNE535

methods for middle and deep seeds, and as expected more depth weighting536

resulted in more accurate reconstructions (described in details in supplemen-537

tary material, Fig.S2 and Table.S1 for middle seeds, Fig.S3 and Table.S2 for538

deep seeds).539
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Fig.4. Comparisons of the reconstruction maps using MEM and MNE in realistic simu-

lations. Three theoretical regions with spatial extent Se = 5 ( 11cm2) were selected near

the hand knob at different depth. The first column presents the locations and the size

of the generator along the cortical surface. (a) Superficial seed case with reconstructed

maps reconstructed using all MEM and MNE implementations considered in this study.

(b) Middle seed case with reconstructed maps reconstructed using all MEM and MNE

implementations considered in this study. (c) Deep seed case with reconstructed maps

reconstructed using all MEM and MNE implementations considered in this study. 20%

inflated and zoomed maps are presented on the left corner of each figure. 100% inflated

right hemisphere are presented on the right side. All the maps were normalized by their

own global maximum and no threshold was applied.

To further illustrate the performance of MEM and MNE as a function of540

the depth of the generator, we are presenting some reconstruction results in541

Fig.4. Three generators with a spatial extent of Se = 5, were selected for this542
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illustration. They were all located around the right ”hand knob” area, and543

were generated from a superficial, middle and deep seed respectively. The544

first column in Fig.4 shows the location and the size of the simulated gen-545

erator, considered as our ground truth. The generator constructed from the546

superficial seed only covered the corresponding gyrus, whereas the generators547

constructed from the middle seed, included parts of the sulcus and the gyrus.548

Finally, when considering the deep seed, the simulated generator covered both549

walls of the sulcus, extended just a little on both gyri. For superficial case,550

MEM(0.3, 0.3) and MEM(0.3, 0.5) provided similar performances in term of551

visual evaluation of the results and quantitative evaluations (AUC = 0.96,552

Dmin = 0mm, SD = 1.94mm, 2.15mm, SE = 0.03). On the other hand,553

for the same simulations, MNE(0.3) and MNE(0.5) resulted in less accurate554

reconstructions, spreading too much around the true generator, as confirmed555

by validation metric, exhibiting notably large SD values (AUC = 0.86, 0.89,556

Dmin = 0mm, SD = 9.84mm, 14.63mm, SE = 0.02). When considering557

the simulation obtained with the middle seed, MEM(0.3, 0.5) retrieved accu-558

rately the gyrus part of the generator but missed the sulcus component, since559

less depth compensation was considered. When increasing depth sensitivity,560

MEM(0.5, 0.5) clearly outperformed all other methods, by retrieving both the561

gyrus and sulcus aspects of the generator, resulting in the largest AUC = 0.98562

and the lowest SD = 2.93mm. MNE(0.3) was not able to recover the deep-563

est aspects of the generator, but also exhibited a large spread outside the564

ground truth area as suggested by a large SD = 9.69mm. MNE(0.5) was565

able to retrieve the main generator, but also exhibited a large spatial spread566

of SD = 10.16mm. When considering the generators obtained from the567
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deep seed, MNE(0.3) only reconstructed part of gyrus, missing completely568

the main sulcus aspect of the generator, resulting in low AUC of 0.57 and569

large SD of 10.34mm. MEM(0.3, 0.5) was not able to recover the deepest570

aspects of the sulcus, but reconstructed accurately the sulci walls, resulting571

in an AUC of 0.89 and a SD of 2.71mm. MEM(0.5, 0.5) recovered the deep572

simulated generator very accurately, as demonstrated by the excellent scores573

(AUC = 0.97, SD = 2.11mm) when compared to MNE(0.5). For those three574

simulations, all methods recovered the underlying time course of the activity575

with similar accuracy (i.e., similar SE values). In supplementary material,576

we added Video.1, illustrating the behavior of all the simulations and all577

methods, following the same layout provided in Fig.4.578

Note that for this quantitative evaluation of fNIRS reconstruction meth-579

ods using realistic simulation framework, we considered fNIRS data at only580

one wavelength (830nm). Using single wavelength in the context simulation581

based evaluation is a common procedure in DOT literature (Zhan et al., 2012;582

Dehghani et al., 2009; White and Culver, 2010; Okawa et al., 2011; Trem-583

blay et al., 2018; Shimokawa et al., 2012, 2013), since we may expect overall584

similar performances for 685nm wavelength under the same SNR level.585

3.2. Effects of depth weighting on the reconstructed generator as a function586

of the depth and size of the simulated generators587

To summarize the effects of depth weighting in 3D fNIRS reconstructions,588

we further investigated the validation metrics, AUC, SD and SE, as a function589

of depth and size of the simulated generators. Dmin was not included due590

to the fact that we did not find clear differences among methods throughout591

all simulation parameters from previous results. In the top row of Fig.5,592
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250 generators created from all 250 seeds with a spatial extent of Se = 5593

