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Abstract

In multi-talker situations individuals adapt behaviorally to the listening challenge mostly with ease,
but how do brain neural networks shape this adaptation? We here establish a long-sought link
between large-scale neural communications in electrophysiology and behavioral success in the
control of attention in challenging listening situations. In an age-varying sample of N = 154
individuals, we find that connectivity between intrinsic neural oscillations extracted from source-
reconstructed electroencephalography is top-down regulated during a challenging dual-talker
listening task. These dynamics emerge as spatially organized modulations in power-envelope
correlations of alpha and low-beta neural oscillations during ~2 seconds intervals most critical for
listening behavior relative to resting-state baseline. First, left frontoparietal low-beta connectivity
(16-24 Hz) increased during anticipation and processing of spatial-attention cue before speech
presentation. Second, posterior alpha connectivity (7-11 Hz) decreased during comprehension of
competing speech, particularly around target-word presentation. Connectivity dynamics of these
networks were predictive of individual differences in the speed and accuracy of target-word
identification, respectively, but proved unconfounded by changes in neural oscillatory activity
strength. Successful adaptation to a listening challenge thus latches onto two distinct yet
complementary neural systems: a beta-tuned frontoparietal network enabling the flexible
adaptation to attentive listening state and an alpha-tuned posterior network supporting attention
to speech.
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Brain network adaptation for successful listening

Significance Statement

Attending to relevant information during listening is key to human communication. How does this
adaptive behavior rely upon neural communications? We here follow up on the long-standing
conjecture that, large-scale brain network dynamics constrain our successful adaptation to cognitive
challenges. We provide evidence in support of two intrinsic, frequency-specific neural networks that
underlie distinct behavioral aspects of successful listening: a beta-tuned frontoparietal network
enabling the flexible adaptation to attentive listening state, and an alpha-tuned posterior cortical
network supporting attention to speech. These findings shed light on how large-scale neural
communication dynamics underlie attentive listening and open new opportunities for brain
network-based intervention in hearing loss and its neurocognitive consequences.

Introduction

Noisy, multi-talker listening situations make everyday communication challenging: how to focus
only on what we want to hear? Behavioral adaptation to a listening challenge is often facilitated by
listening cues (e.g., spatial location or semantic context) and requires individual cognitive ability to
control attention (Shinn-Cunningham and Best, 2008; Peelle, 2017). How do a listener’s brain
networks shape this behavioral adaptation? Addressing this question is essential to
neurorehabilitation of the hearing impaired or to the advancement of aided hearing (Lin et al., 2013;
Deal et al,, 2017).

Our recent study provided a large-scale brain network account of successful listening (Alavash
et al,, 2019). Using functional magnetic resonance imaging (fMRI), we measured participants’ brain
hemodynamic responses during task-free resting state and a challenging speech comprehension
task. We were able to explain individual adaptation to the listening challenge by reconfiguration of
an auditory-control brain network towards increased modular segregation during attentive
listening. Knowing the indirect relationship between brain hemodynamics and neural oscillatory
dynamics (Laufs et al, 2003; Mantini et al., 2007; Hipp and Siegel, 2015), our study posed an
important underexplored question: whether and how network interactions between intrinsic neural
oscillations change to support behavioral adaptation to a listening challenge?

Electro-/Magnetoencephalography (E/MEG) studies on attentive listening provide ample
evidence supporting the role of neural oscillatory activity within the alpha band (~8-12 Hz) in top-
down attentional control over incoming auditory streams (Foxe and Snyder, 2011). Specifically,
attentional modulation of alpha-band power has been reported extensively when listeners
selectively attend to one of two (or more) concurrent sounds (Banerjee et al., 2011; Muller and Weisz,
2012; Weisz et al., 2014; Wostmann et al.,, 2016; Dai et al,, 2018; Tune et al,, 2018; Wostmann et al.,
2019). These findings have been often interpreted in the light of the widely recognized inhibitory
role of alpha oscillations as top-down modulation of cortical excitability (Jensen and Mazaheri, 2010;
Van Diepen et al., 2019).

However, these studies have usually investigated how selective attention modulates the power
of neural activity and assume cortical alpha rhythms in temporal or parietal regions to underlie these
dynamics (Billig et al., 2019). Studies on visual-spatial attention have provided initial evidence on
how functional or structural connectivity between distant cortical regions mediate such top-down
attentional modulations in alpha or other frequency bands (Marshall et al., 2015a; Bonnefond et al.,
2017; Popov et al., 2017; D'Andrea et al., 2018). Nevertheless, we do not know yet whether and how
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attentive listening relies on intrinsic neural oscillations acting in concert across distributed cortical
networks.

Large-scale neural interactions at slow time scales (<0.1 Hz) have been suggested as a proxy of
functional coordination between distant brain areas. Specifically, power-envelope fluctuations of
ongoing alpha- and beta-band oscillations (~13-30 Hz) exhibit this characteristic, and their intrinsic
co-modulations over time correlate with co-variation of brain hemodynamic signals during resting
state (Mantini et al.,, 2007; Brookes et al., 2011; Hipp et al.,, 2012; Hipp and Siegel, 2015). Accordingly,
these neural dynamics have been proposed as one network mechanism whereby distant cortical
regions functionally coordinate their activity to participate in a task (Palva and Palva, 2012; Siegel et
al.,, 2012; Engel et al., 2013). How intrinsic neural oscillations regulate their power-envelope coupling
in adaptation to attentive listening is unknown.

Moreover, it is not yet fully understood why listeners exhibit substantial inter-individual
variability in successful adaptation to a listening challenge (Mattys et al., 2012; Tamati et al., 2013).
This variability seems to arise from differences in sensory coding fidelity, from differences in the
ability to use cognitive resources, or from a combination of both (Shinn-Cunningham, 2017; Dai et
al.,, 2018). To what degree this inter-individual variability relates to listeners’ ability to top-down
regulate amplitude-coupling between neural oscillations is unknown.

The present large-sample EEG study regards the neocortical systems involved in attentive
listening as an assembly of dynamic large-scale networks of ongoing neural oscillations. Building on
our previous work on brain hemodynamic networks during the same experimental paradigm
(Alavash et al., 2019), we treat the resting-state network makeup of intrinsic neural oscillations as
their putative task network at its “idling” baseline. We predict neural oscillations to regulate their
amplitude-coupling and/or reconfigure their network in adaptation to attentive listening. We expect
these changes to manifest in the alpha-beta frequency range and leverage the degree of these
changes as a proxy of individuals’ successful adaptation to a listening challenge.