were selected to demonstrate the performance of different versions of depth594

weighting as a function of the average depth of the generator. Whereas in the595

bottom row of Fig.5, we considered 400 generators constructed from all 100596

superficial seeds with 4 different spatial extents of Se = 3, 5, 7, 9, to illustrate597

the performance of different versions of depth weighting as a function of598

the size of the generator. According to AUC, depth weighting was indeed599

necessary for all methods when the generator moved to deeper regions (>600

2cm) as well as when the size was larger than 20cm2. Moreover, any version601

of MEM always exhibited clearly less false positives, as indicated by lower602

SD values, than all of MNE versions, whatever was the depth or the size of603

the underlying generator. We found no clear trend and difference of temporal604

accuracy among methods when reconstructing generators of different depths605

and sizes.606

3.3. Robustness of 3D reconstructions to the noise level607

All previous investigations were obtained from simulations obtained with608

a SNR of 5, in this section we compared the effect of the SNR level in Fig.6,609

on depth weighted versions of MNE and MEM, for superficial seeds only and610

generators of spatial extent Se = 5. We only compared MEM(0.3, 0.5) and611

MNE(0.5) considering the observation from previous results that these two612

methods were overall exhibiting best performances in this condition. Regard-613

ing Dmin, paired differences were not significant but MNE exhibited more614

Dmin values above 0mm than MEM at all SNR levels, suggesting that MNE615

often missed the main generators while MEM was more accurate in recon-616

structing the maximum of activity within the simulated generator. Regard-617
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ing AUC, MEM(0.3, 0.5) exhibited values higher than 0.8 at all SNR levels,618

whereas MNE(0.5) failed to recover accurately the generator for SNR = 1.619

Besides, in Table.2, we found that difference of AUC between MEM and620

MNE increased when SNR level decreased, suggesting the good robustness621

of MEM when decreasing the SNR level. The difference of SD also increased622

when SNR levels decreased. Indeed, MEM exhibited stable SD values among623

most SNR levels (except SNR = 1), whereas for MNE SD values were highly624

influenced by the SNR level. Finally, for both methods, decreasing SNR lev-625

els resulted in less accurate time course estimation (SE increased), slightly626

more for MEM when compared to MNE.627
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Fig.5. Effects of depth weighting on the depth and size of the simulated generators. First

row demonstrates the validation matrices, AUC, SD and SE, as a function of depth of

generators. We selected 250 generators created from all 250 seeds with a spatial extent

of SD = 5. Depth was calculated by the average of minimum Euclidean distance from

each vertex, within each generator, to the head surface. Second row demonstrates the

validation matrices, AUC, SD and SE, as a function of size of generators. Involving 400

generators which constructed from 100 superficial seeds with 4 different spatial extend of

Se = 3, 5, 7, 9. Line fittings were performed via a 4 knots spline function to estimate the

smoothed trend and the shade areas represent 95% confident interval. Color coded points

represent the values of validation matrices of all involved generators.
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Fig.6. Evaluation of the performances of MEM and MNE at four different SNR levels.

Boxplot representation of the distribution of four validation metrics for MEM(0.3, 0.5)

and MNE(0.5) involving superficial seeds with spatial extent Se = 5. SNR levels (SNR =

1, 2, 3, 5) are represented using different colors.

Table.2. Reconstruction performance comparison of MEM and MNE with different SNR

levels. Median of paired difference of validation metric (i.e. AUC, Dmin, SD and SE)

values of Se = 5 are presented in the table following the SNR increase from 1 to 5. **

indicates corrected p < 0.001.
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3.4. Evaluation of MEM and MNE on real fNIRS data628

For all finger tapping fNIRS data considered in our evaluations, two629

wavelength (i.e., 685nm and 830nm) were reconstructed first and then con-630

verted to HbO/HbR concentration changes along cortical surface using spe-631

cific absorption coefficients. All the processes from fNIRS preprocessing to632

3D reconstruction were completed in Brainstorm (Tadel et al., 2011) us-633

ing the NIRSTORM plugin developed by our team (https://github.com/634

Nirstorm). For full double density montage (montage 1), reconstructed HbR635

amplitudes were reversed to positive phase and normalized to their own636

global maximum, to facilitate comparisons. In Fig.7.a, we showed the re-637

constructed HbR maps at the peak of the time course (i.e., 31s) for MEM638

and MNE by considering the 4 depth weighted versions, previously evalu-639

ated, i.e., MEM(0.3, 0.3), MEM(0.3, 0.5), MNE(0.3) and MNE(0.5). The640

two depth weighted versions of MEM clearly localized well the ”hand knob”641

region, while exhibiting very little false positives in its surrounding. On the642

other hand, both depth weighted version of MNE clearly overestimated the643

size of the hand knob region and were also exhibiting some distant possibly644

spurious activity. The fMRI Z-map obtained during the corresponding fMRI645

task is presented on Fig.7.b, after projection of the volume Z-map on the646

cortical surface. Fig.7.c showed the time courses within the region of inter-647

est representing the ”hand knob”. Each curve represents the reconstructed648

time course of one vertex of the hand knob region and the amplitude were649

normalized by the peak value within the whole region.650
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Fig.7. Application of MEM versus MNE reconstruction of HbR during a finger tapping

task on one healthy subject. (a) Reconstructed maps of HbR (e.g. 20% inflation on the

left and 100% inflation on the right side.) from MEM and MNE with different depth

compensations. Each map was normalized by its own global maximum. (b) fMRI Z-map

results projected along the cortical surface. (c) Reconstructed time courses of HbR within

the hand knob region from MEM and MNE. Note that the hand knob region, represented

by the black profile, was also matched well with the mean cluster of fMRI activation map

on primary motor cortex. No statistical threshold was applied on fNIRS reconstructions.
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Fig.8. Personalized fNIRS montage and comparisons between MEM and MNE recon-

structions with respect to fMRI Z-map at individual level. a) the region of interest defined

as the hand knob, b) optimal montage targeting the ROI consisting 3 sources (red) and

15 detectors(green) and one proximity (in the center of sources not shown), c) normalized

sensitivity profile of the optimal montage which calculated as the sum of all channels sensi-

tivity along the cortical surface, d) optimal montage glued on the scalp of the one subject,

using collodion. fMRI Z-map of each subject during finger tapping task (threshold with

Z > 3.1, Bonferroni corrected), black profile represents the main cluster along M1 and

S1. MEM reconstruction maps at the corresponding HbO/HbR peak times, using depth

weighted option 0.3, 0.3. MNE reconstruction maps, at the corresponding HbO/HbR peak

times, using depth weighted option 0.3. Reconstructed time courses within the black pro-

file, solid lines represent the main time courses and the shade areas represent standard

deviation within the region of interest. Reconstructed time courses were normalized by

the maximum amplitude, for each method respectively, before averaging.

Results obtained on 5 subjects for acquisition involving personalized op-651

timal fNIRS montage (montage 2) and corresponding fNIRS reconstructions652

are presented in Fig.8. For every subject, fMRI Z-maps are presented along653
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the left hemisphere only and thresholded at Z > 3.1 (p < 0.01, corrected us-654

ing Gaussian random field theory), The most significant fMRI cluster along655

M1 and S1 was delineated using a black profile. Reconstruction maps at656

the corresponding HbO/HbR peaks are then presented. Similar accuracy657

between MEM and MNE, with good overlap with fMRI results, were found658

for subjects 4 and 5, while MNE was overestimating the spatial extent of the659

generator. For subject 1, 2 and 3, MNE exhibited poor spatial correspon-660

dence with fMRI results. Averaged reconstructed time courses within the661

fMRI main cluster region are shown with standard deviation as the error bar.662

Comparing to simulations results, MEM exhibited overall very similar time663

course estimations than MNE in all cases. Considering the task duration was664

10s, the reconstructed peak timing of HbO/HbR appeared accurately within665

the range of 10s to 20s.666

4. Discussion667

4.1. Spatial accuracy of 3D fNIRS reconstruction using MEM668

In the present study, we first adapted the MEM framework in the context669

of 3D fNIRS reconstruction and extensively validated its performance. The670

spatial performance of reconstructions can be considered in two aspects, 1)671

correctly localizing the peak of the reconstructed map close enough to the672

ground truth area, 2) accurately recovering the spatial extent of the gener-673

ator. According to our comprehensive evaluations of the proposed depth-674

weighted implementations of MEM and MNE methods, accurate localization675

was overall not difficult to achieve as suggested by our results using Dmin676

metric. Almost all methods provided median value of Dmin to be 0mm in all677
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simulation conditions except for the lowest SNR = 1 condition where more678

localization error was found. On the other hand, recovering the actual spatial679

extent of the underlying generator is actually the most challenging task in680

fNIRS reconstruction. When considering the results of MNE on both real-681

istic simulations and real finger tapping tasks, either from visual inspection682