Results

We recorded 64-channel scalp EEG from a large, age-varying sample of healthy middle-aged and
older adults (N = 154; age range = 39-80 yrs, median age = 61 yrs; 62 males). This includes thirty
individuals who have had participated in our previous fMRI study and performed the same listening
task (Alavash et al., 2019). All participants were recruited as part of an on-going large-scale
longitudinal study (see Data collection for details). Each participant completed a five-minute eyes-
open resting state measurement and one-hour of the listening task. The listening task was identical
to the one used in (Alavash et al,, 2019) and can be viewed as a linguistic Posner paradigm (Figure

1).

In brief, participants were dichotically presented with two five-word sentences and were
instructed to identify the final word (i.e., target) of one of these two sentences. To probe individual
use of auditory spatial attention and semantic prediction when confronted with a listening
challenge, sentence presentation was preceded by two visual cues. First, a spatial-attention cue
either indicated the to-be-attended side, thus invoking selective attention, or it was uninformative,
thus invoking divided attention. The second cue informed about the semantic category of both final
words either very generally or more specifically, allowing for more-or-less precise semantic
prediction of the upcoming target word.

We source-localized narrow-band EEG signals recorded during rest and task, and following
leakage correction, estimated power-envelope correlations between all pairs of cortical regions
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defined according to a symmetric whole-brain parcellation template (Figure S1). We asked whether
and how amplitude-coupling between intrinsic neural oscillations changes throughout the listening
task as compared to resting state. Importantly, using (generalized) linear mixed-effects models, we
examined the influence of listening cues and frequency-specific network dynamics on single-trial
listening performance, accounting for individuals’ age, hearing thresholds, and neural oscillatory
power.
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Figure 1. Experimental procedure and the listening task. EEG of N = 154 participants was recorded during a 5-
min eyes-open resting state and six blocks of a linguistic Posner task with concurrent speech (Alavash et al.,
2019). Participants listened to two competing, dichotically presented sentences. Each trial started with the
visual presentation of a spatial cue. An informative cue provided information about the side (left ear vs. right
ear) of the to-be-probed final word. An uninformative cue did not provide information about the side of the
to-be-probed final word. A semantic cue was visually presented indicating a general or a specific semantic
category for both final words. The two sentences were presented dichotically along with a visual fixation cross.
At the end of each trial a visual response array appeared on the side of the probed ear with four word-choices,
asking participants to identify the final word of the sentence presented to the respective ear. To capture
amplitude-coupling between frequency-specific neural oscillations throughout the listening task, power-
envelope correlations between narrow-band EEG sources were estimated within one-second time windows of
interest (colored intervals) and compared with resting state connectivity at the same frequency

Informative cues improve listening success

The analysis of listening performance using linear mixed-effects models revealed an overall
behavioral benefit from more informative cues. The behavioral effects reported below are in good
agreement with the results obtained before using the same task in fMRI (Alavash et al., 2019)
Specifically, listeners performed more accurately and faster under selective attention as compared
to divided attention (accuracy: odds ratio (OR) = 3.4, p < 0.001; response speed: 3 = 0.57, p < 0.001;
Figure 2A and B, top row of scatter plots). Moreover, listeners performed faster when they were cued
to the specific semantic category of the final word as compared to a general category (3 =0.12, p <
0.001; Figure 2B, second scatter plot). We did not find evidence for any interactive effects of the two
listening cues in predicting accuracy (OR = 1.3, p = 0.15) or response speed (3 = 0.09, p = 0.29).

As expected, the older a listener the worse the performance (main effect of age; accuracy: OR =
0.78, p < 0.01; response speed: B = -0.15, p<0.001). Furthermore, as to be predicted from the right-
ear advantage for linguistic materials (Kimura, 1961; Broadbent and Gregory, 1964), listeners were
more accurate and faster when probed on the right compared to the left ear (main effect of probe
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onaccuracy:OR=1.25,p <0.01; response speed: 3 = 0.09, p<0.001). In addition, the number of blocks
participants completed (six in total) had a main effect on task performance (accuracy: OR=1.28, p <
0.001; response speed: B = 0.11, p<0.001) indicating that individuals’ listening performance
improved over task blocks (see Table S1 and S2 for all model terms and estimates).
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Figure 2. Individual behavioral benefit from informative listening cues. (A) Proportion of correct final word
identifications averaged over trials per cue condition (B) The same as (A) but for average response speed. Box
plots: Colored data points represent trial-averaged performance scores of N = 154 individuals per cue-cue
combination. Black bars show mean * bootstrapped 95% Cl. Scatter plots: Individual cue benefits shown
separately for each cue and performance score. Black data points represent individuals’ trial-averaged scores
under informative [+] and uninformative [-] cue conditions. Gray diagonal corresponds to 45-degree line.
Histograms show the distribution of the cue benefit (informative minus uninformative) across all participants.
OR: Odds ratio parameter estimate resulting from generalized linear mixed-effects models; B: slope parameter
estimate resulting from general linear mixed-effects models

Spectral and spatial profile of power-envelope correlations under rest and listening

Central to the present study, we asked whether and how amplitude-coupling between intrinsic
neural oscillations changes as individuals engage in attentive listening. To answer this question, we
first investigated the spectral and spatial profile of power-envelope correlations estimated under
rest and the listening task.

In line with previous studies (e.g., Hipp et al,, 2012; Hipp and Siegel, 2015; Siems et al., 2016),
power-envelope correlations were strongest in the alpha to low-beta frequency range (7-24 Hz) and
proved reliable in this range under both rest and task conditions (between-subject analysis; Figure
S2A-C). In addition, across thirty individuals who had participated in both the present EEG study and
our previous fMRI study (Alavash et al.,, 2019), EEG mean connectivity showed consistently positive
correlations with fMRI mean connectivity within the same frequency range (Figure S2D and E).

Accordingly, we focused our main analysis on three frequency bands within 7-24 Hz, namely
a1(7-11 Hz), a,(11-14 Hz), and £;(16-24 Hz). The main analysis began by investigating group-
average whole-brain connectivity per frequency band under rest and listening task.

As shown in Figure 3, rest and task connectivity showed overall similar spatial profiles across
cortex. More precisely, power-envelope correlations in both @; and a, range were strongest within
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and between bilateral occipital and temporal nodes, but also across occipitoparietal as well as
temporoparietal nodes under rest or listening task (Figure 3, first column; see Figure S4 for a,
connectivity). In contrast, frontal nodes displayed relatively sparse connectivity. Power-envelope
correlations in ; frequency range displayed similar spatial pattern, but with the left-hemispheric
connections showing relatively stronger connectivity under listening task as compared to rest
(Figure 3, second column).