(Fig.4, Fig.7 and Fig.8) or quantitative evaluation by SD (Fig.3, Table.1 and683

supplementary section S2), we found that MNE overall reconstructed well684

the main generator but largely overestimated the size of the underlying gen-685

erator. MEM was specifically developed, in the context of EEG/MEG source686

imaging, as a method able to recover the spatial extent of the underlying gen-687

erators, which has been proved not to be the case for MNE-based approaches688

(Chowdhury et al., 2013, 2016; Grova et al., 2016; Hedrich et al., 2017; Pelle-689

grino et al., 2020). A recent review (Sohrabpour and He, 2021) in the context690

of EEG/MEG source imaging has also demonstrated that the Bayesian ap-691

proach with sparsity constraints is required to accurately estimate the spatial692

extent. These important properties of MEM was successfully demonstrated693

in our results on fNIRS reconstructions. These excellent performances were694

reliable for different sizes and depths of simulated generators, and for real695

finger tapping fNIRS data as well.696

4.2. Importance of depth weighting in 3D fNIRS reconstruction697

Biophysics models of light diffusion in living tissue are clearly demon-698

strating that, at all source-detector separations, light sensitivity decreases699

exponentially with depth (Strangman et al., 2013). The general solution to700

grant the ability of depth sensitivity compensation in fNIRS reconstruction701

is to introduce depth weighting during the reconstruction. In this study, we702
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investigated the impact of depth weighting effects on fNIRS reconstruction,703

as a function of the location and the spatial extent of the underlying gen-704

erators. Our results are showing that when considering little or no depth705

weighting (ω = 0.0 and 0.1) only most superficial generators along the gyral706

crown were accurately reconstructed missing the deepest parts, therefore re-707

sulting in low AUC values. On the other hand, larger depth weighted values,708

ω = 0.7 and 0.9, would bias too much the importance of deep generators709

and consequently, the most superficial aspects of the underlying generators710

were not recovered. According to our detailed evaluation on MNE reported711

in Fig.S1, depth weighted values of ω = 0.3 and 0.5 were considered as good712

candidates to offer an ideal trade off. As expected, MNE(0.5) reported larger713

spatial dispersion around the true generator, than MNE(0.3). Depth weight-714

ing was also important when recovering more extended generators (> 20cm2,715

Fig.5), for both MNE and MEM, since those extended generators were actu-716

ally involving both superficial and deep regions.717

4.3. Implementation of depth weighting strategy within the MEM framework718

In this study, we are proposing for the first time a depth weighting strat-719

egy within the MEM framework, by introducing two parameters: ω1 acting720

on scaling the source covariance matrix, and ω2 tuning the initialization of721

the reference for MEM. When compared to depth weighted MNE, the MEM722

framework demonstrated its ability to reconstruct, different depth of focal723

generators as well as larger size generators, exhibiting excellent accuracy and724

few false positives (see Fig.5). When considering deeper focal generators725

(depth > 2cm), MEM(0.5, 0.5) clearly outperformed all other methods (see726

AUC and SD values in Fig 5). In summary, for a large range of depths and727
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spatial extents of the underlying generators, MEM methods exhibited ac-728

curate results (large AUC values) and less false positives (lower SD values)729

when compared to MNE methods.730

In practice, we would suggest to consider either ω2 = 0.3 or 0.5 for the ini-731

tialization of MEM in all cases and only tune ω1. This is due to the fact that732

MNE(0.3 or 0.5) provided a generally good reconstruction with larger true733

positive rate in most scenarios, therefore providing MEM an accurate refer-734

ence model (dν(x)) to start with. Even when considering the most focal sim-735

ulated generators (Se = 3) case (see Fig.3, Table.1 and Fig.5), MEM(0.3, 0.3)736

and MEM(0.3, 0.5) were actually exhibiting very similar performances. Our737

proposed suggestion to tune ω1 and ω2 parameters was actually further con-738

firmed when considered results obtained from real data. For both montages,739

MEM(0.3, 0.3) results in excellent spatial agreement with fMRI Z-maps.740

Note that depth weighting was also considered in DOT studies using MNE741

(Culver et al., 2003; Zeff et al., 2007; Dehghani et al., 2009; White et al., 2009;742

Eggebrecht et al., 2012, 2014) and a hierarchical Bayesian DOT algorithm743

(Shimokawa et al., 2012, 2013; Yamashita et al., 2016). A spatially-variant744

regularization parameter β was added to a diagonal regularization matrix745

featuring the sensitivity of every generator (forward model), and the value746

of β was tuned according to the sensitivity value of a certain depth. In747

practice, this strategy would result in similar depth compensation as ours,748

but we preferred the depth weighting parameter ω which mapped the amount749

of compensation from 0 to 1 (as described in Eq.3) for easier interpretation750

and comparison. This is also a standard procedure introduced in EEG/MEG751

source localization studies (Fuchs et al., 1999; Lin et al., 2006). Finally, using752
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the depth weighted MNE solution as the prior is a common consideration in753

Hierarchical Bayesian framework based fNIRS reconstructions (Shimokawa754

et al., 2012, 2013; Yamashita et al., 2016)755

4.4. Temporal accuracy of 3D fNIRS reconstruction using MEM756

Another important contribution of this study was that we improved the757

temporal accuracy time courses estimated within the MEM framework, re-758

sulting in similar temporal accuracy the one obtained with MNE. For in-759

stance, the largest significant SE difference between MEM and MNE was only760

0.02 for Se = 3 and 0.01 for Se = 5. Corresponding time course estimations761

are also reported for MEM and MNE in real data (Fig.7 and Fig.8), suggest-762

ing again very similar performances. For instance, SE between MEM and763

MNE HbO time course was estimated as 0.02 for Sub05 in Fig.8. Moreover,764

we found no significant SE differences between MEM and MNE for more ex-765

tended generators (Se = 7,9). These findings are important considering that766

MNE is just a linear projection therefore the shape of the reconstruction will767

directly depend on the averaged signal at the channel level. On the other768

hand, MEM is a nonlinear technique, applied at every time sample, which is769

not optimized for the estimation of resulting time courses.770

4.5. Robustness of fNIRS reconstructions to the noise level771

To further investigate the effects of the amount of realistic noise in our772

reconstructions on both reconstruction methods, we performed the compar-773

isons along 4 different SNR levels, i.e., SNR = 1, 2, 3, 5. As shown in Fig.6774

and Table.2, we found that MEM was overall more robust than MNE when775

dealing with simulated signals at lower SNR levels. This is actually a very776
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important result since when reconstructing HbO/HbR responses, one has to777

consider at least two ∆OD of two different wavelengths exhibiting different778

SNR levels. For the simulation results, we reported reconstruction results779

obtained from 830nm data, whereas when considering real data (Fig.7 and780

Fig.8), we had to convert the reconstruction absorption changes at 685nm781

and 830nm into HbO/HbR concentration changes. Therefore, our final re-782

sults were influenced by the SNR of all involved wavelengths.783

fNIRS is inherently sensitive to inter-subject variability (Novi et al.,784

2020), as also suggested in our application on real data presented in Fig.8.785

Data from Sub05 were exhibiting a good SNR level and therefore both MEM786

and MNE reconstructed accurately the main cluster of the activation, while787

MNE presented more spatial spread and false positive activation outside the788

fMRI ROI. When considering subjects for whom we obtained lower SNR789

data, e.g., Sub02 and Sub03, MEM still recovered an activation map similar790

to fMRI map. In those cases, MNE not only reported suspicious activation791

pattern but also incorrectly reconstruct the peak amplitude outside the fMRI792

ROI. Our results suggesting MEM robustness in low SNR conditions for DOT793

are actually aligned with similar findings suggested for EEG/MEG source794

imaging, when considering source localization of single trial data (Chowd-795

hury et al., 2018; Aydin et al., 2020).796

4.6. Comprehensive evaluation and comparison of the reconstruction perfor-797

mance using MEM and MNE798

To perform a detailed evaluation of our proposed fNIRS reconstructions799

methods, we developed a fully controlled simulation environment, similar to800

the one proposed by our team to validate EEG/MEG source localization801
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methods (Chowdhury et al., 2013, 2016; Hedrich et al., 2017). The fNIRS802

resting state data, acquired by the same montage (montage1) and under-803

went the same preprocessing as conducted for the real data, was added to804

the simulated true hemodyanmic response for each channel. Indeed such en-805

vironment provided us access to a ground truth, which is not possible when806

considering real fNIRS data set. Previous studies validated tomography re-807

sults (Eggebrecht et al., 2014; Yamashita et al., 2016) by comparing with808

fMRI activation map which can indeed be considered as a ground truth, but809

only for well controlled and reliable paradigms. Since fMRI also measures810

a signal of hemodynamic origin, it is reasonable to check the concordance811

between fMRI results and DOT reconstructions. Therefore, as preliminary812

illustrations, we also compared our MEM and MNE results to fMRI Z-maps813

obtained during finger tapping tasks on 6 healthy participants, suggesting814

overall excellent performances of MEM when compared to MNE. Further815

quantitative comparison between fMRI and fNIRS 3D reconstruction, was816

out of the scope of this paper and will be considered in future studies.817

4.7. Sampling size of fNIRS reconstructions818

As opposed to several other fNIRS tomography studies that reconstruct819

fNIRS responses within a 3D volume space, here we proposed to use the820

mid-cortical surface as anatomical constraint to guide DOT reconstruction.821

However, the maximum spatial resolution of our surface based reconstruction822

was similar to the volume based one. Indeed, DOT reconstruction within a823

volume space usually down-sampled light sensitivity maps to either 2× 2×824

2 mm3 (Eggebrecht et al., 2014), 3 × 3 × 3 mm3 (Eggebrecht et al., 2012)825

or 4 × 4 × 4 mm3 (Yamashita et al., 2016) matrices, resulting in the down-826

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.02.22.432263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432263
http://creativecommons.org/licenses/by-nc-nd/4.0/


sampled voxel volume ranging from 8mm3 to 64mm3. In our case, when827

projecting from volume space into cortical surface space, a unique set of828

voxels were assigned to each vertex along the cortical surface according to829

the Voronoi based projection method (Grova et al., 2006). Considering the830

mid-surface resolution (i.e., 25, 000 vertices) used in this study, the average831