To evaluate connectivity strength of each cortical node, we used a simple graph-theoretical
measure—namely nodal connectivity—defined as the sum of each node’s connection weights. This
analysis revealed a long-tailed distribution of nodal connectivity across cortex, where nodes with
highest connectivity strength localized to occipital and temporal regions in both the alpha and low-
beta frequency range (Figure 3, cortical maps).

We next investigated the network topology of these connectivity profiles. Specifically, we asked
whether these cortical correlation structures exhibit modular organization. In our previous fMRI
study hemodynamic brain networks had displayed modular organization under both rest and the
same listening task (Alavash et al., 2019). Qualitatively, in a modular network one would expect
groups of nodes which are relatively densely intra-connected, but relatively sparsely inter-connected.
We thus predicted EEG source connectivity to be also functionally decomposable into network
modules.

However, we found that neither alpha nor low-beta connectivity displayed modular organization
under rest or listening: the module detection algorithm revealed only unevenly dense modules and
relatively small modularity indices (Figure S3). Collectively, these results illustrate that power-
envelope correlationsin the alpha and low-beta frequency range were predominantly present across
sensory and parietal association regions. However, amplitude-coupling between these regions did
not topologically segregate to exhibit a modular organization.
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Figure 3. Connectivity maps of a/p oscillations under rest and attentive listening. (A) For each frequency band,
power-envelope correlations between EEG sources were estimated using 5-min eyes-open resting state data
(B) The same procedure as in (A) was applied to task data after concatenating whole-trial signals across 30
random trials of each block (5-min data in total), and then averaging the correlation matrices across all six
blocks of task. Connectivity maps were averaged across N = 154 individuals and thresholded at 10% of network
density. Nodes having zero connectivity are masked in grey. Histograms illustrate distribution of nodal
connectivity with high-connectivity nodes overlapping with occipital and posterior temporal regions. Note
that in this analysis task connectivity is not specific to a particular time window within trials or cue condition,
and thus illustrate the overall spatial profile of a/B connectivity under listening task. Nodes correspond to
cortical parcels as in (Glasser et al, 2016) and are identified according to their anatomical labels. LH: left
hemisphere; RH: right hemisphere.
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Hyperconnectivity of frontoparietal B oscillations in anticipation of and during spatial cueing

To investigate whether and how power-envelope correlations between neural oscillations change
throughout the listening task, we leveraged the high temporal resolution of EEG and defined 1-s
time windows of interest throughout the entire trial (Figure 1, colored intervals). This allowed us to
estimate connectivity for each frequency band and time window by concatenating windowed
narrow-band signals across all 240 trials (equivalently, 4-min data). We then compared the results
with 4-min resting state connectivity at the same frequency band by subtracting task and rest
connectivity matrices.

During anticipation of the spatial-attention cue (-1-0 s), B; connectivity showed an increase
relative to resting state (Figure 4A, left panel, first connectivity matrix). This hyperconnectivity was
observed most prominently within the left temporal cortex, as well as between frontal, temporal,
and parietal regions. Using permutation tests to compare nodal connectivity between rest and task,
we found that ; connectivity of mainly left prefrontal and parietal nodes was increased during
anticipation of the spatial cue relative to rest (0.29 < Cohen’s d < 0.46, p < 0.01, FDR-corrected for
multiple comparisons across nodes; significant nodes are outlined in black in Figure 4A, first panel,
first cortical maps). In contrast, alpha connectivity during this period was not significantly different
from resting state (Figure S5A)

Next, we focused on 1-s time windows capturing the presentation of each listening cue. During
the spatial cue presentation (0-1 s), f; connectivity of left prefrontal and parietal regions remained
significantly higher than rest (0.29 < d < 0.44, p < 0.01; Figure 4A, first pane, second connectivity
matrix; see Figure S4 for non-differential connectivity matrices). During the same period, alpha-band
connectivity showed a relative decrease which was only significant in a; range and over a few
parietal nodes (Figure S5B, first panel). During the semantic cue period (1.5-2.5 s) power-envelope
correlations were not significantly different from resting state in neither the alpha nor in low-beta
range (Figure S5C).

To assess the degree and direction to which each listener showed f; hyperconnectivity during
presentation of the spatial cue, we averaged nodal connectivity across frontoparietal regions per
individual. We then statistically compared individuals’ mean connectivity values between rest and
task using a permutation test. In accordance with the results at the nodal level, mean frontoparietal
B, connectivity was significantly higher than rest during presentation of the spatial cue (d = 0.6, p <
0.01; Figure 4B, first panel).
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Figure 4. Cortical connectivity dynamics of a/p oscillations during the listening task. (A) To assess whether and
how intrinsic alpha and low-beta oscillations regulate their cortical connectivity during adaptive listening,
connectivity difference maps (i.e., task minus rest) were calculated per frequency band. Task connectivity was
extracted by concatenating one-second windowed signals across all 240 trials (4-min data). In anticipation of
and during the spatial cue presentation 8; connectivity was increased relative to its intrinsic connectivity
mainly within the left hemisphere (first panel). This hyperconnectivity was significant across frontoparietal
regions (brain surfaces; significant nodes are outlined in black). The same analysis revealed a significant alpha
hypoconnectivity during final-word presentation (second panel). (B) To assess the degree and direction of
change in connectivity per individual listener, nodal connectivity was averaged across significant nodes and
compared between rest and task using permutation tests. Data points represent individuals’ mean
connectivity (N = 154). Gray diagonal corresponds to 45-degree line. Histograms show the distribution of the
connectivity change (task minus rest) across all participants.
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Hypoconnectivity of posterior cortical a oscillations during listening to speech

During the listening task, participants were asked to identify the final word of one of two concurrent
sentences. The sentences were presented after the two listening cues, and on average had a duration
of around 2.5 s (Figure 1). Accordingly, we divided the sentence presentation period (3.5-6.5 s) into
three consecutive one-second intervals and estimated connectivity for each frequency band and
time window. This analysis revealed a gradual decrease in alpha connectivity across posterior parts
of the brain during sentence presentation relative to resting state.

Specifically, during sentence presentation (3.5-6.5 s), a; connectivity within and between
bilateral occipital regions was decreased relative to resting state, particularly so during the interval
around the final-word presentation (Figure 4A, second panel). This hypoconnectivity was also
observable between occipital and temporo-parietal regions and in the a, band (Figure S6). In
contrast, f; connectivity during sentence presentation was not significantly different from resting
state (Figure S6A-C, third column).