volume of a Voronoi cell was 25mm3, which falls in the above volume range.832

Therefore, we can conclude that both volume-based and surface-based fNIRS833

reconstructions as implemented here would result in similar sampling of the834

reconstruction space.835

4.8. fNIRS montage for 3D reconstructions836

In previous reported studies (Zeff et al., 2007; White and Culver, 2010;837

Zhan et al., 2012; Eggebrecht et al., 2012, 2014), a high density montage838

was considered which was proved to be able to provide high spatial resolu-839

tion and robustness to low SNR conditions (White and Culver, 2010). In840

the present study, we first considered a full double density montage, as pro-841

posed in (Kawaguchi et al., 2007), to generate realistic simulations, and then842

analyzed finger tapping results on real data acquired on one subject. Dou-843

ble density montages have been involved in several inverse modelling studies844

such as (Kawaguchi et al., 2004; Sakakibara et al., 2016; Machado et al.,845

2018). We also illustrated, in 5 other subjects, MEM performance when846

considering real data set acquired by optimal montages, exhibiting a large847

amount of local spatial overlap between channels. In this case, probe design848

was optimized to maximize the sensitivity to the hand knob ROI, while also849

ensuring sufficient spatial overlap between sensors (e.g., at least 13 detectors850

had to construct channels with each of the three sources, and the channel851
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distance was ranging from 2cm to 4.5cm, see Fig.8a). We have previously852

demonstrated in Machado et al., 2018 that even if high density montages are853

usually considered as a gold standard for DOT reconstruction, personalized854

optimal montages (Machado et al., 2014, 2018, 2021) have ability to allow855

accurate reconstructions along the cortical surface. Finally, evaluating the856

performance of MEM when considering high density fNIRS montage would857

be of great interest but was out of the scope of this present study.858

4.9. Availability of the proposed MEM framework859

Several software packages have been proposed to provide fNIRS recon-860

struction pipelines, as for instance NeuroDOT (Eggebrecht et al., 2014, 2019),861

AtlasViewer(Aasted et al., 2015) and fNIRS-SPM(Ye et al., 2009). To en-862

sure an easy access of our MEM methodology to the fNIRS community, we863

developed and released a fNIRS processing toolbox - NIRSTORM (https:864

//github.com/Nirstorm), as a plugin of Brainstorm software (Tadel et al.,865

2011), which is a renown software package dedicated for EEG/MEG analysis866

and source imaging. Our package NIRSTORM offers standard preprocessing,867

analysis and visualization as well as more advanced features such as person-868

alized optimal montage design, access to forward model estimation using869

MCXlab(Fang and Boas, 2009; Yu et al., 2018) and the MNE and MEM870

implementations considered in this study.871

4.10. Limitations and Perspectives872

Previously, Tremblay et al., 2018 had comprehensively compared a variety873

of fNIRS reconstruction methods using large number of realistic simulations.874

Since introducing MEM was our main goal of this study, we did not consider875
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such wide range of methodological comparisons. We decided to carefully com-876

pare MEM with MNE since MNE remains the main method considered for877

DOT, and is available in several software packages. As suggested in Tremblay878

et al., 2018, DOT reconstruction methods based on Tikhonov regularization,879

such as least square regularization in MNE, usually allow great sensitivity,880

but performed poorly in term of spatial extent - largely overestimating the881

size of the underlying generator. On the other hand, L1-based regularization882

(Süzen et al., 2010; Okawa et al., 2011; Kavuri et al., 2012; Prakash et al.,883

2014) could achieve more focal solutions with high specificity but much lower884

sensitivity. As demonstrated in our results, the proposed MEM framework885

allows reaching good sensitivity and accurate reconstruction of the spatial886

extent of the underlying generator. Bayesian model averaging (BMA) origi-887

nally proposed for EEG source imaging by Trujillo-Barreto et al., 2004, also888

allows accurate DOT reconstructions with less false positives when compared889

to MNE. Similarly, we carefully compared MEM to Bayesian multiple priors890

approaches in Chowdhury et al., 2013 in the context of MEG source imag-891

ing. Comparing MEM with more advanced DOT reconstruction methods,892

including also the one proposed by Yamashita et al., 2016, would be of great893

interest but was out of the scope of this study.894

Overall the main advantage of the MEM framework is its flexibility. Since895

the core structure of the MEM framework is to provide a unique reconstruc-896

tion map by maximizing the entropy relative to a reference source distribu-897

tion, one could implement its own reference for specific usage. For instance,898

as considered in the present study, the reference distribution considered the899

depth weighting MNE solution and spatial smoothing to inform our prior900
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model for MEM. Note that in this study we applied MEM independently for901