When tested at the nodal level, the alpha-band hypoconnectivity overlapped with posterior
temporal cortices as well as occipital and parietal regions (-0.5 < d <-0.23, p < 0.01; nodes outlined
in black in Figure 4A, second panel, cortical maps). Notably, when averaged across the posterior
cortical nodes, individuals showed consistently lower mean connectivity during final-word
presentation relative to rest (Figure 4B, second panel).

Connectivity dynamics of intrinsic a/B oscillations predict individual listening behavior

The results illustrated above can be outlined as spatiotemporal modulations in alpha and low-beta
connectivity throughout the listening task relative to resting state. As Figure 4B shows, listeners
clearly showed inter-individual variability in the degree and direction of these connectivity
dynamics. Thus, we next investigated whether these variabilities could account for inter-individual
variability in listening performance (Figure 2).

To this end, we tested the direct and interactive effects of individual mean connectivity during
resting-state and during each listening task interval (i.e., spatial-cue or final-word periods) on
individuals’ accuracy or response speed. These brain-behavior relationships were tested in separate
models per alpha or low-beta band. In each model, brain regressors were the mean connectivity of
the posterior alpha or frontoparietal low-beta networks on individual-level, respectively. These are
the same linear mixed-effects models based on which the beneficial effects of informative listening
cues on behavioral performance was reported earlier.

Figure 5 illustrates the main brain-behavior results. First, we found that frontoparietal f;
connectivity during spatial cueing predicted listeners’ response speed in the ensuing final-word
identification, but only in those individuals whose resting-state 8; connectivity of the same network
was lower than average (by half-SD or more). Statistically, this surfaced as a significant interaction
between mean resting-state frontoparietal 8; connectivity and mean connectivity of the same
network during spatial-cue presentation in predicting listeners’ response speed (3 = 0.019, p < 0.01;
Figure 5A; see Table S6 for details). This indicated that, among individuals with lower than average
resting-state frontoparietal 8, connectivity (N =41), increased connectivity during spatial cueing was
associated with slower responses during final-word identification (3 = —0.034, p < 0.01; Figure 5A,
first panel).

Second, mean posterior a; resting-state connectivity and mean connectivity of the same
network during final-word presentation jointly predicted a listener’s accuracy (OR = .94, p = 0.04;
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Figure 5B; see Table S1 for details). This interaction indicated that the behavioral relevance of a;
hypoconnectivity during final-word identification was conditional on individuals’ resting-state a4
connectivity: for listeners with an intrinsic a; connectivity higher than average (by half-SD or more;
N = 45), there was a significant negative correlation between a; connectivity during final-word
presentation and overall word identification accuracy (OR = 0.88, p = 0.04, Figure 5B, third panel).

Additionally, in separate models we tested the above interactions using connectivity during
anticipation of the spatial cue (i.e., —1-0 s fixation) as baseline instead of resting state connectivity.
Notably, the 3; interaction in predicting listeners’ response speed was absent (3 = 0.001, p = 0.89),
as was the a, interaction in predicting listeners’ accuracy (OR = 0.98, p = 0.5).

We also investigated the reliability and robustness of the brain-behavior findings using 5-fold
cross-validation and examined the strength and significance of the model’s parameter estimate
when random subsets of data were used. To assess the likelihood that the observed data are better
explained by the model including the respective interaction terms, we also calculated the Bayes
factor (BF). By convention, a log-BF of 1 begins to lend support to the H1(Dienes, 2014).

The cross-validation results obtained for the model predicting response speed from
frontoparietal ; connectivity dynamics were well in line with those obtained from the full sample
(Figure S10A): For all five model iterations, the 3 estimate of the interaction term was significantly
larger than zero, and the log-BF estimate was larger than 1 in three model iterations. For the model
predicting accuracy from posterior a; connectivity dynamics, for four model iterations the odds ratio
was significantly smaller than 1, indicating a negative correlation, and the log-BF estimate was larger
than 1 in one model iteration.

In support of the behavioral relevance of alpha and low-beta connectivity we also found their
significant interactions with task-block number in predicting individuals’ accuracy (a;: OR =091, p
<0.01; a,: OR=0.92, p < 0.01; B;: OR = 0.95, p = 0.02,) or response speed (a;: 3 =-0.021, p < 0.001;
a,: B =-0.032, p < 0.001; see Table S1-5 for details). These interactions indicated that (1) those
listeners with lower posterior alpha connectivity during final-word presentation showed improved
behavioral performance over six blocks of task and (2) listeners with lower 8; connectivity during
presentation of the spatial cue showed improved accuracy over task blocks.

We did not find any evidence for the behavioral relevance of the a, band connectivity dynamics,
i.e., its interaction with resting state connectivity (see Table S3-4 for details). The interactions
between mean connectivity or neural oscillatory power with the listening cues in predicting
behavior were also not significant in neither of the frequency bands.
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Figure 5. Prediction of individual listening behavior from a/f connectivity dynamics. (A) Interaction between
mean frontoparietal §; connectivity derived from resting state and connectivity of the same network during
spatial cue presentation predicted how fast listeners identified the final word in the ensuing sentence
presentation (3 = 0.019, p < 0.01, log-BF = 2.32). For visualization purpose only, individuals were grouped
according to their standardized mean frontoparietal ; resting state connectivity. Each scatter plot
corresponds to one group of individuals. Distribution of mean connectivity for each group is highlighted in
black within the top histograms. Black data points represent the same individuals’ trial-average response
speed regressed on their standardized mean frontoparietal 8, connectivity during spatial cueing. Solid blue
lines indicate linear regression fit to the data when f3; resting state connectivity held constant at the group
mean (dashed blue line in histograms). (B) Interaction between mean posterior a; connectivity derived from
resting state and connectivity of the same network during final word presentation predicted listeners’ word
identification accuracy (OR = 0.94, p < 0.05, log-BF = 1.17). Data visualization is the same as in (A), but here the
grouping variable is mean posterior a; resting state connectivity and the predictor is the mean connectivity of
the same network during final word period. Individuals’ age and hearing thresholds have been accounted for
in the models. Shaded area shows two-sided parametric 95% Cl. 8: Slope parameter estimates from linear
mixed-effects model. OR: Odds ratio parameter estimates from generalized linear mixed-effects models. BF:
Bayes factor.
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Control analysis: are a/B connectivity effects confounded by changes in activation?

A recurring theme in studying neural interactions is to what extent connectivity estimates are mere
reflection of neural activation (Pesaran et al., 2018; Tewarie et al., 2018). As an extreme scenario,
connectivity between two regions could be purely driven by instantaneous changes in neural
activity (or signal-to-noise ratio) of each region and not their genuine functional connectivity. We
therefore conducted a set of control analyses to assess the degree to which the dynamics of power-
envelop correlations found here could be mere reflection of changes in alpha or low-beta power.

As illustrated in Figure S7, grand-average power of narrow-band EEG signals during anticipation
of the spatial cue was higher than baseline within 7-24 Hz, and it was decreased in response to both
listening cues. This modulation was similarly observed during sentence presentation and appeared
stronger during final-word presentation. For the final-word period, we also quantified hemispheric
lateralization of alpha-band activity (7-14 Hz) based on selective-attention trials and using the so-
called attentional modulation index (AMI); AMI = (0-pOWeTatend. — O-POWETttendr) / (A-POWETttendL + Q-
power.sendr). As expected, source alpha power was lower over the hemisphere contralateral to the
side of attention (Figure S7C). At first glance, these changes in power appear similar to the power-
envelope correlation dynamics reported earlier. To directly investigate this, we conducted the
following analyses.

First, for each cortical node, we tested the correlation between nodal connectivity and mean
nodal power (dB) during task across participants. During spatial cue period and within §; band this
correlation was mainly positive across cortex and was significant over a few occipital nodes
(Spearman’s p = 0.3, p < 0.01; Figure S8A, first panel). However, this relationship and the overall
pattern of nodal correlations did not resemble the mainly left-hemispheric frontoparietal S;
hyperconnectivity (Figure 4A, first panel). Moreover, during final-word presentation, the correlation
between mean alpha power (dB) and nodal connectivity showed both positive and negative trends
across cortex which did not reach significance level (-0.25 < p < 0.25, p > 0.1; Figure S8A, last two
panels, cf. Figure 4A, second panel). When these correlations were tested using mean connectivity
and power averaged across frontoparietal or posterior nodes, there was only a positive trend for the
correlation between mean frontoparietal 5, connectivity and power during spatial-cue presentation
(p=0.15, p=0.07; Figure S8B).

Second, on selective-attention trials and during final-word presentation alpha activity clearly
showed a lateralized modulation depending on whether participants attended to left or right ear
(Figure S7C). We investigated whether connectivity showed a similar lateralization. Precluding the
here observed neural connectivity from being confounded by neural activity level, power-envelope
correlations were not influenced by attentional-cue conditions (i.e., left vs. right or selective vs.
divided) in neither of the trial intervals or frequency bands (Figure S9).

Third, in our mixed-effects models we included mean neural oscillatory power as a separate
regressor, and specifically tested the direct and interactive effects of power on individuals’
behavioral performance. We only found a significant main effect of 5; power during spatial-cue
presentation on listeners’ response speed (B = -0.029, p < 0.01). Notably, while posterior a;
connectivity predicted listeners’ behavioral accuracy, the data held no evidence for any effect of
alpha power on behavior (see Tables S1-4 for details). Additionally, while alpha and low-beta mean
connectivity showed significant interactions with task-block number in predicting individuals’
behavioral performance (see Sl Tables for details), this effect was absent for power.

Lastly, to diminish common covariation in source power due to volume conduction, all time-
frequency source estimates in our analyses were orthogonalized across all pairs of cortical nodes
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prior to estimating power-envelope correlations (Hipp et al., 2012). This approach eliminates (or at
least diminishes considerably), the instantaneous zero- or close to zero-lag correlations between
signals (Colclough et al., 2015). Thus, connectivity estimates derived from this procedure are less
likely to be contaminated by shared neural activity time-locked to task events.

Discussion

We have shown here how cortical connectivity of intrinsic neural oscillations was regulated in
adaptation to a listening challenge. These dynamics were found as spatially organized modulations
in power-envelope correlations of alpha and low-beta oscillations during ~2-s intervals most critical
for listening behavior relative to resting-state baseline. First, left frontoparietal low-beta connectivity
increased during anticipation and processing of the spatial-attention cue before speech
presentation. Second, posterior alpha connectivity decreased during comprehension of speech,
particularly in the interval around target-word identification. Importantly, these connectivity
dynamics predicted distinct aspects of listeners’ behavior, namely response speed and accuracy,
respectively.

Frontoparietal 8 connectivity supports flexible adaptation to attentive listening

The listening task required the individuals to process the spatial cue in order to update the
information about the relevance of each sentence on a trial-by-trial basis. Behaviorally, this can be
viewed as an adaptation to the current listening state. Neurocognitively, this requires top-down
allocation of resources responsible for attentional and task-set control.

In our representative sample, listeners with higher frontoparietal 8; power during processing of
the spatial cue showed slower word-identification. Furthermore, among those listeners with resting-
state frontoparietal f; connectivity lower than average, connectivity of the same network during
processing of the spatial cue was negatively correlated with response speed in the ensuing final-
word identification. Taken together, stronger frontoparietal f; synchrony during spatial-cue
processing was associated with slower responses. Accordingly, the strength of frontoparietal $;
connectivity likely reflects the neural cost that listeners incurred by flexibly updating and restoring
the relevance of each left and right sentence on a trial-by-trial basis.

These results extend and help functionally specify the growing consensus that beta synchrony
has a role in top-down control of goal-directed behaviors (Engel and Fries, 2010; Miller and
Buschman, 2013; Spitzer and Haegens, 2017). Evidence comes from animal and human studies that
demonstrate a functional role of prefrontal beta synchronization in task-state transitions when
content information—such as stimulus category, memory item, decision choice, or internalized task
rule—need to be endogenously maintained or updated (Buschman et al.,, 2012; Salazar et al., 2012;
Siegel et al.,, 2015; Miller et al., 2018). Task states as such have been found to coincide with short-
lived beta synchrony in frontoparietal areas, for example, during stimulus categorization
(Antzoulatos and Miller, 2016; Stanley et al., 2016), working memory retention (Spitzer and
Blankenburg, 2011; Spitzer et al., 2014) or accumulation of sensory evidence (Siegel et al., 2011; Kelly
and O'Connell, 2015).