the two wavelengths and then calculated HbO/HbR concentration changes902

after reconstruction, whereas one could directly solve HbO/HbR concentra-903

tion changes along with reconstructions. Such procedure has been suggested904

by Li et al., 2004, by incorporating signals from the two wavelength within the905

same DOT reconstruction model. In the future, the MEM framework would906

allow to easily implement such a fusion model, as suggested by Chowdhury907

et al., 2015 in the context of MEG/EEG fusion algorithms. We have shown908

that MEM-based EEG/MEG fusion allows higher reliability in the source909

imaging results (Chowdhury et al., 2018), we will consider such an approach910

to estimate directly HbO/HbR fluctuations from the two wavelengths signals.911

Finally, considering the main contribution of this study was to intro-912

duce the MEM framework for 3D fNIRS reconstruction, we decided to first913

carefully evaluate the performance of MEM, using well controlled realistic914

simulations. We also included few real data set reconstructions to illustrate915

the performance of the MEM reconstruction, whereas quantitative evaluation916

of MEM reconstructions on larger database will be considered in our future917

investigations.918

5. Conclusion919

In this study, we introduced a new fNIRS reconstruction method enti-920

tled Maximum Entropy on the Mean (MEM). We first implemented depth921

weighting into MEM framework and improved its temporal accuracy. To922

carefully validate the method, we applied a large number (n = 4000) of real-923

istic simulations with various spatial extents and depths. We also evaluated924
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the robustness of the method when dealing with low SNR signals. The com-925

parison of the proposed method with the widely used depth weighted MNE926

was performed by applying four different quantification validation metrics.927

We found that MEM framework provided accurate and robust reconstruction928

results, relatively stable for a large range of spatial extents, depths and SNRs929

of the underlying generator. Moreover, we implemented the proposed method930

into a new fNIRS processing plugin - NIRSTORM in Brainstorm software to931

provide the access of the method to users for applications, validations and932

comparisons.933
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Supplementary material

S1. Validation metrics

Here is a detailed description of the four validation metrics considered in

our evaluation. Except the shape error (SE), other metrics were all calculated

at the time instant τ when the simulated ∆OD time course reached its peak

value (e.g. 12.2s after onset).

Area Under the Receiver Operating Characteristic (ROC) curve

(AUC) was used to assess overall detection accuracy of the reconstruction

methods. We used a specific version of AUC that has been proposed in

(Grova et al., 2006) in order not to bias results towards false positives. In

further details, ROC curves were generated by plotting the sensibility of the

detection as a function of 1-specificity, while thresholding the normalized re-

construction map from 0 to 1 with a certain step value. In the context of

source reconstruction, especially when the generator is focal, the region of

true positive is usually much smaller than the region of true negative, whereas

non-biased AUC evaluation would require to sample the same amount of ac-

tive and inactive generators. To overcome this possible bias, we considered

a ROC evaluation using the same number of active and inactive generators

that were randomly sampled within two different regions: 1) AUCclose: inac-

tive generators were sampled within the immediate spatial neighborhood of

the ground truth; and 2) AUCfar: inactive generators were sampled within

the local maxima of the reconstructed activity located far from the ground

truth. The final AUC was then the average of AUCclose and AUCfar.

Minimum geodesic distance (Dmin) was represented by the geodesic

distance, following the circumvolutions of the cortical surface, of the vertex
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that exhibited maximum of reconstructed activity to the border of the ‘gen-

erator’. It should be 0 when the peak of the reconstruction map was located

inside the simulated cortical region.

Spatial Dispersion (SD) assessed the spatial spread of the estimated

‘generator’ distribution and the localization error using Eq.S1. The ideal

value (i.e. SD = 0mm), was achieved when no activation was reconstructed

outside the theoretical ‘generator’. The larger the SD was, the more spatially

spread were the reconstructed maps.

SD =

√√√√√√√
K∑
i=1

(
minj∈Θ(D2(i, j))X̂2(i, τ)

)
K∑
i=1

(
X̂2(i, τ)

) (S1)

where minj∈Θ(D2(i, j)) is the minimum Euclidean distance between the ver-

tex i to the vertex j which is located inside the simulated ‘generator’ (Θ).

X̂2(i, τ) is the power of the amplitude of reconstructed time course on vertex

i at time τ . K is the total number of vertices within the reconstruction field

of view.

Shape error(SE) evaluated the temporal accuracy of the reconstruction.

Reconstructed time courses within the simulation ‘generator’ were averaged

and normalized. The root mean square of the difference between this time

course and the normalized theoretical time course was estimated and denoted

as SE in Eq.S2 as introduced in (Chowdhury et al., 2013)

SE =

√√√√ 1

T

T∑
t

(
Xth(t)

max(|Xth(t)|)
− meanj∈Θ(X̂(j, t))

max(|meanj∈Θ(X̂(j, t))|)

)2

(S2)

where T is length of the time course. Xth(t) is the theoretical time course of
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the simulation. meanj∈Θ(X̂(j, t)) is the averaged mean of the reconstructed

time courses within the ‘generator’.