Interestingly, these findings have been reported mainly in the lower-beta frequency range (~20
Hz) and often in the absence of stimulation, e.g. during delay periods of memory tasks (Wimmer et
al., 2016). It is generally recognized that synchrony of low-beta oscillations is initiated in higher-level
control areas and propagates to lower-level sensory areas (Bastos et al., 2012; Bastos et al., 2015). In
addition, low-beta oscillations seem to have the optimal neurocomputational properties to prepare
and maintain neural assemblies in the absence of external input (Kopell et al., 2011; Lee et al., 2013).
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Accordingly, momentary frontoparietal low-beta synchrony has been proposed to represent higher-
level abstract task content and goals which “awakes” an endogenous cognitive set to control arange
of goal-directed behaviors (Spitzer and Haegens, 2017). This proposal is in line with the view that
frontoparietal neurons are multi-functional and distributed across multiple ensembles which can be
selectively activated by means of synchronous oscillations to flexibly enable adaptive behaviors
(Rigotti et al., 2013; Fusi et al., 2016).

Overall, our finding indicates that left-hemispheric frontoparietal 5, connectivity acts as a top-
down network mechanism to re-activate otherwise silent beta oscillations responsible for preparing
cortical circuits involved in attentive listening. The strength of this connectivity may be a neural
proxy of a listener’s flexibility in using spatial cues to cope with challenging listening situations.

Lower posterior cortical a connectivity supports attention to speech

When participants listened to concurrent sentences and particularly to the task-relevant final word,
power-envelope correlation between posterior alpha oscillations was diminished. This finding very
likely indicates a cohesive shutdown of the posterior alpha-tuned network to promote the spread of
cortical information, thereby facilitating selection and comprehension of speech. We note that,
during spatial cue presentation, this hypoconnectivity was only weakly observable suggesting that
posterior alpha connectivity is top-down downregulated mainly during overt listening behavior.

Over the last twenty years alpha oscillations have been increasingly recognized as a signature of
cortical inhibition (Klimesch et al., 2007; Jensen and Mazaheri, 2010; Mathewson et al., 2011). More
precisely, one general view is that alpha oscillations prioritize stimulus processing by inhibiting task-
irrelevant and disinhibiting task-relevant cortical areas. More recently, this view has been modified
and expanded in a more mechanistic way (Van Diepen et al., 2019). Specifically, it has been
suggested that during periods of low alpha-power cortical excitability is sufficiently high to allow
continuous processing regardless of alpha phase (‘'medium-to-high’ attentional state). In contrast,
when alpha power is high, cortical processing is discontinuous and depends on the phase of alpha
rhythm (‘rhythmic’ attentional state) (Palva and Palva, 2011; Jensen et al., 2014). These mechanisms
appear across sensory and motor cortices (Haegens et al., 2011; de Pesters et al., 2016; Popov et al.,
2017) and point to the critical role of both power and phase dynamics of alpha oscillations in
attentional control (Clayton et al., 2018; Fiebelkorn and Kastner, 2020).

For alpha dynamics as such to be under top-down control a link with brain networks must exist.
Indeed, it has been previously suggested that three large-scale cortical networks differentially top-
down regulate alpha oscillations (Sadaghiani and Kleinschmidt, 2016). Specifically, while phase
synchrony of alpha oscillations has been associated with the frontoparietal network involved in
adaptive control (Palva and Palva, 2007; Sadaghiani et al., 2012; Sadaghiani et al., 2018), amplitude
modulation of alpha oscillations has been proposed to be under control of cingulo-opercular and
dorsal attention networks involved in maintaining tonic alertness and guiding selective attention,
respectively (Capotosto et al., 2009; Sadaghiani et al., 2010; Marshall et al., 2015b).

Overall, hypoconnectivity of posterior alpha oscillations is likely a manifestation of a broader
attentional network process acting on excitability or engagement of sensory channels through their
coherent release of inhibition. Our finding thus extends previously proposed inhibitory role of alpha
oscillatory activity in attention and suggests that individual attentive listening behavior hinges on
both intrinsic posterior alpha amplitude-coupling and its downregulation during selection and
comprehension of speech.
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Network dynamics of the attentive listening brain: Current state and future directions

Our previous fMRI experiment (Alavash et al., 2019) and the present study take a network
neuroscience approach to unravel cortical underpinning of successful adaptation to a listening
challenge. The fMRI study suggests that this adaptation is supported by topological reconfiguration
of auditory, ventral attention, and cingulo-opercular modules. Our main finding was that functional
segregation of this auditory-control network relative to its resting-state baseline predicted
individuals’ listening behavior. In the present study we found that this adaptation is supported by
top-down regulation of connectivity between alpha and low-beta neural oscillations during intervals
most critical to listening behavior. Our key finding is that connectivity between frontoparietal low-
beta oscillations and posterior alpha oscillations relative to their resting-state baseline is predictive
of distinct aspects of individuals’ listening behavior. Thus, both studies share a common thread:
dynamics of large-scale cortical networks retain the information that could predict trait-like
individual differences in attentive listening.

We also realize one characteristic difference between cortical networks built upon
hemodynamic signals as compared to those derived from source-reconstructed narrow-band EEG
signals. In the latter case, frequency-specific cortical networks did not exhibit modular organization
(Figure S3). We note that cortical activities are organized across distributed neural processing
streams and frequency channels which are superimposed and low-pass-filtered when imaged by
fMRI (Logothetis et al., 2001; Heeger and Ress, 2002; Logothetis, 2008). Accordingly, frequency-
resolved connectivity estimation would map spectrally and spatially distinct networks depending on
the neurophysiological imaging technique, e.g. electrocorticography (He et al., 2008; Scholvinck et
al., 2010; Kucyi et al., 2018) or E/MEG (Scheeringa et al.,, 2011; Liu et al., 2014; Siems et al., 2016). When
estimation of connectivity as such is solely based on power-envelope correlations between
alpha/beta oscillations in source-reconstructed E/MEG, the resulting network would be restricted to
a fewer cortical regions and functional connections (Laufs et al., 2003; Brookes et al., 2011; Hipp and
Siegel, 2015; Tewarie et al., 2016). Moreover, the spatial resolution with which these regions can be
distinguished from one another is limited by the E/MEG sensor configuration (Farahibozorg et al.,
2018).Indeed, in our data (source-reconstructed 64-channel EEG) anterior and medial-frontal cortical
regions showed sparse connectivity (Figure 3). Thus, studying modular organization of large-scale
neurophysiological networks would require the investigation of neural source activity over a broad
frequency range with higher spatial resolution than EEG (see (Arnulfo et al., 2020) for a recent
evidence).

Attentional modulation of neural responses within auditory cortex has been extensively
investigated along different lines of research in auditory neuroscience (cf. Tune et al., 2020, for a
study on auditory alpha power and neural tracking of speech using the same data and cohort as
here). Nevertheless, large-scale network dynamic of the auditory brain has remained underexplored,
particularly on the neurophysiological level. This is mainly due to the methodological challenges
inherent to connectivity analysis (Schoffelen and Gross, 2009; O'Neill et al., 2015; Palva et al., 2018).
In our methodology we carefully took these considerations into account. This eventually allowed us
to functionally map and characterize large-scale neural connectivity within alpha and low-beta
frequency channels whereby distant cortical nodes tuned into attentive listening under top-down
control. Importantly, our brain-behavior findings add to the limited understanding of individual
differences with which listeners cope with difficult listening situations. Looking ahead, this study
opens new opportunities for brain network-based assessment of the hearing impaired as well as
design of neurocognitive training strategies or assistive devices to rehabilitate or aid hearing.
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Conclusion

In sum, the present study suggests that successful adaptation to a listening challenge latches onto
two distinct yet complementary neural systems: beta-tuned frontoparietal network enabling the
adaptation to the attentive listening state per se, and alpha-tuned posterior cortical network
supporting attention to speech. Critically, connectivity dynamics of both networks appear under
top-down control, and they predict individual differences in listening behavior. To conclude, we
suggest that large-scale connectivity dynamics of intrinsic alpha and low-beta neural oscillations are
closely linked to the control of auditory attention.

Materials and Methods
Data collection

This experiment was conducted as part of an ongoing large-scale study on the neural and cognitive
mechanisms supporting adaptive listening behavior in healthy middle-aged and older adults (“The
listening challenge: How ageing brains adapt (AUDADAPT)”
https://cordis.europa.eu/project/id/646696). This project encompasses the collection of different
demographic, behavioral, and neurophysiological measures across two time points. The analyses
carried out on the data aim at relating adaptive listening behavior to changes in different neural
dynamics (Alavash et al., 2019; Tune et al., 2020); see also https://osf.io/28r57/).

Participants and procedure

A total of N = 154 right-handed German native speakers (age range = 39-80 yrs, median age = 61
yrs, 62 males) participated in the study. All participants had normal or corrected-to-normal vision,
did not report any neurological, psychiatric, or other disorders and were screened for mild cognitive
impairment using the German version of the 6-ltem Cognitive Impairment Test (6CIT; Jefferies and
Gale, 2013). During EEG sessions participants first underwent 5-min eyes-open and 5-min eyes-
closed resting-state measurements. The participants were asked not to think about something
specific and to avoid movement during the measurements. Next, following task instruction,
participants performed six blocks of a demanding dichotic listening task (Figure 1; see SI Appendix
for details). As part of our large-scale study, prior to the EEG session participants also underwent a
session consisting of a general screening procedure, detailed audiometric measurements, and a
battery of cognitive tests and personality profiling (see Tune etal., 2018, for details). Only participants
with normal hearing or age-adequate mild-to-moderate hearing loss were included in the present
study. As part of this screening procedure, an additional 17 participants were excluded prior to EEG
recording due to non-age-related hearing loss or a medical history. Three participants dropped out
of the study prior to EEG recording and an additional 10 participants were excluded from analyses
after EEG recording: three due to incidental findings after structural MR acquisition, six due to
technical problems during EEG recording or overall poor EEG data quality, and one with four task-
blocks only. Participants gave written informed consent and received financial compensation (8€ per
hour). Procedures were approved by the ethics committee of the University of Liibeck and were in
accordance with the Declaration of Helsinki.

EEG data analysis

Preprocessing. The artefact-clean continuous EEG data (see SI Appendix for details on EEG data
acquisition and artefact rejection) were high-pass-filtered at 0.3 Hz (finite impulse response (FIR)
filter, zero-phase lag, order 5574, Hann window) and low-pass-filtered at 180 Hz (FIR filter, zero-phase
lag, order 100, Hamming window). Task data were cut into 10-s trials within -2 to 8 s relative to the
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onset of the spatial-attention cue to capture cue presentation as well as the entire auditory
stimulation interval. Resting-state data were similarly cut into 10-s epochs. Data were downsampled
to fs = 250 Hz. These procedures were implemented using Fieldtrip toolbox (Qostenveld et al., 2011).

Time-frequency analysis. Spectro-temporal estimates of single-trial task data were obtained for
a time window of —1 to 7.5 s (relative to the onset of the spatial-attention cue) at frequencies ranging
from 2 to 32 Hz on a logarithmic scale (Morlet's wavelets; number of cycles = 6, Fieldtrip
implementation). The results were used for analyzing power modulation of brain oscillatory
responses on sensor- and source-level (Figure S7). As a measure of nodal power, we used the mean
of trial-average baseline-corrected source power within each time-frequency window of interest.
The same time-frequency analysis was used for estimating power-envelope correlations during rest
and task (see below).

Source projection of sensor data. Following EEG source and forward model construction (see SI
Appendix for details) sensor-level single-trial (epoch) complex-value time-frequency estimates were
projected to source space by matrix-multiplication of the common spatial filter weights (Figure S1B).
To increase signal-to-noise ratio and computationally facilitate connectivity analyses, individual
source-projected data were averaged across cortical surface grid-points per cortical patch defined
according to the HCP functional parcellation template (Glasser et al., 2016; similar to Keitel and Gross,
2016). This parcellation provides a symmetrical delineation of each hemisphere into 180 parcels. This
gave single-trial (or single-epoch) time-frequency source estimates at each cortical node. We note
that a cortical parcellation with 360 nodes over-sample the realistic spatial resolution of 64-channel
EEG. However, an optimal EEG-based cortical parcellation is currently not available, although studies
have begun to fill this gap (Farahibozorg et al., 2018). Therefore, we used an established fMRI-based
parcellation to approximate spatial boundaries of frequency-specific EEG source connectivity and its
modulation throughout the listening task. This also allowed us to investigate the similarities and
differences between fMRI and EEG whole-brain connectivity during rest and the same listening task
in a subgroup of participants.