S2. Effects of depth weighting on MNE

We first investigated the effects of depth weighting factor ω2 selection for

depth weighted MNE. To do so, we evaluated spatial and temporal perfor-

mances of DOT reconstruction. As presented in Fig.S1, we compared depth

weighted MNE using depth weighting factors ω2 = 0, 0.1, 0.3, 0.5, 0.7, 0.9 in

superficial seeds case. In general, ω2 = 0.3 and 0.5 provided overall the most

accurate results (i.e. median AUC > 0.8 and Dmin = 0mm ). For focal

generators(i.e. Se = 3, 5), ω2 = 0.3 performed better than ω2 = 0.5 consider-

ing it was providing significantly lower SD. However, in extended generators

(i.e. Se = 7, 9), reconstructions with ω2 = 0.5 were exhibiting more accu-

rate results, consisting in significantly positive AUC difference (0.05 and 0.08,

p < 0.001) and significantly positive SD difference (2.24 and 2.06, p < 0.001).

ω2 = 0 and 0.1 only provided AUC higher than 0.8 in the case of Se = 3,

whereas ω2 = 0.7 and 0.9 failed in all cases and even the median values of

Dmin were significantly larger (median values around 2-3 cm) than other

cases. Based on these results, we decided to consider only the depth weight-

ing values ω2 = 0.3 and 0.5 for depth weighting MNE in the comparisons

with with MEM reconstructions.

S3. MEM v.s. MNE with realistic simulations involving middle and deep

seeds

In Fig.S2 and Table.S1, we are presenting the comparison of MEM and

MNE in middle seeds case. First of all, we found that more depth compen-
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Fig.S1. Evaluation of the performances of depth weighted MNE for different depth weight-

ing factors ω = 0, 0.1, 0.3, 0.5, 0.7, 0.9. Distribution of validation metrics (AUC, Dmin , SD

and SE) are displayed using boxplot representations, for simulations involving superficial

seeds only and for spatial extents Se = 3, 5, 7, 9.

sation was required to provide good reconstructions in all scenarios. Thus,

MEM(0.5, 0.5) was compared to the best of MNE - MNE(0.5). Non-significant

AUC and Dmin differences were found between them. However, MEM(0.5, 0.5)

provided significant lower SD than MNE(0.5), median value of difference of

SD = −5.33, −4.80, −5.00, −4.95, p < 0.001 for Se = 3, 5, 7, 9 respectively.

Fig.S3 and Table.S2 are presenting the comparison of MEM and MNE in the

comparison of them in deep seeds case. Similarly, no significant AUC and

Dmin differences were found. MEM(0.5, 0.5) provided significant lower SD

than MNE(0.5), median value of difference of SD = −6.39, −6.33, −6.97,

−5.52, P < 0.001 for Se = 3, 5, 7, 9 respectively. For temporal performance

in these two cases, similar to Fig.3, MNE(0.5) gave significant lower SE

(−0.01 or −0.02, p < 0.001) than MEM when Se = 3, 5 (small difference).

No significant different SE was found in Se = 7, 9.
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Fig.S2. Evaluation of the performances of MEM and MNE using realistic simulations

involving middle seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation

of the distribution of four validation metrics for three depth weighted strategies of MEM

and two depth weighted strategies of MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5)

in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) in black. Results

were obtained after DOT reconstruction of 830nm ∆OD.
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Table.S1. Wilcoxon signed rank test results of reconstruction performance comparison of

MEM and MNE in middle seeds case. Median values of paired difference are presented in

the table. p values were corrected for multiple comparisons using Bonferroni correction,

* indicates p < 0.01 and ** represents p < 0.001. Median of the paired difference of each

validation metrics is color coded as follows: green: MEM is significantly better than MNE,

red: MNE is significantly better than MEM and gray: non-significance.
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Fig.S3. Evaluation of the performances of MEM and MNE using realistic simulations

involving deep seeds for different spatial extent (Se = 3, 5, 7, 9). Boxplot representation of

the distribution of four validation metrics for three depth weighted strategies of MEM and

two depth weighted strategies of MNE, namely: MEM(0.3, 0.3) in blue, MEM(0.3, 0.5) in

green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) in black. Results were

obtained after DOT reconstruction of 830nm ∆OD.
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Table.S2. Wilcoxon signed rank test results of reconstruction performance comparison

of MEM and MNE in deep seeds case. Median values of paired difference are presented in

the table. p values were corrected for multiple comparisons using Bonferroni correction,

* indicates p < 0.01 and ** represents p < 0.001. Median of the paired difference of each

validation metrics is color coded as follows: green: MEM is significantly better than MNE,

red: MNE is significantly better than MEM and gray: non-significance.
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