Connectivity analysis. Frequency-resolved connectivity analysis was done in the following
steps per individual (see Figure S1B). First, trial-wise time-frequency source estimates were
concatenated across time per frequency. For estimating resting-state connectivity this was done
based on 5-min epoched data. For estimating overall connectivity during listening task irrespective
of trial intervals (Figure 3), this was done by selecting 30 random trials per task block (equivalently,
5-min data). Then, connectivity matrices were averaged across six task blocks. This procedure
assured that rest and task connectivity did not artificially differ due to differences in the duration of
data used for estimating connectivity (van Diessen et al., 2015). For estimating task connectivity
during each one-second time window (e.g., spatial-cue or final-word period; Figure 1, colored
intervals) windowed signals were concatenated across all 240 trials (equivalently, 4-min data). Event-
related task connectivity obtained from this procedure was then compared with 4-min resting state
connectivity. To investigate the effect of block on connectivity (see Statistical analysis below), the
same procedure was repeated based on all 40 trials per block. For this latter analysis, resting state
connectivity was estimated based on 40 s of data. Thus, in all analyses data were matched in duration
across rest, task, and all participants before estimation of connectivity.

Power-envelope correlation analysis. To assess frequency-specific neural interactions, we
computed Pearson'’s correlations between the log-transformed power of all pairs of nodes (all-to-all
connectivity). To eliminate the trivial common covariation in power measured from the same
sources, we used the orthogonalization approach proposed by (Hipp et al., 2012) prior to computing
the power correlations (Fieldtrip implementation). This approach has been suggested and used to
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circumvent overestimation of instantaneous short-distance correlations, which can otherwise occur
due to field propagation (Mehrkanoon et al., 2014; Colclough et al,, 2015; Siems et al., 2016). The
above procedure yielded frequency-specific 360-by-360 functional connectivity matrices per
participant and carrier frequency (and trial interval). The between-subject reliability analysis (Figure
S2; see Sl Appendix for details) suggested that power-envelope correlations were strongest and
showed highest reliability with 7-24 Hz. Accordingly, we focused our main analysis on three
frequency bands within alpha and low-beta frequency range. Connectivity matrices in each
frequency band was derived by averaging corresponding frequency-specific connectivity matrices.
Change in connectivity was evaluated by first calculating task-connectivity matrix minus rest-
connectivity matrix per frequency, and then averaging the results within each frequency band.
Finally, connectivity matrices were thresholded at 10% of network density (proportional
thresholding) (van Diessen et al,, 2015). This procedure ensured that networks were matched in
density across rest, task, and all participants. Subsequently, nodal connectivity was obtained by
calculating the sum of each node’s connection weights (i.e., correlations values). Mean connectivity
of a network (e.g., the frontoparietal network) was obtained by averaging nodal connectivity values
across the network.

Statistical analysis

Behavioral data. Participants’ behavioral performance in the listening task was evaluated with
respect to accuracy and response speed. Trials in which participants failed to answer within the given
4-s response window (‘timeouts’) were excluded from the analysis. Spatial stream confusions, that is
trials in which the final word of the to-be-ignored speech stream were selected, and random errors
were jointly classified as incorrect answers. The analysis of response speed, defined as the inverse of
reaction time, was based on correct trials only.

Connectivity data. Statistical comparisons of nodal and mean connectivity between rest and
task were based on permutation tests for paired samples (randomly permuting the rest and task
labels 10,000 times). We used Cohen’s d for paired samples as the corresponding effect size. For
nodal connectivity analysis, and to correct for multiple comparisons entailed by the neumebr of
cortical nodes, we used FDR procedure at significance level of 0.01 (two-sided). Knowing the skewed
distribution of mean connectivity, these valuse were logit-transformed before submitting to
(generalized) linear mixed-effects models (see below).

Brain-behavior models. Brain-behavior relationship was investigated within a linear mixed-
effects analysis framework. To this end, either of the single-trial behavioral measures (accuracy or
response speed) across all participants were treated as the dependent variable. The main
experimental predictors in the model were the single-trial spatial and semantic cue conditions, each
at two levels (divided vs. selective and general vs. specific, respectively). Neural predictors entered
as between-subject regressors. These include mean resting state connectivity, mean event-related
task connectivity per block, and mean event-related neural oscillatory power (dB) per block. The
linear mixed-effects analysis framework allowed us to account for other variables which entered as
regressors of no-interest in the model. These include age, mean pure-tone audiometry (PTA)
averaged across left and right ear, side probed (left or right), and task-block number. Mixed-effects
analyses were implemented in R (R Core Team, 2017) using the packages Ime4 (Bates et al,, 2015),
effects (Fox and Weisberg, 2018) and sjPlot (https://strengejacke.github.io/sjPlot/).

Model estimation. The regressors in each brain-behavior model included the main effects of all
predictors introduced above, plus the interaction between the two listening cues and the interaction
between rest and task connectivity. Additional interaction terms were also included to explore their
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possible effects on listening behavior. The influence of listening cues and of neural measures were
tested in same brain-behavior model. The models also included random intercepts by subject. In a
data-driven manner, we then tested whether model fit (performed using maximum-likelihood
estimation) could be further improved by the inclusion of subject-specific random slopes for the
effects of the spatial-attention cue, semantic cue, or probed ear. The change in model fit was
assessed using likelihood ratio tests on nested models. Deviation coding was used for categorical
predictors. All continuous variables were z-scored. For the dependent measure of accuracy, we used
generalized linear mixed-effects model (binomial distribution, logit link function). For response
speed, we used general linear mixed-effects model (gaussian distribution, identity link function).
Given the large sample size, p-values for individual model terms are based on Wald t-as z-values for
linear models (Luke, 2017) and on z-values and asymptotic Wald tests in generalized linear models.
All reported p-values are corrected to control for the false discovery rate. As a measure of effects size,
for the model predicting accuracy we report odds ratios (OR) and for response speed we report the
regression coefficient ().

Bayes factor. To facilitate the interpretability of significant and non-significant effects, we
calculated the Bayes Factor (BF) based on the comparison of Bayesian information criterion (BIC)
values as proposed by (Wagenmakers, 2007) : BF = exp([BIC(HO0)-BIC(H1)]/2). To calculate the BF for
a given term, we compared the BIC values of the full model to that of a reduced model in which only
the rest-connectivity X task-connectivity interaction term was removed. By convention, log-BFs
larger than 1 provide evidence for the presence of an effect (i.e., the observed data are more likely
under the more complex model) whereas log-BFs smaller than —1 provide evidence for the absence
of an effect (i.e., the observed data are more likely under the simpler model) (Dienes, 2014).

Data visualization

Brain surfaces were visualized using the Connectome Workbench. Brain-behavior interaction plots
were visualize using R package effects (Fox and Weisberg, 2018).

Data availability

In accordance with recommendations for best practices in data analysis and sharing (Pernet et al.,
2019; Pernet et al., 2020) the complete dataset associated with this work will be publicly available
under https://osf.io/28r57/
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